热质交换原理与设备复习资料

合集下载

热质交换原理与设备复习资料

热质交换原理与设备复习资料

1当流体流过一物体表面,并与表面之间又有热量交换时,同样可用类比关系由传热系数h 计算传质系数hm 。

由式(13)联系式(9)和(10)可以得到:即得到(上述方框表示乘号点)对于气体或液体,上式成立的条件是0.6<Sc<2500,0.6<Pr<100 2溴化锂水溶液的表面蒸气压 结论: 1·不同浓度下压力和饱和温度的关系。

由于溶液沸腾时只有水蒸气气化,所以图中纵坐标所示的压力即是溶液表面上水蒸气的饱和分压力。

2·在一定的温度下,溶液表面上的水蒸气饱和分压力低于纯水的饱和压力。

溶液的浓度越高,液面上水蒸气饱和分压力越低。

(浓溶液吸收水蒸气的能力强)∴ 3.在一定浓度下,溶液温度越低,液面上的水蒸气分压力越低。

(低温溶液吸收水蒸气的能力强)∴ 4·结晶线表明了不同温度下溶液的饱和浓度。

温度越低则饱和浓度越小。

这又说明了溶液的温度过低或浓度过高时都容易产生结晶,这是溴化锂制冷机应该避免的现象。

(同热质交换) 3湿空气在冷表面上的冷却降湿空调工程中,常用表面式空气冷却器来冷却、干燥空气。

湿空气进入冷却器内,当冷却器表面温度低于湿空气的露点温度,水蒸气就要凝结,从而在冷却器表面形成一层流动的水膜。

紧靠水膜处为湿空气的边界层,这是可认为与水膜相邻的饱和空气层的温度与冷凝器表面上的水膜温度近似相等。

因此,空气的主体部分与冷凝器表面的热交换是由空气的主流与凝结水膜之间的温差(t-ti )而产生的,质交换则是由于空气主流与凝结水膜相邻的饱和空气层中的水蒸气的分压力差,即含湿量差(d-di )而引起的。

在冷却表面的两侧,分别存在湿空气的水膜和边界层以及冷却剂侧的边界层,所有的热质交换都需要克服冷却表面两侧的两层膜所带来的阻力。

4干燥循环(简答或判断对错)(干燥剂表面的水蒸气分压与其吸湿量的关系、干燥剂吸湿量与水蒸气分压及温度的关系)吸附空气中水蒸气的吸附剂被称为干燥剂。

热质交换原理与设备期末复习范围

热质交换原理与设备期末复习范围

热质交换原理与设备期末复习范围1.三种传递现象:动量、热量、质量的传递现象。

2.牛顿黏性定律:dudy切应力τ,表示单位时间内通过单位面积传递的动量,又称动量通量密度。

N/m2。

3.当流场中速度、温度、浓度分布不均时,它们动量交换、热量交换、质量交换的规律可以类比。

4.二元体系:两种组成构成混合流体,或称二元混合物。

5.绝对速度=主体流动速度+扩散速度6.分子传质又称分子扩散,简称为扩散,它是由分子的无规则热运动而形成的物质传递现象。

分子扩散可以因浓度梯度、温度梯度或压力梯度而产生,或者是因对混合物施加一个有向的外加电势或者其他势而产生。

7.分子扩散与对流扩散两者的共同作用称为对流质交换。

8.流动越明显,分子扩散越微弱。

9.固体壁面与流体之间的对流传质速率可定义为:NA=hm(CA-CA∞)10.浓度边界层:可以认为质量传递的全部阻力集中于固体表面上一层具有浓度梯度的流体层中,该流体层即称为浓度边界层。

11.三种边界层的主要的表现形式:表面摩擦、对流换热以及对流传质。

12.对流传质系数hm在大多数情况下,与扩散系数D呈线性关系。

流体的分子传递性质:流体的黏性、热传导性和质量扩散性通称为流体的分子传递性质。

13.在给定Re准则条件下,成立的首要条件:当流体a=D即流体的Pr=Sc或Le=1时,通常空气中的热湿交换就属此.对于气体混合物,通常可近似地认为L≈1。

14.通过大量被不同液体润湿的管壁和空气之间的质交换实验。

15.对流传质系数,亦称蒸发系数,表示以湿空气的含湿量差为驱动力的对流传质系数,为hmd=hmρA,M.(hm是整个平板上的平均值)传质速率的大小与方向影响了壁面上的温度梯度,即t’(0)的值,从而影响了壁面上的导热量。

16.烧蚀冷却:为了冷却表面,在表面上涂上一层材料,当温度升高时涂层材料就升华、融化或分解,这些化学过程吸收热量,而反应所产生的气体的质量从表面离去,从而有效的冷却壁面,这种冷却方法称为烧蚀冷却。

热质交换原理与设备复习题(题库)

热质交换原理与设备复习题(题库)

简要回答问题4、解释显热交换、潜热交换和全热交换,并说明他们之间的关系。

显热交换是空气与水之间存在温差时,由导热、对流和辐射作用而引起的换热结果。

潜热交换是空气中的水蒸气凝结(或蒸发)而放出(或吸收)汽化潜热的结果。

总热交换是显热交换和潜热交换的代数和。

6、扩散系数是如何定义的?影响扩散系数值大小的因素有哪些?扩散系数是沿扩散方向,在单位时间每单位浓度降的条件下,垂直通过单位面积所扩散某物质的质量或摩尔数,大小主要取决于扩散物质和扩散介质的种类及其温度和压力。

8、如何认识传质中的三种速度,并写出三者之间的关系?Ua Ub:绝对速度Um:混合物速度Ua Ub 扩散速度Ua=Um+(Ua-Um) 绝对速度=主体速度+扩散速度10、简述“薄膜理论”的基本观点。

当流体靠近物体表面流过,存在着一层附壁的薄膜,在薄膜的流体侧与具有浓度均匀的主流连续接触,并假定膜内流体与主流不相混合和扰动,在此条件下,整个传质过程相当于此薄膜上的扩散作用,而且认为在薄膜上垂直于壁面方向上呈线性的浓度分布,膜内的扩散传质过程具有稳态的特性。

14、简述表面式冷却器处理空气时发生的热质交换过程的特点。

当冷却器表面温度低于被处理空气的干球温度,但高于其露点温度时,则空气只是冷却而不产生凝结水,称干工况。

如果低于空气露点,则空气不被冷却,且其中所含水蒸气部分凝结出来,并在冷凝器的肋片管表面形成水膜,称湿工况,此过程中,水膜周围形成饱和空气边界层,被处理与表冷器之间不但发生显热交换还发生质交换和由此引起的潜热交换。

15、请说明空气调节方式中热湿独立处理的优缺点?对空气的降温和除湿分开处理,除湿不依赖于降温方式实现。

节约传统除湿中的缺点,节约能源,减少环境污染。

16、表冷器处理空气的工作特点是什么?与空气进行热质交换的介质不和空气直接接触,是通过表冷器管道的金属壁面来进行的。

空气与水的流动方式主要为逆交叉流。

17、吸附(包括吸收)除湿法和表冷器,除湿处理空气的原理和优缺点是什么?吸附除湿是利用吸附材料降低空气中的含湿量。

热质交换原理与设备复习简答题

热质交换原理与设备复习简答题

试讨论空气与水直接时的状态变化过程。

解:假设当空气与水在一微元面 dA 上接触时,假设空气温度变化为 dt ,含湿量变化为 d(d) 。

(1)显热交换量:(2分)——湿空气的质量流量,kg/s——湿空气与水表面之间的显热交换系数,W/(m 2.℃)(2)湿交换量:(2分)潜热交换量:(2分) ——温度为 t b 时水的汽化潜热,kJ/kg——单位时间单位面积蒸发(凝结)的水量,kg/(m 2.s)(3)总热交换量:对空气——水系统,存在刘易斯关系式: (2分)所以上式(2分)因为:当温度为 t 时,湿空气焓为:当温度为 t b 时,湿空气焓为::如果忽略水蒸汽从0℃加热到t ℃时的焓,即项,并考虑到 t 和t b 差别不大,所以空气的比热和水的汽化潜热变化不大,即有:所以从(3)式可以得到:(4) —— 麦凯尔方程麦凯尔方程表明:在热质交换同时进行时,如果满足刘伊斯关系式,则总热交换的推动力为空气——主流湿空气与紧靠水面的饱和边界层空气的焓差。

(2分)由于是空气与水之间发生的热质交换,所以不仅空气的状态会发生变化,水的状态也会发生变化。

如果在热质交换中,水的温度变化为 dt w ,则根据热平衡:(5)(2分)——水的质量流量,kg/s——水的定压比热,kJ/(kg.℃)(1)(2)(3)(4)(5)称为空气与水直接接触时的热湿交换基本方程式。

1当流体流过一物体表面,并与表面之间又有热量交换时,同样可用类比关系由传热系数h 计算传质系数hm 。

由式(13)联系式(9)和(10)可以得到:2/3 =Pr (9)H p h J c u ρ∞2/3=(10)m D h J Sc u ∞H D 1 J =J =(13)2f C 2/32/3m St Pr St Sc =2/32/3m m Sc St=St St Le Pr ⎛⎫ ⎪ ⎪ ⎪⎝⎭=即得到(上述方框表示乘号点)对于气体或液体,上式成立的条件是0.6<Sc<2500,0.6<Pr<1001干燥循环吸附空气中水蒸气的吸附剂被称为干燥剂。

热质交换原理与设备复习重点

热质交换原理与设备复习重点

热质交换原理与设备复习重点1、热质交换设备的种类和用途? P4答:(1)按工作原理分:间壁式、混合式、蓄热式和热管式;(2)按流动方式分:顺流式、逆流式、叉流式、混流式;(3)按用途分:水加热器、空气加热器、空气冷却器、预热器、过热器、喷淋室、冷凝器、蒸发器、喷射器、加湿器、暖风机等;(4)按材料分:金属材料、非金属材料、稀有金属材料。

热质交换设备的用途主要就是能量传递。

2、传热及传质基本方式?P10答:传热的三种基本方式为:热传导、热对换、热辐射;传质的两种基本方式为:a.分子扩散,是在固体中以及静止的流体或垂直于浓度梯度方向作层流运动的流体中的扩散;b.对流扩散,是由于在流体中存在的对流形式的宏观运动而引起的物质传递,称为对流扩散,其传递基理和热对流相类似,其传质能力远远大于分子扩散。

3、什么是扩散通量?P11答:扩散通量是指单位时间内通过垂直于扩散方向的单位面积的某一组分的物质数量,根据不同的浓度单位扩散通量常用的表达形式有两种:质扩散通量和摩尔扩散通量。

4、斐克定律,公式(1-8、1-9)m A=-D AB dC Ady (1-8) N A=-D AB dn Ady(1-9)P13答:斐克定律是描述物质扩散现象的宏观规律,描述了分子扩散过程中的传质量与浓度梯度之间的关系,在稳态扩散条件下其表达式见教材第13页公式(1-8、1-9),也就是说,浓度梯度越大,扩散通量越大。

5、扩散系数,公式(1-30、1-31)P17、P18答:扩散系数是沿扩散方向,在单位时间每单位浓度梯度的条件下,垂直通过单位面积所扩散某物质的质量或摩尔数,单位m2/s。

扩散系数的大小主要取决于扩散物质和扩散介质的种类及其温度和压力。

D = m A−dC Ady = N A−dn Ady(1-30) --17页D=D0p0p (TT0)32⁄ D=435.7T32⁄p(V A13⁄)2√1μA+1μB×10−4 (1-31) --18页施密特数可定义为: ν 为动黏滞系数;D 为扩散系数.;μ 为黏滞系数;ρ 为密度(2)舍伍德数Sh:是反映包含有待定传质系数的无因次数群,类似于传热中的努塞特数,以符号Sh表示,它表征的是对流传质与扩散传质的比值,它是由三个物理量组成,即Sh=k′L/DAB式中:k′为传质系数,m/s;L 为特性尺寸,m;DAB为溶质A在溶剂中B中的特性系数,m2/s。

热质交换原理与设备复习重点

热质交换原理与设备复习重点

三种传递现象:动量传递τ=﹣μdu/dy,热量传递q=﹣λdt/dy,质量传递m A=﹣D AB dC A/dy。

统一公式:FDφ’=﹣Cdφ/dy。

传质的通量:单位时间通过垂直于传质方向上单位面积的物质的量称为传质通量,等于传质速度与浓度的乘积。

质量传递的基本方式:分子传质和对流传质。

分子扩散可以因浓度梯度、温度梯度或压力梯度而产生,或者是因对混合物施加一个有向的外加电势或其他电势而产生。

分子扩散有两种形式:双向扩散(反方向扩散)和单向扩散(一组分通过另一停滞组分的扩散)。

等分子反方向扩散:设由AB两种组分组成的二元混合物中,组分AB进行反方向扩散,若二者扩散的通量相等。

组分A通过停滞组分B进行扩散:设组分AB两组分组成的混合物中,组分A为扩散组分,组分B为不扩散组分(停滞组分)。

对流传质:是指壁面和运动流体之间,或两个有限互溶的运动流体之间的质量传递,分子扩散与对流扩散两者的共同作用称为对流质交换。

液体中的分子扩散速率远低于液体中分子扩散速率原因:由于液体分子之间的距离较近,扩散物质A的分子运动容易与邻近液体B的分子相碰撞,使本身的扩散速率减慢。

固体扩散现象:固体物料的干燥、固体吸附、固体除湿。

固体中的扩散包括气体,液体和固体在在固体内的分子扩散固体扩散的分类:①与固体内部结构基本无关的扩散②与固体内部结构基本有关的多孔介质中的扩散。

当扩散物质在多孔管道内进行扩散时,其扩散通量与扩散物质本身的性质和孔道尺寸密切相关。

物质的分子扩散系数表示它的扩散能力,是物质的物理性质之一。

扩散系数的大小主要取决于扩散物质和扩散介质的种类及其温度和压力。

与气体的浓度无关,并随气体温度的升高和总压力的下降而加大,原因:随着气体温度的升高,气体分子的平均运动动能增大故扩散加快,而随着气体压强的升高,分子间的平均自由行程减小,故扩散就减弱。

液相质扩散扩散系数D比气相质扩散的D低一个数量级以上,是由于液体中分子间的作用力强烈地束缚了分子活动的自由程,分子移动的自由度缩小的缘故。

热质交换原理与设备期末复习总结

热质交换原理与设备期末复习总结

热质交换原理与设备1.三种传递现象的联系:当物系中存在速度、温度和浓度的梯度时,则分别发生动量、热量和质量的传递现象。

牛顿黏性定律dy du -µτ=;热传导方式传递的热量通量密度dydt λ-q =;通过分子扩散传递的组分A 的质量通量密度dyD D A AB A ρ-j =;这些表达式说明动量交换、热量交换、质量交换的规律可以类比。

其可以用一个公式表示dy CFD Φ−=Φd '详见P7表1-1。

2.传质的理论基础:流体中各组分的浓度不均匀,物系中的某组分存在浓度梯度,将发生该组分由高浓度区向低浓度区的迁移过程,就会有质量传递或质交换发生。

传质过程又常和传热过程复合在一起,例如空调工程中的表冷器在冷却去湿工况下和在吸收式制冷装置的吸收器中发生的吸收过程等,均是既有热交换又有质交换的现象。

3.分子传质又称为分子扩散,简称扩散,它是由于分子的无规则热运动而形成的物质传递现象。

分子扩散可以因浓度梯度、温度梯度或压力梯度而产生,或者是因对混合物施加一个有向的外加电势或其他势而产生。

4.对流传质是具有一定浓度的混合物流体流过不同浓度的壁面时,或两个有限互溶的流体层发生运动时的质量传递。

分子扩散与对流扩散两者的共同作用称为对流质交换。

在层流流动中,对流传质主要依靠层与层之间的分子扩散来实现的。

在湍流流体中,凭借流体质点的湍流和漩涡来传递物质的现象,称为紊流扩散。

5.斐克定律表达式)N (N x -N B A ++=A A A dzdC D 即组分的实际传质通量=分子扩散通量+主体流动通量(气体、固体、液体哪个扩散比较容易?)判断准则:①斐克型扩散:固体内部孔道的直径d 远大于流体分子运动自由程λ,λ100d ≥。

②克努森扩散:100d >λ。

③过渡区扩散:λ与d 相差不大。

6.扩散系数的大小主要取决于扩散物质和扩散介质的种类及其温度和压力。

7.对流传质:固体壁面与流体之间的对流传质速率可定义为)C -(C A As ∞=m A h N8.(必考(必考))浓度边界层:质量传递的全部阻力集中于固体表面上一层具有浓度梯度的流体层中,该流体层即称为浓度边界层。

热质交换原理与设备复习题(题库)

热质交换原理与设备复习题(题库)

填空题3、喷雾室是以实现雾和空气在直接接触条件下的热湿交换。

4、当表冷器的表面温度低于空气的露点湿度时,就会产生减湿冷却过程。

5、某一组分的速度与整体流动的平均速度之差,成为该组分的扩散速度。

6刘伊斯关系式是h/h mad=Cp 。

2、冷凝器的类型可以分为水冷式,空气冷却式( 或称风冷式) 和蒸发式三种类型.3、冷却塔填料的作用是延长冷却水停留时间,增加换热面积,增加换热量.。

均匀布水。

将进塔的热水尽量细化,增加水和空气的接触面,延长接触时间,增进水汽之间的热值交换4、冰蓄冷空调可以实现电力负荷的调峰填谷(均衡)。

5、吸附式制冷系统中的脱附—吸附循环装置代替了蒸汽制冷系统中的压缩机装置。

6、刘伊斯关系式文中叙述为h/h mad=Cp刘伊斯关系式文中叙述为即在空气一水系统的热质交换过程中,当空气温度及含湿量在实用范围内变化很小时,换热系数与传质系数之间需要保持一定的量值关系,条件的变化可使这两个系数中的某一个系数增大或减小,从而导致另一系数也相应地发生同样的变化。

7、一套管换热器、谁有200℃被冷却到120℃,油从100℃都被加热到120℃,则换热器效能是25% 。

8、总热交换是潜热交换和显热交换的总和。

9、吸收式制冷机可以“以热制冷”,其向热源放热Q1,从冷热吸热Q2,消耗热能Q0,则其性能系数COP= Q1-Q2/Qo 。

10、冬季采暖时,蒸发器表面易结霜,融霜的方法有电除霜、四通阀换相除霜、排气温度除霜1、当流体中存在速度、温度、和浓度的梯度时,就会分别产生动量、热量和质量的传递现象。

2、锅炉设备中的过热器、省煤器属于间壁式式换热器。

3、大空间沸腾可以分为自然对流沸腾区、核态沸腾区、过度沸腾区和膜态沸腾区四个区域。

8、潜热交换是发生热交换的同时伴有质交换(湿交换)空气中的水蒸气凝结(或蒸发)而放出(或吸收)汽化潜热的结果。

11、根据冷却介质的不同,冷凝器可以分为、和三类。

1、流体的粘性、热传导性和质量扩散通称为流体的分子传递性质。

热质交换原理与设备复习重点

热质交换原理与设备复习重点

由于水的进出口温差(t1-t2)<15℃,故可用Simpson积分法的两 段公式简化计算冷却数N。假设不同的水气比,计算过程及结 果列于表6-6。表中出口空气焓i2按式(6-69)计算。
冷却数的计算 表6-6
项目 气水比,G/W 单位 计算公式 0.5 数值 0.625 1.0
出口空气焓,i2
空气进出口焓平均值,im Δi2 Δi1 Δim
图6-53 K值与冷却水温的关系
用式(6-68)对全塔积分可得: (6-69)
式(6-69)可用于求解与每个水温相对应的空气的焓值。 另, 综合上面所得的各式可得:
对此进行变量分离并加以积分: (6-70) 式(6-70)是在迈克尔方程基础上以焓差为推动力进行冷却 时,计算冷却塔的基本方程。若以N代表两式的左边部分, 即: (6-71)
2)冷却数的确定 在冷却数的定义式(6-71)中,(i″-i)与水温 t之间的函数关系极为复杂,不可能直接积分求解,因此一 般采用近似求解法。 若精度要求不高,且水在塔内的温降Δt<15℃时,常用下列的 两段公式简化计算: (6-74) 式中 i″1、i″2、i″m:与水温t1、t2、tm=(t1+t2)/2对应的饱和空气 焓,kJ/kg;i1、i2:分别为冷却塔中空气进口、出口处的焓, kJ/kg。
称N为按温度积分的冷却数,简称冷却数,它是一个 无量纲数。 冷却数N表示水温从t1降到t2所需要的特征数数值, 它代表冷却负荷的大小。 在冷却数中的(i″-i)是指水面饱和空气层的焓与外界 空气的焓之差Δi,此值越小,水的散热就越困难。 所以它与外部空气参数有关,而与冷却塔的构造和 型式无关。 在气量和水量之比相同时,N值越大,表示要求散发 的热量越多,所需淋水装置的体积越大。

热质交换原理与设备复习提纲

热质交换原理与设备复习提纲

牛顿黏性定律:τ=−μdu dy傅里叶定律:q =−λdt dy斐克定律:m A =−D ABdC A dy三种传递:动量、质量、热量;推动力:存在速度、温度、浓度梯度 质量浓度ρA =M AVkg m 3 质量分数a A =M AM摩尔分数x A =n A n传质的速度:u A =u + u A −u /u A =u m +(u A −u m ) 绝对速度=主体速度+扩散速度 传质的通量质量通量m =m A +m B =ρA u A +ρB u B 摩尔通量N =N A +N B =C A u A +C B u B质量传递的基本方式:分子传质、对流传质 斐克定律:组份A 的质量扩散通量j A =−D AB dρA dz组份A 在扩散方向的质量浓度梯度普遍表达式:m A =−DdρA dz+a A (m A +m B ) N A =−D dC A dz+x A (N A +N B )即组份的实际传质通量=分子扩散通量+主体流动通量,适用于无规则热运动引起的扩散过程。

分子扩散形式:双向扩散、单向扩散固体中的扩散:气体、液体、固体在固体内部的分子扩散(固体物料的干燥、固体吸附、固体除湿);类型与固体内部结构基本无关的扩散 ~有关的多孔介质的扩散(斐克型~、克努森~、过渡区~)扩散系数D =D 0p 0p(TT 0)3/2其大小取决于扩散物质和扩散介质的种类和温度扩散系数的数量级 气体0.1∗10−4 m 2/s液体0.1∗10−8 m 2/s 固体0.1∗10−13 m 2/s对流传质系数h m =N ACAS −C A∞m/s ;N A −对流传质速率kmol/(m 2s) C AS −壁面浓度kmol/m 3C A∞−流体的主体浓度因素:流体的性质,壁面几何形状、粗糙度、流体的速度 浓度边界层:固体表面上具有浓度梯度的流层 对流传质过程中的相关准则数:施密特Sc =νD i→P r ;宣乌特Sh =h m l D i→N u ;传质的斯坦登St m =ShRe∗Sc =h mu→传热的斯坦登;刘伊斯Le =aD =ScPr动量方程u x ðu x ðx +u y ðu x ðy =νð2u x ðy 2能量方程u x ðtðx +u y ðtðy =a ð2tðy 2扩散方程u xðC A ðx+u yðC A ðy=Dð2C Aðy 2Pr =νa表示速度分布和温度分布的关系,体现流动和传热之间的相互联系;Sc =νD表示速度分布和浓度分布的关系,体现流体的传质特性;Le =aD=ScPr 表示温度分布和浓度分布的关系,体现传热和传质之间的相互联系。

热质交换原理与设备复习题(题库)

热质交换原理与设备复习题(题库)

简要回答问题4、解释显热交换、潜热交换和全热交换,并说明他们之间的关系。

显热交换是空气与水之间存在温差时,由导热、对流和辐射作用而引起的换热结果。

潜热交换是空气中的水蒸气凝结(或蒸发)而放出(或吸收)汽化潜热的结果。

总热交换是显热交换和潜热交换的代数和。

6、扩散系数是如何定义的?影响扩散系数值大小的因素有哪些?扩散系数是沿扩散方向,在单位时间每单位浓度降的条件下,垂直通过单位面积所扩散某物质的质量或摩尔数,大小主要取决于扩散物质和扩散介质的种类及其温度和压力。

8、如何认识传质中的三种速度,并写出三者之间的关系?Ua Ub:绝对速度 Um :混合物速度 Ua Ub 扩散速度 Ua=Um+(Ua-Um) 绝对速度=主体速度+扩散速度10、简述“薄膜理论”的基本观点。

当流体靠近物体表面流过,存在着一层附壁的薄膜,在薄膜的流体侧与具有浓度均匀的主流连续接触,并假定膜内流体与主流不相混合和扰动,在此条件下,整个传质过程相当于此 薄膜上的扩散作用,而且认为在薄膜上垂直于壁面方向上呈线性的浓度分布,膜内的扩散传质过程具有稳态的特性。

14、简述表面式冷却器处理空气时发生的热质交换过程的特点。

当冷却器表面温度低于被处理空气的干球温度,但高于其露点温度时,则空气只是冷却而不产生凝结水,称干工况。

如果低于空气露点,则空气不被冷却,且其中所含水蒸气部分凝结出来,并在冷凝器的肋片管表面形成水膜,称湿工况,此过程中,水膜周围形成饱和空气边界层,被处理与表冷器之间不但发生显热交换还发生质交换和由此引起的潜热交换。

15、请说明空气调节方式中热湿独立处理的优缺点?对空气的降温和除湿分开处理,除湿不依赖于降温方式实现。

节约传统除湿中的缺点,节约能源,减少环境污染。

16、表冷器处理空气的工作特点是什么?与空气进行热质交换的介质不和空气直接接触,是通过表冷器管道的金属壁面来进行的。

空气与水的流动方式主要为逆交叉流。

17、吸附(包括吸收)除湿法和表冷器,除湿处理空气的原理和优缺点是什么?吸附除湿是利用吸附材料降低空气中的含湿量。

热质交换原理与设备_题库

热质交换原理与设备_题库

一、填空题1、用来表征由分子扩散引起的动量传递规律的定律是牛顿粘性定律。

用来表征由分子扩散引起的热量传递规律的定律是傅立叶定律。

用来表征由分子扩散引起的质量传递规律的定律是菲克定律。

2、按工作原理分类,热质交换设备可分为间壁式、直接接触式、蓄热式和热管式。

蒸发器和冷凝器属于间壁式。

喷淋室属于直接接触式。

蒸气喷射泵属于直接接触式。

3、按照热流体和冷流体的流动方向分,热质交换设备分为顺流式、逆流式、叉流式、混流式。

在相同进出口温度条件下,逆流流动方式平均温差最大,顺流流动方式平差最小。

4、按用途分类,热质交换设备分为表冷器、预热器、加热器、喷淋室、过热器、冷凝器、蒸发器、加湿器。

5、按制造材料分类,热质交换设备分为金属材料、非金属材料、稀有金属材料。

6、质交换的推动力是浓度差。

热交换的推动力是温度差。

动量交换的推动力是速度差。

热质交换同时存在过程的推动力是焓差。

7、质交换的基本型式是分子扩散、对流扩散。

对流扩散较强烈。

8、对流传质系数的模型理论包括薄膜理论、渗透理论。

9、对于水-空气系统,当未饱和的空气流过一定量的冷水水面时,空气的温度下降,湿度增加,焓值不变。

10、大容器饱和沸腾的4个特性区为自然对流换热区、核态沸腾区、过渡沸腾区、稳定膜态沸腾区。

11、凝结形式包括膜状凝结、珠状凝结,其中珠状凝结的换热系数要大于膜状凝结的换热系数。

12、冷却减湿可以使用表冷器或喷淋室设备来实现。

其中水温应满足下列条件小于空气的露点温度。

13、若表冷器中的水温小于空气温度,大于空气露点温度,可实现等湿冷却过程。

14、若喷淋室的水温小于空气露点温度,则可实现减湿冷却过程。

若水温等于空气露点温度,可实现等湿冷却过程。

15、热质交换同时存在的过程,其单位面积上的总热交换量等于传质系数和焓差的乘积。

16、未饱和空气与热水接触,温度升高湿度增加,焓也增加。

17、空气与水接触时,假想条件是指接触时间无限长,水量无限大。

理想条件是指接触时间有限,水量无限大。

热质交换原理与设备资料

热质交换原理与设备资料

一、填空题(共30分)1、流体的粘性、热传导性和_质量扩散性__通称为流体的分子传递性质。

2、当流场中速度分布不均匀时,分子传递的结果产生切应力;温度分布不均匀时,分子传递的结果产生热传导;多组分混合流体中,当某种组分浓度分布不均匀时,分子传递的结果会产生该组分的_质量扩散_;描述这三种分子传递性质的定律分别是___牛顿粘性定律___、傅立叶定律_、_菲克定律_。

3、热质交换设备按照工作原理不同可分为_间壁式、_混合式_、_蓄热式_和热管式等类型。

表面式冷却器、省煤器、蒸发器属于__间壁_式,而喷淋室、冷却塔则属于_混合式。

3、热质交换设备按其内冷、热流体的流动方向,可分为___顺流__式、_逆流__式、__叉流___式和__混合_____式。

工程计算中当管束曲折的次数超过___4___次,就可以作为纯逆流和纯顺流来处理。

5、__温度差_是热量传递的推动力,而_浓度差_则是产生质交换的推动力。

6、质量传递有两种基本方式:分子扩散和对流扩散,两者的共同作用称为__对流质交换__。

7、相对静坐标的扩散通量称为绝对扩散通量,而相对于整体平均速度移动的动坐标扩散通量则称为相对扩散通量。

8、在浓度场不随时间而变化的稳态扩散条件下,当无整体流动时,组成二元混合物中的组分A和组分B发生互扩散,其中组分A向组分B的质扩散通量mA与组分A的_浓度梯度成正比,其表达式为smkgdydCDm AABA⋅-=2;当混合物以某一质平均速度V移动时,该表达式的坐标应取___随整体移动的动坐标__。

9、麦凯尔方程的表达式为:()dAiihdQdmdz-=,它表明当空气与水发生直接接触,热湿交换同时进行时。

总换热量的推动力可以近似认为是湿空气的焓差。

四、简述表面式冷却器处理空气时发生的热质交换过程的特点。

(10分)答:当冷却器表面温度低于被处理空气的干球温度但高于其露点温度时,空气只被冷却并不产生凝结水,此为等湿冷却过程(干冷);当冷却器表面温度低于空气的露点温度时,空气不但被冷却且其中所含水蒸气也将部分凝结出来,此为减湿冷却过程(湿冷);在湿冷过程,推动总热交换的动力湿湿空气的焓差,而不是温差。

热质交换原理与设备复习资料

热质交换原理与设备复习资料

动量、热量、质量的传递分为两种:1)分子扩散,分子的微观运动引起;2)湍流扩散,漩涡混合造成的流体微团的宏观运动引起。

质量传递的基本方式:1)分子传质,分子的无规则热运动而形成的物质传递现象;2)对流传质,对流扩散,紊流扩散。

当物系中的某种组分存在浓度梯度的时候,将发生该组分有高浓度向低浓度的迁移过程,就会有质量传递或质交换发生。

斐克定律:在浓度场不随时间而变化的稳态扩散条件下,当无总体流动时,组成二元混合物中组分A 和组分B 将发生互扩散,其中组分A 向组分B 的扩散通量与组分A 的浓度梯度成正比。

斐克定律只是适用于由于分子无规则热运动引起的扩散过程,其传递的速度即为扩散速度。

)(mA A u u u u −−或扩散系数及其测量:扩散系数是沿扩散方向,在单位时间每单位浓度降的条件下,垂直通过单位面积所扩散某物质的质量或摩尔数,扩散系数的大小主要取决于扩散物质、扩散介质的种类及其温度和压力。

对流传质基本方式:1、分子扩散2、对流扩散。

运动着的流体之间或流体与界面之间的物质传递,其中包括了有流体位移产生的对流作用,同时也包括流体分子之间的扩散作用,这种分子扩散和对流扩散的总作用称为对流传质。

浓度边界层的概念:当流体与相界面之间有浓度差时,由于浓度在壁面法线方向的变化,也将会产生一个浓度变化较明显的区域,叫做浓度边界层。

浓度边界层和速度边界层、温度边界层形状相类似,但厚度不相同。

边界层的重要意义:速度边界层的范围是,以存在速率梯度和较大切应力为特征;温度边界层的范围是,以存在温度梯度和传热为特征;浓度边界层的范围是,以存在浓度梯度和组分传递为特征;对流传质过程的相关准则数:(1)施密特准则数(Sc)对应于对流传热中的普朗特准则数(Pr)Pr 准则数联系动量传输与热量传输的一种相似准则a ν==物体的导温系数流体的运动黏度Pr iD Sc ν==物体的扩散系数流体的运动黏度Sc 准则数联系动量传输与质量传输的相似准则(2)宣乌特准则数(Sh)对应于对流传热中的努谢尔特准则数(Nu)Nu 是以边界导热热阻与对流换热热阻之比来标志过程的相似特征;Sh 准则数以流体的边界扩散阻力与对流传质阻力之比来标志过程的相似特征。

(完整word版)热质交换原理与设备期末考题

(完整word版)热质交换原理与设备期末考题

《热质交换原理与设备》综合复习资料一、填空题1、 流体的黏性、热传导和质量(分子扩散)通称为流体的分子传递性质。

2、 将热质交换设备系统由于过程不可逆而产生的熵增与两种流体中热容量较大的流体的热容量之比称之为(熵产单元数),常用来作为热质交换设备的评价指标。

3、 按不同的工作原理,热质交换设备可分为:(间壁式)、(直接接触式)、蓄热式和热管式。

4、 (浓度差)是产生质交换的驱动力,质交换有两种基本方式为分子扩散和对流扩散。

5、 由于扩散传质引起的热传递,这种现象称为(杜弗尔)效应。

6、 二元混合气体作为理想气体用分子动力理论可以得出质量扩散系数与温度、压力关系为:D( 312D P T - )。

7、 ( 相变贮能)是利用固-液相变、液-汽相变、固-汽相变和固-固相变过程来吸收和释放热量,进行蓄冷和蓄热的一项技术。

8、 准则数Pr 表示速度分布和温度分布的相互关系;准则数(Le )表示温度分布和浓度分布的相互关系。

9、 雷诺类似率表述了对流传热、传质和摩擦阻力之间的关系,它们以准则数(Sh ,Nu ,Re ,Pr ,Sc )形式的表述形式分别为Nu Re Pr 2f C =⋅、(Sh Re Sc 2f C =⋅)。

10、 吸附剂吸附除湿过程是( 放热 )过程,吸附热一般( 大于 )水蒸气的凝结热。

11、 菲克扩散基本定律A A ABd d C m D y=-(kg/m 2.s )中的A m 为扩散物质A 的(相对扩散)通量。

当混合物以某一质平均速度υ移动时,其坐标应取随整体平均速度的动坐标。

12、 系数D ,a ,ν具有扩散的性质,它们的单位均为m 2/s ,它们分别称为(分子扩散系数)、热扩散系数和(动量扩散系数)。

13、 浓度差是产生质交换的驱动力,质交换有两种基本方式为(分子扩散)和(对流扩散)。

14、 二元体系中,由于存在温度差引起的扩散,称为热扩散,也称(索瑞特)效应。

15、 吸附剂的再生方式有加热再生、(减压再生)、使用清洗气体再生和(置换脱附再生)。

热质交换原理与设备复习重点

热质交换原理与设备复习重点

热质交换原理与设备 复习重点 (个人总结可能不全,请大家补充指正)考试时间:2013年5月8日下午1:30 考试地点:考试题型:问答题、计算题(10~20分)苏新军老师 T el : E-mail :suxinjun@第一章 绪论1.1.1 三种传递现象的联系当物质中存在速度、温度和浓度的梯度时,则分别发生动量、热量和质量的传递现象。

动量、热量和质量的传递,既可以是由分子的微观运动引起的分子扩散,也可以是由涡旋混合造成的流体微团的宏观运动引起的湍流传递。

各类系数 总的效应dyud dy u d efft t S μμμτττ-=+-=+=)(有效动力粘度系数:eff μ dyt d dy t d q efft S λλλ-=+-=)(有效导热系数:eff λdyd D dy d D D m AABeffA ABt AB S ρρ-=+-=)(有效质量扩散系数:ABeff D两种传递系数的比较❖ 分子传递系数ν, a , D AB :➢ 是物性,与温度、压力有关; ➢ 通常各项同性。

❖ 湍流传递系数νt , a t , D ABt :➢ 不是物性,主要与流体流动有关; ➢ 通常各项异性。

1.1.3 热质交换设备的分类热质交换设备的分类方法很多,可以按工作原理、流体流动方向、设备用途、传热传质表面结构、制造材质等分为各种类型。

最基本的是按工作原理分类。

★ (1)按工作原理分类(可参考书后思考题第二题)热质交换设备按照工作原理分为:间壁式,直接接触式,蓄热式和热管式等类型。

间壁式又称表面式,在此类换热器中,热、冷介质在各自的流道中连续流动完成热量传递任务,彼此不接触,不掺混。

直接接触式又称混合式,在此类换热器中,两种流体直接接触并且相互掺混,传递热量和质量后,在理论上变成同温同压的混合介质流出,传热传质效率高。

蓄热式又称回热式或再生式换热器,它借助由固体构件(填充物)组成的蓄热体传递热量,此类换热器,热、冷流体依时间先后交替流过蓄热体组成的流道,热流体先对其加热,使蓄热体壁温升高,把热量储存于固体蓄热体中,随即冷流体流过,吸收蓄热体通道壁放出的热量。

热质交换原理与设备复习资料

热质交换原理与设备复习资料

9、冷却塔特性数及冷却数的含义 冷却塔特性数 N’
P208
冷却数 N 表示水温从 t1 降到 t2 所需要的特征数数值,它代表冷却 负荷的大小。
10、若某冷却塔足够高,其入塔空气干球温度为 20℃,湿球温度为 16℃,入塔水温为 60℃,液气比很小,则出塔水温为多少?若入塔 空气湿度增大,其他条件均不变,则出塔水温怎么变?(上升,下降 或不变)为什么?
热质交换原理与设备 第六章 1、间壁式换热器可分为哪几种类型?如何提高其换热系数? 间壁式换热器从构造上可分为:管壳式、胶片管式、板式、板翘式、 螺旋板式等。 提高其换热系数措施:⑴在空气侧加装各种形式的肋片,即增加空气 与换热面的接触面积。⑵增加气流的扰动性。⑶采用小管径
2、在湿工况下,为什么一台表冷器,在其他条件相同时,所处理的 空气湿球温度愈高则换热能力愈大? 空气的湿球温度越高所具有的焓值也愈大,在表冷器减湿冷却 中, 推动总热质交换的动力是焓差, 焓差越大, 则换热能力就愈大。 3 、说明水冷式表面冷却器在以下几种情况其传热系数是否发生变 化?如何变化? (a)改变迎面风速 (c)改变进水温度 (b)改变水流速 (d)空气初状态发生变化
6、喷淋室热交换效率系数和接触系数的含义 P199 喷淋室热交换效率系数η1(第一热交换效率或全热交换效率)
η1= ts2 tw 2
ts1 tw1
ts2 = tw 2 时,即空气终状态与水终温相同时,η1=1。 ts2 与 tw 2 的差值愈
大,说明热湿交换愈不完善,因而η1 愈小。 喷淋室的接触系数η2(第二热交换效率或通用热交换效率)
t 2Gc
P
t1 t 2
GcP t1 tw1
= 表冷器中的实际换热量 , 实质上讲的就是传热效能 表冷器中最大可能换热量

热质交换原理与设备考点

热质交换原理与设备考点

热质交换原理与设备考点第二章:热质交换过程2.1 对于三传现象的解析:陈金峰2.2 质交换的基本方式:按机理分:分子扩散、对流扩散。

按推动力分:浓度扩散、热扩散、压力扩散。

同时存在分子扩散和对流扩散时称之为对流质交换。

2.3 关于扩散传质:2.3.1 斐克定律:在浓度场不随时间而变化的稳态扩散条件下,当无整体流动时,组成二元混合物中的组分A 和B 将发生相互扩散。

表达式:J 规则热运动引起的扩散过程)A= -DABdCA (只适用于分子无dzDp 2.3.2 斯蒂芬定律:m A =RT D zp´(pA1- pA2)(其中:pBM= p B2 - p B1pD z 为距BM ln B2pB1离,其中A 为扩散的组分,通常为水。

B 通常为空气)应用举例:P32 例2-42.3.3 扩散系数:实验测得,气体>液体>固体。

表示其扩散能力。

非标准状况下的扩散系数计算:D = D0p T 3 0 ( ) 2 p T2.4 对流传质与模型:2.4.1 对流传质系数:NA = hm(CAs-CA¥)hm为对流传质系数,CAs和CA¥分别为壁面处和主流的浓度2.4.2 相际间对流传质模型:刘易斯关系式 h = c ´ r ´ Le ,Le 等于 1 2.4.2.1 薄膜理论:当流体靠近物体表面流过时,存在一层附壁薄膜,在薄膜的流体侧与具有浓度均匀的主流连续接触,并假设膜内流体与主流不相混合和扰动。

在此条件下, 整个过传质程中相当于此薄膜上的扩散作用,而且认为在薄膜上垂直于壁面方向上呈线性浓D 度分布,膜内的扩散传质过程具有稳态的特性。

由薄膜理论,传质系数 h m = d .2.4.2.2 渗透理论:当流体流过表面时,有流体质点不断穿过流体的附壁薄层想表面迁移并与之接触,流体质点在与表面接触之际则进行质量的转移过程,此后质点又回到主流 核心中去。

流体质点在很短的接触时间内,接受表面传递的组分过程表现为不稳态特征。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


表示由于存在湿交换而增大了换热量,其值大小直 接反映了表冷器上凝结水析出的多少。 5、表冷器的热交换效率(P177)及接触系数(P178)的含义? 表冷器的热交换效率定义式 :ε1=
t1 t 2 t1 tw1
dQt i ib dQ c p (t tb )
t1 --处理前空气的干球温度,℃
9、冷却塔特性数及冷却数的含义 冷却塔特性数 N’
P208
冷却数 N 表示水温从 t1 降到 t2 所需要的特征数数值,它代表冷却 负荷的大小。
10、若某冷却塔足够高,其入塔空气干球温度为 20℃,湿球温度为 16℃,入塔水温为 60℃,液气比很小,则出塔水温为多少?若入塔 空气湿度增大,其他条件均不变,则出塔水温怎么变?(上升,下降 或不变)为什么?
η2=1- t 2 ts2
t1 ts1
7、喷淋室计算的主要原则
P200
(1)该喷淋室能达到的η1 应该等于空气处理过程需要的η1 (2)该喷淋室能达到的η2 应该等于空气处理过程需要的η2 (3)该喷淋室喷出的水能够吸收(或放出)的热量应该等于空气失 去的(或得到)的热量。
8、冷却塔内热质交换的基本方程(用语言描述)有哪些? Merkel 焓差方程 水气热平衡方程 式(7-19) 式(7-22) P206 P207
同进入扩散管, 在扩散管的出口达到同一压力和温度后送给用户。 d、混合式冷凝器一般是用水与蒸汽直接接触的方法使蒸汽冷凝,最 后得到的是水与冷凝液的混合物,或循环使用,或就地排放。
2、湿式冷却塔可分为哪几类?各类型的特点是什么? 解:湿式冷却塔可分为: (1)开放式冷却塔(2)风筒式自然冷却塔 (3)鼓风逆流冷却塔(4)抽风逆流冷却塔、抽风横流冷却塔 a、开放式冷却塔是利用风力和空气的自然对流作用使空气进入冷却 塔, 其冷却效果要受到风力及风向的影响, 水的散失比其它形式的 冷却塔大。 b、 风筒式自然冷却塔中利用较大高度的风筒, 形成空气的自然对流作 用,使空气流过塔内与水接触进行传热,冷却效果较稳定。 c、鼓风逆流冷却塔中空气是以鼓风机送入的形式, 而抽风冷却塔中 空气是以抽风机吸入的形式,鼓风冷却塔和抽风冷却塔冷却效果 好,稳定可靠。 3、影响喷淋室热质交换的结构因素 P196 (1)喷嘴排数(2)喷嘴密度(3)喷嘴方向(4)排管间距(5)喷 嘴孔径(6)空气与水的初参数
8、表冷器的工作特点?
P175
干工况:当冷却器表面温度低于被处理空气的干球温度,但高于其露 点温度时,空气只被冷却而并不产生凝结水。该过程称为等湿冷却过 程或干冷过程。 湿工况:如果冷却器的表面温度低于空气的露点温度,则空气不但被 冷却,而且其中所含水蒸汽也将部分地凝结出来,并在冷却器的肋片 管表面上形成水膜。这种过程称为减湿冷却过程或湿冷过程。 湿工况中空气与表冷器之间不但发生显热交换, 而且也发生质交换和 由此引起的潜热交换
11、干式塔、湿式塔定义?
P196
干式冷却塔是把循环水通入安装于冷却塔中的散热器内被空气 冷却,这种塔多用于水源奇缺,而不允许水分散失或循环水有特殊污 染的情况。 湿式冷却塔则是让循环水与空气直接接触。
第八章 1、什么是复合式热质交换设备? P221
同时具有间壁式和混合式设备两者的特点的设备称为复合式热质交 换设备
第七章 1、混合式换热器分为哪几种类型?各种类型的特点是什么? 解:混合式换热器按用途分为以下几种类型: ⑴冷却塔⑵洗涤塔⑶喷射式热交换器⑷混合式冷凝器 a、冷却塔是用自然通风或机械通风的方法,将生产中已经提高了温 度的水进行冷却降温之后循环使用,以提高系统的经济效益。 b、洗涤塔是以液体与气体的直接接触来洗涤气体以达到所需要的目 的,例液体吸收气体混合物中的某些组分除净气体中的灰尘,气 体的增湿或干燥等。 c、喷射式热交换器是使压力较高的流体由喷管喷出,形成很高的速 度,低压流体被引入混合室与射流直接接触进行传热传质,并一
2、影响复合式交换的因素有哪些? (1)设备内流体流动状况 (2)流体物性 (3)设备表面状况 (4)设备换热面形状与大小
P221-222
3、复合式热质交换设备举例?
P221
多级蒸发冷却空调机、 温湿度独立调节空调系统、 喷水式表面冷却器
第九章 1、热质交换设备优化设计的基本原理是什么? 解:任何一个优化设计方案都要用一些相关的物理量和几何量来表 示。由于设计问题的类别和要求不同,这些量可能不同,但不论那种 优化设计,都可将这些量分成给定的和未给定的两种。 未给定的那些 量就需要在设计中优选,通过对他们的优选。 最终使目标函数达到最 优值。 热质交换设备的优化设计,就是要求所设计的热质交换设备在满 足一定的要求下,人们所关注的一个或数个指标达到最好。
热质交换原理与设备 第六章 1、间壁式换热器可分为哪几种类型?如何提高其换热系数? 间壁式换热器从构造上可分为:管壳式、胶片管式、板式、板翘式、 螺旋板式等。 提高其换热系数措施:⑴在空气侧加装各种形式的肋片,即增加空气 与换热面的接触面积。⑵增加气流的扰动性。⑶采用小管径
2、在湿工况下,为什么一台表冷器,在其他条件相同时,所处理的 空气湿球温度愈高则换热能力愈大? 空气的湿球温度越高所具有的焓值也愈大,在表冷器减湿冷却 中, 推动总热质交换的动力是焓差, 焓差越大, 则换热能力就愈大。 3 、说明水冷式表面冷却器在以下几种情况其传热系数是否发生变 化?如何变化? (a)改变迎面风速 (c)改变进水温度 (b)改变水流速 (d)空气初状态发生变化
Ks
表冷器的传热系数定义为 Ks 随迎风面积 Vy 的增加而增加:随水流速 w 的增加而增加。 析湿系数ξ与被处理的空气的初状态和 管内水温有关, 所以二者 改变也会引起传热系数 Ks 的变化。
1 1 m n AV Bw y
1
4、什么叫析湿系数?它的物理意义是什么? 解:总热交换量与由温差引起的热交换量的比值为析湿系数,用ξ表 示,定义为
终状态的温度℃
ε2 随冷却器排数 N 增加而变大,并随 Vy 的增加而变小
6、表冷器热工计算的主要原则? P180 1)该表冷器能达到的ε1 应该等于空气处理过程需要的ε2 3)该表冷器能吸收的热量应该等于空气放出的热量 7、表冷器管排数 N、迎面风速 Vy 如何选择?
2、热质交换设备有哪些性能评价方法?简述各评价方法的优缺点? (1)单一性能评价法: 可直观地从能量的利用或消耗角度描述了热质交换设备的传热或 阻力性能,给实用带来了方便,易为用户所接受,但在应用上有其 局限性,而且可能顾此失彼。只能从能量利用的数量上,并且常是 从能量利用的某一方面来衡量其热性能。 (2)传热量与流动阻力损失相结合的性能评价法: 它把传热量与阻力损失结合在一起一个指标中加以考虑了,可以比 较不同热质交换设备之间或热质交换设备传热强化前后的热性能的 高低,但此指标只能从能量利用的数量上来反映热质交换设备的热 性能。 (3)熵分析法 提出使用熵产单元数 Ns 作为评定热质交换设备热性能的指标, 此一方面可以用来指导热质交换设备的设计,使它更接近于热力学 上的理想情况;另一方面可以从能源合理利用角度来比较不同的形 式 热质交换设备传热和流动性能的优劣。 它将热质交换设备的热性 能评价指标从以往的能量数量上的衡量提高到能量质量上的评价 (4)佣分析法 从能量的质量上综合考虑传热与流动的影响而且也能用于优化设 计,佣分析法是从可用能的被利用角度来分析的ηe 值愈大愈好, 但实用不方便。 (5)纵向比较法 结果比较明确,具有一定的实用价值,但还不够全面。 (6)两指标分析法 此种分析方法可得到一些有参考价值的结论,它对于换热设备的优 化,特别是解决肋片管簇换热器的优化问题,提供了一个良好的思 路与方法,但此种方法也存在一些局限性需要的关系或获得也有一 定困难。也要求一系列准确可靠的经济参数。 (7)热经济学分析法 它是一种把技术和经济融为一体,用热 力学第二定律 分析法与经济优化相结合的热经济学分析法。对一个系统或一个设 备作出全面的热经济性评价,热经济学分析法牵涉面很广,比较复 杂,使用中还有一种目前所提出的各种方法中最为完善的方法。
3、试分析热质交换设备会向哪些方向发展?
6、喷淋室热交换效率系数和接触系数的含义 P199 喷淋室热交换效率系数η1(第一热交换效率或全热交换效率)
η1= ts2 tw 2
ts1 tw1
ts2 = tw 2 时,即空气终状态与水终温相同时,η1=1。 ts2 与 tw 2 的差值愈
大,说明热湿交换愈不完善,因而η1 愈小。 喷淋室的接触系数η2(第二热交换效率或通用热交换效率)
?4、影响冷却塔内热质交换效果的结构因素 P194
淋水装置,配水系统,通风筒
5、冷却塔内传热传质的特点 P197 冷却塔是利用环境空气温度处理用于冷却制冷机组冷凝器的冷 却循环水。 冷却塔内水的降温主要是由于水的蒸发换热和气水之间的 接触传热。 湿球温度代表着当地气温条件下,水可能冷却到的最低温度。
t 2 --处理后空气的干球温度,℃
tw1 --冷水初温,℃
ε1= Gc
P
t1 t 2
GcP t1 tw1
= 表冷器中的实际换热量 , 实质上讲的就是传热效能 表冷器中最大可能换热量
t1 t2 t1 t3
表冷器的接触系数定义式: 2 =
t3 --表冷器在理想条件下(接触时间非常充分)工作时,空气
ε2 随 N 增加和 Vy 减小而增大,但:
1)N 增加也将使空气阻力增加。而 N 过多时,后面几排还会因为冷
水与空气之间温差过小而减弱传热作用。一般多用 4-8 排。 2) Vy 过低,则冷却器尺寸变大,初投资增加。
Vy 过高, ε2 减小,空气阻力大,携带冷凝水进入送风系统。 Vy 一般取 2~3 m/s。
相关文档
最新文档