浙江省2012年高考理科数学试题(word版)

合集下载

2012年高考真题——数学理(全国卷新课标版)word版含答案

2012年高考真题——数学理(全国卷新课标版)word版含答案

绝密*启用前2012年普通高等学校招生全国统一考试理科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.问答第Ⅰ卷时。

选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动.用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效.3.回答第Ⅱ卷时。

将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。

第一卷选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

(1)已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为( )()A 3 ()B 6 ()C 8 ()D 10【解】选D(2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动, 每个小组由1名教师和2名学生组成,不同的安排方案共有( )()A 12种 ()B 10种 ()C 9种 ()D 8种【解】选A(3)下面是关于复数21z i =-+的四个命题:其中的真命题为( )1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-()A 23,p p ()B 12,p p ()C ,p p 24 ()D ,p p 34【解】选C(4)设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32a x =上一点, ∆21F PF 是底角为30的等腰三角形,则E 的离心率为( )()A 12 ()B 23 ()C 34 ()D 45【解】选C (5)已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )()A 7 ()B 5()C -5 ()D -7【解】选D(6)如果执行右边的程序框图,输入正整数(2)N N ≥和实数12,,...,n a a a ,输出,A B ,则( )()A A B +为12,,...,n a a a 的和 ()B 2A B+为12,,...,n a a a 的算术平均数()C A 和B 分别是12,,...,n a a a 中最大的数和最小的数 ()D A 和B 分别是12,,...,n a a a 中最小的数和最大的数【解】选C(7)如图,网格纸上小正方形的边长为1,粗线画出的 是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 18【解】选B(8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B两点,AB =;则C 的实轴长为( )()A ()B()C 4 ()D 8【解】选C(9)已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。

2012年高考真题——理科数学(全国卷)Word版含答案

2012年高考真题——理科数学(全国卷)Word版含答案

2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。

考试结束,务必将试卷和答题卡一并上交。

第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。

考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准该条形码上的准考证号、姓名和科目。

2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

在试题卷上作答无效.........。

3.第I 卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一、选择题(1)复数131i i-+=+ (A )2i + (B )2i - (C )12i + (D )12i -(2)已知集合{1A =,{1,}B m =,A B A = ,则m =(A )0(B )0或3 (C )1(D )1或3(3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += (4)已知正四棱柱1111ABCD A BC D -中 ,2AB =,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B(C(D )1(5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为(A )100101 (B )99101(C )99100 (D )101100(6)ABC ∆中,AB 边的高为CD ,若C B a = ,CA b = ,0a b ⋅= ,||1a = ,||2b = ,则AD = (A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b -(7)已知α为第二象限角,sin cos αα+=,则cos 2α=(A ) (B ) (C (D (8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14 (B )35 (C )34 (D )45(9)已知ln x π=,5log 2y =,12z e -=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x <<(10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。

2012年高考理科数学试题及答案(浙江卷WORD版)

2012年高考理科数学试题及答案(浙江卷WORD版)

绝密★考试结束前2012年普通高等学校招生全国同一考试(浙江卷)数 学(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.6.若从1,2,2,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有A .60种B .63种C .65种D .66种8.如图,F 1,F 2分别是双曲线C :22221x y a b-=(a ,b >0)的左右焦点,B 是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P ,Q 两点,线段PQ 的垂直平分线与x 轴交于点M .若|MF 2|=|F 1F 2|,则C 的离心率是A BC D 9.设a >0,b >0A .若2223a b a b +=+,则a >bB .若2223a b a b +=+,则a <bC .若2223a b a b -=-,则a >bD .若2223a b a b -=-,则a <b2012年普通高等学校招生全国同一考试(浙江卷)数 学(理科)非选择题部分(共100分)二、填空题:本大题共7小题,每小题4分,共28分.15.在∆ABC 中,M 是BC 的中点,AM =3,BC =10,则AB AC ⋅=______________.16.定义:曲线C 上的点到直线l 的距离的最小值称为曲线C 到直线l 的距离.已知曲线C 1:y =x 2+a 到直线l :y =x 的距离等于C 2:x 2+(y +4) 2 =2到直线l :y =x 的距离, 则实数a =______________.17.设a ∈R ,若x >0时均有[(a -1)x -1]( x 2-ax -1)≥0,则a =______________.三、解答题:本大题共5小题,共72分,解答应写出文字说明、证明过程或演算步骤.20.(本小题满分15分)如图,在四棱锥P —ABCD 中,底面是边长为BAD =120°,且PA ⊥平面ABCD ,PA =M ,N 分别为PB ,PD 的中点. (Ⅰ)证明:MN ∥平面ABCD ;(Ⅱ) 过点A 作AQ ⊥PC ,垂足为点Q ,求二面角A —MN —Q 的平面角的余弦值. 【解析】本题主要考察线面平行的证明方法,建系求二面角等知识点。

2012年浙江省高考数学试卷(理科)附送答案

2012年浙江省高考数学试卷(理科)附送答案

2012年浙江省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x|1<x<4},集合B={x|x2﹣2x﹣3≤0},则A∩(∁R B)=()A.(1,4) B.(3,4) C.(1,3) D.(1,2)∪(3,4)2.(5分)已知i是虚数单位,则=()A.1﹣2i B.2﹣i C.2+i D.1+2i3.(5分)设a∈R,则“a=1”是“直线l1:ax+2y﹣1=0与直线l2:x+(a+1)y+4=0平行”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图象是()A.B.C.D.5.(5分)设,是两个非零向量.则下列命题为真命题的是()A.若|+|=||﹣||,则⊥B.若⊥,则|+|=||﹣||C.若|+|=||﹣||,则存在实数λ,使得=λD.若存在实数λ,使得=λ,则|+|=||﹣||6.(5分)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有()A.60种B.63种C.65种D.66种7.(5分)设S n是公差为d(d≠0)的无穷等差数列{a n}的前n项和,则下列命题错误的是()A.若d<0,则数列{S n}有最大项B.若数列{S n}有最大项,则d<0C.若对任意n∈N*,均有S n>0,则数列{S n}是递增数列D.若数列{S n}是递增数列,则对任意n∈N*,均有S n>08.(5分)如图,F1,F2分别是双曲线C:(a,b>0)的在左、右焦点,B是虚轴的端点,直线F1B与C的两条渐近线分别交于P,Q两点,线段PQ 的垂直平分线与x轴交于点M.若|MF2|=|F1F2|,则C的离心率是()A.B.C.D.9.(5分)设a>0,b>0,下列命题中正确的是()A.若2a+2a=2b+3b,则a>b B.若2a+2a=2b+3b,则a<bC.若2a﹣2a=2b﹣3b,则a>b D.若2a﹣2a=2b﹣3b,则a<b10.(5分)已知矩形ABCD,AB=1,BC=.将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中()A.存在某个位置,使得直线AC与直线BD垂直B.存在某个位置,使得直线AB与直线CD垂直C.存在某个位置,使得直线AD与直线BC垂直D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直二、填空题:本大题共7小题,每小题4分,共28分.11.(4分)已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积等于cm3.12.(4分)若某程序框图如图所示,则该程序运行后输出的值是.13.(4分)设公比为q(q>0)的等比数列{a n}的前n项和为S n.若S2=3a2+2,S4=3a4+2,则q=.14.(4分)若将函数f(x)=x5表示为f(x)=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,其中a0,a1,a2,…a5为实数,则a3=.15.(4分)在△ABC中,M是BC的中点,AM=3,BC=10,则•=.16.(4分)定义:曲线C上的点到直线l的距离的最小值称为曲线C到直线l的距离,已知曲线C1:y=x2+a到直线l:y=x的距离等于曲线C2:x2+(y+4)2=2到直线l:y=x的距离,则实数a=.17.(4分)设a∈R,若x>0时均有[(a﹣1)x﹣1](x2﹣ax﹣1)≥0,则a=.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(14分)在△ABC中,内角A,B,C的对边分别为a,b,c.已知cosA=,sinB=C.(1)求tanC的值;(2)若a=,求△ABC的面积.19.(14分)已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出此3球所得分数之和.(1)求X的分布列;(2)求X的数学期望E(X).20.(15分)如图,在四棱锥P﹣ABCD中,底面是边长为的菱形,∠BAD=120°,且PA⊥平面ABCD,PA=,M,N分别为PB,PD的中点.(1)证明:MN∥平面ABCD;(2)过点A作AQ⊥PC,垂足为点Q,求二面角A﹣MN﹣Q的平面角的余弦值.21.(15分)如图,椭圆C:=1(a>b>0)的离心率为,其左焦点到点P(2,1)的距离为,不过原点O的直线l与C相交于A,B两点,且线段AB被直线OP平分.(Ⅰ)求椭圆C的方程;(Ⅱ)求△APB面积取最大值时直线l的方程.22.(14分)已知a>0,b∈R,函数f(x)=4ax3﹣2bx﹣a+b.(Ⅰ)证明:当0≤x≤1时,(i)函数f(x)的最大值为|2a﹣b|+a;(ii)f(x)+|2a﹣b|+a≥0;(Ⅱ)若﹣1≤f(x)≤1对x∈[0,1]恒成立,求a+b的取值范围.2012年浙江省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2012•浙江)设集合A={x|1<x<4},集合B={x|x2﹣2x﹣3≤0},则A∩(∁R B)=()A.(1,4) B.(3,4) C.(1,3) D.(1,2)∪(3,4)【分析】由题意,可先解一元二次不等式,化简集合B,再求出B的补集,再由交的运算规则解出A∩(∁R B)即可得出正确选项【解答】解:由题意B={x|x2﹣2x﹣3≤0}={x|﹣1≤x≤3},故∁R B={x|x<﹣1或x >3},又集合A={x|1<x<4},∴A∩(∁R B)=(3,4)故选B2.(5分)(2012•浙江)已知i是虚数单位,则=()A.1﹣2i B.2﹣i C.2+i D.1+2i【分析】由题意,可对复数代数式分子与分母都乘以1+i,再由进行计算即可得到答案.【解答】解:故选D3.(5分)(2012•浙江)设a∈R,则“a=1”是“直线l1:ax+2y﹣1=0与直线l2:x+(a+1)y+4=0平行”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】运用两直线平行的充要条件得出l1与l2平行时a的值,而后运用充分必要条件的知识来解决即可.【解答】解:∵当a=1时,直线l1:x+2y﹣1=0与直线l2:x+2y+4=0,两条直线的斜率都是﹣,截距不相等,得到两条直线平行,故前者是后者的充分条件,∵当两条直线平行时,得到,解得a=﹣2,a=1,∴后者不能推出前者,∴前者是后者的充分不必要条件.故选A.4.(5分)(2012•浙江)把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图象是()A.B.C.D.【分析】首先根据函数图象变换的公式,可得最终得到的图象对应的解析式为:y=cos(x+1),然后将曲线y=cos(x+1)的图象和余弦曲线y=cosx进行对照,可得正确答案.【解答】解:将函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到的图象对应的解析式为:y=cosx+1,再将y=cosx+1图象向左平移1个单位长度,再向下平移1个单位长度,得到的图象对应的解析式为:y=cos(x+1),∵曲线y=cos(x+1)由余弦曲线y=cosx左移一个单位而得,∴曲线y=cos(x+1)经过点(,0)和(,0),且在区间(,)上函数值小于0由此可得,A选项符合题意.故选A5.(5分)(2012•浙江)设,是两个非零向量.则下列命题为真命题的是()A.若|+|=||﹣||,则⊥B.若⊥,则|+|=||﹣||C.若|+|=||﹣||,则存在实数λ,使得=λD.若存在实数λ,使得=λ,则|+|=||﹣||【分析】通过向量和向量的模相关性质进行判断即可.【解答】解:对于A,若|+|=||﹣||,则||2+||2+2•=||2+||2﹣2||||,得•=﹣||||≠0,与不垂直,所以A不正确;对于B,由A解析可知,|+|≠||﹣||,所以B不正确;对于C,若|+|=||﹣||,则||2+||2+2•=||2+||2﹣2||||,得•=﹣||||,则cosθ=﹣1,则与反向,因此存在实数λ,使得=λ,所以C正确.对于D,若存在实数λ,则•=λ||2,﹣||||=λ||2,由于λ不能等于0,因此•≠﹣||||,则|+|≠||﹣||,所以D不正确.故选C.6.(5分)(2012•浙江)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有()A.60种B.63种C.65种D.66种【分析】本题是一个分类计数问题,要得到四个数字的和是偶数,需要分成三种不同的情况,当取得4个偶数时,当取得4个奇数时,当取得2奇2偶时,分别用组合数表示出各种情况的结果,再根据分类加法原理得到不同的取法.【解答】解:由题意知本题是一个分类计数问题,要得到四个数字的和是偶数,需要分成三种不同的情况,当取得4个偶数时,有=1种结果,当取得4个奇数时,有=5种结果,当取得2奇2偶时有=6×10=60∴共有1+5+60=66种结果,故选D7.(5分)(2012•浙江)设S n是公差为d(d≠0)的无穷等差数列{a n}的前n项和,则下列命题错误的是()A.若d<0,则数列{S n}有最大项B.若数列{S n}有最大项,则d<0C.若对任意n∈N*,均有S n>0,则数列{S n}是递增数列D.若数列{S n}是递增数列,则对任意n∈N*,均有S n>0【分析】由等差数列的求和公式可得S n=na1+d=n2+(a1+)n,可看作关于n的二次函数,由二次函数的性质逐个选项验证可得.【解答】解:由等差数列的求和公式可得S n=na1+d=n2+(a1﹣)n,选项A,若d<0,由二次函数的性质可得数列{S n}有最大项,故正确;选项B,若数列{S n}有最大项,则对应抛物线开口向下,则有d<0,故正确;选项C,若对任意n∈N*,均有S n>0,对应抛物线开口向上,d>0,可得数列{S n}是递增数列,故正确;选项D,若数列{S n}是递增数列,则对应抛物线开口向上,但不一定有任意n∈N*,均有S n>0,故错误.故选D8.(5分)(2012•浙江)如图,F1,F2分别是双曲线C:(a,b>0)的在左、右焦点,B是虚轴的端点,直线F1B与C的两条渐近线分别交于P,Q 两点,线段PQ的垂直平分线与x轴交于点M.若|MF2|=|F1F2|,则C的离心率是()A.B.C.D.【分析】确定PQ,MN的斜率,求出直线PQ与渐近线的交点的坐标,得到MN 的方程,从而可得M的横坐标,利用|MF2|=|F1F2|,即可求得C的离心率.【解答】解:线段PQ的垂直平分线MN,|OB|=b,|O F1|=c.∴k PQ=,k MN=﹣.直线PQ为:y=(x+c),两条渐近线为:y=x.由,得Q();由得P.∴直线MN为,令y=0得:x M=.又∵|MF2|=|F1F2|=2c,∴3c=x M=,∴3a2=2c2解之得:,即e=.故选B.9.(5分)(2012•浙江)设a>0,b>0,下列命题中正确的是()A.若2a+2a=2b+3b,则a>b B.若2a+2a=2b+3b,则a<bC.若2a﹣2a=2b﹣3b,则a>b D.若2a﹣2a=2b﹣3b,则a<b【分析】对于2a+2a=2b+3b,若a≤b成立,经分析可排除B;对于2a﹣2a=2b﹣3b,若a≥b成立,经分析可排除C,D,从而可得答案.【解答】解:∵a≤b时,2a+2a≤2b+2b<2b+3b,∴若2a+2a=2b+3b,则a>b,故A正确,B错误;对于2a﹣2a=2b﹣3b,若a≥b成立,则必有2a≥2b,故必有2a≥3b,即有a≥b,而不是a>b排除C,也不是a<b,排除D.故选A.10.(5分)(2012•浙江)已知矩形ABCD,AB=1,BC=.将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中()A.存在某个位置,使得直线AC与直线BD垂直B.存在某个位置,使得直线AB与直线CD垂直C.存在某个位置,使得直线AD与直线BC垂直D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直【分析】先根据翻折前后的变量和不变量,计算几何体中的相关边长,再分别筛选四个选项,若A成立,则需BD⊥EC,这与已知矛盾;若C成立,则A在底面BCD上的射影应位于线段BC上,可证明位于BC中点位置,故B成立;若C成立,则A在底面BCD上的射影应位于线段CD上,这是不可能的;D显然错误【解答】解:如图,AE⊥BD,CF⊥BD,依题意,AB=1,BC=,AE=CF=,BE=EF=FD=,A,若存在某个位置,使得直线AC与直线BD垂直,则∵BD⊥AE,∴BD⊥平面AEC,从而BD⊥EC,这与已知矛盾,排除A;B,若存在某个位置,使得直线AB与直线CD垂直,则CD⊥平面ABC,平面ABC ⊥平面BCD取BC中点M,连接ME,则ME⊥BD,∴∠AEM就是二面角A﹣BD﹣C的平面角,此角显然存在,即当A在底面上的射影位于BC的中点时,直线AB与直线CD垂直,故B正确;C,若存在某个位置,使得直线AD与直线BC垂直,则BC⊥平面ACD,从而平面ACD⊥平面BCD,即A在底面BCD上的射影应位于线段CD上,这是不可能的,排除CD,由上所述,可排除D故选B二、填空题:本大题共7小题,每小题4分,共28分.11.(4分)(2012•浙江)已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积等于1cm3.【分析】由三视图知,几何体是一个三棱锥,底面是直角边长为1和3的直角三角形,三棱锥的一条侧棱与底面垂直,且长度是2,这是三棱锥的高,根据三棱锥的体积公式得到结果.【解答】解:由三视图知,几何体是一个三棱锥,底面是直角边长为1cm和3cm 的直角三角形,面积是cm2,三棱锥的一条侧棱与底面垂直,且长度是2cm,这是三棱锥的高,∴三棱锥的体积是cm3,故答案为:1.12.(4分)(2012•浙江)若某程序框图如图所示,则该程序运行后输出的值是.【分析】通过循环框图,计算循环变量的值,当i=6时结束循环,输出结果即可.【解答】解:循环前,T=1,i=2,不满足判断框的条件,第1次循环,T=,i=3,不满足判断框的条件,第2次循环,T=,i=4,不满足判断框的条件,第3次循环,T=,i=5,不满足判断框的条件,第4次循环,T=,i=6,满足判断框的条件,退出循环,输出结果.故答案为:.13.(4分)(2012•浙江)设公比为q(q>0)的等比数列{a n}的前n项和为S n.若S2=3a2+2,S4=3a4+2,则q=.【分析】经观察,S4﹣S2=a3+a4=3(a4﹣a2),从而得到q+q2=3(q2﹣1),而q>0,从而可得答案.【解答】解:∵等比数列{a n}中,S2=3a2+2,S4=3a4+2,∴S4﹣S2=a3+a4=3(a4﹣a2),∴a2(q+q2)=3a2(q2﹣1),又a2≠0,∴2q2﹣q﹣3=0,又q>0,∴q=.故答案为:.14.(4分)(2012•浙江)若将函数f(x)=x5表示为f(x)=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,其中a0,a1,a2,…a5为实数,则a3=10.【分析】将x5转化[(x+1)﹣1]5,然后利用二项式定理进行展开,使之与f(x)=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5进行比较,可得所求.【解答】解:f(x)=x5=[(x+1)﹣1]5=(x+1)5+(x+1)4(﹣1)+(x+1)3(﹣1)2+(x+1)2(﹣1)3+(x+1)1(﹣1)4+(﹣1)5而f(x)=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,∴a3=(﹣1)2=10故答案为:1015.(4分)(2012•浙江)在△ABC中,M是BC的中点,AM=3,BC=10,则•=﹣16.【分析】设∠AMB=θ,则∠AMC=π﹣θ,再由=(﹣)•(﹣)以及两个向量的数量积的定义求出结果.【解答】解:设∠AMB=θ,则∠AMC=π﹣θ.又=﹣,=﹣,∴=(﹣)•(﹣)=•﹣•﹣•+,=﹣25﹣5×3cosθ﹣3×5cos(π﹣θ)+9=﹣16,故答案为﹣16.16.(4分)(2012•浙江)定义:曲线C上的点到直线l的距离的最小值称为曲线C到直线l的距离,已知曲线C1:y=x2+a到直线l:y=x的距离等于曲线C2:x2+(y+4)2=2到直线l:y=x的距离,则实数a=.【分析】先根据定义求出曲线C2:x2+(y+4)2=2到直线l:y=x的距离,然后根据曲线C1:y=x2+a的切线与直线y=x平行时,该切点到直线的距离最近建立等式关系,解之即可.【解答】解:圆x2+(y+4)2=2的圆心为(0,﹣4),半径为,圆心到直线y=x的距离为=2,∴曲线C2:x2+(y+4)2=2到直线l:y=x的距离为2﹣=.则曲线C1:y=x2+a到直线l:y=x的距离等于,令y′=2x=1解得x=,故切点为(,+a),切线方程为y﹣(+a)=x﹣即x﹣y﹣+a=0,由题意可知x﹣y﹣+a=0与直线y=x的距离为,即解得a=或﹣.当a=﹣时直线y=x与曲线C1:y=x2+a相交,故不符合题意,舍去.故答案为:.17.(4分)(2012•浙江)设a∈R,若x>0时均有[(a﹣1)x﹣1](x2﹣ax﹣1)≥0,则a=.【分析】分类讨论,(1)a=1;(2)a≠1,在x>0的整个区间上,我们可以将其分成两个区间,在各自的区间内恒正或恒负,即可得到结论.【解答】解:(1)a=1时,代入题中不等式明显不成立.(2)a≠1,构造函数y1=(a﹣1)x﹣1,y2=x 2﹣ax﹣1,它们都过定点P(0,﹣1).考查函数y1=(a﹣1)x﹣1:令y=0,得M(,0),∴a>1;考查函数y2=x2﹣ax﹣1,∵x>0时均有[(a﹣1)x﹣1](x2﹣ax﹣1)≥0,∴y2=x2﹣ax﹣1过点M(,0),代入得:,解之得:a=,或a=0(舍去).故答案为:.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(14分)(2012•浙江)在△ABC中,内角A,B,C的对边分别为a,b,c.已知cosA=,sinB=C.(1)求tanC的值;(2)若a=,求△ABC的面积.【分析】(1)由A为三角形的内角,及cosA的值,利用同角三角函数间的基本关系求出sinA的值,再将已知等式的左边sinB中的角B利用三角形的内角和定理变形为π﹣(A+C),利用诱导公式得到sinB=sin(A+C),再利用两角和与差的正弦函数公式化简,整理后利用同角三角函数间的基本关系即可求出tanC的值;(2)由tanC的值,利用同角三角函数间的基本关系求出cosC的值,再利用同角三角函数间的基本关系求出sinC的值,将sinC的值代入sinB=cosC中,即可求出sinB的值,由a,sinA及sinC的值,利用正弦定理求出c的值,最后由a,c及sinB的值,利用三角形的面积公式即可求出三角形ABC的面积.【解答】解:(1)∵A为三角形的内角,cosA=,∴sinA==,又cosC=sinB=sin(A+C)=sinAcosC+cosAsinC=cosC+sinC,整理得:cosC=sinC,则tanC=;(2)由tanC=得:cosC====,∴sinC==,∴sinB=cosC=,∵a=,∴由正弦定理=得:c===,=acsinB=×××=.则S△ABC19.(14分)(2012•浙江)已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出此3球所得分数之和.(1)求X的分布列;(2)求X的数学期望E(X).【分析】(1)X的可能取值有:3,4,5,6,求出相应的概率可得所求X的分布列;(2)利用X的数学期望公式,即可得到结论.【解答】解:(1)X的可能取值有:3,4,5,6.P(X=3)=;P(X=4)=;P(X=5)=;P(X=6)=.故所求X的分布列为X3456P(2)所求X的数学期望E(X)=3×+4×+5×+6×=20.(15分)(2012•浙江)如图,在四棱锥P﹣ABCD中,底面是边长为的菱形,∠BAD=120°,且PA⊥平面ABCD,PA=,M,N分别为PB,PD的中点.(1)证明:MN∥平面ABCD;(2)过点A作AQ⊥PC,垂足为点Q,求二面角A﹣MN﹣Q的平面角的余弦值.【分析】(1)连接BD,利用三角形的中位线的性质,证明MN∥BD,再利用线面平行的判定定理,可知MN∥平面ABCD;(2)方法一:连接AC交BD于O,以O为原点,OC,OD所在直线为x,y轴,建立空间直角坐标系,求出平面AMN的法向量,利用向量的夹角公式,即可求得二面角A﹣MN﹣Q的平面角的余弦值;方法二:证明∠AEQ为二面角A﹣MN﹣Q的平面角,在△AED中,求得AE=,QE=,AQ=2,再利用余弦定理,即可求得二面角A﹣MN﹣Q的平面角的余弦值.【解答】(1)证明:连接BD.∵M,N分别为PB,PD的中点,∴在△PBD中,MN∥BD.又MN⊄平面ABCD,BD⊂平面ABCD∴MN∥平面ABCD;(2)方法一:连接AC交BD于O,以O为原点,OC,OD所在直线为x,y轴,建立空间直角坐标系,在菱形ABCD中,∠BAD=120°,得AC=AB=,BD=∵PA⊥平面ABCD,∴PA⊥AC在直角△PAC中,,AQ⊥PC得QC=2,PQ=4,由此知各点坐标如下A(﹣,0,0),B(0,﹣3,0),C(,0,0),D(0,3,0),P(),M(),N()Q()设=(x,y,z)为平面AMN的法向量,则.∴,取z=﹣1,,同理平面QMN的法向量为∴=∴所求二面角A﹣MN﹣Q的平面角的余弦值为.方法二:在菱形ABCD中,∠BAD=120°,得AC=AB=BC=CD=DA=,BD=∵PA⊥平面ABCD,∴PA⊥AB,PA⊥AC,PA⊥AD,∴PB=PC=PD,∴△PBC≌△PDC 而M,N分别是PB,PD的中点,∴MQ=NQ,且AM=PB==AN取MN的中点E,连接AE,EQ,则AE⊥MN,QE⊥MN,所以∠AEQ为二面角A ﹣MN﹣Q的平面角由,AM=AN=3,MN=3可得AE=在直角△PAC中,AQ⊥PC得QC=2,PQ=4,AQ=2在△PBC中,cos∠BPC=,∴MQ=在等腰△MQN中,MQ=NQ=.MN=3,∴QE=在△AED中,AE=,QE=,AQ=2,∴cos∠AEQ=∴所求二面角A﹣MN﹣Q的平面角的余弦值为.21.(15分)(2012•浙江)如图,椭圆C:=1(a>b>0)的离心率为,其左焦点到点P(2,1)的距离为,不过原点O的直线l与C相交于A,B 两点,且线段AB被直线OP平分.(Ⅰ)求椭圆C的方程;(Ⅱ)求△APB面积取最大值时直线l的方程.【分析】(Ⅰ)由题意,根据离心率为,其左焦点到点P(2,1)的距离为,建立方程,即可求得椭圆C的方程;(Ⅱ)设A(x1,y1),B(x2,y2),线段AB的中点为M,当AB⊥x轴时,直线AB的方程为x=0,与不过原点的条件不符,故设AB的方程为y=kx+m(m≠0)由,消元再利用韦达定理求得线段AB的中点M,根据M在直线OP 上,可求|AB|,P到直线AB的距离,即可求得△APB面积,从而问题得解.【解答】解:(Ⅰ)由题意,解得:.∴所求椭圆C的方程为:.(Ⅱ)设A(x1,y1),B(x2,y2),线段AB的中点为M当AB⊥x轴时,直线AB的方程为x=0,与不过原点的条件不符,故设AB的方程为y=kx+m(m≠0)由,消元可得(3+4k2)x2+8kmx+4m2﹣12=0①∴,∴线段AB的中点M∵M在直线OP上,∴∴k=﹣故①变为3x2﹣3mx+m2﹣3=0,又直线与椭圆相交,∴△>0,x1+x2=m,∴|AB|=P到直线AB的距离d=∴△APB面积S=(m∈(﹣2,0)令u(m)=(12﹣m2)(m﹣4)2,则∴m=1﹣,u(m)取到最大值∴m=1﹣时,S取到最大值综上,所求直线的方程为:22.(14分)(2012•浙江)已知a>0,b∈R,函数f(x)=4ax3﹣2bx﹣a+b.(Ⅰ)证明:当0≤x≤1时,(i)函数f(x)的最大值为|2a﹣b|+a;(ii)f(x)+|2a﹣b|+a≥0;(Ⅱ)若﹣1≤f(x)≤1对x∈[0,1]恒成立,求a+b的取值范围.【分析】(Ⅰ)(ⅰ)求导函数,再分类讨论:当b≤0时,f′(x)>0在0≤x≤1上恒成立,此时最大值为:f(1)=|2a﹣b|﹢a;当b>0时,在0≤x≤1上的正负性不能判断,此时最大值为:f(x)max=max{f(0),f(1)}=|2a﹣b|﹢a,由此可得结论;(ⅱ)利用分析法,要证f(x)+|2a﹣b|+a≥0,即证g(x)=﹣f (x)≤|2a﹣b|﹢a.亦即证g(x)在0≤x≤1上的最大值小于(或等于)|2a ﹣b|﹢a.(Ⅱ)由(Ⅰ)知:函数在0≤x≤1上的最大值为|2a﹣b|﹢a,且函数在0≤x ≤1上的最小值比﹣(|2a﹣b|﹢a)要大.根据﹣1≤f(x)≤1对x∈[0,1]恒成立,可得|2a﹣b|﹢a≤1,从而利用线性规划知识,可求a+b的取值范围.【解答】(Ⅰ)证明:(ⅰ)f′(x)=12a(x2﹣)当b≤0时,f′(x)>0,在0≤x≤1上恒成立,此时最大值为:f(1)=|2a﹣b|﹢a;当b>0时,在0≤x≤1上的正负性不能判断,f'(x)在区间[0,1]先负后可能正,f(x)图象在[0,1]区间内是凹下去的,所以最大值正好取在区间的端点,此时最大值为:f(x)max=max{f(0),f(1)}=|2a﹣b|﹢a;综上所述:函数在0≤x≤1上的最大值为|2a﹣b|﹢a;(ⅱ)要证f(x)+|2a﹣b|+a≥0,即证g(x)=﹣f(x)≤|2a﹣b|﹢a.亦即证g(x)在0≤x≤1上的最大值小于(或等于)|2a﹣b|﹢a,∵g(x)=﹣4ax3+2bx+a﹣b,∴令g′(x)=﹣12ax2+2b=0,当b≤0时,;g′(x)<0在0≤x≤1上恒成立,此时g(x)的最大值为:g(0)=a﹣b<3a﹣b=|2a﹣b|﹢a;当b>0时,g′(x)在0≤x≤1上的正负性不能判断,∴g(x)max=max{g(),g (1)}={}=∴g(x)max≤|2a﹣b|﹢a;综上所述:函数g(x)在0≤x≤1上的最大值小于(或等于)|2a﹣b|﹢a.即f(x)+|2a﹣b|+a≥0在0≤x≤1上恒成立.(Ⅱ)由(Ⅰ)知:函数在0≤x≤1上的最大值为|2a﹣b|﹢a,且函数在0≤x ≤1上的最小值比﹣(|2a﹣b|﹢a)要大.∵﹣1≤f(x)≤1对x∈[0,1]恒成立,∴|2a﹣b|﹢a≤1.取b为纵轴,a为横轴,则可行域为:或,目标函数为z=a+b.作图如右:由图易得:a+b的取值范围为(﹣1,3]。

2012年高考真题——浙江卷理科数学试题及答案word解析版

2012年高考真题——浙江卷理科数学试题及答案word解析版

一、选择题:本大题共12小题,每小题5分,共60分.在毎小题给出的四个选项中,只有一项是符合题目要求的.1. 不等式|x|(2x-1)≤0的解集是A. ( - , ]B. ( - ,0) U (0, ]C.[- -, + )D. [0, ]2. 如图,把一个单位圆八等分,某人向圆内投镖,则他投中阴影区域的概率为A. B .C. D.3. 在ΔABC中,角A,B,C所对的边分别为a,b,c,若C = 120°,c= a,则A. a > bB. a < bC. a = bD. a与b的大小关系不能确定4. 执行如图所示的程序框图,输出的结果为20,则判断框内应填入的条件为A. a≥5B. a≥4C. a≠t3D.a≥25. 若x=1是函数的一个极值点,则 0等于A. B. C. 或 D. 或6. “a = l”是“直线 ax + (2 -a)y =O 与 x- ay = 1 垂直”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7. 已知平面向量a,b满足a丄b,a = (1, -2),|b| = ,则b等于A. (4,2)B. (6,3)C.(4,2)或(-4,-2)D.(-6,-3)或(6,3)8. —个底面是等腰直角三角形的三棱柱,其侧棱垂直底面,侧棱长与底面三角形的腰长相等,它的三视图中的俯视图如图所示,若此三棱柱的侧面积为8+ 在,则其体积为A.4B.8 C4 D.9. 下列函数中,周期为,且在[ ]上为增函数的是A. B.C. D.10. 已知函数f(x) =2x,g(x)=lon2x,h(x)=x2则A.它们在定义域内都是增函数B.它们的值域都是(0,+ )C.函数f(x)与g(x)的图象关于直线y=x对称D.直线y=x- -是曲线y=h(x)的切线11. 巳知椭圆与双曲线有公共焦点F1,F ¬2,点P是两曲线的一个交点,若|PF1|.|PF2|=2,则B2 + n2的值为A.1B.2C.3D.412. 已知正方形OABC的四个顶点分别是0(0,0),A(1,0),B(1,1),C(0,1),设u=x2-y2 ,v=2xy是一个由平面xOy到平面UOV上的变换,则正方形OABC在这个变换下的图形是第II卷(非选择题:共90分)二、填空题:本大题共4小题,毎小题4分,共1 6分.把答案填在答题卡的相应位置.13.若复数z= (a+2i) (1-2i) (a∈ R,i为虚数单位)是纯虚数,则实数a的值为_____14.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过l,3,6,10,…,可以用如图所示的三角形点阵来表示,那么第10个点阵表示的数是_______15.已知实数x,y满足则z-2x-3y的最大值是_______,16. 函数f(x)对任意实数x都有 , ,给出如下结论:①函数g(x)对任意实数x都有,g(x+π)=g(x-π);②函数f1(x),(幻是偶函数;③函数f2(x)是奇函数;④函数f1(x),F2(X)都是周期函数,且π是它们的一个周期.其中所有正确结论的序号是________三、解答题:本大题共6小题,共7 4分.解答应写出文字说明,证明过程或演算步骤.在答题卡上相应题目的答题区域内作答.17. (本小题满分12分)数列{ an}中,a1 =3,an=an -1 +3(n≥2,n ),数列{bn}为等比数列b1=a2,b2 =a4(I)求数列{an}的通项公式;(II)求数列{bn}的前n项和.18. (本小题满分12分)如图,等边ΔABC的中线AF与中位线D E相交于点G,将ΔAED沿DE折起到ΔA'ED的位置.(I)证明:BD//平面A'EF;(II)当平面A'ED丄平面BCED时,证明:直线A'E与 BD不垂直.19. (本小题满分12分)函数.f(x)=Asin( x+ )(A>0, >0,0< < 在一个周期内的图象如图所示,P是图象的最髙点,Q是图象的最低点,M是线段PQ与x轴的交点,且,(I)求函数y=f(x)的解析式;(II)将函数y =f (x)的图象向右平移2个单位后得到函数y = g(x)的图象,试求函数h(x)=F(X).g(x)图象的对称轴方程.20. (本小题满分12分)中国经济的髙速增长带动了居民收入的提髙.为了调查髙收人(年收入是当地人均收入10 倍以上)人群的年龄分布情况,某校学生利用暑假进行社会实践,对年龄在[25,55)的人群随机调査了1000人的收入情况,根据调査结果和收集的数据得到如下统计表和各年龄段人数的频率分布直方图.(I)补全频率分布直方图,根据频率分布直方图,求这1000人年龄的中位数;(II)求统计表中的a,b;(III)为了分析髙收入居民人数与年龄的关系,要从髙收入人群中按年龄组用分层抽样的方法抽取25人作进一步分析,则年龄在[30,40)的髙收人人群应抽取多少人?21. (本小题满分12分)已知圆C1:x2 + (Y -1)2 = 1,抛物线C2的顶点在坐标原点,焦点F为圆C1的圆心.(I)已知直线L的倾斜角为:,且与圆C1相切,求直线L的方程;(II)过点F的直线m与曲线C1,C2交于四个点,依次为 A,B,C,D( 如图),求|AC|•丨BD|的取值范围.22. (本小题满分14分)巳知函数f(x)的定义域是(0, 是f(x)的导函数,且在(0,+ )内恒成立.(I)求函数f()= 的单调区间;(II)若f(x) =lnx+ax2,求a的取值范围;(III)设x0是f(x)的零点,m,n∈ (0,x0),求证:。

2012年浙江高考理科数学试题及答案

2012年浙江高考理科数学试题及答案

2012年普通高等学校招生全国同一考试(浙江卷)数 学(理科)本试题卷分选择题和非选择题两部分.全卷共5页,选择题部分1至3页,非选择题部分4至5页.满分150分,考试时间120分钟.请考生按规定用笔将所有试题的答案涂、写在答题纸上.选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上.2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干 净后,再选涂其它答案标号。

不能答在试题卷上.参考公式:如果事件A ,B 互斥,那么 柱体的体积公式()()()P A B P A P B +=+ V Sh =如果事件A ,B 相互独立,那么 其中S 表示柱体的底面积,h 表示柱体的高()()()P A B P A P B ⋅=⋅ 锥体的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 13V Sh =n 次独立重复试验中事件A 恰好发生k 次的概率 其中S 表示锥体的底面积,h 表示锥体的高()()()1,0,1,2,,n kk kn n P k C p p k n -=-= 球的表面积公式台体的体积公式 24πS R =()1213V h S S = 球的体积公式其中12,S S 分别表示台体的上底、下底面积, 34π3V R =h 表示台体的高 其中R 表示球的半径一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={x |1<x <4},B ={x |x 2-2x -3≤0},则A ∩(C R B )=A .(1,4)B .(3,4)C .(1,3)D .(1,2) 【解析】A =(1,4),B =(-3,1),则A ∩(C R B )=(1,4). 【答案】A2.已知i 是虚数单位,则3+i1i-= A .1-2i B .2-i C .2+i D .1+2i 【解析】3+i 1i -=()()3+i 1+i 2=2+4i2=1+2i . 【答案】D3.设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】当a =1时,直线l 1:x +2y -1=0与直线l 2:x +2y +4=0显然平行;若直线l 1与直线l 2平行,则有:211a a =+,解之得:a =1 or a =﹣2.所以为充分不必要条件. 【答案】A4.把函数y =cos2x +1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图像是【解析】把函数y =cos2x +1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变)得:y 1=cos x +1,向左平移1个单位长度得:y 2=cos(x —1)+1,再向下平移1个单位长度得:y 3=cos(x—1).令x =0,得:y 3>0;x =12π+,得:y 3=0;观察即得答案.【答案】B5.设a ,b 是两个非零向量.A .若|a +b |=|a |-|b |,则a ⊥bB.若a⊥b,则|a+b|=|a|-|b|C.若|a+b|=|a|-|b|,则存在实数λ,使得a=λbD.若存在实数λ,使得a=λb,则|a+b|=|a|-|b|【解析】利用排除法可得选项C是正确的,∵|a+b|=|a|-|b|,则a,b共线,即存在实数λ,使得a=λb.如选项A:|a+b|=|a|-|b|时,a,b可为异向的共线向量;选项B:若a⊥b,由正方形得|a+b|=|a|-|b|不成立;选项D:若存在实数λ,使得a=λb,a,b可为同向的共线向量,此时显然|a+b|=|a|-|b|不成立.【答案】C6.若从1,2,2,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有A.60种B.63种C.65种D.66种【解析】1,2,2,…,9这9个整数中有5个奇数,4个偶数.要想同时取4个不同的数其和为偶数,则取法有:4个都是偶数:1种;2个偶数,2个奇数:225460C C=种;4个都是奇数:455C=种.∴不同的取法共有66种.【答案】D7.设S n是公差为d(d≠0)的无穷等差数列{a n}的前n项和,则下列命题错误..的是A.若d<0,则数列{S n}有最大项B.若数列{S n}有最大项,则d<0C.若数列{S n}是递增数列,则对任意的n∈N*,均有S n>0D.若对任意的n∈N*,均有S n>0,则数列{S n}是递增数列【解析】选项C显然是错的,举出反例:—1,0,1,2,3,….满足数列{S n}是递增数列,但是S n>0不成立.【答案】C8.如图,F 1,F 2分别是双曲线C :22221x y a b-=(a ,b >0)的左右焦点,B 是虚轴的端点,直线F 1B与C 的两条渐近线分别交于P ,Q 两点,线段PQ 的垂直平分线与x 轴交于点M .若|MF 2|=|F 1F 2|,则C 的离心率是 ABCD【解析】如图:|OB |=b ,|O F 1|=c .∴k PQ =b c ,k MN =﹣bc.直线PQ 为:y =b c (x +c ),两条渐近线为:y =b a x .由()b y x c cb y x a ⎧⎪⎪⎨⎪⎪⎩=+=,得:Q (ac c a -,bc c a -);由()b y x c cb y x a ⎧⎪⎪⎨⎪⎪⎩=+=-,得:P (ac c a -+,bc c a +).∴直线MN 为:y -bc c a +=﹣b c (x -ac c a -+), 令y =0得:x M =322c c a -.又∵|MF 2|=|F 1F 2|=2c ,∴3c =x M =322c c a -,解之得:2232a c e a==,即e. 【答案】B9.设a >0,b >0.A .若2223a b a b +=+,则a >bB .若2223a b a b +=+,则a <bC .若2223a b a b -=-,则a >bD .若2223a b a b -=-,则a <b【解析】若2223a b a b +=+,必有2222a b a b +>+.构造函数:()22x f x x =+,则()2l n 220x f x '=⋅+>恒成立,故有函数()22x f x x =+在x >0上单调递增,即a >b 成立.其余选项用同样方法排除. 【答案】A10.已知矩形ABCD ,AB =1,BC∆ABD 沿矩形的对角线BD 所在的直线进行翻着,在翻着过程中,A.存在某个位置,使得直线AC与直线BD垂直B.存在某个位置,使得直线AB与直线CD垂直C.存在某个位置,使得直线AD与直线BC垂直D.对任意位置,三直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直【解析】最简单的方法是取一长方形动手按照其要求进行翻着,观察在翻着过程,即可知选项C是正确的.【答案】C绝密★考试结束前2012年普通高等学校招生全国同一考试(浙江卷)数学(理科)非选择题部分(共100分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上.2.在答题纸上作图,可先使用2B铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑.二、填空题:本大题共7小题,每小题4分,共28分.11.已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积等于___________cm3.【解析】观察三视图知该三棱锥的底面为一直角三角形,右侧面也是一直角三角形.故体积等于11⨯⨯⨯⨯=.312123【答案】112.若程序框图如图所示,则该程序运行后输出的值是______________.【解析】T,i关系如下图:【答案】112013.设公比为q (q >0)的等比数列{a n }的前n 项和为{S n }.若2232S a =+,4432S a =+,则q =______________.【解析】将2232S a =+,4432S a =+两个式子全部转化成用1a ,q 表示的式子. 即111233111113232a a q a q a a q a q a q a q +=+⎧⎨+++=+⎩,两式作差得:2321113(1)a q a q a q q +=-,即:2230q q --=,解之得:312q or q ==-(舍去). 【答案】3214.若将函数()5f x x =表示为()()()()250125111f x a a x a x a x =+++++++其中0a ,1a ,2a ,…,5a 为实数,则3a =______________. 【解析】法一:由等式两边对应项系数相等.即:545543315544310100a C a a a C a C a a =⎧⎪+=⇒=⎨⎪++=⎩. 法二:对等式:()()()()2550125111f x x a a x a x a x ==+++++++ 两边连续对x 求导三次得:2234560624(1)60(1)x a a x a x =++++,再运用赋值法,令1x =-得:3606a =,即310a =.【答案】1015.在∆ABC 中,M 是BC 的中点,AM =3,BC =10,则AB AC ⋅=______________. 【解析】此题最适合的方法是特例法.假设∆ABC 是以AB =AC 的等腰三角形,如图, AM =3,BC =10,AB =ACcos ∠BAC =3434102923434+-=⨯.AB AC ⋅=cos 29AB AC BAC ⋅∠=【答案】2916.定义:曲线C 上的点到直线l 的距离的最小值称为曲线C 到直线l 的距离.已知曲线C 1:y =x2+a 到直线l :y =x 的距离等于C 2:x 2+(y +4) 2 =2到直线l :y =x 的距离,则实数a =______________.【解析】C 2:x 2+(y +4) 2 =2,圆心(0,—4),圆心到直线l :y =x的距离为:d ==故曲线C 2到直线l :y =x的距离为d d r d '=-= 另一方面:曲线C 1:y =x 2+a ,令20y x '==,得:12x =,曲线C 1:y =x 2+a 到直线l :y =x 的距离的点为(12,14a +),74d a '===⇒=. 【答案】7417.设a ∈R ,若x >0时均有[(a -1)x -1]( x 2-ax -1)≥0,则a =______________. 【解析】本题按照一般思路,则可分为一下两种情况: (A )2(1)1010a x x ax ≤⎧⎨≤⎩----, 无解; (B )2(1)1010a x x ax ≥⎧⎨≥⎩----, 无解. 因为受到经验的影响,会认为本题可能是错题或者解不出本题.其实在x >0的整个区间上,我们可以将其分成两个区间(为什么是两个?),在各自的区间内恒正或恒负.(如下答图) 我们知道:函数y 1=(a -1)x -1,y 2=x 2-ax -1都过定点P (0,1). 考查函数y 1=(a -1)x -1:令y =0,得M (11a -,0),还可分析得:a >1; 考查函数y 2=x 2-ax -1:显然过点M (11a -,0),代入得:211011a a a ⎛⎫--= ⎪--⎝⎭,解之得:a =,舍去a =,得答案:a =【答案】a =三、解答题:本大题共5小题,共72分,解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分14分)在∆ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A =23,sin B C . (Ⅰ)求tan C 的值;(Ⅱ)若a ∆ABC 的面积.【解析】本题主要考察三角恒等变换,正弦定理,余弦定理及三角形面积求法等知识点。

2012年全国高考理科数学试题及答案浙江卷word

2012年全国高考理科数学试题及答案浙江卷word

2012年普通高等学校招生全国统一考试(浙江卷)数学(理科)选择题部分(共50分)注意事项:i •答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上.2 •每小题选岀答案后,用2B铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试题卷上参考公式:如果事件A,B互斥,那么柱体的体积公式如果事件A,B相互独立,那么其中S表示柱体的底面积,h表示柱体的高P A B =P A P B 锥体的体积公式1如果事件A在一次试验中发生的概率是p,那么V =丄Sh3n次独立重复试验中事件A恰好发生k次的概率其中S表示锥体的底面积,h表示锥体的高P n(k )=C:p k(1 —p厂,(k =0,1,2,川,n )球的表面积公式台体的体积公式S =4 T R21 ________V =—h(s +J SS T +S2)球的体积公式3其中S,S2分别表示台体的上底、下底面积,V =- T R33h表示台体的高其中R表示球的半径一、选择题:本大题共10小题,每小题5分,共50分•在每小题给出的四个选项中,只有一项是符合题目要求的.1 •设集合A={x|1 v x v 4},B={x|x2—2x—3< 0},贝U A n (C R B)=A. (1,4)B. (3,4)C. (1,3)D. (1,2)【解析】A= (1,4),B= (—3,1),则A n (C R B) = (1,4).【答案】A2. 已知i是虚数单位,则3+i=1 -iA. 1-2iB . 2-iC . 2+ iD . 1 + 2i【解析】3+i = 3+i 1+i=匕=1 + 2i .1 _i2 2【答案】D3. 设a,R,贝厂'a= 1”是“直线1仁ax + 2y- 1 = 0与直线12:x + (a+1)y + 4= 0 平行”的A. 充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解析】当a= 1时,直线11:x+ 2y- 1 = 0与直线12:x + 2y + 4 =0显然平行;若直线11与直线12平行,则有:?二丄,解之得:a1 a +1=1or a=- 2 .所以为充分不必要条件.【答案】A4. 把函数y= cos2x+ 1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图像是【解析】把函数y= cos2x+ 1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变)得:屮=cos x+ 1,向左平移1个单位长度得:y2= cos( x —1) + 1,再向下平移1个单位长度得:y3= cos( x —1).令x= 0,得:y3>0; x = - 1,得:y3 = 0;观察即得答案.【答案】B5. 设a, b是两个非零向量.A. 若| a+ b| = |a| - | b|,则a丄bB. 若a丄b,则| a+ b| = | a| - | b|C. 若| a+ b| = | a| —| b|,则存在实数入,使得a=入bD. 若存在实数入,使得a= X b,则| a+ b| = | a| —| b|【解析】利用排除法可得选项C是正确的,v |a+ b| = |a| —| b| , 则a, b共线,即存在实数X ,使得a= X b.如选项A:| a+ b| = | a| —| b|时,a, b可为异向的共线向量;选项B:若a丄b,由正方形得| a+ b| = | a| —| b|不成立;选项D:若存在实数X,使得a= X b, a, b可为同向的共线向量,此时显然| a + b| = | a| —| b|不成立.【答案】C6. 若从1, 2, 2,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有A. 60 种B. 63 种C. 65 种D. 66 种【解析】1, 2, 2,…,9这9个整数中有5个奇数,4个偶数.要想同时取4个不同的数其和为偶数,则取法有:4个都是偶数:1种;2个偶数,2个奇数:C2C:=6O种;4个都是奇数:C; = 5种.•••不同的取法共有66种.【答案】D7. 设S是公差为d(d z0)的无穷等差数列{a n}的前n项和,则下列命题错误的是• •A.若d v 0,则数列{S}有最大项B. 若数列{S}有最大项,则d v 0C. 若数列{S}是递增数列,则对任意的n N*,均有S>0D. 若对任意的n N*,均有S>0,则数列{S}是递增数列【解析】选项C显然是错的,举出反例:一1, 0, 1, 2, 3,….满足数列{S}是递增数列,但是S n>0不成立.【答案】C是虚轴的端点,直线F1B与C的两条渐近线分别交于P, Q两点,线段PQ的垂直平分线与x轴交于点M若|MF| _ L.F1FK则C的离心率是A. 」3 2C. 2D. ,3_ b;(x+c),得:,竿).二直线MN为:y—bc b c +a c +ay_ _ _xL a_- -(x—旦),c c a3令y_ 0 得:X M= # 2.又T | MF| _ I F1F2I _2c,—3c_xc -a解之得:e2=Z」,即e_^ .a a 2, 28.如图,F i, F2分别是双曲线C:2 2:一爲=1( a, b>0)的左右焦点,B a b【解析】如图:| OB = b, | 0F| = c. 直线PQ为:y = b(x+ c),两条渐近线为: c 二k pQ_ b, k MN_—-.c ci b y_ (x+ c)c,得:I b 'y__ xi ay=ax. 由3cM_ --- 2 ,c a(第8题图)【答案】B9.设a>0, b>0.A. 若2a 2a =2b 3b,贝y a> bB. 若2a 2a =2b 3b,贝y av bC. 若2a _2a =2b _3b,贝y a> bD. 若2a _2a =2b _3b,则a v b【解析】若2a 2a =2b 3b ,必有2a 2a . 2b - 2b .构造函数:f x ]=2- 2x , 则「x i=2x l n22.0恒成立,故有函数f x[=2x2x在X > 0上单调递增,即a>b成立.其余选项用同样方法排除.【答案】A10.已知矩形ABCD AB= 1, BC=© .将A ABD沿矩形的对角线BD所在的直线进行翻着,在翻着过程中,A. 存在某个位置,使得直线AC与直线BD垂直B. 存在某个位置,使得直线AB与直线CD垂直C. 存在某个位置,使得直线AD与直线BC垂直D. 对任意位置,三直线“ AC与BD, “AB与CD, “AD与BC均不垂直【解析】最简单的方法是取一长方形动手按照其要求进行翻着,观察在翻着过程,即可知选项C是正确的.【答案】C绝密★考试结束前2012年普通高等学校招生全国同一考试(浙江卷)数学(理科)非选择题部分(共100分)注意事项:1•用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上2 •在答题纸上作图,可先使用28分.11.已知某三棱锥的三视图 示,则该三棱锥的体积等于 ____________ cm i .【解析】观察三视图知该三棱锥的底面为一直角三角形,右侧面也是一直角三角形.故体积等于* 3 1 2 3“. 【答案】1值是 4 513.设公比为q (q >0)的等比数列{ a n }的前n 戈—退H 为{S }.若5 =3& +2 , S4=3a 4 +2,贝卩 q = ________________ .【解析】将S2-3a 2 2 , S 4 =3a 4 2两个式子全部转化成用a , q表示的二、填空题:本大题共 12 .若程T 1i23 4 5 67小题,每小题4分,2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑幵始【解析】T , i 关系如下图: 【答案】i 120式子.即印:印:鬥2 3 3 3 ,两式作差得:a1q^Fa1q^3a1q(q^1),即:Q +ai^ba1q +a1q =3ag +2 72q -q - 3= 0,解之得:q=2or q--1(舍去).【答案】2214 .若将函数f x =X5表示为其中a。

2012年高考理科数学浙江卷-答案

2012年高考理科数学浙江卷-答案

2012年普通高等学校招生全国统一考试(浙江卷)数学(理科)答案解析【解析】{1B x =-{B x x ∴=R {3AB x =<R【提示】由题意,可先解一元二次不等式,化简集合,再求出B 的补集,再由交的运算规则解出A BR即可得出正确选项.【解析】3+i 3+i 1i (1=-(【提示】由题意,可对复数代数式分子与分母都乘以【考点】复数代数形式的四则运算.【解析】利用排除法可得选项是正确的,+=-时,a b,可为异向的共线向量;∵则a b,共线,即存在实数,使得a bλ=.如选项a b a b+=-不成立;.若a b⊥,由正方形得a b a b+=-不成立.D.若存在实数,使得a bλ=,a b,可为同向的共线向量,此时显然a b a b【提示】逐项分析即可得出选项.x+>ln220成立,经分析可排除⊥垂直,则BD AE垂直,则CD⊥平面--A BD C5(1a +++又,AB MB MA =-,AC MC MA =- 2()()AB AC MB MA MC MA MB MC MB MA MA MC MA ∴=--=--+,,故答案为16-.【提示】设AMB θ∠=,则,AMC θ∠=π-,再由()()AB AC MB MA MC MA =--以及两个向量的数量积()i P X i==,求出相应的概率可得所求120得AC PA ⊥平面由此知各点坐标如下设(,,m x y =的法向量,则32AM ⎛= ,32AN ⎛= 22x -⎪⎪1(22,0,1),m =,的法向量为(22,0,5)n =,1333,99m n m n m n∴<>==交BD 于的法向量(22,0,1)m =0023334422A B A B x x x y y y +=-=-+.∴所求a b+的取值范围为:(3]-∞,.11 / 11。

2012年高考理科数学浙江卷(含答案解析)

2012年高考理科数学浙江卷(含答案解析)

绝密★启用前 2012年普通高等学校招生全国统一考试(浙江卷)数学(理科)本试题卷分选择题和非选择题两部分.全卷共6页,选择题部分1至3页,非选择题部分4至6页.满分150分,考试时间120分钟.请考生按规定用笔将所有试题的答案涂、写在答题纸上.选择题部分(共50分)注意事项:1. 答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上.2. 每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.不能答在试题卷上. 参考公式:如果事件A ,B 互斥 ,那么 柱体体积公式 ()()()P A B P A P B +=+V Sh =如果事件A ,B 相互独立,那么 其中S 表示柱体的底面积,h 表示柱体的高 ()()()P A B P A P B ⋅=⋅锥体的体积公式如果事件A 在一次试验中发生的概率为p ,那么 13V Sh =n 次独立重复试验中事件A 恰好发生k 次的概率 其中S 表示锥体的底面积,h 表示锥体的高()C (1)(0,1,2,,)kk n kn nP k p p k n -=-= 球体的面积公式台体的体积公式24πS R =121()3V h S S =球的体积公式其中1S ,2S 分别表示台体的上、下底面积, 34π3V R =h 表示台体的高其中R 表示球的半径一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{|14}A x x =<<,集合2{|230}B x x x =--≤, 则R A B =ð( )A. (1,4)B. (3,4)C. (1,3)D. (1,2)(3,4)2. 已知i 是虚数单位,则3i1i+=-( ) A. 12i - B. 2i - C. 2i +D. 12i +3. 设a ∈R ,则“1a =”是“直线1l :210ax y +-=与直线2l :(1)40x a y +++=平行”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件4. 把函数cos21y x =+的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图象是( )A.B.C.D. 5. 设a ,b 是两个非零向量( )A. 若+=-|a b ||a ||b |,则⊥a bB. 若⊥a b ,则+=-|a b ||a ||b |C. 若+=-|a b ||a ||b |,则存在实数λ,使得λ=b aD. 若存在实数λ,使得λ=b a ,则+=-|a b ||a ||b |6. 若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有 ( )A. 60种B. 63种C. 65种D. 66种7. 设n S 是公差为0d d ≠()的无穷等差数列{}n a 的前n 项和,则下列命题错误..的是 ( ) A. 若0d <,则列数n {}S 有最大项 B. 若数列n {}S 有最大项,则0d <C. 若数列n {}S 是递增数列,则对任意*n N ∈,均有n 0S > D. 若对任意*n ∈N 均有n 0S >,则数列n {}S 是递增数列8. 如图,1F ,2F 分别是双曲线C :22221(,0)x y a b a b-=>的左、右焦点,B 是虚轴的端点,直线1F B 与C 的两条渐近线分别交于P ,Q 两点,线段PQ 的垂直平分线与x 轴交于点M ,若212||||MF F F =,则C 的离心率是( )A.B.C.D.9. 设0a >,0b >.( )A. 若2223a b a b =++,则a b >B. 若2223a b a b =++,则a b <C. 若2223a b a b =--,则a b >D. 若2223a b a b =--,则a b <10. 已知矩形ABCD ,1AB =,BC =。

2012浙江高考理科数学试题及解析

2012浙江高考理科数学试题及解析

2012年普通高等学校招生全国统一考试(浙江卷)数 学(理科)选择题部分(共50分)参考公式:如果事件,A B 互斥,那么 柱体的体积公式()()()P A B P A P B +=+ V sh =如果事件,A B 相互独立,那么 其中s 表示柱体的底面积,h 表示柱体的高()()()P A B P A P B ⋅=⋅ 锥体的体积公式 13V sh =一、选择题(本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设函数2,0(),0x x f x x x -≤⎧=⎨>⎩,若()4f a =,则实数a =(A )-4或-2 (B )-4或2 (C )-2或4 (D )-2或2 (2)把复数z 的共轭复数记作z ,i 为虚数单位,若z=1+i,则(1)z z +⋅= (A )3i - (B )3i + (C )13i + (D )3 (3)若某几何体的三视图如图所示,则这个几何体的直观图可以是(4)下列命题中错.误.的是 (A )如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β (B )如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β (C )如果平面α⊥平面γ,平面β⊥平面γ,l αβ⋂=,那么l ⊥平面γ (D )如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β(5)设实数x 、y 是不等式组2502700,0x y x y x y +->⎧⎪+->⎨⎪≥≥⎩,若x 、y 为整数,则34x y +的最小值是(A )14 (B )16 (C )17 (D )19 (6)若02πα<<,02πβ-<<,1cos()43πα+=,cos ()423πβ-=,则cos ()2βα+= (A)3 (B)3- (C)9 (D)9- (7)若a 、b 为实数,则“01ab <<”是“1a b <或1b a>”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件(8)已知椭圆22122:1x y C a b +=(a >b >0)与双曲线 222:14y C x -=有公共的焦点,2C 的一条渐近线与以1C 的长轴为直径的圆相交于,A B 两点,若1C 恰好将线段AB 三等分,则 (A )2132a =(B )2a =13 (C )212b = (D )2b =2(9)有5本不同的书,其中语文书2本,数学书2本,物理书1本。

2012年高考浙江数学(理)试卷解析(精析word版)(学生版)

2012年高考浙江数学(理)试卷解析(精析word版)(学生版)

2012年普通高等学校招生全国统一考试 浙江数学(理科)本试题卷分选择题和非选择题两部分。

全卷共5页,选择题部分1至3页,非选择题部分4至5页。

满分150分,考试时间120分钟。

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。

2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

不能答在试题卷上。

参考公式如果事件A,B 互斥 ,那么P(A+B)=P(A)+P(B)如果事件A,B 相互独立,那么P(A ·B)=P(A)·P(B)如果事件A 在一次试验中发生的概率为P ,那么n 次独立重复试验中事件A 恰好发生k 次的概率P n (k)= (1)(0,1,2,...,)k k n k n C p p k n --=台体的体积公式 V=11221()3h S S S S ++其中S 1,S 2分别表示台体的上、下底面积,h 表示台体的高柱体体积公式V=Sh其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式V=13Sh 其中S 表示锥体的底面积,h 表示锥体的高 球体的面积公式S=4πR 2球的体积公式V=43πR 3 其中R 表示球的半径一、 选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设集合A={x|1<x <4},集合B ={x|0322≤--x x }, 则A ∩(C R B )=A (1,4)B (3,4)C (1,3)D (1,2)∪(3,4)2. 已知i 是虚数单位,则31i i+-= A 1-2i B 2-i C 2+i D 1+2i3. 设a ∈R ,则“a =1”是“直线l 1:ax+2y-1=0与直线l 2 :x+(a+1)y+4=0平行”的A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要条件5.设a ,b 是两个非零向量。

2012年高考真题——理科数学(全国卷)Word版含答案

2012年高考真题——理科数学(全国卷)Word版含答案

2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。

考试结束,务必将试卷和答题卡一并上交。

第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。

考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准该条形码上的准考证号、姓名和科目。

2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

在试题卷上作答无效.........。

3.第I 卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一、选择题 (1)复数131ii-+=+ (A )2i + (B )2i - (C )12i + (D )12i - (2)已知集合{A =,{1,}B m =,A B A =U ,则m =(A )0(B )0或3 (C )1(D )1或3 (3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += (4)已知正四棱柱1111ABCD A B C D -中 ,2AB =,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B(C(D )1 (5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为 (A )100101 (B )99101(C )99100 (D )101100(6)ABC ∆中,AB 边的高为CD ,若CB a =u u u r r ,CA b =u u u r r ,0a b ⋅=r r ,||1a =r ,||2b =r ,则AD =u u u r(A )1133a b -r r (B )2233a b -r r (C )3355a b -r r (D )4455a b -r r(7)已知α为第二象限角,sin cos αα+=,则cos2α=(A ) (B ) (C (D (8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠= (A )14 (B )35 (C )34 (D )45(9)已知ln x π=,5log 2y =,12z e-=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x << (10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种 (12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。

2012年高考理科数学浙江卷(含详细答案)

2012年高考理科数学浙江卷(含详细答案)

数学试卷 第1页(共39页)数学试卷 第2页(共39页)数学试卷 第3页(共39页)绝密★启用前 2012年普通高等学校招生全国统一考试(浙江卷)数学(理科)本试题卷分选择题和非选择题两部分.全卷共6页,选择题部分1至3页,非选择题部分4至6页.满分150分,考试时间120分钟.请考生按规定用笔将所有试题的答案涂、写在答题纸上.选择题部分(共50分)注意事项:1. 答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上.2. 每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.不能答在试题卷上. 参考公式:如果事件A ,B 互斥 ,那么 柱体体积公式 ()()()P A B P A P B +=+V Sh =如果事件A ,B 相互独立,那么 其中S 表示柱体的底面积,h 表示柱体的高 ()()()P A B P A P B ⋅=⋅锥体的体积公式如果事件A 在一次试验中发生的概率为p ,那么 13V Sh =n 次独立重复试验中事件A 恰好发生k 次的概率 其中S 表示锥体的底面积,h 表示锥体的高()C (1)(0,1,2,,)kkn kn nP k p p k n -=-= 球体的面积公式台体的体积公式24πS R =121()3V h S S =+球的体积公式其中1S ,2S 分别表示台体的上、下底面积, 34π3V R =h 表示台体的高其中R 表示球的半径一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{|14}A x x =<<,集合2{|230}B x x x =--≤, 则R A B =ð( )A. (1,4)B. (3,4)C. (1,3)D. (1,2)(3,4)2. 已知i 是虚数单位,则3i1i+=-( )A. 12i -B. 2i -C. 2i +D. 12i +3. 设a ∈R ,则“1a =”是“直线1l :210ax y +-=与直线2l :(1)40x a y +++=平行”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件4. 把函数cos 21y x =+的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图象是 ( )A.B.C.D. 5. 设a ,b 是两个非零向量( )A. 若+=-|a b ||a ||b |,则⊥a bB. 若⊥a b ,则+=-|a b ||a ||b |C. 若+=-|a b ||a ||b |,则存在实数λ,使得λ=b aD. 若存在实数λ,使得λ=b a ,则+=-|a b ||a ||b |6. 若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( )A. 60种B. 63种C. 65种D. 66种7. 设n S 是公差为0d d ≠()的无穷等差数列{}n a 的前n 项和,则下列命题错误..的是 ( ) A. 若0d <,则列数n {}S 有最大项 B. 若数列n {}S 有最大项,则0d <C. 若数列n {}S 是递增数列,则对任意*n N ∈,均有n 0S > D. 若对任意*n ∈N 均有n 0S >,则数列n {}S 是递增数列8. 如图,1F ,2F 分别是双曲线C :22221(,0)x y a b a b-=>的左、右焦点,B 是虚轴的端点,直线1F B 与C 的两条渐近线分别交于P ,Q 两点,线段PQ 的垂直平分线与x 轴交于点M ,若212||||MF F F =,则C 的离心率是( )A.B.C.D. 9. 设0a >,0b >.( )A. 若2223a b a b =++,则a b >B. 若2223a b a b =++,则a b <C. 若2223a b a b =--,则a b >D. 若2223a b a b =--,则a b <10. 已知矩形ABCD ,1AB =,BC =。

2012年高考真题——数学理(浙江卷)word版

2012年高考真题——数学理(浙江卷)word版

2012年普通高等学校招生全国统一考试数学(理科)本试题卷分选择题和非选择题两部分。

全卷共5页,选择题部分1至3页,非选择题部分4至5页。

满分150分,考试时间120分钟。

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。

2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

不能答在试题卷上。

参考公式如果事件A,B 互斥 ,那么P(A+B)=P(A)+P(B)如果事件A,B 相互独立,那么P(A·B)=P(A)·P(B)如果事件A 在一次试验中发生的概率为P ,那么n 次独立重复试验中事件A 恰好发生k 次的概率Pn(k)= (1)(0,1,2,...,)k k n k n C p p k n --=台体的体积公式V=121()3h S S其中S1,S2分别表示台体的上、下底面积,h表示台体的高柱体体积公式V=Sh其中S表示柱体的底面积,h表示柱体的高锥体的体积公式V=13Sh其中S表示锥体的底面积,h表示锥体的高球体的面积公式S=4πR2球的体积公式V=43πR3其中R表示球的半径一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合A={x|1<x<4},集合B ={x|2x-2x-3≤0}, 则A∩(CRB)=A .(1,4)B .(3,4) C.(1,3) D .(1,2)∪(3,4)2. 已知i是虚数单位,则31ii+-=A .1-2i B.2-i C.2+i D .1+2i3. 设a∈R ,则“a=1”是“直线l1:ax+2y-1=0与直线l2 :x+(a+1)y+4=0平行”的A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要条件4.把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图像是5.设a,b是两个非零向量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年普通高等学校招生全国统一考试
数学(理科)
本试题卷分选择题和非选择题两部分。

全卷共5页,选择题部分1至3页,非选择题部分4至5页。

满分150分,考试时间120分钟。

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分(共50分)
注意事项:
1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。

2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

不能答在试题卷上。

参考公式
如果事件A,B 互斥 ,那么
P(A+B)=P(A)+P(B
如果事件A,B 相互独立,那么
P(A ·B)=P(A)·P(B)
如果事件A 在一次试验中发生的概率为P ,那么n 次独立重复试验中事件A 恰好发生k 次的概率
P n (k)= (1)(0,1,2,...,)k k n k n C p p k n --=
台体的体积公式 V=11221()3h S S S S ++
其中S 1,S 2分别表示台体的上、下面积,h 表示台体的高
柱体体积公式V=Sh
其中S 表示柱体的底面积,h 表示柱体的高
锥体的体积公式V=
13Sh 其中S 表示锥体的底面积,h 表示锥体的高 球体的面积公式
S=4πR 2
球的体积公式 V=43
πR 3 其中R 表示球的半径
一、 选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设集合A={x|1<x <4},集合B ={x|2x -2x-3≤0}, 则A ∩(C R B )=
A (1,4)
B (3,4)
C (1,3)
D (1,2)∪(3,4)
2. 已知i 是虚数单位,则31i i
+-= A 1-2i B 2-i C 2+i D 1+2i
3. 设a∈R ,则“a=1”是“直线l1:ax+2y=0与直线l2 :x+(a+1)y+4=0平行的
A 充分不必要条件
B 必要不充分条件
C 充分必要条件
D 既不充分也不必要条件
4.把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图像是
5.设a,b是两个非零向量。

A.若|a+b|=|a|-|b|,则a⊥b
B.若a⊥b,则|a+b|=|a|-|b|
C.若|a+b|=|a|-|b|,则存在实数λ,使得b=λ a
D.若存在实数λ,使得b=λa,则|a+b|=|a|-|b|
6.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有
A.60种
B.63种
C.65种
D.66种
7.设S。

是公差为d(d≠0)的无穷等差数列﹛a n﹜的前n项和,则下列命题错误的是
A.若d<0,则列数﹛S n﹜有最大项
B.若数列﹛S n﹜有最大项,则d<0
C.若数列﹛S n﹜
D.是递增数列,则对任意n∈N n,均有S n>0
8.如图,F1,F2分别是双曲线C:
22
22
1
x y
a b
-=(a,b>0)的在左、右焦点,B是虚轴的端点,
直线F1B与C的两条渐近线分别教育P,Q两点,线段PQ的垂直平分线与x轴交与点M,若|MF2|=|F1F2|,则C的离心率是
A. 23
3
B
6
2
C.. 2
D. 3
9.设a大于0,b大于0.
A.若2a+2a=2b+3b,则a>b
B.若2a+2a=2b+3b,则a>b
C.若2a-2a=2b-3b,则a>b
D.若2a-2a=a b-3b,则a<b
10. 已知矩形ABCD,AB=1,BC=。

将△沿矩形的对角线BD所在的直线进行翻折,在翻折过程中。

A.存在某个位置,使得直线AC与直线BD垂直.
B.存在某个位置,使得直线AB与直线CD垂直.
C.存在某个位置,使得直线AD与直线BC垂直.
D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直
2012年普通高等学校招生全国统一考试
数学(理科)
非选择题部分(共100分)
注意事项:
1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。

2.在答题纸上作图,可先使用2B铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑。

二、填空题:本大题共7小题,每小题4分,共28分。

11.已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积等于________cm3.
12.若某程序框图如图所示,则该程序运行后输出的值是__________。

13.设公比为q(q>0)的等比数列{a n}的前n项和为S n。

若S2=3a2+2,S4=3a4+2,则
q=______________。

14.若将函数f(x)=x5表示为f(x)=a0+a1(1+x)+a2(1+x)2+……+a5
(1+x)
5,其中a
,a
1
,a
2
,…a
5
为实数,则a3=______________。

15.在△ABC中,M是BC的中点,AM=3,BC=10,则=________.
16.定义:曲线C上的点到直线l的距离的最小值称为曲线C到直线l的距离,已知曲线C1:y=x2+a到直线l:y=x的距离等于曲线C2:x2+(y+4)2=2到直线l:y=x的距离,则实数a=_______。

17.设a∈R,若x>0时均有[(a-1)x-1](x2-ax-1)≥0,则a=__________。

三、解答题:本大题共5小题,共72分。

解答应写出文字说明、证明过程或演算步骤。

18.(本题满分14分)在△ABC中,内角A,B,C的对边分别为a,b,c。

已知cosA=2
3

sinB=5cos C。

(1)求tanC的值;
(2)若a=2,求△ABC的面积。

19.(本题满分14分)已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分。

现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出此3球所得分数之和。

(1)求X的分布列;
(2)求X的数学期望E(X)。

20.(本题满分14分)如图,在四棱锥P-ABCD中,底面是边长为23的菱形,∠BAD=120°,且PA⊥平面ABCD,PA=26,M,N分别为PB,PD的中点。

(1)证明:MN∥平民啊ABCD;
(2)过点A作AQ⊥PC,垂足为点Q,求二面角A-MN-Q的平面角的余弦值。

21.(本题满分15分)如图,椭圆
22
22
:1(0)
x y
C a b
a b
+=>>的离心率为
1
2
,其左焦点到点
P(2,1)的距离为10,不过原点
....O的直线l与C相交于A,B两点,且线段AB被直线OP平分。

(Ⅰ)求椭圆C的方程;
(Ⅱ)求△APB面积取最大值时直线l的方程。

22.(本题满分14分)已知a>0,b∈R,函数f(x)=4ax2-2bx-a+b。

(Ⅰ)证明:当0≤x≤1时。

(1)函数f(x)的最大值为
(2)f(x)+ a b
-+a ≥0;
0,1恒成立,求a+b的取值范围。

(Ⅱ)若-1≤f(x) ≤1对x∈[]。

相关文档
最新文档