七年级下册第四章章节测试
2022年浙教版初中数学七年级下册第四章因式分解章节测评试题(含答案及详细解析)
初中数学七年级下册第四章因式分解章节测评(2021-2022学年 考试时间:90分钟,总分100分) 班级:__________ 姓名:__________ 总分:__________一、单选题(15小题,每小题3分,共计45分) 1、下列各式从左到右的变形,属于因式分解的是( ) A.ab +bc +b =b (a +c )+b B.a 2﹣9=(a +3)(a ﹣3) C.(a ﹣1)2+(a ﹣1)=a 2﹣aD.a (a ﹣1)=a 2﹣a2、下列由左边到右边的变形中,属于因式分解的是( ) A.(a +1)(a ﹣1)=a 2﹣1 B.a 2﹣6a +9=(a ﹣3)2C.a 2+2a +1=a (a +2)+1D.a 2﹣5a =a 2(1﹣5a)3、下列各式由左边到右边的变形,是因式分解的是( ) A.x 2+xy ﹣4=x (x +y )﹣4 B.2(1)y x x y x x x++=++C.(x +2)(x ﹣2)=x 2﹣4D.x 2﹣2x +1=(x ﹣1)24、下列各式从左边到右边的变形中,属于因式分解的是( ) A.2(1)(1)1a a a -+=-B.2211()42a a a ++=+C.231(3)1a a a a +-=+-D.26222(3)a ab a a a b ++=+5、下列多项式中有因式x ﹣1的是( ) ①x 2+x ﹣2;②x 2+3x +2;③x 2﹣x ﹣2;④x 2﹣3x +2A.①②B.②③C.②④D.①④6、()()()()()()()()()()444444444454941341744143474114154394++++++++++的值为( )A.3941B.4139C.1353D.3537、对于任何整数a ,多项式()2255a +-都能( ) A.被3整除B.被4整除C.被5整除D.被a 整除8、下面从左到右的变形中,因式分解正确的是( ) A.﹣2x 2﹣4xy =﹣2x (x +2y ) B.x 2+9=(x +3)2C.x 2﹣2x ﹣1=(x ﹣1)2D.(x +2)(x ﹣2)=x 2﹣49、下列各组式子中,没有公因式的是( ) A.﹣a 2+ab 与ab 2﹣a 2b B.mx +y 与x +y C.(a +b )2与﹣a ﹣bD.5m (x ﹣y )与y ﹣x10、把多项式﹣x 2+mx +35进行因式分解为﹣(x ﹣5)(x +7),则m 的值是( ) A.2B.﹣2C.12D.﹣1211、小南是一位密码编译爱好者,在他的密码手册中有这样一条信息:x ﹣1,a ﹣b ,3,x 2+1,a ,x +1分别对应下列六个字:化,爱,我,数,学,新,现将3a (x 2﹣1)﹣3b (x 2﹣1)因式分解,结果呈现的密码信息可能是( ) A.我爱学B.爱新化C.我爱新化D.新化数学12、下列各式从左到右的变形是因式分解的是( ) A.ax +bx +c =(a +b )x +c B.(a +b )(a ﹣b )=a 2﹣b 2C.(a +b )2=a 2+2ab +b 2D.a 2﹣5a ﹣6=(a ﹣6)(a +1)13、已知2x y -=,12xy =,那么32233x y x y xy ++的值为( )A.3B.6C.132D.13414、对于有理数a ,b ,c ,有(a +100)b =(a +100)c ,下列说法正确的是( ) A.若a ≠﹣100,则b ﹣c =0 B.若a ≠﹣100,则bc =1 C.若b ≠c ,则a +b ≠cD.若a =﹣100,则ab =c15、小明是一名密码翻译爱好者,在他的密码手册中有这样一条信息:-a b ,x y -,x y +,a b +,22x y -,22a b -分别对应下列六个字:勤,博,奋,学,自,主,现将()()222222x y a x y b ---因式分解,结果呈现的密码信息应是( ) A.勤奋博学B.博学自主C.自主勤奋D.勤奋自主二、填空题(10小题,每小题4分,共计40分)1、将12张长为a ,宽为b (a >b )的小长方形纸片,按如图方式不重叠地放在大长方形ABCD 内,未被覆盖的部分用阴影表示,若阴影部分的面积是大长方形面积的13,则小长方形纸片的长a 与宽b 的比值为 ___.2、因式分解:42716a a ++=__.3、已知a =2b ﹣5,则代数式a 2﹣4ab +4b 2﹣5的值是_____. 4、因式分解a 3﹣9a =______________. 5、因式分解:x 3y 2-x =________6、若20x y +-=,则代数式224x y y +-的值等于________.7、将24a -分解因式________8、因式分解:22421x y y ---=__________.9、若2210m n -=,且2m n -=,则m n +=______. 10、分解因式:12a 2b ﹣9ac =___.三、解答题(3小题,每小题5分,共计15分)1、(1)将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:()()()()()()am an bm bn am an bm bn a m n b m n a b m n +++=+++=+++=++.①分解因式:1ab a b --+;②若,a b ()a b >都是正整数且满足40ab a b ---=,求a b +的值;(2)若,a b 为实数且满足40ab a b ---=,225332s a ab b a b =+++-,求s 的最小值. 2、因式分解:(1)5a a -; (2)22363ax axy ay ---. 3、因式分解: (1)2242x x -+ (2)481x ----------参考答案----------- 一、单选题 1、B 【分析】根据因式分解的定义逐项排查即可. 【详解】解:根据因式分解的定义可知:A 、C 、D 都不属于因式分解,只有B 属于因式分解. 故选B.本题主要考查了因式分解的定义,把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解.2、B【分析】根据因式分解的定义逐个判断即可.【详解】解:A.由左边到右边的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B.由左边到右边的变形属于因式分解,故本选项符合题意;C.由左边到右边的变形不属于因式分解,故本选项不符合题意;D.等式的右边不是整式的积的形式,即由左边到右边的变形不属于因式分解,故本选项不符合题意;故选:B.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.3、D【分析】根据因式分解的定义逐个判断即可.【详解】解:A.从等式左边到右边的变形不属于因式分解,故本选项不符合题意;B.等式的右边不是整式的积,即从等式左边到右边的变形不属于因式分解,故本选项不符合题意;C.从等式左边到右边的变形不属于因式分解,故本选项不符合题意;D.从等式左边到右边的变形属于因式分解,故本选项符合题意;【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解. 4、B 【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,据此解答即可. 【详解】解:A 、是整式乘法,不是因式分解,故此选项不符合题意; B 、符合因式分解的定义,是因式分解,故此选项符合题意; C 、右边不是整式积的形式,不是因式分解,故此选项不符合题意; D 、26222(31)a ab a a a b ++=++,分解错误,故此选项不符合题意; 故选:B. 【点睛】本题考查了因式分解的知识,解答本题的关键是掌握因式分解的定义. 5、D 【分析】根据十字相乘法把各个多项式因式分解即可判断. 【详解】解:①x 2+x ﹣2=()()21x x +-;②x 2+3x +2=()()21x x ++;③x 2﹣x ﹣2=()()12x x +-;④x 2﹣3x +2=()()21x x --.∴有因式x ﹣1的是①④. 故选:D. 【点睛】本题考查了十字相乘法因式分解,对于形如2x px q ++的二次三项式,若能找到两数a b 、,使a b q ⋅=,且a b p +=,那么2x px q ++就可以进行如下的因式分解,即()()()22x px q x a b x ab x a x b ++=+++=++.6、D 【分析】观察式子中有4次方与4的和,将44x +因式分解,再根据因式分解的结果代入式子即可求解 【详解】422222224(2)(2)(22)(22)[(1)1][(1)1]x x x x x x x x x +=+-=++-+=++-+原式222222222222(41)(61)(81)(101)(401)(421)(21)(41)(61)(81)(381)(401)++++++++=++++++++2242135321+==+ 故答案为:353 【点睛】本题考查了因式分解的应用,找到4224[(1)1][(1)1]x x x +=++-+是解题的关键. 7、B 【分析】多项式利用完全平方公式分解,即可做出判断. 【详解】解:原式()22420255455a a a a =++-=++则对于任何整数a ,多项式()2255a +-都能被4整除. 故选:B. 【点睛】此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键. 8、A 【分析】根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案. 【详解】解:A 、把一个多项式转化成两个整式乘积的形式,故A 正确; B 、等式不成立,故B 错误; C 、等式不成立,故C 错误; D 、是整式的乘法,故D 错误; 故选:A. 【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式乘积的形式,注意因式分解与整式乘法的区别. 9、B 【分析】公因式的定义:多项式ma mb mc ++中,各项都含有一个公共的因式m ,因式m 叫做这个多项式各项的公因式. 【详解】解:A 、因为2()a ab a b a -+=-,22()ab a b ab b a -=-,所以2a ab -+与22ab a b -是公因式是()a b a -,故本选项不符合题意;B 、mx y +与x y +没有公因式.故本选项符合题意;C 、因为()a b a b --=-+,所以2()a b +与a b --的公因式是()a b +,故本选项不符合题意;D 、因为5()5()m x y m y x -=--,所以5()m x y -与y x -的公因式是()y x -,故本选项不符合题意;故选:B. 【点睛】本题主要考查公因式的确定,解题的关键是先利用提公因式法和公式法分解因式,然后再确定公共因式. 10、B 【分析】根据整式乘法法则进行计算﹣(x ﹣5)(x +7)的结果,然后根据多项式相等进行对号入座. 【详解】解:∵﹣(x ﹣5)(x +7)=2235x x --+, ∴2m =-, 故选:B. 【点睛】此题主要考查了多项式的乘法法则以及多项式相等的条件,即两个多项式相等,则它们同次项的系数相等. 11、C 【分析】把所给的式子运用提公因式和平方差公式进行因式分解,查看对应的字即可得出答案. 【详解】解:()()223131a x b x ---()()2-=-x a b31()()()-,=+-311x x a b∵x﹣1,a﹣b,3,x2+1,a,x+1分别对应下列六个字:化,爱,我,数,学,新,∴结果呈现的密码信息可能是:我爱新化,故选:C.【点睛】本题考查因式分解,解题的关键是熟练掌握提公因式法和套用平方差公式.12、D【分析】根据因式分解的定义对各选项进行逐一分析即可.【详解】解:A、ax+bx+c=(a+b)x+c,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;B、(a+b)(a﹣b)=a2﹣b2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;C、(a+b)2=a2+2ab+b2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;D、a2﹣5a﹣6=(a﹣6)(a+1),等式的右边是几个整式的积的形式,故是因式分解,故此选项符合题意;故选:D.【点睛】本题考查了分解因式的定义.解题的关键是掌握分解因式的定义,即把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.13、D【分析】根据完全平方公式求出225x y +=,再把原式因式分解后可代入求值.【详解】解:因为2x y -=,12xy =,所以()24x y -=,22425x y xy +=+=所以32233x y x y xy ++()223xy x xy y =++115322134⎛⎫=+⨯ ⎪⎝⎭= 故选:D【点睛】考核知识点:因式分解的应用.灵活应用完全平方公式进行变形是解题的关键.14、A【分析】将等式移项,然后提取公因式化简,根据乘法等式的性质,求解即可得.【详解】解:()()100100a b a c +=+,()()1001000a b a c +-+=,()()1000a b c +-=,∴1000-=,b ca+=或0即:100=,a=-或b cA选项中,若100-=正确;b ca≠-,则0其他三个选项均不能得出,故选:A.【点睛】题目主要考查利用因式分解化简等式,熟练掌握因式分解的方法是解题关键.15、A【分析】将式子先提取公因式再用平方差公式因式分解可得:(x2-y2)a2-(x2-y2)b2=(x2-y2)(a2-b2)=(x+y)(x-y)(a+b)(a-b),再结合已知即可求解.【详解】解:(x2-y2)a2-(x2-y2)b2=(x2-y2)(a2-b2)=(x+y)(x-y)(a+b)(a-b),由已知可得:勤奋博学,故选:A.【点睛】本题考查了因式分解的应用;将已知式子进行因式分解,再由题意求是解题的关键.二、填空题1、4【分析】用a ,b 分别表示出大长方形的长和宽,根据阴影部分的面积是大长方形面积的13,列式计算即可求解.【详解】解:根据题意得:AD =BC =8b +a ,AB =CD =2b +a , ∵阴影部分的面积是大长方形面积的13, ∴非阴影部分的面积是大长方形面积的23, ∴()()282123b a b a ab ++=,整理得:22880a ab b -+=,即()240a b -=,∴4a b =,则小长方形纸片的长a 与宽b 的比值为4.故答案为:4.【点睛】本题主要考查了整式的混合运算的应用,以及因式分解的应用,解题的关键是弄清题意,列出长方形面积的代数式及整式的混合运算顺序与运算法则.2、22(4)(4)a a a a +-++【分析】将2a 当作整体,对式子先进行配方,然后利用平方差公式求解即可.【详解】解:原式42222222816(4)(4)(4)a a a a a a a a a =++-=+-=+-++.故答案是:22(4)(4)a a a a +-++.【点睛】此题考查了因式分解,涉及了平方差公式,解题的关键是掌握因式分解的方法,并将2a 当作整体,得到平方差的形式.3、20【分析】将a =2b -5变为a -2b =-5,再根据完全平方公式分解a 2-4ab +4b 2-5=(a -2b )2-5,代入求解.【详解】解:∵a =2b -5,∴a -2b =-5,∴a 2-4ab +4b 2-5=(a -2b )2-5=(-5)2-5=20.故答案为:20.【点睛】此题考查的是代数式求值,掌握完全平方公式是解此题的关键.4、(3)(3)a a a +-;【分析】先提取公因式a ,再根据平方差公式进行二次分解即可求得答案.【详解】 a 3﹣9a =2(9)a a -=(3)(3)a a a +-故答案为:(3)(3)a a a +-【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.5、x (xy +1)(xy -1)【分析】先提公因式x ,再根据平方差公式进行分解,即可得出答案.【详解】解: x 3y 2-x =x (x 2y 2-1)=x (xy +1)(xy -1)故答案为x (xy +1)(xy -1).【点睛】此题考查了因式分解的方法,涉及了平方差公式,熟练掌握因式分解的方法是解题的关键. 6、4【分析】直接利用已知代数式将原式得出x +y =2,再将原式变形把数据代入求出答案.【详解】解:∵x +y -2=0,∴x +y =2,则代数式x 2+4y -y 2=(x +y )(x -y )+4y=2(x -y )+4y=2(x +y )=4.故答案为:4.【点睛】此题主要考查了公式法的应用,正确将原式变形是解题关键.7、()()22a a +-【分析】原式利用平方差公式分解即可.【详解】解:24a -=()()22a a +-故答案为:()()22a a +-.【点睛】此题考查了因式分解,熟练掌握平方差公式是解本题的关键.8、(21)(21)x y x y ++--【分析】先分组,然后根据公式法因式分解.【详解】22421x y y ---224(21)x y y =-++22(2)(1)x y =-+(21)(21)x y x y =++--.故答案为:(21)(21)x y x y ++--.【点睛】本题考查了分组分解法,公式法分解因式,掌握因式分解的方法是解题的关键.9、5【分析】将m 2-n 2按平方差公式展开,再将m -n 的值整体代入,即可求出m +n 的值.【详解】解:22()()10m n m n m n -=+-=,∵2m n -=,∴5m n +=.故答案为:5.【点睛】本题主要考查平方差公式,解题的关键是熟知平方差公式的逆用.10、()343a ab c -【分析】根据提公因式法分解因式求解即可.【详解】解:12a 2b ﹣9ac ()343a ab c =-. 故答案为:()343a ab c -.【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.三、解答题1、(1)①()()11a b --;②8;(2)4716【分析】(1)①根据题意分组分解即可;②根据①的结论可得(1)(1)5a b --=,进而根据,a b ()a b >都是正整数,列二元一次方程组解决问题;(2)先将s 利用分组分解法因式分解,再将已知条件整体代入,化为完全平方式,最后根据非负数的性质确定s 的最小值.【详解】解:(1)①1()(1)(1)(1)(1)(1)ab a b ab a b a b b a b --+=---=---=--②由题15ab a b --+=即(1)(1)5a b --=∵,a b 为正整数且a b >∴1511a b -=⎧⎨-=⎩ 即62a b =⎧⎨=⎩∴8a b +=(2)由题4ab a b =++ ∴225332s a ab b a b =+++-2253(4)32a ab b a b =+++++- 22221147612(3)()2416a ab b a b =++++=++++ ∵221(3)0,()04a b +≥+≥ ∴4716s ≥,当且仅当13,4a b =-=-时取等号 经验证当13,4a b =-=-时满足40ab a b ---=综上,s 的最小值为4716. 【点睛】本题考查了提公因式法因式分解,分组分解法因式分解,二元一次方程组,非负数的性质,整体代入是解题的关键.2、(1)2(1)(1)(1)a a a a ++-;(2)23()a x y -+.【分析】(1)先提公因式a ,然后再利用平方差公式分解即可;(2)先提公因式-3a ,然后再利用完全平方公式进行分解即可.【详解】解:(1)5a a -=4(1)a a -=22(1)(1)a a a +-=()2(1)(1)1a a a a ++-;(2)22363ax axy ay ---=223(2)a x xy y -++=23()a x y -+.【点睛】本题考查了提公因式法与公式法的综合运用,解题的关键是熟练掌握并灵活运用提公因式法和公式法.3、(1)22(1)x -;(2)2(9)(3)(3)x x x ++-【分析】(1)先提取公因式2,然后运用完全平方公式分解因式即可;(2)运用平方差公式因式分解即可.【详解】解:(1)2-+242x x22(21)=-+x x2x=-;2(1)(2)481x-22x x=+-(9)(9)2=++-.x x x(9)(3)(3)【点睛】本题主要考查提公因式法与公式法因式分解,熟知完全平方公式与平方差公式的结构特点时解题的关键,注意结果要分解完全.。
浙教版七年级下册数学第四章 因式分解单元测试卷及答案
浙教版初中数学七年级下册第四章因式分解单元测试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列各式属于因式分解的是()A.(3x+1)(3x﹣1)=9x2﹣1B.x2﹣2x+4=(x﹣2)2C.a4﹣1=(a2+1)(a+1)(a﹣1)D.9x2﹣1+3x=(3x+1)(3x﹣1)+3x2.(3分)下列各式分解因式结果是(a﹣2)(b+3)的是()A.﹣6+2b﹣3a+ab B.﹣6﹣2b+3a+abC.ab﹣3b+2a﹣6D.ab﹣2a+3b﹣63.(3分)若多项式﹣6ab+18abx+24aby的一个因式是﹣6ab,那么另一个因式是()A.1﹣3x﹣4y B.﹣1﹣3x﹣4y C.1+3x﹣4y D.﹣1﹣3x+4y4.(3分)若(a﹣b﹣2)2+|a+b+3|=0,则a2﹣b2的值是()A.﹣1B.1C.6D.﹣65.(3分)若多项式x2﹣ax﹣1可分解为(x﹣2)(x+b),则a+b的值为()A.2B.1C.﹣2D.﹣16.(3分)下列各式:①4x2﹣y2;②2x4+8x3y+8x2y2;③a2+2ab﹣b2;④x2+xy﹣6y2;⑤x2+2x+3其中不能分解因式的有()A.1个B.2个C.3个D.4个7.(3分)多项式x2+7x﹣18因式分解的结果是()A.(x﹣1)(x+18)B.(x+2)(x+9)C.(x﹣3)(x+6)D.(x﹣2)(x+9)8.(3分)把多项式4x2﹣2x﹣y2﹣y用分组分解法分解因式,正确的分组方法应该是()A.(4x2﹣y)﹣(2x+y2)B.(4x2﹣y2)﹣(2x+y)C.4x2﹣(2x+y2+y)D.(4x2﹣2x)﹣(y2+y)9.(3分)下列关于x的二次三项式中(m表示实数),在实数范围内一定能分解因式的是()A.x2﹣2x+2B.2x2﹣mx+1C.x2﹣2x+m D.x2﹣mx﹣110.(3分)已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2﹣ab﹣ac﹣bc的值是()A.0B.1C.2D.3二.填空题(共6小题,满分24分,每小题4分)11.(4分)多项式15m3n2+5m2n﹣20m2n的公因式是.12.(4分)已知x+y=8,xy=2,则x2y+xy2=.13.(4分)若多项式x2﹣mx﹣21可以分解为(x+3)(x﹣7),则m=.14.(4分)通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:a2+3ab+2b2=.15.(4分)因式分解:a2b2﹣a2﹣b2+1=.16.(4分)已知a2+a﹣1=0,则a3+2a2+2018=.三.解答题(共8小题,满分66分)17.(6分)把x2+3x+c分解因式得:x2+3x+c=(x+1)(x+2),求c.18.(6分)已知ab2=﹣1,求(﹣ab)(a3b7﹣ab3﹣b)的值?19.(8分)分解因式:(1)x2y﹣9y;(2)﹣m2+4m﹣4.20.(8分)已知x+y=8,xy=12,求:①x2y+xy2;②x2﹣xy+y2;③x﹣y的值.21.(8分)阅读下面的问题,然后回答,分解因式:x2+2x﹣3,解:原式=x2+2x+1﹣1﹣3=(x2+2x+1)﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)上述因式分解的方法称为配方法.请体会配方法的特点,用配方法分解因式:(1)x2﹣4x+3(2)4x2+12x﹣7.22.(10分)下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)请问:(1)该同学因式分解的结果是否彻底?(填“彻底”或“不彻底”).若不彻底,请直接写出因式分解的最后结果.(2)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.23.(10分)(1)请用两种不同的方法列代数式表示图1的面积方法1,方法2;(2)若a+b=7,ab=15,根据(1)的结论求a2+b2的值;(3)如图2,将边长为x和x+2的长方形,分成边长为x的正方形和两个宽为1的小长方形,并将这三个图形拼成图3,这时只需要补一个边长为1的正方形便可以构成一个大正方形.①若一个长方形的面积是216,且长比宽大6,求这个长方形的宽.②把一个长为m,宽为n的长方形(m>n)按上述操作,拼成一个在一角去掉一个小正方形的大正方形,则去掉的小正方形的边长为.24.(10分)若一个正整数a可以表示为连续的两个奇数的平方差的形式,如:8=32﹣12,16=52﹣32,24=72﹣52,……,我们则称形如8,16,24这样的正整数a为“奇特数”.(1)请写出最小的三位“奇特数”,并表示成连续的两个奇数的平方差的形式;(2)求证:任意一个“奇特数”都是8的倍数;(3)若一个三位数b为“奇特数”,其百位和个位上的数字相同,十位上的数字比个位上的数字大m(m为正整数),求满足条件的所有三位“奇特数”.参考答案一.选择题(共10小题,满分30分,每小题3分)1.C2.B3.A4.D5.A6.B7.D8.B9.D10.D 二.填空题(共6小题,满分24分,每小题4分)11.5m2n12.1613.414.(a+2b)(a+b)15.(a+1)(a﹣1)(b+1)(b﹣1)16.2019三.解答题(共8小题,满分66分)17.解:(x+1)(x+2)=x2+3x+2,∴c=2.18.解:原式=﹣a4b8+a2b4+ab2=﹣(ab2)4+(ab2)2+ab2,当ab2=﹣1时,原式=﹣(﹣1)3+(﹣1)2﹣1=1.19.解:(1)原式=y(x2﹣32)=y(x+3)(x﹣3).(2)原式=﹣(m2﹣4m+4)=﹣(m﹣2)2.20.解:①∵x+y=8,xy=12,∴原式=xy(x+y)=96;②∵x+y=8,xy=12,∴原式=(x+y)2﹣3xy=64﹣36=28;③(x﹣y)2=(x+y)2﹣4xy=64﹣48=16,∴x﹣y=±4.21.解:(1)x2﹣4x+3=x2﹣4x+4﹣4+3=(x﹣2)2﹣1=(x﹣2+1)(x﹣2﹣1)=(x﹣1)(x﹣3)(2)4x2+12x﹣7=4x2+12x+9﹣9﹣7=(2x+3)2﹣16=(2x+3+4)(2x+3﹣4)=(2x+7)(2x﹣1)22.解:(1)∵(x2﹣4x+4)2=(x﹣2)4,∴该同学因式分解的结果不彻底.(2)设x2﹣2x=y原式=y(y+2)+1=y2+2y+1=(y+1)2=(x2﹣2x+1)2=(x﹣1)4.故答案为:不彻底.23.解:(1)方法1,图1可看作是边长为(a+b)的正方形面积,即(a+b)2方法2,图1可看作是边长分别为a和b的2个正方形面积加上2个长为a宽为b的矩形面积,即a2+2ab+b2故答案为:(a+b)2;a2+2ab+b2(2)∵a+b=7∴(a+b)2=49,即a2+2ab+b2=49又∵ab=15∴a2+b2=49﹣2ab=19故答案为:19(3)①设宽为x,由题意可得:(x+3)2=216+32因为x>0,解得x=12.故答案为:12②由题可知:去掉小正方形的边长是原长方形长与宽差的一半故答案为:24.(1)解:最小的三位奇特数是:104104=(2)证明:设m=∵m=8k+8∴m =8(k +1)∴r 任意一个“奇特数”都是8的倍数(3)设个位上的数字为:x ,则十位数字为:(m +x ),百位数字为:x 则b =100x +10(m +x )+x =100x +10m +10x +x =111x +10m ∵b 为奇特数∴b 是8的倍数=13x +m +又∵ 是整数 ∴也是整数且1≤x <10,1≤(x +m )<10∴,,(舍),(舍)(舍)∴b 的值为:232 464 696。
七年级下册第四章测试答案最新实用版
26、(1)细胞核—白 (2)C
(2)1 主动脉--- 肺动脉----- 27、(1) 房室瓣 动脉瓣
24、A型—B型—AB型—O型—同型血 -----静脉-----动脉
2
七年级生物下册第四章测试答案
3 肺静脉--- 9 下腔静脉--- 11 上腔静脉 (3)贫血—铁---蛋白质
23、跳动的次数—每搏输出量--------4000毫升 23、跳动的次数—每搏输出量--------4000毫升 13、C 14、A 15、A 16、D
28、(1)血浆—----运载血细胞, 运输生命活动所需要的营养物质 及体内产生的废物。
(2)白细胞-------(4—10)X10 9
(3)贫血—铁---蛋白质
29、昆明属于高原地区,同平 原地区相比,空气中氧的含量 比较少。在这种环境下集训, 可以增加足球运动员血液中血 红蛋白的含量,从而增强足球 运动员血液的供氧能力。
4000毫升 29、昆明属于高原地区,同平原地区相比,空气中氧的含量比较少。
24、A型—B型—AB型—O
型—同型血
25、颜色鲜红— 含氧较少—主动 脉—上腔、下腔 静脉
三、分析说明题
26、(1)细胞核—白 (2)C
27、(1)6 房室瓣 5 动脉瓣 七年级生物下册第四章测试答案
17、C 18、B 19、C 20、C 28、(1)血浆—----运载血细胞,运输生命活动所需要的营养物质及体内产生的废物。
(3)贫血—铁---蛋白质 七年级生物下册第四章测试答案
--左—右 13、C 14、A 15、A 16、D
七年级生物下册第四章测试答案 22、肌肉—左心房—右心室—心房-----左—右
23、跳动的次数—每搏输出量-------- 24、A型—B型—AB型—O型—同型血
七年级下册数学第四章第三节试卷北师大版及答案
七年级下册数学第四章第三节试卷及答案北师大版一、填空题:(每题10分,共20分)-1.如图,在悬挂着的弹簧另一端系上一个小铁球,让它做上下来回振动,规定小球在平衡位置以下离开平衡位置的距离h记作一个负数,反之则记为正数, 通过记录有关数据,人们描绘出了h随时间t变化的曲线图,根据这张曲线图可以看出, 从记时开始.(1)________s小球振动一个来回.(2)从开始记时后2s内,小球_______次到达最高点,_______次到达最低点.(3)小球来回振动的振幅等于________(振幅等于偏离平衡位置的最大距离).(4)经过1.5s,小球的位置处于________.(5)估计一下,小球来回振动10.75s时应处于_________.-2.一个三角形的面积始终保持不变,它的一边的长为xcm,这边上的高为ycm,y与x的关系如下图,从图像中可以看出:(1)当x越来越大时,y越来越________; (2)这个三角形的面积等于________cm2.(3)可以想像:当x非常大非常大时,y一定非常小非常小,这个三角形显得很“扁”,但无论x多么的大,y总是_______零(填“大于”、“小于”、“大于或等于”之一).二、选择题:(每题10分,共20分)3.一辆行驶中的汽车在某一分钟内速度的变化情况如下图,下列说法正确的是( )A.在这一分钟内,汽车先提速,然后保持一定的速度行驶B.在这一分钟内,汽车先提速,然后又减速,最后又不断提速C.在这一分钟内,汽车经过了两次提速和两次减速D.在这一分钟内,前40s速度不断变化,后20s速度基本保持不变-4.一个苹果从180m的楼顶掉下,它距离地面的距离h(m)与下落时间t(s)之间关系如上图,下面的说法正确的是( )A.每相隔1s,苹果下落的路程是相同的;B.每秒钟下落的路程越来越大C.经过3s,苹果下落了一半的高度;D.最后2s,苹果下落了一半的高度三、解答题:(每题15分,共60分)5.声音在空气中传播的速度y(m/s)(简称音速)与气温x(℃)的关系如下表:气温x(℃)05101520音速y(m/s)331334337340343(1)这一变化过程中,自变量和因变量各是什么?(2)音速y(m/s)与气温x(℃)之间的关系式.(3)气温x=22℃时,某人看到烟花烯放5s后才听到声音, 那么此人与燃烟花的所在地约相距多远?-6.如图是某风景区的旅游线示意图,其中B、C、D为风景点,E 为两条路的交叉点,图中数据为相应两点间的路程(单位:km),一学生从A处出发,,以2km/h 的速度步行游览,每个景点的逗留时间为0.5h.(1)当他沿着路线A→D→C→E→A游览回到A处时,共用了3h,求CE的长.(2)若此学生打算从A处出发后,步行速度与在景点逗留的时间不变,且在最短时间内看完三个景点回到A处,请你为他设计一个步行路线,并说明这样设计的理由(不考虑其他因素).7.根据图回答下列问题.(1)图中表示哪两个变量间的关系?(2)A、B两点代表了什么?(3)你能设计一个实际事例与图中表示的情况一致吗?8.美国自1982~1987年已经减少了25 875000英亩农田,农场平均面积增加33英亩,但却有200000多家农场关闭了,下面的图(一)、(二)分别刻画了农场平均面积增加情况和农场个数减少情况.根据这两幅图提供的信息回答:(1)1985年农场数是多少个?农场平均面积是多少英亩?全美国有农场多少英亩?(2)在1982年,全美国共有农场多少英亩?到1987年呢?(3)设计一张折线图,反映全美国1982~1987年间农场总面积变化情况.参考答案1.(1)1 (2)2,2 (3)50厘米 (4)平衡位置 (5)最低点2.(1)小 (2)12xy (3)大于3.D4.B5.(1)自变量是气温,因变量是音速.(2)y=35x+331(3)当x=22时,y=35×22+331=344.2(m/s)344.2×5=1721m∴此人与燃放烟花所在地相跑约1721m.6.(1)2×(3-2×0.5)-1.6-1-1=0.4(千米)(2)若步行路线为A→D→C→B→E→A(或A→E→B→C→D→A),则所用时间为(1.6+1+1.2+0.4+1)÷2+3×0.5=4.1小时若步行路线为A→D→C→E→B→E→A(或A→E→B→E→C→D→A)同所用用时间为(1.6+1+0.4+0.4×2+1)÷2+3×0.5=3.9小时7.(1)时间与价钱间关系;(2)A点表示250元,B点表示150元;(3)这可以表示某户人家在“五一”长假中的消费情况:5月1日花150元 5月2日花100元 5月3日花250元 5月4日花200元5月5日花300元 5月6日花150元 5月7日花250元8.(1)1985年农场数是2 300 000个,农场的平均面积是450英亩,全美国有农场面积: 450×2 300 000=1.035×109(英亩)(2)1982年农场数是2401000个,农场的平均面积是428英亩,所以全美国有农场面积: 428×2401000=1.027628×109(英亩)(3)先算出1982~1987年间各年全美国农场面积数1983年:430×2380000=1.0234×109(英亩)1984年:440×2340000=1.0296×109(英亩)1986年:456×2200000=1.0032×109(英亩)1987年:461×2173000=1.001753×109(英亩)1982~1987年美国农场面积(英亩)(图略)一、选择题1.某人骑车外出,一段时间后又加速行驶,休息一段时间后又以相同的时间返回,则路程s与时间t的关系正确的是()2.某非典疑似病人夜里开始发烧,早晨烧得很厉害,医院及时抢救后体温开始下降,到中午时体温基本正常.但是下午他的体温又开始上升,直到夜里他才感觉到身上不那么发烫,下面能较好地刻画出这位非典疑似病人体温变化的图象是:()二、填空题1.一杯滚烫的水10分钟后凉却下来,在这个变化过程中,自变量是_________,因变量是_________.2.如图表示小明骑车从A地到B地过程中所走路程与行车时间的关系,则(1)从A到B地用了___________小时,实际走了__________不时.(2)2时至4时的速度是__________,该时间段表示__________.(3)A地到B地的路程为__________千米.(4)4时到5时的速度是_________.(5)2时时,小明距离A地___________千米.3.某地地面气温为15℃,高度每升高1km,气温下降6℃.(1)完成表格升高高度/km01234…气温/℃15…(2)在这个变化中,自变量是_________,因变量是__________.(3)若用h表示高度,t表示气温,那么t随h的变化而变化,其关系式为__________.(4)高度为10km时,气温是________℃,气温为-15℃的高度是________km.4.1992年至1996年,我国国内生产总值平均增长及商品零售价格年上涨幅度如图.其中“……”表示国内国民生产总值增幅.“__________”表示商品零售价格增幅.(1)__________年国民生产总值增幅最大,__________年的国民生产总值最大(2)__________年商品零售价格最低,_________年,商品零售价格增幅最小.三、解答题1.某种动物的体温随时间的变化图如图示:(1)一天之内,该动物体温的变化范围是多少?(2)一天内,它的最低和最高体温分别是多少?是几时达到的.(3)一天内,它的体温在哪段时间内下降.(4)依据图象,预计第二天8时它的体温是多少?2.某市一天的温度变化如图所示,看图回答下列问题:(1)这一天中什么时间温度最高?是多少度?什么时间温度最低?是多少度?(2)在这一天中,从什么时间到什么时间温度开始上升?在这一天中,从什么时间到什么时间温度开始下降?3.某市出租车计费办法如图所示,请根据图回答问题:(1)出租车起价是多少元,在多少千米之内只收起价费?(2)由图形求出起价里程表走完之后每行驶1km所增加的钱数.(3)某人乘车用了30元,问大约走了多远?4.如图,某乡办工厂今年前5个月生产情况如图.请根据图象说明1-5月的生产情况.参考答案一、选择题1.A2.C二、填空题1.时间,温度2.(1)7小时,5小时(2)0千米/时,小明休息或停止前进(3)40千米(4)10千米/时(5)20千米3.(1)升高高度/km01234…气温/℃1593-3-9…(2)升高高度,气温(3)ht 615-=(4)-45;54.(1)1992,1996 (2)1992,1996三、解答题1.(1)35℃~40℃(2)最低:35℃,4时 最高:40℃,16时(3)0~4时,16~24时(4)36℃2.(1)15时温度最高24℃,6时温度最低4℃(2)6时到15时温度上升,15时到24时温度下降.3.(1)5元,3千米 (2)1.25元 (3)大约在25千米以内.4.头三个月稳步增加,后两个月停产.一、填空题:(每题6分,共12分)-1.李小勇的爸爸让他去商店买瓶酱油,下图近似地描述了李小勇和家之间的距离与他离家后的时间之间的关系,则(1)李小勇去买瓶酱油共花了_______min,其中在路上行走了_______min, 他走路的平均速度是________.(2)李小勇在买酱油的过程中有_______次停顿,其中第_____次是因为买酱油付钱而停顿的.(3)李小勇在途中另一处停顿的原因是_____________.(只要写得合理都对)(第1题) (第2题)2.假定甲、乙两人在一次赛跑中,路程S与时间t的关系如图所示,看图填空:(1)这是一次_______赛跑.(2)甲、乙两人中先到达终点的是_________.(3)乙在这次赛跑中的平均速度是_________m/s.二、选择题:(每题8分,共48分)3.某产品的生产流水线每小时生产100件产品, 生产前没有产品积压, 生产3h后安排工人装箱,若每小时装产品150件,未装箱的产品数量y是时间t的函数,那么,这个函数的大致图象只能是下图中的( )4.一人骑自行车从家里出发,先加速行驶一段路程后,又匀速骑了一段路程,路中遇一熟人,减速后停下来,讲了一阵话,后以加速行驶到一定速度后匀速行驶, 接着又减速行驶到目的地,下列图中,哪一幅是表示上述情况的( )5.某校举行趣味运动会,甲、乙两名学生同时从A地到B地, 甲先骑自行车到B地后跑步回A地,乙则是先跑步到B地后骑自行车回A地(骑自行车的速度快于跑步的速度),最后两人恰好同时回到A地,已知甲骑自行车比乙骑自行车的速度快, 若学生离开A地的距离S与所用时间t的关系用图像表示如下(实线表示甲的图像, 虚线表示乙的图像),则正确的是( )-6.水滴进玻璃容器如图所示(设单位时间内进水量相同),那么水的高度是如何随时间变化的,请选择分别与A、B、C、D区配的图像 ( )A.(3)(2)(4)(1)B.(2)(3)(1)(4)C.(2)(3)(4)(1)D.(3)(2)(1)(4)-7.下面的图像表示了一辆汽车从出发到目的地之间的速度随时间变化的情况.下列说法正确的是( )A.汽车在5个时间段匀速行驶;B.汽车行驶了65minC.汽车经历了4次提速和4次减速的过程;D.汽车在路途中停了2次,停车的总时间不足10min.-8.让一只乒乓球在桌面上上下弹跳6s,下面的图像表示了它弹跳距离桌面的高度随时间变化的情况,下面的结论正确的是( )A.乒乓球一共弹跳了6个来回;B.乒乓球每个来回经过的时间相等C.乒乓球一共弹跳了240cm的路程D.乒乓球每次从桌面弹跳到最高点的过程中,前40cm和40cm花的时间相等,都是0.5s.三、解答题:(每题10分,共40分)-9.汽车在山区行驶过程中,要经过上坡、下坡、平路等路段, 在自身动力不变的情况下,上坡时速度越来越慢,下坡时速度越来越快,平路上保持匀速行驶,下面的图像表示了一辆汽车在山区行驶过程中的速度随时间变化的情况.(1)汽车在哪些时间段保持匀速行驶?时速分别是多少?(2)汽车遇到了几个上坡路段?几个下坡路段?在哪个下坡路段上花时间最长?(3)用自己的语言大致描述这辆汽车的行驶情况,包括遇到的山路, 在山路上的速度变化情况等.班途中的情况.-11.小欣外出办事,先以12km/h 速度骑自行车前进半小时, 再乘公共汽车以40km/h速度行驶20min,接着以6km/h速度步行30min,休息10min后,又以5km/h速度步行20min,到达目的地,在这个过程中,哪个是自变量哪个是因变量, 画出表示自变量与因变量关系的图像.-12.某辆汽车行驶路程与时间的关系如图所示,描述这辆汽车的行驶情况,并分别计算前3h 内,前5h内和全程的平均速度,描述这辆汽车的行驶情况, 这辆汽车共行驶多长时间?多少路程?参考答案1.(1)8,6,150米/分 (2)2,2 (3)略2.(1)100m (2)甲 (3)83.A4.B5.A6.A7.D8.B-9.(1)汽车在0.2~0.4h,0.6~0.7h及0.9~1h三个时间段保持匀速行驶,速度分别是70km/h,80km/h和70km/h.(2)汽车遇到CD、FG两个上坡段,AB、DE、GH三个下坡路段;在AB路段.(3)计时开始,汽车下坡行驶0.2h后转入平路行驶至0.4h,转入上坡行驶至0.5h,紧接着转入下坡行驶至0.6h,转入平路行驶至0.7h后又上坡行驶至0.8h,紧接着转入下坡行驶至0.9h,最后平路行驶至1小时结束计时.-10.李老师先以某一速度匀速前进,中途有事(可能停下来休息,或自行车出现故障),办好事情后,为了按时到校,李老师加快了速度,结果准时到校(答案并非单一, 只要合理就可以)11.时间是自变量,速度是因变量.-12.240÷3=80km/h,270÷5=54km/h,810÷9=90km/h,先加速,后停了1h,又加速,再加速,共行驶(9-1)h,即8h,行驶810km.一、小明放学后,等了小乐一会儿,然后两人一起骑车回家,开始加速行驶,然后匀速前行,下面哪一副图可以描述他们放学后骑车速度与时间的变化情况.()二、下面哪副图表示的是学生餐厅的学生就餐人数随时间变化的情况()时间40三、小张一家非常节俭,每月定期存款有了一段时间后,由于儿子需要买台电脑,因此有几个月没有存款.买来电脑后,又继续存款,下面哪副图表示了他家存、取款的情况()四.如图所示是一辆汽车的速度随时间变化的图象.根据图象填空:图(1)汽车在整个行驶过程中,最高时速是________千米/时;(2)汽车在________,________保持匀速行驶,时速分别是________,________;(3)汽车在________、________、________时段内加速行驶,在________、________时段内减速行驶;(4)出发后,12分到14分之间可能发生________情况;(5)请用自己的语言描述这辆汽车的行驶情况:______________________________.五.某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么服药后2小时血液中含药量最高,达每毫升6微克(1微克=10-3毫克),接着逐步衰弱,1 0小时时血液中含药量为每毫升3微克,每毫升血液中含药量y(微克)随时间x(小时)的变化如图所示.当成人按规定剂量服药后,从图象可知图(1)如果每毫升血液中含药量为3微克或3微克以上时在治疗疾病时是有效的,那么这个有效时间是多长?(2)问经过多少小时后血液中该药物的含量为0.(3)写出x≤2时,y与x的关系式.六.星期天,小新和爸爸妈妈一起去电影院看一场电影.在去的路上,小新画出了汽车的速度随时间变化的情况如图1:图11.汽车行驶了多长时间?它的最大速度是多少?2.汽车在哪个范围内保持匀速?速度是多少?3.出发后10分钟到12分钟这段时间可能出现什么情况?4.用自己的语言描述这辆汽车的行驶情况,与同桌交流.参考答案一.A二.C三.D四.(1)60;(2)2分到5分,16分到20分,30千米/时,60千米/时;(3)0分到2分,5分到8分,14分到16分,8分到12分,20分到24分;(4)修车(或找其他理由).(5)先加速行驶2分钟,以30千米/时速度匀速行驶3分钟,再加速行驶3分钟速度达到45千米/时,减速行驶4分钟车停下来,车停了2分钟后,再加速行驶2分钟,速度达到60千米/时,再匀速行驶4分钟,最后减速行驶4分钟并停车.五.(1)(过y轴上表示3的点作平行线)9小时;(2)18小时;(3)y=3x(x≤2).六.1.20分钟 45千米/时2.出发2分钟~8分钟内及13分钟~18分钟内速度为30千米/时及45千米/时3.堵车或加油4.略。
浙教新版七年级下册《第4章_因式分解》2024年单元测试卷+答案解析
浙教新版七年级下册《第4章因式分解》2024年单元测试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列各式的变形中,属于因式分解的是()A. B.C.D.2.观察下列各式:①;②;③;④;⑤;⑥其中可以用提公因式法分解因式的有()A.①②⑤B.②④⑤C.②④⑥D.①②⑤⑥3.下列因式分解正确的是()A.B.C.D.4.把代数式分解因式,结果正确的是()A.B.C.D.5.已知多项式因式分解后有一个因式为,则k 的值为()A.B.5C.D.66.下列多项式中,能用公式法分解因式的是()A.B.C.D.7.若多项式是另外一个多项式的平方,则k 的值是() A.3 B.6C. D.8.若,则的值是()A.3B. C.1D.29.小强是一名密码编译爱好者,在他的密码手册中,有这样一条信息:,,,,,分别对应下列六个字:浙,爱,我,江,游,美,现将分解因式,结果呈现的密码信息可能是()A.我爱美B.江浙游C.爱我江浙D.美我江浙10.已知,,,则多项式的值为()A.0B.1C.2D.3二、填空题:本题共6小题,每小题3分,共18分。
11.若将分解因式的结果为,则______,______.12.多项式因式分解的结果是______.13.已知,则的值是______.14.两名同学将同一个二次三项式因式分解,甲因看错了一次项系数而分解成;乙因看错了常数项而分解成,则多项式为______,因式分解后的正确结果应该是______.15.已知关于x的二次三项式分解因式的结果是,则代数式的值为______.16.甲、乙两农户各有两块地,如图所示,今年,这两个农户决定共同投资搞饲养业,为此,他们准备将这4块土地换成一块地,那块地的宽为米,为了使所换土地的面积与原来4块地的总面积相等,交换之后的土地应该是______米.三、解答题:本题共6小题,共52分。
解答应写出文字说明,证明过程或演算步骤。
人教版七年级生物下册第四章《人体内物质的运输》测试卷(含答案)
人教版七年级生物下册第四章《人体内物质的运输》测试卷(含答案)一、选择题(每小题3分,共42分)1. 关于人体内血细胞的叙述,错误的是()A.成熟的红细胞没有细胞核B.血小板是最小的血细胞,有细胞核C.白细胞具有吞噬病菌的作用D.红细胞具有运输氧的功能2. 下图表示血液流经某结构后某些成分的变化情况,据此推测该结构为()A.肺B.组织细胞C.肝脏D.肾脏3. 病人在医院输液时,护士一般将针刺入四肢的静脉,主要原因是()A.静脉管壁较薄,弹性较大B.四肢静脉中有静脉瓣C.静脉能将血液从身体各部分送回心脏D.静脉内血流速度较快4. 下列关于血液的叙述,正确的是()A.甲是B型血的人,可以给乙输血,则乙的血型一定是B型B.正常人的血浆是一种淡黄色液体,约占血液总量的55%C.人体出现炎症时,血液中血小板的数量会大量增加D.血液中的二氧化碳主要是由红细胞运输的5. 下图甲为“观察小鱼尾鳍内血液的流动”的实验材料;图乙为显微镜下观察到的视野图像,①②③表示血管。
下列叙述错误的是()A.为了便于观察,应选取尾鳍色素少的、活的小鱼B.①是小动脉,判断依据是血液由主干血管流向分支血管C.②是毛细血管,判断依据是红细胞单行通过D.血管中的血流速度由快到慢依次是③②①6. 需大量输血时,下列最符合安全输血原则的是()7. 如图为心脏工作某一阶段示意图,下列有关叙述中错误的是()A.①和③正处于舒张状态B.②和④泵出来的血液量相等C.②和④中流的都是动脉血D.从②流出的血液首先参与肺循环8. 某AB型血的癌症患者由于化疗导致血小板大量减少危及生命。
为救治该患者需要马上输血。
下列关于输血与血型的说法不正确的是()A.安全输血应以输同型血为原则B.由于血库缺乏AB型血,为及时救治病人,可快速地输入大量的A型或B型血C.根据“缺什么补什么”的原则,只输入血小板成分,提高病人输血治疗的效果D.我国实行无偿献血制度,提倡18~55周岁的健康公民自愿献血9. 如图是人体消化、呼吸和循环系统示意图,下列叙述正确的是()A.A系统的主要器官是支气管B.B系统中吸收营养的主要器官是小肠C.D的名称是左心房D.a代表葡萄糖、脂肪酸、蛋白质等物质10. 人们到医院看病时,有时需要做血常规化验。
2022年最新京改版七年级数学下册第四章一元一次不等式和一元一次不等式组章节测试练习题(含详解)
七年级数学下册第四章一元一次不等式和一元一次不等式组章节测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知a ,b 为实数,下列说法:①若0ab <,且a ,b 互为相反数,则1a b=-;②若0a b +<,0ab >,则|23|23a b a b +=--;③若||0a b a b -+-=,则b a >;④若||||a b >,则()()a b a b +⨯-是正数;⑤若a b <,0ab <且|3||3|a b -<-,则6a b +>,其中正确的说法有( )个.A .2 B .3 C .4 D .52、把不等式36x ≥-的解集在数轴上表示正确的是( )A .B .C .D .3、关于x 的分式方程231x mx -=+的解是正数,则字母m 的取值范围是( ) A .3m <-B .3m <C .3m >且2m ≠D .3m >-且2m ≠4、不等式2x ﹣1<3的解集在数轴上表示为( ) A .B .C .D .5、不等式054ax ≤+≤的整数解是1,2,3,4.则实数a 的取值范围是( ) A .514a -≤<-B .1a ≤-C .54a ≤-D .54a ≥-6、如果a b <,那么下列不等式中正确的是( ) A .22a b < B .11a b ->- C .a b -<-D .22a b -+<-+7、把不等式组123x x >-⎧⎨+≤⎩的解集在数轴上表示,正确的是( )A .B .C .D .8、下列变形中,错误的是( ) A .若3a +5>2,则3a >2-5B .若213x ->,则23x <-C .若115x -<,则x >﹣5 D .若1115x >,则511x > 9、如果 0,<<c b a , 那么下列不等式中不成立的是( ) A .a c b c +<+ B .ac bc > C .11ac bc -+<-+D .22ac bc >10、在数轴上表示不等式组﹣1<x ≤3,正确的是( )A .B .C .D .第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若m >n ,则m ﹣n _______0(填“>”或“=”或“<”).2、按下面的程序计算,若开始输入的值x 为正整数,规定:程序运行到“判断结果是否大于10”为一次运算,当2x =时,输出结果=____.若经过2次运算就停止,则x 可以取的所有值是____.3、 “x 的3倍减去4-的差是一个非负数”,用不等式表示为_____________.4、若21(2)15m m x --->是关于x 的一元一次不等式,则m 的值为______________.5、把一堆花生分给一群猴子,如果每只猴子分3颗,就剩8颗;如果每只猴子分5颗,那么最后一只猴子分到的花生不足5颗.求猴子的只数与花生的颗数分别为________. 三、解答题(5小题,每小题10分,共计50分)1、定义:如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的“相伴方程”.例如:方程2x ﹣6=0的解为x =3,不等式组205x x -⎧⎨⎩><的解集为2<x <5.因为2<3<5.所以称方程2x ﹣6=0为不等式组205x x -⎧⎨⎩><的相伴方程.(1)若关于x 的方程2x ﹣k =2是不等式组3641410x xx x --⎧⎨-≥-⎩>的相伴方程,求k 的取值范围;(2)若方程2x+4=0,213x-=-1都是关于x的不等式组()225m x mx m⎧--⎨+≥⎩<的相伴方程,求m的取值范围;(3)若关于x的不等式组2122x xx n--+⎧⎨≤+⎩>的所有相伴方程的解中,有且只有2个整数解,求n的取值范围.2、解不等式组:3451233x xxx-<-⎧⎪⎨-≤-⎪⎩,并把其解集在数轴上表示出来.3、解下列一元一次不等式组:(1)21112xx+≥-⎧⎪⎨⎪⎩<;(2)() 35221322.542x x xx x⎧---⎪⎨-≤-⎪⎩<.4、已知x<y,比较下列各对数的大小.(1)8x-3和8y-3;(2)516x-+和516y-+;(3)x-2和y-1.5、有一批产品需要生产装箱,3台A型机器一天刚好可以生产6箱产品,而4台B型机器一天可以生产5箱还多20件产品.已知每台A型机器比每台B型机器一天多生产40件.(1)求每箱装多少件产品?(2)现需生产28箱产品,若用1台A型机器和2台B型机器生产,需几天完成?(3)若每台A型机器一天的租赁费用是240元,每台B型机器一天的租赁费用是170元,可供租赁的A型机器共3台,B型机器共4台.现要在3天内(含3天)完成28箱产品的生产,请直接写出租赁费用最省的方案(机器租赁不足一天按一天费用结算).---------参考答案----------- 一、单选题 1、C 【解析】 【分析】①除0外,互为相反数的商为1-,可作判断;②由两数之和小于0,两数之积大于0,得到a 与b 都为负数,即23a b +小于0,利用负数的绝对值等于它的相反数化简得到结果,即可作出判断;③由-a b 的绝对值等于它的相反数,得到-a b 为非正数,得到a 与b 的大小,即可作出判断; ④由a 绝对值大于b 绝对值,分情况讨论,即可作出判断;⑤先根据a b <,得33a b -<-,由0ab <和有理数乘法法则可得0a <,0b >,分情况可作判断. 【详解】解:①若0ab <,且a ,b 互为相反数,则1a b=-,本选项正确;②若0ab >,则a 与b 同号,由0a b +<,则0a <,0b <,则|23|23a b a b +=--,本选项正确; ③||0a b a b -+-=,即||()a b a b -=--,0a b ∴-,即a b ,本选项错误;④若||||a b >,当0a >,0b >时,可得a b >,即0a b ->,0a b +>,所以()()a b a b +⋅-为正数; 当0a >,0b <时,0a b ->,0a b +>,所以()()a b a b +⋅-为正数; 当0a <,0b >时,0a b -<,0a b +<,所以()()a b a b +⋅-为正数; 当0a <,0b <时,0a b -<,0a b +<,所以()()a b a b +⋅-为正数,本选项正确; ⑤a b <,33a b -<-∴, 0ab <,0a ∴<,0b >,当03b <<时,|3||3|a b -<-,33a b ∴-<-,不符合题意;所以3b ,|3||3|a b -<-,33a b ∴-<-,则6a b +>, 本选项正确;则其中正确的有4个,是①②④⑤. 故选:C . 【点睛】本题考查了相反数,不等式的性质,绝对值和有理数的混合运算,熟练掌握各种运算法则是解本题的关键. 2、D 【解析】 【分析】解一元一次不等式求出不等式的解集,由此即可得出答案. 【详解】解:不等式36x ≥-的解集为2x ≥-,在数轴上的表示如下:故选:D.【点睛】本题考查了将一元一次不等式的解集在数轴上表示出来,熟练掌握不等式的解法是解题关键.3、A【解析】【分析】解分式方程,得到含字母m的方程,解此方程,再根据该方程的解是整数,结合分式方程的分母不为零,得到两个关于字母m的不等式,解之即可.【详解】解:231x mx-=+方程两边同时乘以(x+1),得到233x m x-=+ 3x m∴=--+10x≠1x∴≠-31m∴--≠-2m∴≠-因为分式方程的解是正数,x∴>30m∴-->故选:A . 【点睛】本题考查分式方程的解、解一元一次不等式等知识,难度较易,掌握相关知识是解题关键. 4、D 【解析】 【分析】先解出一元一次不等式的解集,再根据不等式解集的表示方法做出判断即可. 【详解】解:由2x ﹣1<3得:x <2,则不等式2x ﹣1<3的解集在数轴上表示为,故选:D . 【点睛】本题考查解一元一次不等式、在数轴上表示不等式的解集,熟练掌握在数轴上表示不等式的解集的方法是解答的关键. 5、A 【解析】 【分析】先确定0,a ≠ 再分析0a >不符合题意,确定0,a < 再解不等式,结合不等式的整数解可得:101545a a ⎧-≤⎪⎪⎨⎪≤-⎪⎩<<,从而可得答案.解: 054ax ≤+≤51ax ∴-≤≤-显然:0,a ≠当0a >时,不等式的解集为:51x a a-≤≤-, 不等式没有正整数解,不符合题意, 当0a <时,不等式的解集为:15,x a a-≤≤-不等式054ax ≤+≤的整数解是1,2,3,4,101545a a ⎧-≤⎪⎪∴⎨⎪≤-⎪⎩<①<②由①得:1,a ≤- 由②得:51,4a -≤<-所以不等式组的解集为:5 1.4a -≤<- 故选A 【点睛】本题考查的是根据不等式的整数解确定参数的取值范围,掌握“解不等式时,不等式的左右两边都乘以或除以同一个负数时,不等号的方向改变”是解题的关键. 6、A 【解析】 【分析】根据不等式的性质解答.解:根据不等式的性质3两边同时除以2可得到22a b <,故A 选项符合题意; 根据不等式的性质1两边同时减去1可得到11a b -<-,故B 选项不符合题意;根据不等式的性质2两边同时乘以-1可得到a b ->-,故C 选项不符合题意;根据不等式的性质1和2:两边同时乘以-1,再加上2可得到22a b -+>-+,故D 选项不符合题意;故选:A . 【点睛】此题考查不等式的性质:性质一:不等式两边加减同一个数,不等号方向不变;性质二:不等式两边同乘除同一个正数,不等号方向不变;性质三:不等式两边同乘除同一个负数,不等号方向改变. 7、D 【解析】 【分析】先求出不等式组的解集,再把不等式组的解集在数轴上表示出来,即可求解. 【详解】解:123x x >-⎧⎨+≤⎩①②,解不等式②,得:1x ≤ , 所以不等式组的解集为11x -<≤ 把不等式组的解集在数轴上表示出来为:故选:D【点睛】本题主要考查了解一元一次不等组,熟练掌握解一元一次不等组的步骤是解题的关键.8、B【解析】【分析】根据不等式的两边都加(或减)同一个数(或同一个整式),不等号的方向不变;不等式的两边都乘以同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.【详解】解:A、不等式的两边都减5,不等号的方向不变,故A不符合题意;B、不等式的两边都乘以32-,不等号的方向改变得到32x<-,故B符合题意;C、不等式的两边都乘以(﹣5),不等号的方向改变,故C不符合题意;D、不等式的两边都乘以同一个正数,不等号的方向不变,故D不符合题意;故选:B.【点睛】本题考查了不等式的性质,熟记不等式的性质并根据不等式的性质计算式解题.9、D【解析】【分析】根据不等式的性质逐个判断即可.不等式的性质1:不等式两边同时加上或减去同一个数,不等号的方向不改变;不等式的性质2:不等式两边同时乘以或除以同一个正数,不等号的方向不改变;不等式两边同时乘以或除以同一个负数,不等号的方向要改变.解:A 、∵0,<<c b a ,∴a c b c +<+,选项正确,不符合题意;B 、∵0,<<c b a ,∴ac bc >,选项正确,不符合题意;C 、∵0,<<c b a ,∴11ac bc -+<-+,选项正确,不符合题意;D 、∵0,<<c b a ,∴22ac bc <,选项错误,符合题意.故选:D .【点睛】此题考查了不等式的性质,解题的关键是熟练掌握不等式的性质.不等式的性质1:不等式两边同时加上或减去同一个数,不等号的方向不改变;不等式的性质2:不等式两边同时乘以或除以同一个正数,不等号的方向不改变;不等式两边同时乘以或除以同一个负数,不等号的方向要改变.10、C【解析】【分析】把不等式组的解集在数轴上表示出来即可.【详解】解:13x -<,∴在数轴上表示为:【点睛】本题考查的是在数轴上表示不等式的解集,解题的关键是熟知“小于向左,大于向右”的法则.二、填空题1、>【解析】【分析】根据不等式的性质即可得出结论.【详解】解:∵m >n ,∴m ﹣n >0,故答案为:>【点睛】本题考查了不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变即如果a >b ,那么a±c >b ±c .2、 11, 2或3或4.【解析】【分析】根据题意将2x =代入求解即可;根据题意列出一元一次不等式组即可求解.【详解】解:当2x =时,第1次运算结果为2215⨯+=,第2次运算结果为52111⨯+=,∴当2x =时,输出结果11=,若运算进行了2次才停止,则有()2121102110xx⎧+⨯+>⎨+<⎩,解得:74.54x<<.x可以取的所有值是2或3或4,故答案为:11,2或3或4.【点睛】此题考查了程序框图计算,代数式求值以及解一元一次不等式组,解题的关键是根据题意列出一元一次不等式组.3、3(4)0x--≥【解析】【分析】根据题中的不等量关系列出不等式即可.【详解】解:根据题意列不等式为:3(4)0x--≥,故答案为:3(4)0x--≥.【点睛】本题考查了一元一次不等式的应用,解题的关键是根据题中所给的不等量关系列出一元一次不等式.4、1【解析】【分析】根据一元一次不等式的定义可得:211m-=且20m-≠,求解即可.【详解】解:根据一元一次不等式的定义可得:211m-=且20m-≠解得1m=故答案为1【点睛】此题考查了一元一次不等式的定义,解题的关键是掌握一元一次不等式的概念.5、5只和23颗或6只和26颗.【解析】【分析】设猴子的只数为x只,根据题意列出不等式组,求整数解即可.【详解】解:设猴子的只数为x只,根据题意列出不等式组得,0385(1)5x x<+--<,解得,1342x<<,因为x为整数是,所以,5x=或6x=,花生的颗数为颗35823⨯+=或36826⨯+=颗故答案为:5只和23颗或6只和26颗.【点睛】本题考查了一元一次不等式组的应用,解题关键是准确把握题目中的不等量关系,列出不等式组.三、解答题1、(1)3<k≤4;(2)2<m≤3;(3)4≤n<6.【解析】【分析】(1)首先求出方程2x﹣k=2的解和不等式组3641410x xx x--⎧⎨-≥-⎩>的解集,然后根据“相伴方程”的概念列出关于k的不等式组求解即可;(2)首先求出方程2x+4=0,213x-=-1的解,然后分m<2和m>2两种情况讨论,根据“相伴方程”的概念即可求出m的取值范围;(3)首先表示出不等式组2122x xx n--+⎧⎨≤+⎩>的解集,然后根据题意列出关于n的不等式组求解即可.【详解】解:(1)∵不等式组为3641410x xx x--⎧⎨-≥-⎩>,解得532x≤<,∵方程为2x﹣k=2,解得x22k+ =,∴根据题意可得,523 22k+≤<,∴解得:3<k≤4,故k取值范围为:3<k≤4.(2)∵方程为2x+4=0,2113x-=-,解得:x=﹣2,x=﹣1;∵不等式组为225m x mx m--⎧⎨+≥⎩()<,当m<2时,不等式组为15xx m⎧⎨≥-⎩>,此时不等式组解集为x>1,不符合题意,应舍去;∴当m>2时不等式组解集为m﹣5≤x<1,∴根据题意可得,252mm⎧⎨-≤-⎩>,解得2<m≤3;故m取值范围为:2<m≤3.(3)∵不等式组为2122x xx n--+⎧⎨≤+⎩>,解得1<x22n+≤,根据题意可得,3242n+≤<,解得4≤n<6,故n取值范围为4≤n<6.【点睛】此题考查了新定义问题,一元一次方程和一元一次不等式组含参数问题,解题的关键是正确分析新定义的“相伴方程”概念,并列出方程求解.2、﹣1.5<x≤1,图见解析.【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集最后在数轴上表示出不等式组的解集即可.【详解】解:3451233x xxx-<-⎧⎪⎨-≤-⎪⎩解不等式3x﹣4<5x﹣1,得:x>﹣1.5,解不等式233xx-≤-,得:x≤1,则不等式组的解集为﹣1.5<x≤1,将其解集表示在数轴上如下:【点睛】本题主要考查了解一元一次不等式组,在数轴上表示出不等式组的解集,解题的关键在于能够熟练掌握求不等式组解集的方法.3、(1)-3≤x<2(2)12<x≤125【解析】【分析】(1)分别求出各不等式的解集,再求出其公共解集即可.(2)分别求出各不等式的解集,再求出其公共解集即可.【详解】(1)解21 112xx+≥-⎧⎪⎨⎪⎩①<②解不等式①得x≥-3;解不等式②得x<2;∴不等式组的解集为-3≤x<2;(2)解() 35221322.542x x xx x⎧---⎪⎨-≤-⎪⎩<①②.解不等式①得x>12;解不等式②得x≤125; ∴不等式组的解集为12<x≤125. 【点睛】 本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.4、(1)8x -3<8y -3;(2)551166x y -+>-+;(3)x -2<y -1【解析】【分析】(1)根据不等式的基本性质:不等式两边同时乘以一个正数,不等号不变号,不等式两边同时加上或减去一个数,不等号方向不变,即可得;(2)根据不等式的基本性质:不等式两边同时乘以一个负数,不等号变号,不等式两边同时加上或减去一个数,不等号方向不变,即可得;(3)根据不等式的基本性质:不等式两边同时加上或减去一个数,不等号方向不变,即可得.【详解】解:(1)∵ x y < ,∴ 88x y <,∴ 8383x y -<-;(2)∵ x y <,∴ 5566x y ->-,∴ 551166x y -+>-+;(3)∵ x y <,∴ 22x y -<-,而21y y -<-,∴ 21x y -<-.【点睛】题目主要考查不等式的基本性质,熟练掌握不等式的各个性质是解题关键.5、(1)60件;(2)6天;(3)A 型机器前2天租3台,第3天租2台;B 型机器每天租3台【解析】【分析】(1)设每箱装x 件产品,根据“每台A 型机器比每台B 型机器一天多生产40件”列出方程求解即可;(2)根据第(1)问的答案可求得每台A 型机器每天生产120件,每台B 型机器每天生产80件,根据工作时间=工作总量÷工作效率即可求得答案;(3)先将原问题转化为“若3天共有9台次A 型机器,12台次B 型机器可用,求这3天完成28箱(1680件产品)所需的最省费用”,再设租A 型机器a 台次,则租B 型机器的台次数为16801203(21)802a a -=-台次,由此可求得a 的取值范围,进而可求得符合题意的a 的整数解,再分别求得对应的总费用,比较大小即可.【详解】解:(1)设每箱装x 件产品, 根据题意可得:65204034x x +-=, 解得:60x =,答:每箱装60件产品;(2)由(1)得:每台A 型机器每天生产666012033x ⨯==(件), 每台B 型机器每天生产520560208044x +⨯+==(件), ∴2860(120280)⨯÷+⨯1680280=÷6=(天),答:若用1台A 型机器和2台B 型机器生产,需6天完成;(3)根据题意可把问题转化为:若3天共有9台次A 型机器,12台次B 型机器可用,求这3天完成28箱(1680件产品)所需的最省费用.设租A 型机器a 台次,则租B 型机器的台数为16801203(21)802a a -=-台次, ∵共有12台次B 型机器可用, ∴321122a -≤,解得a ≥6,∵共有9台次A 型机器可用,∴a ≤9,∴6≤9≤9,又∵a 为整数,∴若a =9,则3217.52a -=,需选B 型机器8台次,此时费用共为240×9+170×8=3520(元);若a =8,则32192a -=,需选B 型机器9台次,此时费用共为240×8+170×9=3450(元);若a =7,则32110.52a -=,需选B 型机器11台次,此时费用共为240×7+170×11=3550(元);若a =6,则321122a -=,需选B型机器12台次,此时费用共为240×6+170×12=3480(元);∵3450<3480<3520<3550,∴3天中选择共租A型机器8台次,B型机器9台次费用最省,如:A型机器前两天租3台,第3天租2台,B型机器每天租3台,此时的费用最省,最省总费用为3450元,答:共有4种方案可选择,分别为:3天中共租A型机器9台次,B型机器8台次;3天中共租A型机器8台次,B型机器9台次;3天中共租A型机器7台次,B型机器11台次;3天中共租A型机器6台次,B型机器12台次,其中3天中共租A型机器8台次,B型机器9台次(如A型机器前两天租3台,第3天租2台,B型机器每天租3台),此时的费用最省,最省总费用为3450元.【点睛】本题考查了一元一次方程的应用以及解一元一次不等式,解题的关键是:找准等量关系,正确列出一元一次方程以及根据各数量之间的关系,正确列出一元一次不等式.。
第四章三角形 章节测试同步练习2022-2023学年北师大版七年级数学下册
北师大版七下三角形章节测试一、选择题(共11小题)1. 下列各图中a,b,c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是( )A. 甲和乙B. 乙和丙C. 甲和丙D. 只有丙2. 如果过三角形重心的一条直线将该三角形分成两个直角三角形,则该三角形一定是( )A. 锐角三角形B. 钝角三角形C. 等腰三角形D. 等边三角形3. 已知三角形三边长分别为2,x,13,若x为正整数,则这样的三角形个数为( )A. 2B. 3C. 5D. 134. 用直尺和圆规作已知角的平分线的示意图如图所示,则说明∠CAD=∠DAB的依据是( )A. SSSB. SASC. ASAD. AAS5. 一块三角形玻璃,被摔成如图所示的四块,小敏想去店里买一块形状、大小与原来一样的玻璃,借助“全等三角形”的相关知识,小敏只带了一块去,则这块玻璃的编号是( )A. ①B. ②C. ③D. ④6. 根据下列条件,能唯一画出△ABC的是( )A. AB=3,BC=4,AC=8B. AB=4,BC=3,∠A=30∘C. ∠A=60∘,∠B=45∘,AB=4D. ∠C=90∘,AB=67. 根据下列已知条件,能作出唯一△ABC的是( )A. AB=3,BC=4,CA=8B. AB=4,BC=3,∠A=60∘C. ∠A=60∘,∠B=45∘,AB=4D. ∠C=90∘,∠B=30∘,∠A=60∘8. 下列长度的三条线段,不能组成三角形的是( )A. 3,8,4B. 4,9,6C. 15,20,8D. 9,15,89. 下列说法中错误的是( )A. 三角形的三个内角中,最多有一个钝角B. 三角形三个内角中,至少有两个锐角C. 直角三角形中有两个锐角互余D. 三角形中两个内角和必大于90∘10. 两个边长分别为a,b,c的直角三角形和一个两条直角边都是c的直角三角形拼成如图所示的图形,用两种不同的计算方法计算这个图形的面积,则可得等式为( )A. (a+b)2=c2B. (a−b)2=c2C. a2+b2=c2D. a2−b2=c211. 如图,点B,C分别在AE,AD上,BD与CE相交于点O,如果AB=AC,AD=AE,那么图中的全等三角形共有( )A. 2对B. 3对C. 4对D. 5对二、填空题(共8小题)12. 已知△ABC的两条中线AD,BE相交于点F.如果AF=10,那么AD的长为.13. 请完善本课的知识结构图:14. 如图是5×5的正方形网络,以点D,E为两个顶点作位置不同的格点三角形,使所作的格点三角形与△ABC全等,这样的格点三角形最多可以画出个.15. 如图,在5×5的正方形网格中,每个小正方形的边长都为1,以AB为一边画一个等腰三角形ABC,使点C在格点上,点C的个数.16. 在△ABC中,如果∠A−∠B=90∘,则△ABC是三角形.17. 若直角三角形的一个锐角为15∘,则另一个锐角等于.18. 如图,一块三角形玻璃碎成了Ⅰ、Ⅱ两块,现需购买同样大小的一块三角形玻璃,为方便起见,只需带上第块玻璃碎片.19. 如图所示,图中有个三角形,其中以AB为边的三角形为,含∠OCB的三角形为.在△BOC中,OC的对角是,∠OCB的对边是.三、解答题(共5小题)20. 如图所示的每个图形中各有多少个三角形?21. 如图,已知 A ,D ,C ,F 在同一条直线上,AC =FD ,AB =FE ,∠A =∠F ,请说明 △ABC 与△FED 全等的理由.22. 一个三角形的三个内角度数之比为 1:1:2.求这个三角形三个内角的度数,并说明该三角形的形状.23. 如图,AB 与 CD 相交于点 O ,如果 ∠A =∠C ,OA =OC ,那么 △AOD 与 △COB 全等吗?为什么?解:在 △AOD 和 △COB 中,{ ( ), ( ),∠AOD =∠COB ( ), 所以 △AOD ≌△COB ( ).24. 如图①,在 Rt △ABC 中,∠C =90∘,BC =9 cm ,AC =12 cm ,AB =15 cm ,现有一动点 P ,从点 A 出发,沿着三角形的边 AC →CB →BA 运动,回到点 A 停止,速度为 3 cm/s ,设运动时间为 t s .(1)如图①,当t=时,△APC的面积等于△ABC面积的一半;(2)如图②,在△DEF中,∠E=90∘,DE=4cm,DF=5cm,∠D=∠A.在△ABC的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好使△APQ≌△DEF,求点Q的运动速度.答案1. B2. C【解析】∵三角形重心是三角形三边中线的交点,过这一点的直线恰好分三角形为两个直角三角形,则这条线在三角形内部的线段是高,利用三角形“三线合一”的性质,即可推断这是等腰三角形.3. B4. A【解析】从角平分线的作法得出,△AFD与△AED的三边对应相等,则△AFD≌△AED(SSS),所以∠CAD=∠DAB.5. C【解析】因为第③块中有完整的两个角以及他们的夹边,利用ASA易证三角形全等,故应带第3块.故选:C.6. C7. C【解析】A. ∵AB=3,BC=4,CA=8,AB+BC<CA,∴不能画出三角形,故本选项不合题意;B. AB=4,BC=3,∠A=60∘,不能画出唯一三角形,故本选项不合题意;C.当∠A=60∘,∠B=45∘,AB=4时,根据“ASA”可判断△ABC的唯一性;D.已知三个角,不能画出唯一三角形,故本选项不符合题意.8. A9. D【解析】A、三角形的三个内角中,最多有一个钝角,正确.B 、三角形三个内角中,至少有两个锐角,正确.C、直角三角形中有两个锐角互余,正确,D、三角形中两个内角和必大于90∘,错误,比如钝角三角形的两个锐角的和小于90∘.10. C【解析】根据题意得:S=12(a+b)(a+b),S=12ab+12ab+12c2,∴12(a+b)(a+b)=12ab+12ab+12c2,即(a+b)(a+b)=ab+ab+c2,整理得:a2+b2=c2.11. C12. 1513. 不在同一直线上,首尾顺次联结,三角形任意两边的和大于第三边,三角形任意两边的差小于第三边,AD,AD,BC,ADB,ADC,AE,BE,CE,BC,BC,BE,CE,AF,∠BAF,∠CAF,∠BAC,∠BAC,∠BAF,∠CAF14. 415. 7【解析】16. 钝角【解析】因为 ∠A −∠B =90∘,所以 ∠A =90∘+∠B ,所以 ∠A 是钝角,所以 △ABC 是钝角三角形.17. 75∘【解析】∵ 直角三角形的一个锐角为 15∘,∴ 另一个锐角 =90∘−15∘=75∘.18. Ⅰ19. 8,△ABO ;△ABC ;△ABD ,△BOC ;△ABC ,△OBC ,OB【解析】题图中有 8 个三角形,分别是 △ABO ,△ABD ,△ABC ,△BOC ,△ODC ,△BDC ,△ADO ,△ADC ,其中以 AB 为边的三角形为 △ABO ,△ABC ,△ABD ;含 ∠OCB 的三角形为 △BOC ,△ABC .在 △BOC 中,OC 的对角是 ∠OBC ,∠OCB 的对边是 OB .20. 如图所示,(1)中有 8 个三角形;(2)中有 5 个三角形;(3)中有 6 个三角形.21. 在 △ABC 和 △FED 中,{AC =DF(已知),∠A =∠F(已知),AB =FE(已知),所以 △ABC ≌△FED (SAS ).22. 45∘,45∘,90∘.等腰直角三角形.23. ∠A =∠C ;已知;OA =OC ;已知;对顶角相等;ASA24. (1) 112 或 192【解析】①当点 P 在 BC 上时,如图 1,若△APC的面积等于△ABC面积的一半,则12AC⋅CP=12⋅12AC⋅CB,∴CP=12BC=92cm,此时,点P移动的距离为AC+CP=12+92=332cm,∴移动的时间为332÷3=112s.②当点P在BA上时,过点C作CD⊥AB,交AB于D,如图2,若△APC的面积等于△ABC面积的一半,则12AP⋅CD=12⋅12AB⋅CD,∴AP=12AB,即点P为BA的中点,此时,点P移动的距离为AC+CB+BP=12+9+152=572cm,∴移动的时间为572÷3=192s.故答案为112或192.(2)∵△APQ≌△DEF,∴对应顶点为A与D,P与E,Q与F.①当点P在AC上时,如图3所示:此时,AP=4cm,AQ=5cm,∴点Q移动的速度为5÷(4÷3)=154cm/s.②当点P在AB上时,如图4所示:此时AP=4cm,AQ=5cm,即点P移动的距离为AC+CB+BP=9+12+15−4=32cm,点Q移动的距离为AB+BC+CQ=15+9+12−5=31cm,∴点Q移动的速度为31÷(32÷3)=9332cm/s,综上所述,点Q的运动速度为154cm/s或9332cm/s.第11页(共11 页)。
北师大版数学七年级下册第四章测试卷一(附答案)
北师大版数学七年级下册第四章测试卷一(附答案)一、选择题(每小题3分,共30分) 1.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .无法确定 2.若等腰三角形的一边是9,另一边是4,则此等腰三角形的周长是( ) A .17 B .22 C .17或22 D .无法确定 3.在下图中,正确画出AC 边上高的是( ).EBAC C A BCA BCA BE EEA B C D4.给出下列四组条件:①AB =DE,BC=EF,AC=DF ②AB=DE, ∠B=∠E,BC=EF ③∠B=∠E ,BC=EF, ∠C=∠F ④AB=DE,AC=DF,∠B=∠E 其中,能使△ABC ≌△DEF 的条件共有( ) A 、1组 B 、2组 C 、3组 D 、4组5.如图,已知∠1=∠2,则下列条件中,不能使△ABC ≌△DBC 成立的是 ( )A 、AB =CD B 、AC =BD C 、∠A =∠D D 、∠ABC =∠DCB6.如图,已知∠ABC =∠BAD ,添加下列条件还不能判定△ABC ≌△BAD 的是( )A .AC =BDB .∠CAB =∠DBAC .∠C =∠D D .BC =AD第6题图第7题图7.如图,已知方格纸中是4个相同的正方形,则∠1与∠2的和为( )A .45° B.60° C .90° D.100°8.如图,两棵大树间相距13m ,小华从点B 沿BC 走向点C ,行走一段时间后他到达点E ,此时他仰望两棵大树的顶点A 和D ,两条视线的夹角正好为90°,且EA =ED .已知大树AB 的高为5m ,小华行走的速度为1m/s ,则小华走的时间是( )A .13sB .8sC .6sD .5s第8题图第9题图9.如图,在△ABC 和△BDE 中,点C 在BD 上,边AC 交边BE 于点F ,若AC =BD ,AB =ED ,BC =BE ,则∠ACB 等于( )A .∠EDB B .∠BED C.12∠AFB D .2∠ABF10.如图,AE 是△ABC 的角平分线,AD ⊥BC 于点D ,点F 为BC 的中点,若∠BAC =104°,∠C =40°,则有下列结论:①∠BAE =52°;②∠DAE =2°;③EF =ED ;④S △ABF =12S △ABC .其中正确的个数有( )A .1个B .2个C .3个D .4个第10题图二、填空题(每小题3分,共24分)11.人字架、起重机的底座,输电线路支架等,在日常生活中,很多物体都采用三角形结构,这是利用了三角形的__________.12.如图,AD 是△ABC 的一条中线,若BC =10,则BD =________.第12题图13.若直角三角形中两个锐角的差为20°,则这两个锐角的度数分别是________. 14.如图,AB ∥CD ,AD 与BC 交于点E .若∠B =35°,∠D =45°,则∠AEC =________°.第14题图第15题图15.如图,在四边形ABCD 中,∠1=∠2,∠3=∠4.若AB =6cm ,AD =8cm ,则CD =________cm. 16.如图,在△ABC 中,∠B =30°,∠C =70°,AD 平分∠BAC ,交BC 于F ,DE ⊥BC 于E ,则∠D =________°.第16题图第17题图17.如图,△ABC 的中线BD ,CE 相交于点O ,OF ⊥BC ,且AB =6,BC =5,AC =4,OF =1.4,则四边形ADOE 的面积是________.18.如图,已知四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于点E ,且AE =12(AB +AD ),若∠D =115°,则∠B =________°.第18题图三、解答题(共66分)19.(8分)如图,在△ABC 中,AD 是角平分线,∠B =54°,∠C =76°. (1)求∠ADB 和∠ADC 的度数; (2)若DE ⊥AC ,求∠EDC 的度数.20.(8分)如图,点B ,C ,E ,F 在同一直线上,BC =EF ,AC ⊥BC 于点C ,DF ⊥EF 于点F ,AC =DF .试说明:(1)△ABC ≌△DEF ;(2)AB∥DE.21.(8分)如图,已知线段m,n,如果以线段m,n分别为等腰三角形的底或腰作三角形,能作出几个等腰三角形?请作出.不写作法,保留作图痕迹.22.(10分)已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.试说明:(1)BD=CE;(2)∠M=∠N.23.(10分)如图,A,B是两棵大树,两棵大树之间有一个废弃的圆形坑塘,为开发利用这个坑塘,需要测量A,B之间的距离,但坑塘附近地形复杂不容易直接测量.(1)请你利用所学知识,设计一个测量A,B之间的距离的方案,并说明理由;(2)在你设计的测量方案中,需要测量哪些数据?为什么?24.(10分)如图,B,C都是直线BC上的点,点A是直线BC上方的一个动点,连接AB,AC得到△ABC,D,E分别为AC,AB上的点,且AD=BD,AE=BC,DE=DC.请你探究,线段AC与BC具有怎样的位置关系时DE⊥AB?为什么?25.(12分)如图,在△ABC中,∠ACB=90°,AC=7cm,BC=3cm,CD为AB边上的高.点E从点B出发沿直线BC以2cm/s的速度移动,过点E作BC的垂线交直线CD于点F.(1)试说明:∠A=∠BCD;(2)当点E运动多长时间时,CF=AB.请说明理由.参考答案1.C2.A3.C4.C5.A6.A7.C8.B9.C 10.C 11.稳定性 12.5 13.55°,35° 14.80 15.6 16.20 17.3.5 18.6519.解:(1)∵∠B =54°,∠C =76°,∴∠BAC =180°-54°-76°=50°.(2分)∵AD 平分∠BAC ,∴∠BAD =∠CAD =25°,∴∠ADB =180°-∠B -∠BAD =180°-54°-25°=101°,∴∠ADC =180°-∠ADB =180°-101°=79°.(5分)(2)∵DE ⊥AC ,∴∠DEC =90°,∴∠EDC =90°-∠C =90°-76°=14°.(8分)20.解:(1)∵AC ⊥BC ,DF ⊥EF ,∴∠ACB =∠DFE =90°.(2分)又∵BC =EF ,AC =DF ,∴△ABC ≌△DEF (SAS).(5分)(2)∵△ABC ≌△DEF ,∴∠B =∠DEF ,∴AB ∥DE .(8分) 21.解:能作出两个等腰三角形,如图所示.(8分)22.解:(1)在△ABD 和△ACE 中,⎩⎪⎨⎪⎧AB =AC ,∠1=∠2,AD =AE ,∴△ABD ≌△ACE (SAS),∴BD =CE .(4分)(2)∵∠1=∠2,∴∠1+∠DAE =∠2+∠DAE ,即∠BAN =∠CAM .(6分)∵△ABD ≌△ACE ,∴∠B =∠C .(7分)在△ACM 和△ABN 中,⎩⎪⎨⎪⎧∠C =∠B ,AC =AB ,∠CAM =∠BAN ,∴△ACM ≌△ABN (ASA),∴∠M =∠N .(10分)23.解:(1)方案为:①如图,过点B 画一条射线BD ,在射线BD 上选取能直接到达的O ,D 两点,使OD =OB ;②作射线AO 并在AO 上截取OC =OA ;③连接CD ,则CD 的长即为AB 的长.(3分)理由如下:在△AOB 和△COD 中,∵⎩⎪⎨⎪⎧OA =OC (测量方法),∠AOB =∠COD (对顶角相等),OB =OD (测量方法),∴△AOB ≌△COD (SAS),∴AB =CD .(6分)(2)根据这个方案,需要测量5个数据,即:线段OA ,OB ,OC ,OD ,CD 的长度,并使OC =OA ,OD =OB ,则CD =AB .(10分)24.解:当AC ⊥BC 时,DE ⊥AB .(3分)理由如下:∵AC ⊥BC ,∴∠C =90°.在△AED 和△BCD 中,∵⎩⎪⎨⎪⎧AD =BD ,AE =BC ,DE =DC ,∴△AED ≌△BCD (SSS).(7分)∴∠AED =∠C =90°,∴DE ⊥AB .(10分) 25.解:(1)∵∠ACB =90°,CD ⊥AB ,∴∠A +∠ACD =90°,∠BCD +∠ACD =90°,∴∠A =∠BCD .(3分)(2) 如图,当点E 在射线BC 上移动5s 时,CF =AB .可知BE =2×5=10(cm),∴CE =BE -BC =10-3=7(cm),∴CE =AC .∵∠A =∠BCD ,∠ECF =∠BCD ,∴∠A =∠ECF .(5分)在△CFE 与△ABC 中⎩⎪⎨⎪⎧∠ECF =∠A ,CE =AC ,∠CEF =∠ACB ,∴△CFE ≌△ABC ,∴CF =AB .(7分)当点E 在射线CB 上移动2s 时,CF =AB .可知BE ′=2×2=4(cm),∴CE ′=BE ′+BC =4+3=7(cm),∴CE ′=AC .(9分)在△CF ′E ′与△ABC 中⎩⎪⎨⎪⎧∠E ′CF ′=∠A ,CE ′=AC ,∠CE ′F ′=∠ACB ,∴△CF ′E ′≌△ABC ,∴CF ′=AB .综上可知,当点E 运动5s 或2s 时,CF =AB .(12分)。
(北师大版)初中数学七年级下册 第四章综合测试 (含答案)
第四章综合测试一、选择题(共10小题,满分30分)1.一个三角形的两边长分别是2和4,则第三边的长可能是( ) A .1B .2C .4D .72.在ABC △中,作BC 边上的高,以下作图正确的是( )A .B .C .D .3.如图,已知BD CD =,则AD 一定是ABC △的( )A .角平分线B .高线C .中线D .无法确定4.如图,在ABC △中,点D 在BC 的延长线上,若60A ︒∠=,40B ︒∠=,则ACD ∠的度数是( )A .140︒B .120︒C .110︒D .100︒5.如图,在ABC △中,CD 平分ACB ∠,DE BC ∥.已知74A ︒∠=,46B ︒∠=,则BDC ∠的度数为( )A .104︒B .106︒C .134︒D .136︒6.如图,AB AC =,若要使ABE ACD △≌△.则添加的一个条件不能是( )A .BC ∠=∠ B .ADC AEB ∠=∠ C .BD CE = D .BE CD =7.如图,A B 、两点分别位于一个池塘的两端,小明想用绳子测量A B 、间的距离,如图所示的这种方法,是利用了三角形全等中的( )A .SSSB .ASAC .AASD .SAS8.小明学习了全等三角形后总结了以下结论: ①全等三角形的形状相同、大小相等; ②全等三角形的对应边相等、对应角相等; ③面积相等的两个三角形是全等图形; ④全等三角形的周长相等. 其中正确的结论个数是( ) A .1B .2C .3D .49.如图,AD 是ABC △的高,BE 是ABC △的角平分线,BE AD ,相交于点F ,已知42BAD ︒∠=,则BFD ∠=( )A .45︒B .54︒C .56︒D .66︒10.如图,ABC △的三边长均为整数,且周长为22,AM 是边BC 上的中线,ABM △的周长比ACM △的周长大2,则BC 长的可能值有( )个.A .4B .5C .6D .7二、填空题(共6小题,满分24分)11.下列4个图形中,属于全等的2个图形是________.(填序号)12.如图,某人将一块三角形玻璃打碎成两块,带________块(填序号)能到玻璃店配一块完全一样的玻璃,用到的数学道理是________.13.如图,Rt ABC △中,90C ︒∠=,25B ︒∠=,分别以点A 和点B 为圆心,大于AB 的长为半径作弧,两弧相交于M N 、两点,作直线MN ,交BC 于点D ,连接AD ,则CAD ∠的度数是________.14.如图,在ABC △中,AC BC =,过点A B ,分别作过点C 的直线的垂线AE BF ,.若3AE CF ==,4.5BF =,则EF =________.15.边长为整数、周长为20的三角形的个数为________.16.如图,Rt ABC △中,90BAC ︒∠=,6AB =,3AC =,G 是ABC △重心,则AGC S =△________.三、解答题(共8小题,满分66分)17.如图,在一个三角形的一条边上取四个点,把这些点与这条边所对的顶点连接起来.问图中共有多少个三角形.请你通过与数线段或数角的问题进行类比来思考.18.如图,AB DE =,AC DF =,BE CF =,求证:ABC DEF △≌△.19.王强同学用10块高度都是2cm 的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC BC =,90ACB ︒∠=),点C 在DE 上,点A 和B 分别与木墙的顶端重合. (1)求证:ADC CEB △≌△;(2)求两堵木墙之间的距离.20.如图,已知B D ,在线段AC 上,且AD CB =,BF DE =,90AED CFB ︒∠=∠= 求证:(1)AED CFB △≌△;(2)BE DF ∥.21.如图,已知锐角ABC △,AB BC >.(1)尺规作图:求作ABC △的角平分线BD ;(保留作图痕迹,不写作法) (2)点E 在AB 边上,当BE 满足什么条件时?BED C ∠=∠.并说明理由.22.如图,ABC △中,90ACB ︒∠=,D 为AB 上一点,过D 点作AB 垂线,交AC 于E ,交BC 的延长线于F .(1)1∠与B ∠有什么关系?说明理由.(2)若BC BD =,请你探索AB 与FB 的数量关系,并且说明理由.23.如图1,点A B 、分别在射线OM ON 、上运动(不与点O 重合),AC BC 、分别是BAO ∠和ABO ∠的角平分线,BC 延长线交OM 于点G .(1)若60MON ︒∠=,则ACG ∠=________︒;若90MON ︒∠=,则ACG ∠=________︒; (2)若MON n ︒∠=.请求出ACG ∠的度数;(用含n 的代数式表示)(3)如图2,若MON n ︒∠=,过C 作直线与AB 交F .若CF OA ∥时,求BGO ACF ∠-∠的度数.(用含n 的代数式表示)24.如图1所示,在Rt ABC △中,90C ︒∠=,点D 是线段CA 延长线上一点,且AD AB =,点F 是线段AB上一点,连接DF ,以DF 为斜边作等腰Rt DFE △,连接EA ,EA 满足条件EA AB ⊥.(1)若20AEF ︒∠=,50ADE ︒∠=,2BC =,求AB 的长度;(2)求证:AE AF BC =+;(3)如图2,点F 是线段BA 延长线上一点,探究AE AF BC 、、之间的数量关系,并证明你的结论.第四章综合测试答案解析一、 1.【答案】C【解析】解:设第三边的长为x , 由题意得:4242x -+<<,26x <<,故选:C. 2.【答案】D【解析】解:BC 边上的高应从点A 向BC 引垂线,只有选项D 符合条件,故选:D. 3.【答案】C【解析】解:由于BD CD =,则点D 是边BC 的中点,所以AD 一定是ABC △的一条中线.故选:C.4.【答案】D【解析】解:ACD ∠是ABC △的一个外角,100ACD A B ︒∴∠=∠+∠=,故选:D. 5.【答案】A【解析】解:74A ︒∠=,46B ︒∠=,60ACB ︒∴∠=,CD 平分ACB ∠,11603022BCD ACD ACB ︒︒∴∠=∠=∠=⨯=,180104BDC B BCD ︒︒∴∠=-∠-∠=,故选:A. 6.【答案】D【解析】解:A 、添加B C ∠=∠可利用ASA 定理判定ABE ACD △≌△,故此选项不合题意;B 、添加ADC AEB ∠=∠可利用AAS 定理判定ABE ACD △≌△,故此选项不合题意;C 、添加BD CE =可得AD AE =,可利用利用SAS 定理判定ABE ACD △≌△,故此选项不合题意;D 、添加BE CD =不能判定ABE ACD △≌△,故此选项符合题意;故选:D.7.【答案】D【解析】解:观察图形发现:AC DC BC BC ACB DCB ==∠=∠,,,所以利用了三角形全等中的SAS ,故选:D. 8.【答案】C【解析】解:①全等三角形的形状相同、大小相等,正确;②全等三角形的对应边相等、对应角相等,正确;③面积相等的两个三角形是全等图形,错误;④全等三角形的周长相等,正确.故选:C. 9.【答案】D 【解析】解:AD 是ABC △的高,90ADB ︒∴∠=,42BAD ︒∠=,18048ABD ADB BAD ︒︒∴∠=-∠-∠=,BE 是ABC △的角平分线,1242ABF ABD ︒∴∠=∠=,422466BFD BAD ABF ︒︒︒∴∠=∠+∠=+=,故选:D. 10.【答案】A【解析】解:ABC △的周长为22,ABM △的周长比ACM △的周长大2,222BC BC ∴-<<,解得211BC <<,又ABC △的三边长均为整数,ABM △的周长比ACM △的周长大2,2222BC AC --∴=为整数, BC ∴边长为偶数, 46810BC ∴=,,,,故选:A. 二、11.【答案】①③【解析】解:根据全等三角形的判定(SAS )可知属于全等的2个图形是①③,故答案为:①③. 12.【答案】② ASA【解析】解:第①块只保留了原三角形的一个角和部分边,根据这两块中的任一块不能配一块与原来完全一样的;第②块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA 来配一块一样的玻璃.应带②去.故答案为:②,ASA . 13.【答案】40︒【解析】解:Rt ABC △中,90C ︒∠=,25B ︒∠=,90902565CAB B ︒︒︒︒∴∠=-∠=-=,由作图过程可知:MN 是AB 的垂直平分线,DA DB ∴=,25DAB B ︒∴∠=∠=,652540CAD CAB DAB ︒︒︒∴∠=∠-∠=-=.答:CAD ∠的度数是40︒. 故答案为:40︒.14.【答案】7.5【解析】解:过点A B ,分别作过点C 的直线的垂线AE BF ,,90AEC CFB ︒∴∠=∠=,在Rt AEC △和Rt CFB △中,AC BC AE CF =⎧⎨=⎩,Rt Rt AEC CFB HL ∴△≌△(), 4.5EC BF ∴==,4.537.5EF EC CF ∴=+=+=,故答案为:7.5. 15.【答案】8【解析】解:边长为整数、周长为20的三角形分别是:(9,9,2)(8,8,4)(7,7,6)(6,6,8)(9,6,5)(9,7,4)(9,8,3)(8,7,5),共8个.故答案为:8. 16.【答案】3【解析】解:延长AG 交BC 于E .90BAC ︒∠=,63AB AC ==,,192ABC S AB AC ∴==△, G 是ABC △的重心, 2AG GE BE EC ∴==,,19 4.52AEC S ∴=⨯=△,233AGC AEC S S ∴=⨯=△△,故答案为3. 三、17.【答案】解:如图所示,图中三角形的个数有ABC △,ACD △,ADE △,AEF △,AFG △,ABD △,ABE △,ABF △,ABG △ACE △,ACF △,ACG △,ADF △,ADG △,AEG △.18.【答案】解:BE CF =,BE EC CF EC ∴+=+,即BC EF =,在ABC △和DEF △中,AB DE AC DFBC EF =⎧⎪=⎨⎪=⎩(已知)(已知)(已知), ABC DEF SSS ∴△≌△().19.【答案】(1)证明:由题意得:AC BC =,90ACB ︒∠=,AD DE BE DE ⊥⊥,,90ADC CEB ︒∴∠=∠=,9090ACD BCE ACD DAC ︒︒∴∠+∠=∠+∠=,, BCE DAC ∴∠=∠在ADC △和CEB △中ADC CEB DAC BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,ADC CEB AAS ∴△≌△(); (2)解:由题意得:236cm AD =⨯=,7214cm BE =⨯=,ADC CEB △≌△,6cm EC AD ∴==,14cm DC BE ==,20cm DE DC CE ∴=+=(), 答:两堵木墙之间的距离为20cm .20.【答案】证明(1)90AED CFB ︒∠=∠=, 在Rt AED △和Rt CFB △中AD BCDE BF =⎧⎨=⎩, Rt Rt AED CFB HL ∴△≌△(). (2)AED CFB △≌△,BDE DBF ∴∠=∠,在DBE △和BDF △中DE BFBDE DBF BD DB =⎧⎪∠=∠⎨⎪=⎩,DBE BDF SAS ∴△≌△(), DBE BDF ∴∠=∠,BE DF ∴∥.21.【答案】解:(1)如图,线段BD 即为所求.(2)结论:BE BC =. 理由:BD 平分ABC ∠,EBD CBD ∴∠=∠, BE BC BD BD ==,,BDE BDC SAS ∴△≌△(),BED C ∴∠=∠.22.【答案】解:(1)1∠与B ∠相等,理由:ABC △中,90ACB ︒∠=,190F ︒∴∠+∠=,FD AB ⊥,90B F ︒∴∠+∠=,1B ∴∠=∠;(2)若BC BD =,AB 与FB 相等,理由:ABC △中,90ACB ︒∠=,DF AB ⊥,90ACB FDB ︒∴∠=∠=,在ACB △和FDB △中,B B ACB FDB BC BD ∠=∠∠=∠=⎧⎪⎨⎪⎩,ACB FDB AAS ∴△≌△(), AB FB ∴=.23.【答案】(1)60 45(2)在AOB △中,180180OBA OAB AOB n ︒︒︒∠+∠=-∠=-,OBA OAB ∠∠、的平分线交于点C ,1118022ABC BAC OBA OAB n ︒︒∴∠+∠=∠+∠=-()(), 即1902ABC BAC n ︒︒∠+∠=-, 11180180909022ACB ABC BAC n n ︒︒︒︒︒︒∴∠=-∠+∠=--=+()(), 1809090ACG n n ︒︒︒︒︒∴∠=-+=-();(3)AC BC 、分别是BAO ∠和ABO ∠的角平分线,1122ABC ABO BAC OAC BAO ∴∠=∠∠=∠=∠,, CF AO ∥,ACF CAG ∴∠=∠,BGO BAG ABG ∠=∠+∠,°12902BGO ACF BAG ABG ACF BAC ABG BAC ABG BAC n ︒∴∠-∠=∠+∠-∠=∠+∠-∠=∠+∠=-. 【解析】解:(1)60MON ︒∠=,120OBA OAB ︒∴∠+∠=,OBA OAB ∠∠、的平分线交于点C ,1120602ABC BAC ︒︒∴∠+∠=⨯=, 18060120ACB ︒︒︒∴∠=-=,60ACG ︒∴∠=;90MON ︒∠=,90OBA OAB ︒∴∠+∠=,OBA OAB ∠∠、的平分线交于点C , 195452ABC BAC ︒︒∴∠+∠=⨯=, 18045135ACB ︒︒︒∴∠=-=;45ACG ︒∴∠=;故答案为:60,45.24.【答案】解:(1)在等腰直角三角形DEF 中,°90DEF ∠=, 120︒∠=,2170DEF ︒∴∠∠-∠==,23180EDA ︒∠+∠+∠=,360︒∴∠=,EA AB ⊥,°90EAB ∴∠=,3180EAB A ︒∠+∠+∠=,430︒∴∠=,90C ︒∠=,24AB BC ∴==;(2)如图1,过D 作DM AE ⊥于M ,在DEM △中,2590︒∠+∠=, 2190︒∠+∠=,15∴∠=∠,DE FE =,在DEM △与EFA △中,51DME EAF DE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩, DEM EFA ∴△≌△,AF EM ∴=,490B ︒∠+∠=,34180EAB ︒∠+∠+∠=,3490︒∴∠+∠=,3B ∴∠=∠,在DAM △与ABC △中,3B DMA C AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,DAM ABC ∴△≌△,BC AM ∴=,AE EM AM AF BC ∴=+=+;(3)如图2,过D 作DM AE ⊥交AE 的延长线于M , 90C ︒∠=,190B ︒∴∠+∠=,°°2118090MAB MAB ∠+∠+∠=∠=,,21902B ︒∴∠+∠=∠=∠,,在ADM △与BAC △中,2M CB AD AB∠=∠∠=∠=⎧⎪⎨⎪⎩,ADM BAC ∴△≌△,BC AM ∴=,°90EF DE DEF =∠=,,34180DEF ︒∠+∠+∠=,°3490∴∠+∠=,°3590∠+∠=,45∴∠=∠,在MED △与AFE △中,54M EAFDE EF∠=∠∠=∠=⎧⎪⎨⎪⎩,MED AFE ∴△≌△,ME AF ∴=,AE AF AE ME AM BC ∴+=+==,即AE AF BC +=. w。
北师大版数学七年级下册第四章单元测试卷(含答案)
北师大版数学七年级下册第四章单元测试卷一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是符合要求的)1.若三角形有两个内角的和是85°,那么这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.不能确定2.如图,已知AB∥CD,∠A=40°,∠C=65°,则∠P的度数为() A.20°B.35°C.30°D.25°(第2题)(第5题)3.现有3 cm,4 cm,7 cm,9 cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是()A.1 B.2 C.3 D.44.下列说法正确的是()A.全等三角形是指形状相同的三角形B.全等三角形是指面积相等的三角形C.全等三角形的周长和面积相等D.所有等边三角形是全等三角形5.如图,AD是△ABC的角平分线,过点D向AB,AC两边作垂线,垂足分别为E,F,那么下列结论中不一定...正确的是()A.BD=CD B.DE=DFC.AE=AF D.∠ADE=∠ADF6.如图,AD∥BC,AB∥CD,AC,BD交于点O,过点O的直线EF交AD于点E,交BC于点F,且BF=DE,则图中的全等三角形共有()A.6对B.5对C.3对D.2对(第6题)(第7题)7.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,过角尺顶点C作射线OC.由此作法便可得△MOC≌△NOC,其依据是()A.SSS B.SAS C.ASA D.AAS8.下列四个图形中,线段BE是△ABC的高的是()9.根据下列已知条件,能画出唯一一个....△ABC的是()A.AB=3,BC=4,AC=8B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4D.∠C=90°,AB=610.如图,在△ABC中,AC⊥CB,CD平分∠ACB,点E在AC上,且CE=CB,则下列结论:①DC平分∠BDE;②BD=DE;③∠B=∠CED;④∠A+∠CED =90°.其中正确的有()A.1个B.2个C.3个D.4个(第10题)(第11题)二、填空题(本题共6小题,每小题3分,共18分)11.如图,照相机的底部用三脚架支撑着,这样做的依据是____________________.12.如图,要测量池塘两岸相对的两点A,B的距离,可以在池塘外取AB的垂线BF上的两点C,D,使BC=CD,再画出BF的垂线DE,使E与A,C在一条直线上.若想知道两点A,B的距离,只需要测量出线段____________的长度即可.(第12题) (第13题)13.如图,点C,F在线段BE上,BF=EC,∠1=∠2.请你添加一个条件,使△ABC ≌△DEF,这个条件可以是____________(不再添加辅助线和字母).14.如图,AD,AE分别是△ABC的角平分线、高线,且∠B=50°,∠C=70°,则∠EAD=________.15.如图,在△ABC中,点D是BC的中点,点E是AC上一点,EC=2AE,AD =2AF,已知△ABC的面积为30,那么四边形CDFE的面积为______________.(第15题)(第16题)16.如图,已知四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,且AE=12(AB3+AD ),若∠D =115°,则∠B =________.三、解答题(本题共6小题,共52分.解答应写出文字说明、证明过程或演算步骤)17.(8分)如图,已知:AD =BC ,AD ∥BC ,E ,F 是AC 上两点,且AF =CE .试说明:DE =BF .请补全下面的推理过程. 解:因为AD ∥BC (已知),所以∠____=∠____(两直线平行,内错角相等). 因为AF =CE (已知),所以______________(等式的基本性质). 即AE =CF .在△ADE 和△CBF 中, ⎩⎪⎨⎪⎧( ),( ),( ),所以△ADE ≌△CBF (________). 所以DE =BF (__________________).18.(8分)如图,在△ABC 中,AD 是角平分线,∠B =54°,∠C =76°. (1)求∠ADB 和∠ADC 的度数;(2)若DE ⊥AC 于点E ,求∠EDC 的度数.19.(10分)七年级(2)班的篮球啦啦队为了在明天的比赛中给同学们加油助威,每人提前制作了一面同一规格的三角形彩旗.小贝放学回家后,发现自己的彩旗破损了一角(如图①),她想用彩纸(如图②)重新制作一面彩旗.(1)请你帮助小贝,用直尺与圆规在彩纸上作出一个与破损前完全一样的三角形(不写作法,保留作图痕迹);(2)你作图的理由是判定三角形全等条件中的“________”.20.(8分)如图,要测量河岸相对两点A,B的距离,可以从AB的垂线BF上取两点C,D,使BC=CD,过D作DE⊥BF,且A,C,E三点在一条直线上,若测得DE=15米,即可知道AB也为15米,请你说明理由.21.(8分)如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D为AB边上一点.试说明:BD=AE.522.(10分)如图①,AB=7 cm,AC⊥AB,BD⊥AB,垂足分别为A,B,AC=5 cm.点P在线段AB上以2 cm/s的速度由点A向点B运动,同时点Q在射线BD 上运动.它们运动的时间为t(s)(当点P停止运动时,点Q随之停止运动).(1)AP=________cm,BP=________cm(用含t的代数式表示).(2)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等?并判断此时线段PC和线段PQ的位置关系,请分别说明理由.(3)如图②,若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,点Q的运动速度为xcm/s,其他条件不变,当点P,Q运动到何处时有△ACP与△BPQ全等?求出相应的x的值.7 答案一、1.A 2.D 3.B 4.C 5.A 6.A 7.A 8.D 9.C 10.D二、11.三角形具有稳定性 12.DE 13.CA =FD (答案不唯一) 14.10°15.252 点拨:如图,连接CF ,因为点D 是BC 的中点,S △ABC =30,所以S △ADB =S △ADC =12S △ABC =15.因为AD =2AF ,所以AF =DF , 所以S △BDF =S △ABF =12S △ABD =152. 因为EC =2AE ,S △ABC =30 , 所以S △BEC =23S △ABC =20,所以S 四边形CDFE =S △BEC -S △BDF =20-152=252.16.65° 点拨:过点C 作CF ⊥AD ,交AD 的延长线于点F .因为AC 平分∠BAD ,所以∠CAF =∠CAE .因为CF ⊥AF ,CE ⊥AB ,所以∠AFC =∠AEC =90°.在△CAF 和△CAE 中,⎩⎨⎧∠CAF =∠CAE ,∠AFC =∠AEC ,AC =AC ,所以△CAF ≌△CAE (AAS).所以FC =EC ,AF =AE .因为AE =12(AB +AD ),所以AF =12(AE +EB +AD ),易得AF =BE +AD .又因为AF =AD +DF ,所以DF =BE .在△FDC 和△EBC 中,⎩⎨⎧CF =CE ,∠CFD =∠CEB =90°,DF =BE ,所以△FDC ≌△EBC (SAS).所以∠FDC =∠B .又因为∠ADC =115°,所以∠FDC =180°-115°=65°.所以∠B =65°.三、 17.A ;C ;AF -EF =CE -EF ;AD =BC ;∠A =∠C ;AE =CF ;SAS ;全等三角形的对应边相等18.解:(1)因为∠B =54°,∠C =76°,所以∠BAC =180°-54°-76°=50°.因为AD 平分∠BAC ,所以∠BAD =∠CAD =25°.所以∠ADB =180°-54°-25°=101°,所以∠ADC =180°-101°=79°.(2)因为DE ⊥AC ,所以∠DEC =90°.所以∠EDC =180°-90°-76°=14°. 19.解:(1)如图所示,△ABC 为所求作的三角形.(2)ASA20.解:因为AB ⊥BF ,DE ⊥BF ,所以∠B =∠CDE =90°.在△ABC 和△EDC 中,⎩⎨⎧∠B =∠CDE ,BC =CD ,∠ACB =∠DCE ,所以△ABC ≌△EDC (ASA).所以AB =DE =15米. 21.解:因为△ABC 和△ECD 都是等腰直角三角形,且∠ACB =∠DCE =90°, 所以AC =BC ,CD =CE , ∠ACE +∠ACD =∠BCD +∠ACD . 所以∠ACE =∠BCD . 在△ACE 和△BCD 中,⎩⎨⎧AC =BC ,∠ACE =∠BCD ,CE =CD ,所以△ACE ≌△BCD (SAS).所以BD =AE . 22.解:(1) 2t ;(7-2t )(2)△ACP 与△BPQ 全等,PC ⊥PQ .理由:因为点Q 的运动速度与点P 的运动速度相等,所以当t=1时,AP=BQ=2 cm,BP=7-2=5 (cm).因为AC=5 cm,所以AC=BP.又因为∠A=∠B=90°,所以△CAP≌△PBQ(SAS),所以∠ACP=∠BPQ.因为∠ACP+∠CP A=90°,所以∠BPQ+∠CP A=90°,所以∠CPQ=90°,所以PC⊥PQ.(3)△ACP与△BPQ全等有两种情况:①当AC=PB,AP=BQ时,AC=PB=5 cm,AP=BQ=7-5=2(cm) ,因为AP=2t cm,BQ=xt cm,所以2t=2,xt=2,解得t=1,x=2.②当AC=BQ,AP=PB时,AC=BQ=5 cm,AP=PB=72cm,因为AP=2t cm,BQ=xt cm,所以2t=72,xt=5,解得t=74,x=207.综上,当AP=BQ=2 cm或AP=72cm,BQ=5 cm时,△ACP与△BPQ全等,相应的x的值分别为2,20 7.9。
七年级数学下学期第四章二元一次方程组章节测试(人教版)A3
七年级数学下学期第四章二元一次方程组章节测试(人教版)(满分100分,考试时间45分钟)学校_________________ 班级________________ 姓名________________ 一、选择题(每小题4分,共24分)1. 下面四组数值,其中是二元一次方程310x y +=的解的是( )A .26x y =-⎧⎨=⎩B .34x y =⎧⎨=⎩C .43x y =⎧⎨=⎩D .42x y =⎧⎨=-⎩2. 方程5225x y +=在自然数范围内的解( )A .有无数对B .只有2对C .只有3对D .只有4对3. 已知方程组25210x y x y +=⎧⎨+=⎩,则x y +的值为( )A .2B .3C .4D .54. 若方程组42112x y kx y -=⎧⎪⎨+=⎪⎩①②的解中x y ,的值相等,则k 的值是( ) A . 2 B .1 C .0D .25. 1270x y x y -+++-=,则2232x xy y -+的值是( )A .2B .4C .6D .86. 为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机抽查了10 000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是%,在不吸烟者中患肺癌的比例是%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.设这10 000人中,吸烟者患肺癌的人数为x ,不吸烟者患肺癌的人数为y ,根据题意,下列方程组正确的是( )A .222.5%0.5%10000x y x y -=⎧⎨+=⎩B .22100002.5%0.5%x y x y-=⎧⎪⎨+=⎪⎩ C .100002.5%0.5%22x y x y +=⎧⎨-=⎩D .10000222.5%0.5%x y x y+=⎧⎪⎨-=⎪⎩ 二、填空题(每小题4分,共24分)7. 若方程2(3)31a a x y -++=是关于x ,y 的二元一次方程,则a 的值为_____________.8. 已知11x y =⎧⎨=-⎩是方程组17ax by bx ay +=⎧⎨-=⎩的解,则()()a b a b +-的值是_____________.9. 若方程组35521x y x y +=⎧⎨-=⎩的解也是方程21mx y +=的解,则m 的值是_____________.10. 小明在解关于x ,y 的二元一次方程组331x y x y +⊕=⎧⎨-⊕=⎩时得到了正确结果1x y =⊗⎧⎨=⎩,后来发现⊕⊗,处被墨水污损了,请你帮他找出⊕⊗,的值分别是________,________.11.甲,乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价.在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,则甲服装的成本是_______元,乙服装的成本是_______元.12. 小明的爸爸骑着摩托车带着小明在公路上匀速行驶,小明每隔一段时间看到的里程碑上的数如下:时刻12:00 13:0014:30碑上的数一个两位数,数字之和为6十位与个位数字与12:00时所看到的正好颠倒了比12:00时看到的两位数中间多了个0三、解答题(本大题共5小题,满分52分)13. (每小题4分,共8分)解二元一次方程组:(1)2634x y x y +=⎧⎨-=-⎩;(2)23133420x y x y +=⎧⎨+=⎩.14. (8分)已知等式2y ax bx c =++.当1x =-时,4y =;当1x =时,8y =;当2x =时,25y =;则当3x =时,求y 的值.15.(10分)阳光服装厂要生产一批学生校服,已知每3m的布料可做上衣2件或裤子3条,因裤子旧的快,要求一件上衣和两条裤子配一套,现计划用1 008m的布料加工成学生校服,应分别安排多少米的布料加工上衣和裤子才能刚好配套能加工多少套校服16.(12分)古运河是扬州的母亲河,为打造古运河风光带,现有一段长为180米的河道整治任务由A,B两个工程队先后接力完成.A工程队每天整治12米,B工程队每天整治8米,共用时20天.(1)根据题意,甲、乙两个同学分别列出了尚不完整的方程组如下:甲:________128________x yx y+=⎧⎨+=⎩乙:________________128x yx y+=⎧⎪⎨+=⎪⎩根据甲、乙两名同学所列的方程组,请你分别指出未知数x,y表示的意义,然后补全甲、乙两名同学所列的方程组:甲:x表示_______________________,y表示_______________________;乙:x表示_______________________,y表示_______________________.(2)求A,B两工程队分别整治河道多少米(写出完整解答过程)17.(14分)阅读理解题:以二元一次方程的解为坐标的点的全体叫做二元一次方程的图象,例如:以方程21x y-=的解为坐标的点的全体叫做方程21x y-=的图象;一般地,任何一个二元一次方程的图象都是一条直线.根据上述描述,做下列题目:有两个二元一次方程:0ax y b-+=和50cx y-+=,学生甲在画出这两个二元一次方程图象时,发现它们的交点为(3,2),学生乙因把c抄错而发现它们的交点为3144⎛⎫⎪⎝⎭,,请求出a和b的值.。
浙教版七年级数学下册第4章检测卷附答案
浙教版七年级数学下册第4章 检测卷一、选择题(每题3分,共30分)1.下列各式从左到右的变形中,是因式分解的为( )A .x (a -b )=ax -bxB .x 2-1+y 2=(x -1)(x +1)+y 2C .x 2-1=(x +1)(x -1)D .x 2+1=x ⎝⎛⎭⎪⎫x +1x2.下列四个多项式,能因式分解的是( )A .a -1B .a 2+1C .x 2-4yD .x 2-6x +93.下列因式分解中,正确的是( )A .x 2-4y 2=(x -4y )(x +4y ) B .ax +ay +a =a (x +y ) C .x 2+2x -1=(x -1)2D .14x 2+2x +4=⎝ ⎛⎭⎪⎫12x +224.因式分解x 3-2x 2+x 正确的是( )A .(x -1)2B .x (x -1)2C .x (x 2-2x +1)D .x (x +1)25.多项式①16x 2-x ;②(x -1)2-4(x -1);③(x +1)2-4x (x +1)+4x 2;④-4x2-1+4x ,分解因式后,结果中含有相同因式的是( ) A .①和②B .③和④C .①和④D .②和③6.若多项式x 2+mx -28可因式分解为(x -4)(x +7),则m 的值为( )A .-3B .11C .-11D .37.已知a +b =2,则a 2-b 2+4b 的值是( )A .2B .3C .4D .68.已知三角形ABC 的三边长为a ,b ,c ,且满足a 2+b 2+c 2=ab +ac +bc ,则三角形ABC 的形状是( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形D .等边三角形9.不论x ,y 为什么实数,代数式x 2+y 2+2x -4y +7的值( )A .总不小于2B .总不小于7C .可为任何实数D .可能为负数10.如图,阴影部分是边长为a 的大正方形中剪去一个边长为b 的小正方形后所得到的图形,将阴影部分通过割、拼,形成新的图形,给出下列3种割拼方法,其中能够验证平方差公式的是( )(第10题)A.①②B.②③C.①③D.①②③二、填空题(每题3分,共24分)11.因式分解:a3-ab2=______________.12.一个正方形的面积为x2+4x+4(x>0),则它的边长为________.13.若m-n=-2,则m2+n22-mn的值是________.14.两名同学将同一个二次三项式分解因式,甲因看错了一次项系数而分解成(x+1)(x+9);乙因看错了常数项而分解成(x-2)(x-4),则将原多项式因式分解后的正确结果应该是________.15.如果x2+kx+64是一个整式的平方,那么常数k的值是________.16.已知P=3xy-8x+1,Q=x-2xy-2,当x≠0时,3P-2Q=7恒成立,则y =________.17.如图是两邻边长分别为a,b的长方形,它的周长为14,面积为10,则a2b +ab2的值为________.(第17题)18.如果对于大于1的整数w,存在两个正整数x,y,使得w=x2-y2,那么这个数w叫做智慧数.把所有的智慧数按从小到大排列,那么第2 016个智慧数是________.三、解答题(20题4分,19,21,22,23题每题8分,24题10分,共46分) 19.分解因式:(1)a2b-abc; (2)3a(x-y)+9(y-x);(3)(2a-b)2+8ab; (4)(m2-m)2+12(m2-m)+116.20.计算:(1)29×20.18+72×20.18+13×20.18-14×20.18;(2)1002-992+982-972+…+42-32+22-12.21.先因式分解,再求值:(1)4a2(x+7)-3(x+7),其中a=-5,x=3;(2)(2x-3y)2-(2x+3y)2,其中x=16,y=18.22.已知a2+b2+2a-4b+5=0,求2a2+4b-3的值.23.已知a,b是一个等腰三角形的两边长,且满足a2+b2-4a-6b+13=0,求这个等腰三角形的周长.24.阅读下列材料,然后解答问题:分解因式:x3+3x2-4.解答:把x=1代入多项式x3+3x2-4,发现此多项式的值为0,由此确定多项式x3+3x2-4中有因式(x-1),于是可设x3+3x2-4=(x-1)(x2+mx+n),分别求出m,n的值,再代入x3+3x2-4=(x-1)(x2+mx+n),就容易分解多项式x3+3x2-4.这种分解因式的方法叫“试根法”.(1)求上述式子中m,n的值;(2)请你用“试根法”分解因式:x3+x2-16x-16.答案一、1.C 2.D 3.D 4.B 5.D 6.D7.C 提示:a2-b2+4b=(a+b)(a-b)+4b=2(a-b)+4b=2a+2b=2(a+b)=4.8.D 9.A10.D 提示:图①中,左阴影S=a2-b2,右阴影S=(a+b)(a-b),故能验证.图②中,左阴影S=a2-b2,右阴影S=12(2b+2a)(a-b)=(a+b)(a-b),故能验证.图③中,左阴影S=a2-b2,右阴影S=(a+b)(a-b),故能验证.二、11.a(a+b)(a-b)12.x+213.2 提示:m2+n22-mn=m2+n2-2mn2=(m-n)22=(-2)22=2.14.(x-3)215.±1616.2 提示:∵P=3xy-8x+1,Q=x-2xy-2,∴3P-2Q=3(3xy-8x+1)-2(x-2xy-2)=7.∴9xy-24x+3-2x+4xy+4=7.∴13xy-26x=0,即13x(y-2)=0.∵x≠0,∴y-2=0.∴y=2.17.70 提示:由题意知,ab=10,a+b=142=7,故a2b+ab2=ab(a+b)=10×7=70.18.2 691 提示:由计算可得智慧数按从小到大排列依次为3,5,7,8,9,11,12,13,15,16,17,19,20,…,∴以3个数为一组,从第2组开始每组第一个数都是4的倍数,∴2 016÷3=672,∴第2 016个智慧数是第672组的最后一个数,∴4×672+3=2 691.三、19.解:(1)原式=ab(a-c).(2)原式=(x-y)(3a-9)=3(x-y)(a-3).(3)原式=4a2-4ab+b2+8ab=4a2+4ab+b2=(2a+b)2.(4)原式=(m 2-m )2+2·(m 2-m )·14+⎝ ⎛⎭⎪⎫142=(m 2-m +14)2=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫m -1222=(m -12)4.20.解:(1)原式=(29+72+13-14)×20.18=100×20.18 =2 018;(2)原式=(100+99)(100-99)+(98+97)(98-97)+…+(2+1)(2-1) =100+99+98+… +3+2+1 =101×50 =5 050.21.解:(1)原式=(x +7)(4a 2-3).当a =-5,x =3时,(x +7)(4a 2-3)=(3+7)×[4×(-5)2-3]=970. (2)原式=[(2x -3y )+(2x +3y )]·[(2x -3y )-(2x +3y )]=-24xy . 当x =16,y =18时,-24xy =-24×16×18=-12.22.解:∵a 2+b 2+2a -4b +5=0,∴(a 2+2a +1)+(b 2-4b +4)=0,即(a +1)2+(b -2)2=0.∴a +1=0且b -2=0. ∴a =-1,b =2. ∴2a 2+4b -3=2×(-1)2+4×2-3=7. 23.解:a 2+b 2-4a -6b +13=(a -2)2+(b -3)2=0,故a =2,b =3.当腰长为2时,则底边长为3,周长=2+2+3=7; 当腰长为3时,则底边长为2,周长=3+3+2=8. 所以这个等腰三角形的周长为7或8.24.解:(1)原式=(x -1)(x 2+mx +n )=x 3+mx 2+nx -x 2-mx -n =x 3+(m -1)x 2+(n -m )x -n ,根据题意得⎩⎨⎧m -1=3,n -m =0,-n =-4,解得⎩⎨⎧m =4,n =4.(2)把x =-1代入,发现多项式的值为0,∴多项式x 3+x 2-16x -16中有因式(x +1),于是可设x 3+x 2-16x -16=(x +1)(x 2+mx +n ),可化为x 3+mx 2+nx +x 2+mx +n =x 3+(m +1)x 2+(m +n )x +n ,可得⎩⎨⎧m +1=1,m +n =-16,n =-16,解得⎩⎨⎧n =-16,m =0,∴x 3+x 2-16x -16=(x +1)(x 2-16)=(x +1)(x +4)(x -4).七年及数学下册计算专项练习1.计算:(1)16+38-(-5)2; (2)(-2)3+|1-2|×(-1)2 023-3125.(3)-32+4×327; (4)16+|2-3 3|-3-64-(-6)2+ 3.(5)16+38-(-5)2; (6)(-2)3+|1-2|×(-1)2 021-3125.(7)35+23-|35-23|; (8)(-2)2-327+|3-2|+ 3. (9) 214+0.01-3-8;(10) (10)3-0.125+|3-2|-3-34+|3|-(-2)2.2.求下列各式中x 的值:(1)x 2-81=0; (2)x 3-3=38.(3)⎩⎨⎧6x +5y =31,①3x +2y =13;②(4)⎩⎨⎧3(x +2)+5(x -4)<2,①2(x +2)≥5x +63+1.②(5)解方程组:⎩⎨⎧x 2-y +13=1,3x +2y =10; (6)解不等式:x -52+1>x -3;(7)解不等式组:⎩⎨⎧x +5≤0,3x -12≥2x +1,并写出它的最大负整数解.(8)⎩⎨⎧3x -2y =-1,3x -4y =-5; (9)⎩⎨⎧x -2≤14-3x ,5x +2≥3(x -1). 参考答案1.解:(1)原式=4+2-5=1.(2)原式=-8+(2-1)×(-1)-5=-8+1-2-5=-12- 2. (3)原式=-9+2×3=-3.(4)原式=4+3 3-2+4-6+3=4 3. (5)原式=4+2-5=1;(6)原式=-8+(2-1)×(-1)-5=-8+1-2-5=-12- 2. (7)原式=35+23-35+23=4 3. (8)原式=2-3+2-3+3=1. 解:(9)原式=32+0.1+2=3.6.(10)原式=-0.5+2-3-32+3-2=-2.2.解:(1)依题意,得x 2=81,根据平方根的定义,得x =±9.(2)依题意,得x 3=278,根据立方根的定义,得x =32. 解:(3)②×2得,6x +4y =26,③ ①-③得,y =5.将y =5代入①得,6x +25=31,则x =1. 所以方程组的解为⎩⎨⎧x =1,y =5.(4)解不等式①得,x <2;解不等式②得,x ≥-3.所以不等式组的解集为-3≤x <2.解:(5)整理,得⎩⎨⎧3x -2y =8,①3x +2y =10.②①+②,得6x =18,解得x =3.②-①,得4y =2,解得y =12.所以原方程组的解为⎩⎨⎧x =3,y =12.(6)去分母,得(x -5)+2>2(x -3),去括号,得x -5+2>2x -6,移项,得x -2x >-6+5-2,合并同类项,得-x >-3,系数化为1,得x <3.(7)解不等式x +5≤0,得x ≤-5.解不等式3x -12≥2x +1,得x ≤-3.所以不等式组的解集为x ≤-5.所以它的最大负整数解为-5.解:(8)⎩⎨⎧3x -2y =-1,①3x -4y =-5,②①-②,得2y =4,解得y =2.把y =2代入①,得x =1.所以这个方程组的解是⎩⎨⎧x =1,y =2.(9)⎩⎨⎧x -2≤14-3x ,①5x +2≥3(x -1),②由①,得x ≤4,由②,得x ≥-52, 所以原不等式组的解集为-52≤x ≤4.。
七年级下第四章概率测试及答案(北师大出版社)
第四章 概率 单元测试1、 一个小妹妹将10盒蔬菜的标签全数撕掉了。
此刻每一个盒子看上去都一样。
可是她明白有三盒玉米,两盒菠菜,四盒豆角,一盒马铃薯。
她随机地拿出一盒并打开它。
a. 盒子里面是玉米的概率是多少?b. 盒子里面是豆角的概率是多少?c. 盒子里面不是菠菜的概率是多少?d. 盒子里面是豆角或马铃薯的概率是多少?二、飞镖随机地掷在下面的靶子上。
a. 在每一个靶子中,飞镖投到区域A 、B 、C 的概率是多少?b. 在靶子1中,飞镖投在区域A 或B 中的概率是多少?c. 在靶子2中,飞镖没有投在区域C 中的概率是多少?3、靶子被分成了A 、B 、C 、D 四个部份。
飞镖随机地落在区域A 上的概率是40%,落在区域B 、C 、D 上的概率是相等的。
a. 飞镖不落在区域A 上的概率是多少?b. 制作一个符合条件的方形靶子。
c. 制作一个符合条件的圆形靶子。
4、一个桶里有60个弹珠——一些是红色的,一些是蓝色的,一些是白色的。
拿出红色弹珠的概率是35%,拿出蓝色弹珠的概率是25%。
桶里每种颜色的弹珠各有多少?五、如图,小明在用红色、黄色和白色的同心圆制成的靶子上玩飞镖。
飞镖停留在红色区域中7次,停在别的区域中共13次。
小明说他下一次扔的时候,停在红色区域中的概率是35%。
他说的对吗?什么缘故?六、将下面事件的字母写在最能代表它的概率的点上。
01A .抛掷硬币时,取得一个正面。
B .在一小时内,你步行能够走80千米。
C .给你一个色子中,你掷出一个3。
D .明天太阳会升起来。
7、在学校举行的游艺活动中,数学俱乐部办了个掷色子的游戏。
玩那个游戏要花四张5角钱的票。
一个游戏者掷一次色子。
若是掷到6,游戏者取得奖品。
每一个奖品要花费俱乐部8元。
俱乐部能指望从那个游戏中获利吗?做出说明。
【答案】一、(玉米)=103 b. P(豆角)=104=52 c. P(不是菠菜)=108=154 d. P(豆角或马铃薯)=104+101=21 二、a.对第一个靶子:P(A)=P(B)=P(C)= 31;对第二个靶子:P(A)= 21,P(B)=P(C)= 41 =31+31=32 =1-41=43 3、=1-40%=60%b.c.4、红色弹珠=60×35%=21;蓝色弹珠=60×25%=15;白色弹珠=60-21-15=24(或60×40%=24)五、不对。
七年级下册数学第四章测试题
七年级下册数学第四章测试题单元考试是学校测试学生学习七年级下册数学第四章知识的一种常用方法,也是促进学生学习数学、改善教师课堂教学的有效手段。
接下来是店铺为大家带来的七年级下册数学第四章的测试题,供大家参考。
七年级下册数学第四章测试题目一. 填空题1.在关系式S=45t中,自变量是 , 因变量是 , 当t=1.5时,S= 。
2.已知等腰三角形的底为3,腰长为x,则周长y可以表示为。
3.如图,表示的是小明在6点---8点时他的速度与时间的图像,则在6点----8点的路程是千米.4.如图,假设圆柱的高是5cm,当圆柱的底面半径由小到大变化时,(1)圆柱的体积如何变化? ,在这个变化过程中,自变量是,因变量是 .(2)如果圆柱底面半径为r(cm),那么圆柱的体积V(cm3)可以表示为 .(3)当r由1cm变化到10cm时,V由 cm3变化到 cm3.5.如图所示,圆锥的底面半径是2 厘米,当圆锥的高由小到大变化时,圆锥的体积也随之而发生了变化.(1)在这个变化过程中,自变量是______________,因变量是_________ ;(2)如果圆锥的高为h (厘米),那么圆锥的体积V(厘米3)与h 的关系式是_____________;(3)当高由1 厘米变化到10厘米时,圆锥的体积由________厘米3变化到_______ 厘米3.6.如图所示,长方形的长为12,宽为x .(1)若设长方形的面积S,则面积S与宽x之间的关系是 .(2)若用C表示长方形的周长,则周长C与宽x之间的关系是 .二.选择题7.正常人的体温一般在37℃左右,但一天中的不同时刻不尽相同.下图反映了一天24小时内小明体温的变化情况,下列说法错误的是【】A.清晨5时体温最低B.下午5时体温最高C.这一天中小明体温T(单位:℃)的范围是36.5≤T≤37.5D.从5时至24时,小明体温一直是升高的。
8.一天,小军和爸爸去登山,已知山脚到山顶的路程为300米,小军先走了一段路程,爸爸才开始出发,图中两条线段分别表示小军和爸爸离开山脚登山的路程s(米)与登山所用的时间t(分钟)的关系(从爸爸开始登山时计时)。
北师大新版七年级下册《第四章测试卷》2024年单元测试卷+答案解析
北师大新版七年级下册《第四章测试卷》2024年单元测试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.关于三角形的中线,下列说法正确的是()A.是线段B.是射线C.是直线D.都可以2.如图所示的是一个网球场地,在A,B,C,D,E,F六个图形中,其中全等图形有()A.1对B.2对C.3对D.4对3.课堂上,老师把教学用的两块三角板叠放在一起,得到如图:所示的图形,其中三角形的个数为()A.3B.4C.5D.64.如图,用直尺和圆规求作一个角等于已知角的依据是()A.SASB.AASC.SSSD.以上都不对5.下列各三角形中,正确画出AC边的高的是()A. B.C. D.6.下列长度的各组线段,能构成三角形的是()A.3,4,8B.5,6,10C.5,6,11D.2,3,67.一个三角形三个内角的度数之比为2:3:7,这个三角形一定是()A.等腰三角形B.直角三角形C.锐角三角形D.钝角三角形8.小明不慎将一块三角形的玻璃摔碎成如图所示的四块即图中标有1、2、3、4的四块,你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带()A.第4块B.第3块C.第2块D.第1块9.如图,已知,,增加下列条件之一:①;②;③;④其中能使≌的条件有()A.1个B.2个C.3个D.4个10.如图1,已知,D为的角平分线上面一点,连接BD,CD;如图2,已知,D、E为的角平分线上面两点,连接BD,CD,BE,CE;如图3,已知,D、E、F为的角平分线上面三点,连接BD,CD,BE,CE,BF,CF;…,依此规律,第10个图形中有全等三角形的对数是()A.36B.45C.55D.66二、填空题:本题共5小题,每小题3分,共15分。
11.一个缺角的三角形ABC残片如图,若量得,,则这个三角形残缺前的______.12.如图,AD是的角平分线,CE是的高,,,则的度数______13.如图,D、E分别是边AB、BC上的点,,,设的面积为,的面积为,若,则的值为______.14.如图,由平面上五个点A、B、C、D、E连接而成,则______.15.如图,在,AE是的平分线,AD是BC边上的高,若,,则的度数为______.三、解答题:本题共5小题,共40分。
精品试题浙教版初中数学七年级下册第四章因式分解章节测试试卷(含答案详细解析)
初中数学七年级下册第四章因式分解章节测试(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(15小题,每小题3分,共计45分)1、下列各式从左到右的变形,属于因式分解的是( )A.2323824a b a b =⋅B.()()311x x x x x -=+-C.2211x x x x ⎛⎫+=+ ⎪⎝⎭ D.()a x y ax ay -=-2、下列四个式子从左到右的变形是因式分解的为( )A.(x ﹣y )(﹣x ﹣y )=y 2﹣x 2B.a 2+2ab +b 2﹣1=(a +b )2﹣1C.x 4﹣81y 4=(x 2+9y 2)(x +3y )(x ﹣3y )D.(a 2+2a )2﹣8(a 2+2a )+12=(a 2+2a )(a 2+2a ﹣8)+123、已知下列多项式:①22484x xy y +-;②222x xy y -+-;③2244xy x y ++;④2414x x --.其中,能用完全平方公式进行因式分解的有( ) A.①②③④ B.①②③ C.①②④ D.②③④4、下列等式从左到右的变形,属于因式分解的是( )A.m (a +b )=ma +mbB.x 2+2x +1=x (x +2)+1C.x 2+x =x 2(1+1x) D.x 2﹣9=(x +3)(x ﹣3)5、下列因式分解正确的是( )A.2p +2q +1=2(p +q )+1B.m 2﹣4m +4=(m ﹣2)2C.3p 2﹣3q 2=(3p +3q )(p ﹣q )D.m 4﹣1=(m ²+1)(m ²﹣1) 6、小明是一名密码翻译爱好者,在他的密码手册中有这样一条信息:-a b ,x y -,x y +,a b +,22x y -,22a b -分别对应下列六个字:勤,博,奋,学,自,主,现将()()222222x y a x y b ---因式分解,结果呈现的密码信息应是( )A.勤奋博学B.博学自主C.自主勤奋D.勤奋自主7、把代数式ax 2﹣8ax +16a 分解因式,下列结果中正确的是( )A.a (x +4)2B.a (x ﹣4)2C.a (x ﹣8)2D.a (x +4)(x ﹣4)8、下面的多项式中,能因式分解的是( )A.2m ﹣2B.m 2+n 2C.m 2﹣nD.m 2﹣n +19、下列各式从左到右的变形,属于因式分解的是( )A.ab +bc +b =b (a +c )+bB.a 2﹣9=(a +3)(a ﹣3)C.(a ﹣1)2+(a ﹣1)=a 2﹣aD.a (a ﹣1)=a 2﹣a10、下列各式从左边到右边的变形,是因式分解且分解正确的是 ( )A.(a +1)(a -1)=a 2-1B.ab +ac +1=a (b +c )+1C. a 2-2a -3=(a -1)(a -3)D.a 2-8a +16=(a -4)211、对于①3(13)x xy x y -=-,②2(3)(1)23x x x x -+=--,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解12、下列各式从左到右的变形,因式分解正确的是( )A.x 2+4=(x +2)2B.x 2﹣10x +16=(x ﹣4)2C.x 3﹣x =x (x 2﹣1)D.2xy +6y 2=2y (x +3y ) 13、下列等式中,从左到右的变形是因式分解的是( )A.2x (x ﹣1)=2x 2﹣2xB.4m 2﹣n 2=(4m +n )(4m ﹣n )C.﹣x 2+2x =﹣x (x ﹣2)D.x 2﹣2x +3=x (x ﹣2)+3 14、下列因式分解正确的是( )A.x 2+9=(x +3)(x ﹣3)B.x 2+x ﹣6=(x ﹣2)(x +3) C.3x ﹣6y +3=3(x ﹣2y ) D.x 2+2x ﹣1=(x ﹣1)2 15、下列各式能用平方差公式分解因式的是( )A.22m n +B.()224x y --C.224a b --D.2294x y -+二、填空题(10小题,每小题4分,共计40分)1、因式分解:a 3-16a =_________.2、已知x 2﹣y 2=21,x ﹣y =3,则x +y =___.3、因式分解:22421x y y ---=__________.4、若223()()x x x a x b +-=--,则ab =______.5、因式分解:2242xy xy x ++=______.6、如果(a + )2=a 2+6ab +9b 2,那么括号内可以填入的代数式是 ___.(只需填写一个)7、如果9x y +=,3x y -=,那么222x 2y -的值为______.8、由多项式与多项式相乘的法则可知:即:(a+b)(a2﹣ab+b2)=a3﹣a2b+ab2+a2b﹣ab2+b3=a3+b3即:(a+b)(a2﹣ab+b2)=a3+b3①,我们把等式①叫做多项式乘法的立方和公式.同理,(a﹣b)(a2+ab+b2)=a3﹣b3②,我们把等式②叫做多项式乘法的立方差公式.请利用公式分解因式:﹣64x3+y3=___.9、已知ab=5,a﹣b=﹣2,则﹣a2b+ab2=_____.10、分解因式:232-+=___________.a a a三、解答题(3小题,每小题5分,共计15分)1、因式分解:(1)2(x+2)2+8(x+2)+8;(2)﹣2m4+32m².2、分解因式:(a2﹣a)2+2(a2﹣a)﹣83、分解因式:18a3b+14a2b﹣2abc.---------参考答案-----------一、单选题1、B【分析】根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.【详解】解:A、是把一个单项式转化成两个单项式乘积的形式,故A错误;B、把一个多项式转化成三个整式乘积的形式,故B正确;C、是把一个多项式转化成一个整式和一个分式乘积的形式,故C错误;D 、是整式的乘法,故D 错误;故选:B.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式乘积的形式,注意因式分解与整式的乘法的区别.2、C【分析】根据因式分解的定义判断即可.把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.【详解】解:A 选项,B ,D 选项,等号右边都不是积的形式,所以不是因式分解,不符合题意;C 选项,符合因式分解的定义,符合题意;故选:C .【点睛】本题考查了因式分解的定义,掌握因式分解的定义是解题的关键.3、D【分析】根据完全平方公式的结构特点即可得出答案.【详解】解:①22484x xy y +-不能用完全平方公式分解;②()2222x y x xy y =---+-,能用完全平方公式分解; ③()222442xy x y x y ++=+,能用完全平方公式分解;④()2224114x x x =----,能用完全平方公式分解;故选:D.【点睛】本题考查了公式法分解因式,掌握a 2±2ab +b 2=(a ±b )2是解题的关键.4、D【分析】根据因式分解的定义是把一个多项式化为几个整式的积的形式的变形,可得答案.【详解】解:A 、是整式的乘法,不是因式分解,故此选项不符合题意; B 、没把一个多项式化为几个整式的积的形式,故此选项不符合题意;C 、因为1x的分母中含有字母,不是整式,所以没把一个多项式化为几个整式的积的形式,故此选项不符合题意; D 、把一个多项式化为几个整式的积的形式,故此选项符合题意;故选:D.【点睛】本题主要考查了因式分解的定义,熟练掌握因式分解是把一个多项式化为几个整式的积的形式的变形是解题的关键.5、B【分析】利用提取公因式法、平方差公式和完全平方公式法分别因式分解分析得出答案.【详解】解:A 、2p +2q +1不能进行因式分解,不符合题意;B、m2-4m+4=(m-2)2,符合题意;C、3p2-3q2=3(p2-q2)=3(p+q)(p-q),不符合题意;D、m4-1=(m2+1)(m2-1)=m4-1=(m2+1)(m+1)(m-1),不符合题意;故选择:B【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.6、A【分析】将式子先提取公因式再用平方差公式因式分解可得:(x2-y2)a2-(x2-y2)b2=(x2-y2)(a2-b2)=(x+y)(x-y)(a+b)(a-b),再结合已知即可求解.【详解】解:(x2-y2)a2-(x2-y2)b2=(x2-y2)(a2-b2)=(x+y)(x-y)(a+b)(a-b),由已知可得:勤奋博学,故选:A.【点睛】本题考查了因式分解的应用;将已知式子进行因式分解,再由题意求是解题的关键.7、B【分析】直接提取公因式a,再利用完全平方公式分解因式即可.【详解】解:ax2﹣8ax+16a=a(x2﹣8x+16)=a(x﹣4)2.故选B.【点睛】本题主要考查了分解因式,解题的关键在于能够熟练掌握分解因式的方法.8、A【分析】分别根据提公因式法因式分解以及乘法公式逐一判断即可.【详解】解:A、2m﹣2=2(m﹣1),故本选项符合题意;B、m2+n2,不能因式分解,故本选项不合题意;C、m2﹣n,不能因式分解,故本选项不合题意;D、m2﹣n+1,不能因式分解,故本选项不合题意;故选A.【点睛】本题主要考查了因式分解,解题的关键在于能够熟练掌握因式分解的方法.9、B【分析】根据因式分解的定义逐项排查即可.【详解】解:根据因式分解的定义可知:A、C、D都不属于因式分解,只有B属于因式分解.故选B.【点睛】本题主要考查了因式分解的定义,把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解.10、D【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【详解】解:A 、是多项式乘法,不是因式分解,原变形错误,故此选项不符合题意;B 、右边不是整式的积的形式,不是因式分解,原变形错误,故此选项不符合题意;C 、a 2-2a -3=(a +1)(a -3)分解时出现符号错误,原变形错误,故此选项不符合题意;D 、符合因式分解的定义,是因式分解,原变形正确,故此选项符合题意.故选:D.【点睛】本题考查了因式分解.解题的关键是理解因式分解的定义:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,然后进行正确的因式分解.11、C【分析】根据因式分解和整式乘法的有关概念,对式子进行判断即可.【详解】解:①3(13)x xy x y -=-,从左向右的变形,将和的形式转化为乘积的形式,为因式分解;②2(3)(1)23x x x x -+=--,从左向右的变形,由乘积的形式转化为和的形式,为乘法运算;故答案为C.【点睛】此题考查了因式分解和整式乘法的概念,熟练掌握有关概念是解题的关键.12、D【分析】根据因式分解的方法解答即可.【详解】解:A、x2+4≠(x+2)2,因式分解错误,故此选项不符合题意;B、x2-10x+16≠(x-4)2,因式分解错误,故此选项不符合题意;C、x3-x=x(x2-1)=x(x+1)(x-1),因式分解不彻底,故此选项不符合题意;D、2xy+6y2=2y(x+3y),因式分解正确,故此选项符合题意;故选:D.【点睛】本题考查了因式分解的方法,明确因式分解的结果应是整式的积的形式.运用提公因式法分解因式时,在提取公因式后,不要漏掉另一个因式中商是1的项.13、C【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据定义即可进行判断.【详解】解:A.2x(x﹣1)=2x2﹣2x,原变形是整式乘法,不是因式分解,故此选项不符合题意;B.4m2﹣n2=(2m+n)(2m﹣n),故此选项不符合题意;C.﹣x2+2x=﹣x(x﹣2),把一个多项式化为几个整式的积的形式,原变形是因式分解,故此选项符合题意;D.x2﹣2x+3=x(x﹣2)+3,等式的右边不是几个整式的积的形式,不是因式分解,故此选项不符合题意;故选:C.【点睛】本题主要考查了因式分解的定义.解题的关键是掌握因式分解的定义,要注意因式分解是整式的变形,并且因式分解与整式的乘法互为逆运算.14、B【分析】利用公式法对A、D进行判断;根据十字相乘法对B进行判断;根据提公因式对C进行判断.【详解】解:A、x2+9不能分解,所以A选项不符合题意;B、x2+x﹣6=(x﹣2)(x+3),所以B选项符合题意;C、3x﹣6y+3=3(x﹣2y+1),所以C选项不符合题意;D、x2+2x﹣1在有理数范围内不能分解,所以D选项不符合题意.故选:B.【点睛】本题考查了因式分解﹣十字相乘法等:对于x2+(p+q)x+pq型的式子的因式分解.这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;可以直接将某些二次项的系数是1的二次三项式因式分解:x2+(p+q)x+pq=(x+p)(x+q).15、D【分析】根据平方差公式逐个判断即可.【详解】解:A .是m 和n 的平方和,不是m 和n 的平方差,不能用平方差公式分解因式,故本选项不符合题意;B .()222244x y x y =+--是2x 和y 的平方和,不是2x 和y 的平方差,不能用平方差公式分解因式,故本选项不符合题意;C .22224(4)a b a b --=-+是2a 和b 的平方和的相反数,不能用平方差公式分解因式,故本选项不符合题意;D .2294(23)(23)x y x y x y -+=+-,能用平方差公式分解因式,故本选项符合题意;故选:D .【点睛】本题考查了平方差公式分解因式,能熟记公式a 2-b 2=(a +b )(a -b )是解此题的关键.二、填空题1、a (a +4)(a -4)【分析】原式提取公因式,再利用平方差公式分解即可.【详解】解:原式=a (a 2-16)=a (a +4)(a -4),故答案为:a (a +4)(a -4).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 2、7【分析】根据平方差公式分解因式解答即可.解:∵x 2﹣y 2=(x ﹣y )(x +y )=21,x ﹣y =3,∴3(x +y )=21,∴x +y =7.故答案为:7.【点睛】此题考查平方差公式分解因式,关键是根据平方差公式展开解答.3、(21)(21)x y x y ++--【分析】先分组,然后根据公式法因式分解.【详解】22421x y y --- 224(21)x y y =-++22(2)(1)x y =-+(21)(21)x y x y =++--.故答案为:(21)(21)x y x y ++--.【点睛】本题考查了分组分解法,公式法分解因式,掌握因式分解的方法是解题的关键.4、-3【分析】利用因式分解求出,a b 的值,再代入ab 中即可.解:223(3)(1)x x x x +-=+-,223()()x x x a x b +-=--,(3)(1)()()x x x a x b ∴+-=--,取3,1a b =-=或1,3a b ==-,将,a b 的值,再代入ab 中,3ab =-,故答案是:3-.【点睛】本题考查了因式分解,解题的关键是利用十字交叉相乘法进行因式分解,求出,a b .5、22(1)x y -【分析】先提取公因式2x ,然后运用完全平方公式因式分解即可.【详解】解:2242xy xy x ++22(21)x y y =-+22(1)x y =-,故答案为:22(1)x y -.【点睛】本题主要考查提公因式因式分解以及公式法因式分解,熟知完全平方公式的结构特点是解题关键.6、3b【分析】先根据展开式三项进行公式化变形,利用因式分解公式得出因式分解结果,再反过来即可得解.【详解】解:a 2+6ab +9b 2= a 2+2×a×3b +(3b )2=(a +3b )2,∴(a + 3b )2=a 2+6ab +9b 2,故答案为3b .【点睛】本题考查多项式的乘法公式,可反过来用因式分解公式来求解是解题关键.7、54【分析】先利用平方差公式分解因式,再代入求值,即可.【详解】解:222x 2y -=()222x y - =()()2x y x y +-=2×9×3=54,故答案是:54.【点睛】本题主要考查代数式求值,掌握平方差公式,进行分解因式,是解题的关键.8、()()224416y x y xy x -++根据题意根据立方差公式因式分解即可.【详解】﹣64x 3+y 3()334y x =- ()()224416y x y xy x =-++故答案为:()()224416y x y xy x -++【点睛】本题考查了因式分解,根据题意套用立方差公式是解题的关键.9、10【分析】先用提公因式法将﹣a 2b +ab 2变形为ab (a ﹣b ),然后代值计算即可得到答案.【详解】解:﹣a 2b +ab 2=ab (﹣a +b )=﹣ab (a ﹣b ).∵ab =5,a ﹣b =﹣2,∴﹣a 2b +ab 2=﹣ab (a ﹣b )=﹣5×(﹣2)=10.故答案为:10.【点睛】本题主要考查了用提公因式法因式分解,解题的关键在于能够熟练掌握因式分解的方法. 10、2(1)a a -根据分解因式的步骤,先提取公因式再利用完全平方公式分解即可.【详解】解:23222(12)(1)a a a a a a a a -+=-+=-,故答案为:2(1)a a - .【点睛】本题主要考查了因式分解,熟悉掌握因式分解的方法是解题的关键.三、解答题1、(1)2(x +4)2;(2)﹣2m 2(m +4)(m ﹣4)【分析】(1)直接提取公因式2,再利用完全平方公式分解因式得出答案;(2)直接提取公因式﹣2m 2,再利用平方差公式分解因式得出答案.【详解】解:(1)2(x +2)2+8(x +2)+8=2[(x +2)2+4(x +2)+4]=2(x +2+2)2=2(x +4)2;(2)﹣2m 4+32m 2=﹣2m 2(m 2﹣16)=﹣2m 2(m +4)(m ﹣4).【点睛】本题考查了提公因式法及公式法分解因式,解题的关键是正确运用公式.2、()()()2421a a a a -+-+【分析】将2-a a 看错整体,根据十字相乘法进行因式分解,对于()22a a --再次分解即可【详解】(a 2﹣a )2+2(a 2﹣a )﹣8()()2242a a a a =-+--()()()2421a a a a =-+-+ 【点睛】本题考查了因式分解,分解彻底是解题的关键.3、2ab (9a 2+7a ﹣c )【分析】确定公因式2ab ,然后提公因式即可.【详解】解:原式=2ab (9a 2+7a ﹣c ).【点睛】本题主要考查了因式分解,解题的关键在于能够准确观察出公因式是2ab .。
初中数学浙教版七年级下册第四章 因式分解单元测验(含解析)
第四章因式分解综合考试注意事项:1、填写答题卡的内容用2B铅笔填写2、提前xx 分钟收取答题卡第Ⅰ卷客观题第Ⅰ卷的注释阅卷人得分一、单选题1.下列各式中,从左到右的变形是因式分解的是( )A.x2+2x+3=x(x+2)+3B.(x+y)(x−2y)=x2−xy−2y2 C.3x2−12y2=3(x+2y)(x−2y)D.2(x+y)=2x+2y2.多项式−4a2b2+12a2b2−8a3b2c的公因式是( ).A.−4a2b2c B.−a2b2C.−4a2b2D.−4a3b2c 3.下列分解因式正确的是( )A.a2−9=(a−3)2B.6a2+3a=a(6a+3)C.a2+6a+9=(a+3)2D.a2−2a+1=a(a−2)+14.若x2+mx+16是完全平方式,则m的值等于( )A.2B.4或-4C.2或-2D.8或-8 5.下列多项式中,是完全平方式的为( )A.x2−x+14B.x2+12x+14C.x2+14x−14D.x2−14x+146.若x=1,y=12,则x2+4xy+4y2的值是( )A.2B.4C.32D.127.若m+ 1m =5,则m2+ 1m2的结果是( )A.23B.8C.3D.7 8.把二次三项式2x2﹣8xy+5y2因式分解,下列结果中正确的是( )A.(x﹣4+62y)(x﹣4−62y)B.(2x﹣4y+ 6y)(x﹣4+62y)C.(2x﹣4y+ 6y)(x﹣4−62y)D.2(x﹣4−62y)(x﹣4+62y)9.若m2=n+2022,n2=m+2022(m和n不相等),那么式子m3−2mn+n3的值为( )A.2022B.−2022C.2023D.−202310.已知x,y,z都是正整数,其中x>y,且x2−xz−xy+yz=23,设a=x−z,则[(3a−1)(a+2)−5a+2]÷a=( )A.3B.69C.3或69D.2或46阅卷人得分二、填空题11.将a3b -ab 进行因式分解的结果是 .12.把多项式因式分解a2b−2ab+b的结果是 .13.已知x2+mx+ 19是完全平方式,则m= .14.已知正实数a、b、c满足a2+b2+c2−ac−bc=1.则c的最大值是 .15.已知实数a,b,c满足a2+b2-4a≤1,b2+c2-8b≤-3,且c2+a2-12c≤-26,则(a+b)c的值为 .16.若一个四位数M的个位数字与十位数字的和与它们的差之积恰好是M去掉个位数字与十位数字后得到的两位数,则这个四位数M称为“和差数”,令M的千位数字为a,百位数字为b,十位数字为c,个位数字为d,记G(M)=dc,且P(M)=Mc+d,则G(1224)P(1224)= ;当G(M),P(M)均为整数时,M的最大值为 .阅卷人得分三、解答题17.如图,在一块半径为R的圆形板材上,冲去半径为r的四个小圆,小刚测得R=6.8cm,r=1.6 cm,他想知道剩余阴影部分的面积,你能利用所学过的因式分解的方法帮助小刚计算吗?请写出求解的过程(π取3).18.已知4m+n=40,2m-3n=5.求(m+2n)2-(3m-n)2的值.19.仔细阅读下面的例题,仿照例题解答问题,例题:已知二次三项式x2−4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2−4x+m=(x+3)(x+n)化简得x2−4x+m=x2+nx+3x+3n整理得x2−4x+m=x2+(n+3)x+3n于是有{n+3=−4m=3n解得{m=−21 n=−7因此另一个因式是(x−7),m的值为21.问题:已知二次三项式3x2+5x−k有一个因式是(3x−1),求另一个因式以及k的值.20.阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知x2﹣2xy+2y2+6y+9=0,求xy的值;(2)已知△ABC的三边长a、b、c都是正整数,且满足a2+b2﹣10a﹣12b+61=0,求△ABC的最大边c的值;(3)已知a﹣b=8,ab+c2﹣16c+80=0,求a+b+c的值.21.现有若干张长方形和正方形卡片,如图所示.请运用拼图的方法,选取图中相应的种类和一定数量的卡片拼成一个大长方形,使它的面积等于a2+4ab+3b2,并根据拼成图形的面积,把多项式a2+4ab+3b2因式分解.22.认真阅读下列因式分解的过程,再回答问题:1+x+x(1+x)+x(1+x)2=(1+x)[1+x+x(1+x)]=(1+x)2(1+x)=(1+x)³.(1)上述因式分解的方法是.(2)分解因式::1+x+x(1+x)+x(1+x)2+x(1+x)³.(3)猜想1+x+x(1+x)+x(1+x)2+⋯+x(1+x)"分解因式的结果.阅卷人四、实践探究题得分23.先阅读材料:分解因式:(a+b)2+2(a+b)+1.解:令a+b=M,则(a+b)2+2(a+b)+1=M2+2M+1=(M+1)2所以(a+b)2+2(a+b)+1=(a+b+1)2.材料中的解题过程用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法,请你运用这种思想方法解答下列问题:(1)分解因式:1−2(x+y)+(x+y)2= ;(2)分解因式:(m+n)(m+n−4)+4;(3)证明:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某个整数的平方.答案解析部分1.【答案】C【解析】【解答】解:A.等式的右边不是几个整式的积的形式,不属于因式分解,故本选项不符合题意;B.从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;C.从左到右的变形属于因式分解,故本选项符合题意;D.从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;故答案为:C.【分析】把一个多项式在一个范围化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式,据此判断即可.2.【答案】C【解析】【解答】解:∵−4a2b2+12a2b2−8a3b2c=−4a2b2(1−3+2ac),∴公因式为:−4a2b2,故答案为:C.【分析】利用公因式的定义求解即可.3.【答案】C【解析】【解答】A. a2−9=(a−3)(a−3),故不符合题意;B. 6a2+3a=3a(2a+1),故不符合题意;C. a2+6a+9=(a+3)2,符合题意;D. a2−2a+1=(a−1)2,故不符合题意;故答案为:C.【分析】运用因式分解的定义逐项判断即可;4.【答案】D【解析】【解答】解:∵x2+mx+16=x2+mx+42,∴mx=±2•x•4,解得m=8或﹣8.故答案为:D.【分析】先根据两平方项确定出这两个数,再根据完全平方公式的这两数乘积二倍项即可确定m的值.5.【答案】A【解析】【解答】A. x2−x+14= (x−12)2,故符合题意B. x 2+12x +14 = (x +14)2+316 ,故不符合题意C. x 2+14x−14 = (x +116)2−65256 ,故不符合题意D. x 2−14x +14 = (x−116)2+63256 ,故不符合题意故答案为:A【分析】利用配方法分别转化为完全平方式的形式即可求解.6.【答案】B【解析】【解答】解:原式=(x+2y )2=(1+2× 12)2=4.故答案为:B【分析】根据完全平方公式a 2±2ab+b 2=(a ±b )2,分解因式x 2+4xy+4y 2=(x+2y )2,把x 、y 的值代入,求出代数式的值.7.【答案】A【解析】【解答】因为m+1m =5,所以m 2+ 1m2 =(m+ 1m )2﹣2=25﹣2=23.故答案为:A .【分析】两边平方可得m 2+1m 2=(m +1m )2−2。
浙教新版七年级下册《第4章_因式分解》2024年单元测试卷(5)+答案解析
浙教新版七年级下册《第4章因式分解》2024年单元测试卷(5)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列变形属于因式分解的是()A. B.C. D.2.下列多项式中,能用提取公因式法分解因式的是()A. B. C. D.3.下列因式分解正确的是()A. B.C. D.4.下列各个多项式中,不能用平方差公式进行因式分解的是()A. B. C. D.5.在探索因式分解的公式时,可以借助几何图形来解释某些公式.从图①到图②的变化过程中,解释的因式分解的公式是()A. B.C. D.6.能被整除.()A.76B.78C.79D.827.若,则的值是()A.8B.12C.16D.328.多项式,其中a,b为常数,()A.若公因式为3x,则B.若公因式为5x,则C.若公因式为3x,则为整数D.若公因式为5x,则为整数9.在多项式中添加一个单项式,使其成为一个完全平方式,则添加的单项式可以是()A.xB.3xC.6xD.9x10.已知a,b,c满足,,,则的值是()A.2B.3C.4D.5二、填空题:本题共8小题,每小题3分,共24分。
11.分解因式:______.12.若,,,则的值为______.13.将多项式加上一个整数,使其能用提取公因式法进行分解因式,请你写出满足条件的一个整数是______.14.若二次三项式是一个完全平方式,则k的值是______.15.把多项式因式分解,结果为______.16.若非零实数a,b满足,则______.17.已知,则______.18.甲,乙两个长方形的边长如图所示.甲、乙两个长方形的面积分别为,若一个正方形的面积等于,则该正方形的边长是______;用含m,n的代数式表示若1个甲长方形和3个乙长方形恰好能拼接成一个正方形该正方形没有缝隙,没有重叠部分,则______.三、解答题:本题共6小题,共46分。
北师大版七年级数学下册第四章 三角形 章节测试(含答案)
第四章 全等三角形章节测试一、细心选一选(每小题3分,共36分)1.下列说法正确的是……………………………………( )A.周长相等的两个三角形全等B.面积相等的两个三角形全等C.三个角对应相等的两个三角形全等D.三条边对应相等的两个三角形全等 2.下列各组线段能组成三角形的是……………………( )A.3cm ,3cm ,6cmB.7cm ,4cm ,5cmC.3cm ,4cm ,8cmD.4.2cm ,2.8cm ,7cm 3.下列图形中,与已知图形全等的是……………………( )4.如图,已知△ABC ≌△CDE,其中AB =CD ,那么下列结论中, 不正确的是……………………… ( ) A.AC =CEB.∠BAC =∠CDEC.∠ACB =∠ECDD.∠B =∠D5.下列条件中,不能判定三角形全等的是…………………( ) A.三条边对应相等 B.两边和一角对应相等 C.两角和其中一角的对边对应相等 D.两角和它们的夹边对应相等6. 如图,把图形沿BC 对折,点A 和点D 重合,那么图中共有全等三角形………( ) A.1对 B.2对 C.3对 D.4对7.在△ABC 和△A ′B ′C ′中,已知AB = A ′B ′, ∠B =∠B ′要保证△ABC ≌△A ′B ′C ′, 可补充的条件是……( )A.∠B +∠A =900B.AC = A ′C ′C.BC =B ′C ′D. ∠A +∠A ′=9008.已知在△ABC 和△A ′B ′C ′中,AB = A ′B ′,∠B =∠B ′,补充下面一个条件,不能说明△ABC ≌△A ′B ′C ′的是……………………………………………………………………………………( ) A. BC =B ′C ′ B. AC = A ′C ′ C. ∠C =∠C ′ D. ∠A =∠A ′ 9.如图,已知AE =CF ,BE =DF .要证△ABE ≌△CDF ,还需添加的一个条件是………( )(A ) (B ) (C )(D )第3题图B DE第4题ABDCEA.∠BAC =∠ACDB.∠ABE =∠CDFC.∠DAC =∠BCAD.∠AEB =∠CFD10.如图AD 是△ABC 的角平分线,DE 是△ABD 的高,EF 是△ACD 的高,则…( ) A.∠B =∠C B.∠EDB =∠FDC C.∠ADE =∠ADF D. ∠ADB =∠ADC 11.如图AC 与BD 相交于点O ,已知AB =CD ,AD =BC ,则图中全等三角形有………( ) A.1对 B.2对 C.3对 D.4对 12.如图,D 、E 分别是AB ,AC 上一点,若∠B =∠C ,则在下列条件中,无法判定△ABE ≌△ACD 是………………………………( ) A.AD =AE B.AB =ACC.BE =CDD.∠AEB =∠ADC 二、专心填一填:(每小题3分,共24分)13.如图,△ABC ≌△DEF ,点B 和点E , 点A 和点D 是对应顶点, 则AB = ,CB = , ∠C = ,∠CAB = . 14.若已知两个三角形有两条边对应,则要视这两个三角形全等, 还需增加的条件可以是 或 .15.如图已知AC 与BD 相交于点O ,AO =CO ,BO =DO ,则AB =CD 请说明理由. 解:在△AOB 和△COD 中(BO DO(AO CO ==⎧⎪⎨⎪⎩已知)(对顶角相等已知) ∴△AOB ≌△COD ( )∴AB =DC ( )16.如图,已知AO =OB ,OC =OD ,AD 和BC 相交于点E , 则图中全等三角形有 对.17.在△ABC 和△DEF 中,AB =4, ∠A =350, ∠B =700,DE =4, ∠D = , ∠E 根据 判定△ABC ≌△DEF .ABC D F E 第9题AA AAA 第10题A BCDO第11题ABCE第12题D第13题ABC DEFABD CO第15题OABD第16题CE第18题A D18.如图,在△ABC和△DEF中AB=DC( BC=DA(=⎧⎪⎨⎪⎩已知)已知)()∴△ABC≌△DEF( )19.如图∠B=∠DEF,AB=DE,要证明△ABC≌△DEF,(1)若以“ASA”为依据,需添加的条件是;(2)若以“SAS”为依据,需添加的条件是.20.如图,△ABC中,AB=AC=13cm,AB的垂直平分线交AB于D,交AC于E,若△EBC的周长为21cm,则BC= cm.三、耐心答一答:(本题有6小题,共40分)21.(本题4分)已知∠α、∠β和线段a, 如图,用直尺和圆规作△ABC,使∠A=∠α,∠B=∠β,BC=a.22.(本题6分)已知AD平分∠CAB,且DC⊥AC, DB⊥AB,那么AB和AC相等吗?请说明理由.第19题B CAE CDAB CED第20题DCAB23.(本题6分)如图,已知BD =CD ,∠1=∠2. 说出△ABD ≌△ACD 的理由.24.(本题8分)如图,已知AB =DC ,AD =BC ,说出下列判断成立的理由: (1) △ABC ≌△CDA (2) ∠B =∠D25.(本题8分) 如图,把大小为4×4的正方形方格图形分别分割成两个全等图形,例如图①,请在下图中,沿着须先画出四种不同的分法,把4×4的正方形分割成两个全等图形ABC12DB D图①画法1画法2画法3画法426.(本题8分)如图,△ABC 中,AD 垂直平分BC ,H 是AD 上一点,连接BH ,CH .(1)AD 平分∠BAC 吗?为什么?(2)你能找出几堆相等的角?请把他么写出来(不需写理由)ACBH D参考答案一、细心选一选:(每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12答案D B B C D C C B D C D D二、专心填一填(每小题3分,共24分)13.DE,FE,∠F, ∠FE D. 14.3第三边相等,这两边的夹角相等15. ∠AOB=∠COD,SAS,全等三角形的对应边相等16.4 17.350, AAS18.AC,CA,公共边,SSS19.∠A=∠D20.8三、耐心答一答(本题有六小题,共40分)21.图略22.AB=AC23.略24.略25.画法1 画法2 画法3 画法426.(1)由△ADB≌△ADC(SAS)得∠BAD=∠CAD(4)4对,∠BHD=∠CHD, ∠ABD=∠ACD,∠HBD=∠HCD, ∠BDA=∠CDA。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题(1-10每小题1 分,11-16每小题2分,共22 分)
1.(2014·广州模拟)下列不属于血浆成分的是( )
A.水
B.血浆蛋白
C.血红蛋白
D.葡萄糖、氨基酸、无机盐
2.如图表示血液、血浆、血细胞三概念之间的关系,正确的是( )
3.小红患急性肺炎住院,推测其血常规化验单中测定值最可能偏高的是( )
A.红细胞
B.血小板
C.白细胞
D.血红蛋白
4.关于血液各种成分及功能的叙述不正确的是( )
A.血浆有运输营养物质和代谢废物的功能
B.血小板有止血和加速凝血的作用
C.红细胞有运载血红蛋白的功能
D.白细胞有防御疾病的作用
5. 患有心脏病的人猛然坐立或站起来时,有时会引起心脏跳动暂停而导致死亡。
此时,医生常会急捶其身体某部以使心脏恢复跳动。
请问急捶的部位应是( )
A.胸腔中央偏左上方
B.胸腔中央偏左下方
C.胸腔中央偏右上方
D.胸腔中央偏右下方
6.在抢救伤员时,医护人员发现伤员腿部外出血,血液鲜红色,从伤口喷出血液速度很快,止血的方法如下图。
他会做出怎样判断,又会在伤口的什么部位止血( )
A.动脉出血、远心端
B.静脉出血、近心端
C.静脉出血、远心端
D.动脉出血、近心端
7.下列图示为人体内几种管道结构示意图,其中图示为毛细血管的是( ) 8.(2012·台州学业考)如图是人体某处物质交换示意图。
下列说法正确的是( )
A.图中的血管是小动脉
B.图中的血管是毛细血管
C.气体交换后,组织细胞内含氧量降低了
D.气体交换后,血液中二氧化碳含量降低了
9.人体的血液循环系统由血管、心脏和血液组成。
下列有关叙述,正确的是( )
A.血液由血清和血细胞组成
B.心脏的四个腔中,左心室壁最厚
C.体循环始于右心室
D.动脉里流的都是动脉血
10.如图是人的血液循环某部分,箭头表示血流方向,甲代表肺静脉,则乙是( )
A.左心房
B.左心室
C.右心房
D.右心室
11.下图是哺乳动物的心脏模式图,含氧较多的血是由哪条血管进入心脏的( )
A.①
B.②
C.③
D.④
1
12. (2013·汕头模拟)实验人员测定某人的肺泡、静脉血、动脉血以及组织细胞中氧气和二氧化碳含量的相对值,结果如下表所示。
请你判断,代表静脉血的是( )
A.①
B.②
C.③
D.④
13.某人患有下肢静脉曲张,若其内的血栓脱落,随血液流动,最有可能滞留的部位是( )A.下肢静脉 B.右心房 C.肺部毛细血管 D.肺静脉
14.下图曲线代表血液中某种物质成分含量变化趋势,该曲线不能表示( )
A.血液流经小肠时葡萄糖含量的变化
B.血液流经肺部时二氧化碳含量的变化
C.血液流经肌肉时二氧化碳含量的变化
D.从平原进入高原后人体红细胞数量的变化
15.在某一时刻检测某一器官的动脉和静脉中的血液成分,结果其氧气、二氧化碳的相对含量如图所示,该器官是( )
A.脑
B.肺
C.肾脏
D.小肠
16.血浓于水,情深于海。
在雅安地震中,晓晓同学不幸被楼板压伤,失血过多,急需输血。
经化验,她的血型是A型。
很多富有爱心的人主动要求为晓晓献血,下面最适合输给晓晓的血型是( ) A.O型 B.B型 C.A型 D.AB型二、非选择题(共73分)
17.(6分)某校高三学生进行体检后,发现部分同学的被检测指标出现异常。
据表分析回答:
(1)医生依据乙血检中红细胞和血红蛋白的数值都偏低,判断他可能患有。
从平
时的饮食方面,你给他的建议是。
(2)丙自述体检时扁桃体发炎,至今“嗓子”还疼。
血检显示,
说明炎症仍存在,还需继续治疗。
18.(10分)(2012·长春学业考)根据“观察小鱼尾鳍内血液的流动”实验回答问题。
(1)为了使小鱼正常呼吸,减少伤害,进行实验时要用(浸湿、干燥)的棉絮或纱
布将小鱼的头部和躯干部包裹起来,露出口和尾部。
(2)实验时,将盛有小鱼的培养皿放在载物台上,用(高倍、低倍)显微镜
观察尾鳍血管内血液的流动情况。
(3)上图中,血管B管腔小,红细胞只能单行通过,它是;根据图中血流
方向可判断血管C是。
(4)血液在血管中不断流动,为其提供动力的器官是,它是输送血液的泵。
2
19.(9分)一次心跳包括了心脏的收缩与舒张过程,下图是心脏工作示意图,请回答相关的问题:
(1)心脏能将血液泵至全身,主要是组织收缩与舒张的结果。
(2)A表示的过程,血液的流向是。
(3)B表示的过程,其中[2]中的血液进入[ ] ,当血液流经毛细血管后,发生的变化是,血液最终由[ ] 回心脏。
20.(6分)人体是一个统一的整体,物质在体内的运输与循环系统有着密切的关系。
如图是人体血液循环示意图,请据图回答下列问题: (1)血管A的名称是,它与心脏的左心室相连。
(2)血液流经后,静脉血变为动脉血。
(3)餐后两小时,A、B、C、D四处血液中血糖含量最高的部位是(填字母标号)。
21.(42分)如图血液循环示意图,请据图回答
(1)心脏四部分分别是A、B、C、D,则
A是 B是
C是 D是
与心脏相连的血管分别是a、b、c、d,
则a是 b是
c是 d是
(2)A与C、B与D之间有,
C与c、D与a之间有,保证了血液
按静脉→_________→_________→动脉流动
(3)若F是小肠,则b中血液与a相比明显
增多的是________,这是因为小肠是________________的主要场所。
(4)若F是组织细胞,则b中血液与a相比明显减少的是,这是因为它要在组织细胞的中参与分解有机物,为生命活动提供____________。
(5)上图所示四条血管a、b、c、d中流静脉血的有。
(6)若在臀部注射青霉素治疗急性咽喉炎,则药物最先到达心脏的[ ] ;若静脉注射药物,则药物经过心脏各腔的先后顺序是
(用字母和箭头表示)
3。