九年级数学上册第21章二次函数与反比例函数21.1二次函数教案新版沪科版
沪科版九年级数学上册 21.1 二次函数 课件(共19张ppt)
双曲线
思考:●什么是二次函数?
●二次函数的图象是什么样的?
探究新知
观察下面图片,说说这些是什么样的曲线?
喷泉形成的轨迹
拱桥
探究新知
篮球的运行轨迹
探究新知
二次函数的概念
问题1:某水产养殖户用40米的围网,在水库中围一块矩形
的水面,投放鱼苗。要使围成的水面面积最大,它的长应
是多少米?
探究新知
解析:设围成的矩形水面的一边长为 x m,那么,矩形
____________.
4.某厂今年一月份新产品的研发资金为 a 元,以后每
月新产品的研发资金与上月相比增长率都是 x,则该厂
今年三月份新产品的研发资金 y (元)关于 x 的函数关系
2
y=a(1+x)
式为_____________.
随堂练习
5.矩形的周长为16 cm,它的一边长为 x (cm),面积为
一般形式
y=ax2+bx+c
(a≠0,a,b,c是常数)
特殊形式
y=ax2 ( a≠0);
y=ax2+bx (a≠0,a,b是常数);
y=ax2+c (a≠0,a,c是常数).
y (cm2).求:
(1) y 与 x 之间的函数解析式及自变量 x 的取值范围;
(2) 当 x=3 时矩形的面积.
解:(1) y=(8-x)x=-x2+8x (0<x<8);
(2)当x=3时,y=-32+8×3=15 cm2 .
课堂小结
定 义
二次
函数
等号两边都是整式;
自变量的最高次数是2;
二次项系数a≠0.
即 y=-10x2+40x+2850.
沪科版数学九年级上册21.2.1《二次函数y=a2的图象和性质》教学设计
沪科版数学九年级上册21.2.1《二次函数y=a2的图象和性质》教学设计一. 教材分析《二次函数y=a2的图象和性质》是沪科版数学九年级上册第21章第2节第1课时的一节内容。
本节主要让学生掌握二次函数y=a2(a≠0)的图象和性质,包括开口方向、对称轴、顶点坐标、增减性等。
通过本节的学习,为学生后续学习二次函数的一般形式及实际应用打下基础。
二. 学情分析九年级的学生已经掌握了函数的基本概念和一次函数的性质,具备了一定的函数思维。
但二次函数的知识相对抽象,对学生空间想象能力和逻辑思维能力的要求较高。
因此,在教学过程中,要注重引导学生通过观察、分析、归纳等方法,自主探索二次函数的图象和性质。
三. 教学目标1.理解二次函数y=a2(a≠0)的图象特征,掌握其开口方向、对称轴、顶点坐标等性质。
2.能够运用二次函数的性质解决实际问题,提高解决问题的能力。
3.培养学生的空间想象能力、逻辑思维能力和合作交流能力。
四. 教学重难点1.重难点:二次函数y=a2(a≠0)的图象和性质的推导及应用。
2.难点:二次函数性质的理解和运用。
五. 教学方法1.采用问题驱动法,引导学生自主探究二次函数的图象和性质。
2.运用多媒体辅助教学,直观展示二次函数的图象,提高学生的空间想象能力。
3.采用合作交流的学习方式,培养学生的团队协作能力。
4.通过实例分析,让学生学会将二次函数的性质应用于实际问题。
六. 教学准备1.准备多媒体教学课件,包括二次函数图象的动态展示、实例分析等。
2.准备相关练习题,包括基础题、提高题和拓展题。
3.准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)利用多媒体展示二次函数y=x2的图象,引导学生回顾一次函数的图象和性质,为新课的学习做好铺垫。
2.呈现(10分钟)介绍二次函数y=a2(a≠0)的图象和性质,包括开口方向、对称轴、顶点坐标、增减性等。
通过多媒体展示,让学生直观地感受二次函数的图象特征。
沪科版九年级上册数学精品教学课件 第21章 第2课时 二次函数y=a(x+h)2的图象和性质
解: 由题意得 m2 9 0,所以 m ≠ ±3.
3. 若函数 y (m 1)xm2 2m1 (m 3)x 4 是二次函数,
那么 m 的取值范围是什么?
解:由题意得
m2
2m
1
2,
m 1 0.
m的取值范围是 m 3.
【解题小结】本题考查二次函数的概念,这类题需紧 扣概念的特征进行解题.
(2) 当 x=3 时,y=-32+8×3=15, 即矩形的面积为 15 cm2.
课堂小结
二次 函数
定义 一般形式
特殊形式
右边是整式; 自变量的最高指数是 2; 二次项系数 a ≠ 0.
y = ax2 + bx + c (a ≠ 0, a, b, c 是常数)
y = ax2; y = ax2 + bx; y = ax2 + c. (a ≠ 0,a,b,c 是常数)
2. 函数 y = (m - n)x2 + mx + n 是二次函数的条件是( C ) A. m,n 是常数,且 m ≠ 0 B. m,n 是常数,且 n ≠ 0 C. m,n 是常数,且 m ≠ n D. m,n 为任何实数
3.下列函数是二次函数的是 ( C )
A.y = 2x+1 C.y = 3x2+1 4. 已知函数 y = 3x2m-1-5.
例3 某工厂生产的某种产品按质量分为 10 个档次,第 1 档次 (最低档次) 产品一天能生产 95 件,每件利润 6 元.每 提高一个档次,每件利润增加 2 元,但一天产量减少 5 件. (1) 若生产第 x 档次的产品一天的总利润为 y 元 (其中 x 为 正整数,且 1≤x≤10),求出 y 关于 x 的函数关系式; 解:依题意知生产第 x 档次的产品,提高了(x-1)档,利 润增加了 2(x-1) 元. 则有 y=[6+2(x-1)][95-5(x-1)]. 即 y=-10x2+180x+400 (其中 x 是正整数,且1≤x≤10).
沪科版九年级数学上第21章二次函数与反比例函数21
(2)若这个函数是二次函数, 则 m2-m≠0,即 m≠1 且 m≠0.
自主学习
基Hale Waihona Puke 夯实整合运用思维拓展
九年级 数学 上册 沪科版
14.如图,一块草地是长 80 m,宽 60 m 的矩形,欲在中间修筑两条互相 垂直的宽为 x m 的小路,这时草坪的面积为 y m2.求 y 与 x 的函数表达式, 并写出自变量 x 的取值范围.
自主学习
基础夯实
整合运用
思维拓展
九年级 数学 上册 沪科版
解:(1)S=12πr2+8r(r>0).
(2)当 r=2,π=3.14 时, S=12×3.14×22+8×2 =22.28 ≈22.3(m2).
自主学习
基础夯实
整合运用
思维拓展
(A )
C.y=(1-x)2+a D.y=x2+a
自主学习
基础夯实
整合运用
思维拓展
九年级 数学 上册 沪科版
6.已知正方形的周长是 x cm,面积为 y cm2,则 y 与 x 之间的函数表达
式为_y_=y=116x2(x>x02)(x>0)__.
自主学习
基础夯实
整合运用
思维拓展
九年级 数学 上册 沪科版
(C )
自主学习
基础夯实
整合运用
思维拓展
九年级 数学 上册 沪科版
9.下列关系中,是二次函数关系的是
(C )
A.当距离 s 一定时,汽车行驶的时间 t 与速度 v 之间的关系
B.在弹性限度内,弹簧的长度 y 与所挂物体的质量 x 之间的关系
C.圆的面积 S 与圆的半径 r 之间的关系
沪科版数学九年级上册21.1《二次函数》教学设计
沪科版数学九年级上册21.1《二次函数》教学设计一. 教材分析《二次函数》是沪科版数学九年级上册第21.1节的内容,本节主要让学生了解二次函数的定义、性质及其图象。
通过学习,学生能运用二次函数解决一些实际问题,为高中阶段更深入地学习函数打下基础。
二. 学情分析九年级的学生已经学习了初中阶段的数学基础知识,对函数有一定的认识。
但二次函数相对于一次函数和反比例函数,其性质和图象更为复杂,需要学生具有一定的抽象思维能力。
同时,学生需要掌握一些数学解题技巧和方法,提高解决问题的能力。
三. 教学目标1.让学生了解二次函数的定义、性质及其图象。
2.培养学生运用二次函数解决实际问题的能力。
3.提高学生的抽象思维能力和数学解题技巧。
四. 教学重难点1.二次函数的定义和性质。
2.二次函数图象的特点。
3.运用二次函数解决实际问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过设置问题,引导学生探究二次函数的性质;通过案例分析,让学生了解二次函数在实际问题中的应用;通过小组合作,培养学生的团队协作能力。
六. 教学准备1.准备相关的教学案例和实际问题。
2.制作课件,展示二次函数的图象和性质。
3.准备练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)利用课件展示一些实际问题,如抛物线、卫星轨迹等,引导学生思考这些问题的数学模型是什么。
让学生认识到二次函数在实际生活中的重要性。
2.呈现(10分钟)介绍二次函数的定义、性质及其图象。
通过课件展示,让学生直观地了解二次函数的特点。
同时,引导学生总结二次函数的性质,如开口方向、对称轴等。
3.操练(10分钟)让学生分组讨论,分析给出的实际问题,将其转化为二次函数模型。
每组选取一个问题,进行解答和分享。
教师在这个过程中给予指导,帮助学生掌握解题方法。
4.巩固(10分钟)出示一些练习题,让学生独立完成。
题目包括判断题、填空题和解答题。
完成后,教师进行讲解和点评,确保学生掌握所学知识。
新版沪科版2020秋九年级数学上册第21章二次函数与反比例函数21.5反比例函数第1课时反比例函数教案1
21.5 反比例函数 第1课时 反比例函数教学目标:1.理解反比例函数的概念,会求比例系数。
2.感受反比例函数是刻画世界数量关系的一种有效模型,能够列出实际问题中的反比例函数关系.教学重点:理解反比例函数的概念,会求比例系数。
难点:正确列出实际问题中的反比例函数关系。
教学过程中可能会用到的某些量之间的关系:,R U I = ,vs t = 长方形的面积=长⨯宽,总人口数总耕地面积人均耕地面积= 教学过程:一、自主教学1、自学课本新课内容并完成课本的题目。
(做在课本上。
)2、明确概念:反比例函数:一般地,如果两个变量x 、y 之间的关系式可以表示成的形式,那么称y 是x 的反比例函数。
反比例函数的自变量x 不能为 。
*说明:(1)反比例函数)0(≠=k x k y 有时也写成)0(≠=k y 或)0(≠=k的形式。
(2)反比例函数中,三个量x 、y 、k 均不能为0.二、合作教学,共同探索1、订正自主教学内容。
2、完成课本做一做。
先独立完成,再小组交流。
三、全班交流,知识应用1、下列关系式中的y 是x 的反比例函数吗?如果是,比例系数k 是多少?①4y x =;②12y x =-;③1y x =-;④1xy =;⑤2x y =;⑥13y x -=;⑦21y x=- 解:上述关系式中y 是x 的反比例函数的有: ;它们的比例系数k 分别是 。
2、已知y 是x 的反比例函数,且当x =2时,y =9.(1)求y 关于x 的函数表达式;(2)当27=x 时,求y 的值;(3)当y =3时,求x 的值。
3、已知函数22(1)m y m x -=+当m 为何值时,y 是x 的反比例函数?并求出函数的表达式。
四、课堂小结。
这节课我们主要教学了,你的收获是: 。
五、当堂检测必做题:1.下列函数中,y 与x 成反比例函数关系的是( )A.5xy =B.21y x =-C. 3y x =D. 11y x =-+ 2.在下列关系式中:①x y 5= ②xy 4.0= ③2x y = ④1-=xy ⑤x y -=5 ⑥x y 65= ⑦2=xy ⑧12-=x y 其中y 是x 的反比例函数的有: ;它们的比例系数k 分别是 。
九年级数学上册 第21章 二次函数与反比例函数21.5 反比例函数第1课时 反比例函数的概念教案(新
21.5 反比例函数第1课时反比例函数的概念【知识与技能】理解反比例函数的概念,根据实际问题能列出反比例函数关系式.【过程与方法】经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力.【情感态度】培养观察、推理、分析能力,体会由实际问题转化为数学模型,认识反比例函数的应用价值.【教学重点】理解反比例函数的概念,能根据已知条件写出函数解析式.【教学难点】能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想.一、情景导入,初步认知1.复习小学已学过的反比例关系,例如:(1)当路程s一定,时间t与速度v成反比例,即vt=s(s是常数)(2)当矩形面积S一定时,长a和宽b成反比例,即ab=S(S是常数)2.电流I、电阻R、电压U之间满足关系式U=IR.当U=220V时,你能用含R的代数式表示I吗?【教学说明】对相关知识的复习,为本节课的学习打下基础.二、思考探究,获取新知问题1:某村有耕地200km2,人口数量x逐年发生变化,该村人均耕地面积y与人口数量x之间有怎样的函数关系?问题2:某市距省城248千米,汽车行驶全程所需的时间th与平均速度vkm/h之间有怎样的函数关系?问题3:在一个电路中,当电压U 一定时,通过电路的电流I 的大小与该电路的电阻R 的大小之间有怎样的函数关系?思考:观察上述函数解析式,与前面学的一次函数有什么不同?这种函数有什么特点?上面的函数关系式,都具有xk y =的形式,其中k 是常数. 【归纳结论】一般地,表达式形如x k y =(k 为常数且k ≠0)的函数叫作反比例函数. 【教学说明】先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看作函数,了解所讨论的函数的表达形式.教师组织学生讨论,提问学生,师生互动.例:在压力不变的情况下,某物体承受的压强p/Pa 是它的受力面积Sm2的反比例函数,如图.(1)求p 与S 之间的函数表达式;(2)当S=0.5时,求物体承受的压强p 的值.解:(1)根据题意设Sk p =, 函数图象经过点(0.1,1000)代入上式,得k=100.所以p 与S 之间的函数表达式为S p 100=,(p >0,S >0) (2)当S=0.5时,5.0100=p ,解得,p=200. 三、运用新知,深化理解1.下列问题中,变量间的对应关系可用怎样的函数式表示?(1)一个游泳池的容积为2000m 3,注满游泳池所用的时间随注水速度u 的变化而变化;(2)某立方体的体积为1000cm 3,立方体的高h 随底面积S 的变化而变化; (3)一个物体重100牛顿,物体对地面的压力p 随物体与地面的接触面积S 的变化而变化.2.下列哪个等式中的y 是x 的反比例函数?解:只有xy=123是反比例函数.xk y =,当x =1时,y =-3,那么这个函数的解析式是( B )4.已知y 与x 成反比例,当x =3时,y =4,那么y =3时,x 的值等于( A )B.-4C.311-=m x y (m 是常数)是反比例函数,则m =2,解析式为xy 1=. 6.写出下列各题中所要求的两个相关量之间的函数关系式,并指出函数的类别.(1)商场推出分期付款购电脑活动,每台电脑12000元,首付4000元,以后每月付y 元,x 个月全部付清,则y 与x 的关系式为,是函数.(2)某种灯的使用寿命为1000小时,它的使用天数y 与平均每天使用的小时数x 之间的关系式为,是函数.(3)设三角形的底边、对应高、面积分别为a 、h 、S.当a =10时,S 与h 的关系式为,是函数;当S =18时,a 与h 的关系式为,是函数.(4)某工人承包运输粮食的总数是w 吨,每天运x 吨,共运了y 天,则y 与x 的关系式为,是函数.7.已知y 是x 的反比例函数,当x=2时,y=6.(1)写出y 与x 的函数关系式;(2)求当x=4时,y 的值.【分析】因为y 是x 的反比例函数,所以xk y =,再把x=2和y=6代入上式就可求出常数k 的值. 解:(1)设x k y =,因为x=2时,y=6,所以有6=2k ,解得k=12,因此xy 12= (2)把x=4代入x y 12=,得y=412=3 【教学说明】学生独立思考,然后小组合作交流.教师巡视,查看学生完成的情况,并给予及时引导.四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题”中第1、2、3题.反比例函数概念形成的过程中,大家充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相依关系及变化规律,逐步加深理解.在概念的形成过程中,从感性认识到理性认识.。
数学沪科版九年级(上册)21.1.1二次函数的概念
知识巩固
1.下列函数中,哪些是二次函数?
(1) y x2
是
1 (2) y x2
不是
(3) y x(1 x)
是
(4) y (x 1)2 x2 不是
先化简后判断
知识巩固
2. 把下列函数化成二次函数的一般式,并分别说出二次项系数,一次项系数, 常数项.
(1)y=(x-2)(x-3);
解:(1)y=(x-2)(x-3)=x2-5x+6; 1,-5,6
(2)y=(x+2)(x-2)-2(x-1)2; (3)y=-2(x+3)2.
(2)y=(x+2)(x-2)-2(x-1)2=-x2+4x-6; -1,4,-6 (3)y=-2(x+3)2=-2x2-12x-18. -2,-12,-18
例题分析
例1 关于x的函数 y (m 1)xm2m 是二次函数,求m的值.
九年级数学沪科版·上册
第21章 二次函数与反比例函数
21.1 二次函数
学习目标 1.知道什么叫函数,什么是二次函数,掌握二次函数的定义,理解二次函 数的条件. (重点)
2.会列式解决实际应用问题,并抽象出二次函数表达式.(难点)
复习导入
1. 什么是一次函数?正比例函数? 一般地,形如y=kx+b(k,b是常数,k≠0)的函数叫做一次函数.
(2)某商品每件成本40元,以单价55元试销,每天可售出100件。根据市场预 测,定价每减少1元,销售量可增加10件. 求每天销售该商品获利金额y(元)与定 价x(元)之间的函数关系.
课堂小结
y=ax²+bx+c(a,b,c是常数, a≠0 )
当b=0 时,一次函数y=kx就叫做正比例函数. y=2x+3
九年级数学上册第21章二次函数与反比例函数:二次函数教案新版沪科版(含教学反思)
九年级数学上册教案新版沪科版:21.1二次函数教学目标1.掌握二次函数的概念,能识别一个函数是不是二次函数;2.能根据实际情况建立二次函数模型.教学重难点【教学重点】二次函数的概念。
【教学难点】根据实际情况建立二次函数模型。
课前准备课件等。
教学过程一、情境导入已知长方形窗户的周长为6米,窗户面积为y(平方米),窗户宽为x(米),你能写出y 与x之间的函数关系式吗?它是什么函数呢?二、合作探究探究点一:二次函数的概念【类型一】二次函数的识别例1 下列函数哪些是二次函数?(1)y=2-x2; (2)y=1x2-1;(3)y=2x(1+4x); (4)y=x2-(1+x)2.解析:(1)是二次函数;(2)是分式而不是整式不符合二次函数的定义,故y=1x2-1不是二次函数;(3)把y=2x(1+4x)化简为y=8x2+2x,显然是二次函数;(4)y=x2-(1+x)2化简后变为y=-2x-1,它不是二次函数而是一个一次函数.解:二次函数有(1)和(3).方法总结:判定一个函数是否是二次函数常有三个标准:①所表示的函数关系式为整式;②所表示的函数关系式有唯一的自变量;③所含自变量的关系式最高次数为2,且函数关系式中二次项系数不等于0.【类型二】根据二次函数的定义求待定字母的值例2 如果函数y =(k +2)xk 2-2是y 关于x 的二次函数,则k 的值为多少? 解析:紧扣二次函数定义求解.注意易错点为忽视k +2≠0.解:根据题意知⎩⎪⎨⎪⎧k 2-2=2,k +2≠0,⎩⎪⎨⎪⎧k =±2,k ≠-2,∴k =2. 方法总结:紧扣定义中的两个特征:①a ≠0;②自变量最高次数为2的二次三项式ax2+bx +c .【类型三】与二次函数系数有关的计算例3 已知一个二次函数,当x =0时,y =0;当x =2时,y =12;当x =-1时,y =18.求这个二次函数中各项系数的和.解析:解:设二次函数的表达式为y =ax 2+bx +c (a ≠0).把x =0,y =0;x =2,y =12;x =-1,y =18分别代入函数表达式,得⎩⎪⎨⎪⎧c =0,4a +2b +c =12,a -b +c =18,解得⎩⎪⎨⎪⎧a =18,b =0,c =0.所以这个二次函数的表达式为y =18x 2.所以a +b +c =18+0+0=18,即这个二次函数中各项系数的和为18.方法总结:涉及有关二次函数表达式的问题,所设的表达式一般是二次函数表达式的一般形式y =ax 2+bx +c (a ≠0).解决这类问题要根据x ,y 的对应值,列出关于字母a ,b ,c 的方程(组),然后解方程(组),即可求得a ,b ,c 的值.探究点二:建立二次函数模型例4 某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,若设每件降价x 元、每星期售出商品的利润为y 元.(1)请写出y 与x 的函数表达式,并求出自变量x 的取值范围; (2)当每件商品降价15元时,每星期售出商品的利润为多少元?解析:根据题意可以知道:实际每件商品的利润为(60-x -40),每星期售出商品的数量为(300+20x ),则每星期售出商品的利润为y =(60-x -40)(300+20x )元,化简,注意要求出自变量x 的取值范围.解:(1)由题意,得:y =(60-x -40)(300+20x ) =(20-x )(300+20x )=-20x 2+100x +6000,自变量x 的取值范围为0≤x ≤20;(2)把x =15代入y =-20x 2+100x +6000得y =3000(元),即当每件商品降价15元时,每星期售出商品的利润为3000元.方法总结:销售利润=单件商品利润×销售数量;单件商品利润=售价-进价. 三、板书设计二次函数⎩⎪⎪⎨⎪⎪⎧1.概念:一般地,表达式形如y =ax 2+bx +c(a ,b ,c 是常数,且a ≠0)的函数叫做 x 的二次函数,其中x 是自变量2.二次函数的识别3.确定二次函数中待定字母的取值(范围)4.求函数值5.建立二次函数模型6.确定自变量的取值范围教学反思教学过程中,强调学生自主探索和合作交流,经历将实际问题转化为数学问题,体会数学建模的思想方法.。
【学练优】2022年九年级数学上册 21.1 二次函数学案 (新版)沪科版
第21章二次函数与反比例函数21.1 二次函数学习目标:(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围;(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯.重点难点:能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
学习过程:一、试一试1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,AB长x(m) 1 2 3 4 5 68 97BC长(m) 12面积y(m2) 482.x的值是否可以任意取?有限定范围吗?3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定, y是x的函数,试写出这个函数的关系式,对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。
对于2,可让学生分组讨论、交流,然后各组派代表发表意见。
形成共识,x的值不可以任意取,有限定范围,其范围是0 <x <10。
对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函数关系式.二、提出问题某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。
将这种商品的售价降低多少时,能使销售利润最大?在这个问题中,可提出如下问题供学生思考并回答:1.商品的利润与售价、进价以及销售量之间有什么关系?[利润=(售价-进价)×销售量]2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元? [10-8=2(元),(10-8)×100=200(元)]3.若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品? [(10-8-x);(100+100x)]4.x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0≤x≤2]5.若设该商品每天的利润为y元,求y与x的函数关系式。
沪科版数学九年级上册第21章《二次函数与反比例函数》复习教学设计
沪科版数学九年级上册第21章《二次函数与反比例函数》复习教学设计一. 教材分析《二次函数与反比例函数》是沪科版数学九年级上册第21章的内容,本章主要让学生掌握二次函数和反比例函数的性质、图象和应用。
内容涵盖了二次函数的定义、开口方向、对称轴、顶点坐标的求法,以及反比例函数的定义、图象、性质等。
这一章内容在初中数学中占有重要地位,对于学生来说,理解掌握二次函数和反比例函数的知识,对于高中阶段的学习有着重要的铺垫作用。
二. 学情分析九年级的学生已经学习过一次函数和二次函数的基础知识,对于函数的概念、图象和性质有一定的了解。
但是,对于二次函数和反比例函数的性质、图象和应用,部分学生可能还存在着一定的困难。
因此,在教学过程中,需要针对学生的实际情况,进行有针对性的教学设计,帮助学生理解和掌握二次函数和反比例函数的知识。
三. 教学目标1.知识与技能:使学生掌握二次函数和反比例函数的定义、性质、图象和应用,能够熟练运用二次函数和反比例函数解决实际问题。
2.过程与方法:通过自主学习、合作交流等方式,培养学生的数学思维能力和问题解决能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的数学素养,使学生认识到数学在生活中的重要性。
四. 教学重难点1.重点:二次函数和反比例函数的定义、性质、图象和应用。
2.难点:二次函数和反比例函数的性质、图象和应用的理解和运用。
五. 教学方法1.情境教学法:通过生活实例,引导学生理解二次函数和反比例函数的定义和应用。
2.自主学习法:鼓励学生自主探究二次函数和反比例函数的性质、图象,培养学生的自主学习能力。
3.合作交流法:学生进行小组讨论,共同解决问题,培养学生的合作交流能力。
4.案例教学法:通过分析实际问题,引导学生运用二次函数和反比例函数解决问题,提高学生的应用能力。
六. 教学准备1.教学课件:制作精美的教学课件,辅助教学。
2.教学素材:准备相关的实际问题,作为教学案例。
九年级数学上册第21章二次函数与反比例函数21.3二次函数与一元二次方程教案新版沪科版
21.3 二次函数与一元二次方程【知识与技能】1.体会函数与方程之间的联系,初步体会利用函数图象研究方程问题的方法;2.理解二次函数图象与x轴交点的个数与一元二次方程的根的个数之间的关系,理解方程有两个不等的实根、两个相等的实根和没有实根的函数图象特征.【过程与方法】经历类比、观察、发现、归纳的探索过程,体会函数与方程相互转化的数学思想和数形结合的数学思想.【情感态度】培养学生类比与猜想、不完全归纳、认识到事物之间的联系与转化、体验探究的乐趣和学会用辨证的观点看问题的思维品质.【教学重点】经历“类比——观察——发现——归纳”而得出二次函数与一元二次方程的关系的探索过程.【教学难点】准确理解二次函数与一元二次方程的关系.一、情景导入,初步认知我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系.当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b =0的解.现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?本节课我们将探索有关问题.【教学说明】让学生通过对旧知识的回顾及对新知识的思考,梳理旧知识,起到承上启下之效,同时通过老师的引导,培养学生的形成解决一类问题的通用方法的思维品质.二、思考探究,获取新知1.观察二次函数y=x2+3x+2的图象,并回答下列问题.(1)每个图象与x轴有几个交点?(2)二次函数y=ax2+bx+c的图象与x轴交点坐标与一元二次方程ax2+bx+c=0的根有什么关系?【教学说明】引起学生的认知冲突,激发学生的求知欲望,大胆猜想,通过交流寻求解决类似问题的方法.【归纳结论】一元二次方程ax2+bx+c=0.当Δ≥0时有实数根,这个实数根就是对应二次函数y=ax2+bx+c的值等于0时自变量x的一个值,即二次函数的图象与x轴一个交点的横坐标.2.用图象法求一元二次方程x2+2x-1=0近似解.(精确到0.1)由图象可知,方程有两个实数根,一个在-3和-2之间,另一个在0和1之间.先求位于-3和-2之间的根,由图象可估计这个根是-2.5或-2.4,利用计算器进行探索,见下表:观察上表可以发现,当x分别取-3和-2时,对应的y由正变负,可见在-3和-2之间肯定有一个x使y=0,即方程的一个根.题目要求精确到0.1,当x=-2.4时,y=-0.04比y=0.25更接近0,所以选x=-2.4.因此,方程x2+2x-1=0在-3和-2之间精确到0.1的根为x=-2.4.请仿照上面的方法,求出方程精确到0.1的另一个根.3.方程x2+2x-1=0的近似解还可以这样求:分别画出函数y=x2,y=-2x+1的图象,如图,它们交点A,B的横坐标就是方程x2+2x-1=0的根.【教学说明】引导学生讨论,交流,发表不同意见,并进行归纳.三、运用新知,深化理解1.已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,则下列结论正确的是( B )A.ac>0B.方程ax2+bx+c=0的两根是x1=-1,x2=3C.2a-b=0D.当x>0时,y随x的增大而减小【分析】根据抛物线的开口方向,对称轴,与x轴、y轴的交点,逐一判断.解:A.∵抛物线开口向下,与y轴交于正半轴,∴a<0,c>0,ac<0,故本选项错误;B.∵抛物线对称轴是x=1,与x轴交于(3,0),∴抛物线与x轴另一交点为(-1,0),即方程ax2+bx+c=0的两根是x1=-1,x2=3,故本选项正确;C.∵抛物线对称轴为x=1,∴2a+b=0,故本选项错误;D.∵抛物线对称轴为x=1,开口向下,∴当x>1时,y随x的增大而减小,故本选项错误.故选B.2.如图,已知二次函数y=ax2+bx+c的部分图象,由图象可知关于x的一元二次方程ax2+bx+c=0的两个根分别是x1=1.6,x2=( C )A.-1.6B.3.2C.4.4D.以上都不对【分析】根据图象知道抛物线的对称轴为x=3,根据抛物线是轴对称图形和已知条件即可求出x2.解:由抛物线图象可知其对称轴为x=3,又抛物线是轴对称图象,∴抛物线与x轴的两个交点关于x=3对称,而关于x的一元二次方程ax2+bx+c=0的两个根分别是x1,x2,那么两根满足2×3=x1+x2,而x1=1.6,∴x2=4.4. 故选C.3.根据下列表格的对应值:判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的范围是( C )A.8<x<9B.9<x<10C.10<x<11D.11<x<12【分析】根据表格知道8<x<12,y随x的增大而增大,而-0.38<0<1.2,由此即可推出方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的范围.解:依题意得当8<x<12,y随x的增大而增大,而-0.38<0<1.2,∴方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的范围是10<x<11.故选C.【教学说明】学生独立完成3个小题,小组交流所做结果,练习巩固,加深理解.四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题21.3”中第2、4、8题.本节课主要是向学生渗透两种思想:函数与方程互相转化的思想;数形结合思想.三种题型:函数图象与x轴交点的横坐标、方程根的个数、函数图象的交点坐标.。
九年级数学上册 第21章 二次函数与反比例函数教学课件 沪科版
平 移 个
yx32 2
• 4、二次函数的图象和性质
• (1)当a>0时抛物线的开口怎样?a<0呢?
•
当a>0时,抛物线开口向上,并向上无限延伸。
•
当a<0时,抛物线开口向下,并向下无限延伸。
y
y
o
x
o
x
(2)说一说抛物线的对称轴和顶点坐标。 (3)当a>0时,说一说抛物线的增减性;a<0呢? (4)说一说函数的极值。
• 例4、如图,是二次函数 yax2bxc 的图 象,请判断a、b、c的符号。
y
怎 样 判 断 a 的 符 号 ?
F
怎 样 判 断 c的 符 号 ?
H
D
o
G
E
解 抛 物 线 的 对 称 轴 在 y 轴 的 右 边
b 0 2a
即: b 0 2a
x
而a 0, b 0
a0,b0,c0
• 例5、请大家说一说抛物线的对称特点 • (1)抛物线是不是轴对称图形? • (2)抛物线关于y轴对称有什么特点?
1 当 x为 多 少 时 , y 1> y2 ; 2当 x为 多 少 时 , y 1= y2 ; 3 当 x为 多 少 时 ,y1y2
y
B
-4
A
O1
1、这道题要不要先求出两个函数的解析式?
为什么?
2、解这道题的关键是什么?
找出两个函数的交点,重点是它们的横坐标。
X
3、如何解这道题?
主要是看函数图象在坐标系中的位置,图象 在上面的函数值大
当 C 0 时 , y = a x 2 + b x 的 图 象 有 什 么 特 点
沪科版九年级数学上第21章二次函数与反比例函数教案
沪科版九年级数学上第21章二次函数与反比例函数教案知识结构课题21.1 二次函数 课时 1课时 上课时间 教学目标1.知识与技能 理解二次函数的概念,掌握二次函数一般形式.2.过程与方法 通过对实际问题的探索,熟练地掌握列二次函数关系式和求自变量的取值范围.3.情感、态度与价值观 注重参与,联系实际,丰富同学们的感性认识,培养同学们的良好的学习习惯. 教学 重难点 重点:能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围. 难点:熟练地列出二次函数关系式. 教学活动设计 二次设计 课堂导入 旧知回顾: 一次函数的一般形式是 y=kx+b(k ≠0) ,一元二次方程的一般形式是 ax 2+bx+c=0(a ≠0) ,为什么a ≠0? 当a=0时,方程不是一元二次方程 . 导入新课:某正方形边长为x,面积为S,则其面积S 与边长x 之间的函数关系式是什么?它是一次函数吗?为什么? 函数关系是S=x 2,不是一次函数,为什么?探索新知 合作自学指导 知识模块一 二次函数的概念 阅读教材本课时的内容,回答以下问题:探究 1.问题①中40 m是长方形的周长吗?是,矩形面积S与其一边长x之间的函数关系式为S=x(20-x)(0<x<20) ,它是一次函数吗? 不是,原因: 右边不是x的一次式.2.问题②中,设增加x人,此时,共有15+x个装配工,每人每天可少装配10x 个玩具,因此每人每天只装配190-10x 个玩具,所以,增加人数后,每天装配玩具总数y可表示为y=(190-10x)(15+x) .这个函数是一次函数吗? 不是,原因:右边不是x的一次式.知识模块二在实际问题中列二次函数的解析式【例题】列出下列函数的关系式.(1)一个圆柱的高等于底面半径的2倍,则它的表面积S与底面半径r之间的关系式为S=6πr2.(2)某工厂一种产品现在年产量是20件,计划今后两年增加产量,如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,y与x之间的关系应怎样表示?y=20(1+x)2.学生看书,教师巡视,督促每一位学生认真自学,鼓励学生质疑问难.续表探索新知合作探究合作探究1.讨论小组讨论自学指导中出现疑问的地方.2.让学生归纳上面两个函数解析式具有哪些共同特征?3.思考:解决列函数关系式这一类题的步骤.教师指导1.易错点:二次函数是自变量的多项式,自变量的最高次数都是2,二次项系数不为0.2.归纳小结:一般地,表达式形如y=ax2+bx+c (a,b,c是常数,且a ≠0)的函数叫做x 的二次函数,其中x 是自变量,a 为 二次项系数 ,b 为 一次项系数 ,c 为 常数项 . 3.方法规律: (1) 二次函数必须满足三个条件:①函数解析式必须是整式;②化简后自变量的最高次数必须是2;③二次项系数不为0. (2) 解决列函数关系式这一类题的步骤:①审清题意,②找等量关系,③列函数关系式. 当堂训练 1.函数y=-2x 2+3x-1的二次项系数、一次项系数、常数项依次是( ) (A)-2,3,1 (B)-2,3,-1 (C)2,3,1 (D)2,3,-1 2.将一根长为20 cm 的铁丝弯成一个矩形框架,设矩形的一边长为x cm,面积为y cm 2,则y 与x 之间的函数关系式为 ,其中自变量x 的取值范围是 . 3.某厂今年一月份新产品的研发资金为a 元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x 的函数关系式为 .板书设计 21.1 二次函数 知识模块一 二次函数的概念 知识模块二 在实际问题中列二次函数的解析式 教学反思课题 21.2 二次函数的图象和性质 课时 第1课时 上课时间教 1.知识与技能学目标能够利用描点法作出y=ax2的图象,并能根据图象认识和理解y=ax2的图象和性质.2.过程与方法经历画二次函数y=ax2的图象和探索性质的过程,获得利用图象研究函数性质的经验.3.情感、态度与价值观经历、探索二次函数y=ax2图象性质的过程,培养观察、思考、归纳的良好思维习惯.教学重难点重点:会画y=ax2的图象,理解其性质.难点:结合图象理解抛物线开口方向,对称轴,顶点坐标及基本性质.教学活动设计二次设计课堂导入旧知回顾:(1)一次函数y=kx+b(k≠0)其图象是一条经过(0,b)的直线.特别地,正比例函数y=kx(k≠0)其图象是过原点的直线.(2)描点法画出一次函数的步骤,分为列表, 描点, 连线三个步骤.(3)我们把形如y=ax2+bx+c(a≠0) 的函数叫做二次函数.探索新知合作探究自学指导探究二次函数y=ax2图象性质阅读教材P5~6页的内容,回答以下问题: 1.在画二次函数y=x2的图象时,自变量取了多少个值?经历了多少步?自变量取了7个值,经历了3步,分别是列表、描点、连线.2.二次函数y=x2的图象是一条抛物线,它的对称轴是y 轴,顶点(最低点)是(0,0) ,在对称轴的左侧,抛物线从左到右下降,在对称轴的右侧,抛物线从左到右上升,也就是说,当x<0时,y随x的增大而减小;当x>0时,y随x的增大而增大.3.观察y=12x2,y=2x2的图象,回答它们的开口方向,对称轴和顶点坐标.4.根据函数y=12x2,y=2x2图象特点,总结y=ax2(a>0)的性质:最高或最低点,图象何时上升、下降.5.观察y=-12x2,y=-2x2的图象,指出它们与y=12x2,y=2x2图象的不同之处.6.(1)a>0与a<0时,函数y=ax2图象有什么不同?(2)|a|大小对开口大小有什么影响?学生看书,教师巡视,督促每一位学生认真自学,鼓励学生质疑问难.续表探索新知合作探究合作探究1.将阅读教材时“生成的问题”和通过“自学指导”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.教师指导 1.易错点: y=ax 2图象的两端是无限伸展的,画的时候要“出头”, a 的绝对值越大,抛物线的开口越小. 2.归纳小结:a 的符号开口方向 顶点坐标 对称轴 性质 a>0向上 (0,0) y 轴 x>0时,y 随x 的增大而 ;x<0时,y 随x 的增大而 ;x=0时,y 有 0 a<0 向下 (0,0) y 轴 x>0时,y 随x 的增大而 ;x<0时,y 随x 的增大而 ;x=0时,y 有 03.方法规律: 解决二次函数y=ax 2的性质的问题要熟记性质,同时注意多运用数形结合的思想方法来考虑. 当堂训练 1.若(-5,2)在抛物线y=ax 2上,则下列各点一定也在该抛物线上的是( ) (A)(5,2) (B)(-2,-5) (C)(-5,-2) (D)(0,2) 2.函数y=5x 2的图象开口向 ,顶点是 ,对称轴是 ,当x 时,y 随x 的增大而增大.板书设计 第1课时 二次函数y=ax 2的图象和性质 探究二次函数y=ax 2图象性质 归纳性质 教学反思课题 21.2 二次函数的图象和性质 课时 第2课时 上课时间教学目标1.知识与技能会用描点法画出二次函数y=ax2+k的图象.2.过程与方法经历画二次函数y=ax2+k的图象和探索性质的过程,获得利用图象研究函数性质的经验,体会数形结合的思想方法.3.情感、态度与价值观经历、探索二次函数y=ax2+k图象性质的过程,培养观察、思考、归纳的良好思维习惯.教学重难点重点:二次函数y=ax2+k的图象和性质.难点:函数y=ax2+k与y=ax2的相互关系.教学活动设计二次设计课堂导入旧知回顾:1.画函数图象利用描点法,其步骤为列表、描点、连线.2.二次函数y=ax2(a≠0)的图象是一条抛物线,a>0时,它的开口向上,对称轴是y轴,顶点坐标是原点(0,0) ;在对称轴的左侧,y随x的增大而减小;在对称轴的右侧,y随x的增大而增大;当x=0时,y 取最小值.a<0时有什么变化呢?探索新知合作探究自学指导知识模块一二次函数y=ax2+k的图象阅读教材P11~12,完成下面内容:画出y=2x2+1,y=2x2-1图象,根据图象回答下列问题:(1)抛物线y=2x2+1,y=2x2-1开口方向向上,对称轴是y轴,顶点坐标分别为(0,1),(0,-1) .(2)抛物线y=2x2+1,y=2x2-1与y=2x2之间有什么关系?答:可以发现y=2x2+1是由y=2x2向上平移一个单位长度得到的,而y=2x2-1是由y=2x2向下平移1个单位长度得到的.知识模块二二次函数y=ax2+k的性质继续观察知识模块一中y=2x2+1,y=2x2-1图象,说说它们的增减性.答:两个图象都是当x<0时,y随x的增大而减小;当x>0时,y随x的增大而增大.学生看书,教师巡视,督促每一位学生认真自学,鼓励学生质疑问难.续表探索新知合作探究合作探究1.将阅读教材时“生成的问题”和通过“自学指导”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.教师指导1.易错点:抛物线y=ax2与 y=ax2+k平移规律,运用y=ax2+k的性质时要注意数形结合思想.2.归纳小结:(1)抛物线y=ax2+k的图象①抛物线y=ax2+k的图象,当a>0时,开口方向向上,对称轴是y轴,顶点坐标是(0,k) .②抛物线y=ax2沿着y轴上下平移可以得到y=ax2+k,当k>0时,y=ax2向上平移k 个单位就可以得到抛物线y=ax2+k;当k<0时,抛物线y=ax2向下平移k 个单位就可以得到抛物线y=ax2+k.(2)二次函数y=ax2+k的图象和性质①开口方向:当a>0时,开口向上,当a<0时,开口 向下 . ②对称轴: y 轴 .③顶点坐标: (0,k) .④增减性:当a>0时,在对称轴左侧,y 随x 的增大而 减小 ,在对称轴右侧,y 随x 的增大而 增大 ;当a<0时,在对称轴左侧,y 随x 的增大而 增大 ,在对称轴右侧,y 随x 的增大而 减小 .⑤最值:当a>0时,抛物线有 最低 点,当x=0时,y 有最小值是 k ;当a<0时,抛物线有 最高 点,当x=0时,y 有最大值是 k .3.方法规律:解决二次函数y=ax 2+k 的性质的问题要熟记性质,同时注意多运用数形结合的思想方法来考虑.当堂训练1.抛物线y=-2x 2+8的开口 ,对称轴为 ,顶点坐标是 ;当x 时,y 有最 值为 ;当x<0时,函数值随x 的增大而 ;当x>0时,函数值随x 的增大而 .2.将抛物线y=x 2+1向下平移2个单位,得到抛物线解析式为 .3.已知二次函数y=(a-2)x 2+a 2-2的最高点是(0,2),则a 的值为 .4.抛物线y=ax 2+c 与y=-3x 2-2的图象关于x 轴对称,则a= ,c= .板书设计第2课时 二次函数y=ax 2+k 的图象和性质探究二次函数y=ax 2+k 的图象 归纳二次函数y=ax 2+k 的性质教学反思课题 21.2 二次函数的图象和性质 课时 第3课时 上课时间教学目标 1.知识与技能使学生能利用描点法画出二次函数y=a(x+h)2的图象.2.过程与方法让学生经历二次函数y=a(x+h)2性质探究的过程,理解函数y=a(x+h)2的性质,理解二次函数y=a(x+h)2的图象与二次函数y=ax2的图象的关系.3.情感、态度与价值观经历、探索二次函数y=a(x+h)2图象性质的过程,培养观察、思考、归纳的良好思维习惯.教学重难点重点:掌握二次函数y=a(x+h)2的图象和性质.难点:二次函数y=a(x+h)2的图象和性质的运用.教学活动设计二次设计课堂导入旧知回顾:1.y=ax2+k是由y=ax2平移|k| 个单位得到.2.二次函数y=x2+5的图象是一条抛物线,它的开口向上,对称轴是y 轴,顶点坐标是(0,5) ;在对称轴的左侧,y随x的增大而减小,在对称轴的右侧,y随x的增大而增大;当x= 0 时,y取最小值.探索新知合作探究自学指导知识模块二次函数y=a(x+h)2的图象与性质阅读教材P14~15,思考并填写课本中的问题,然后完成下列问题:抛物线y=(x-1)2和y=(x+1)2与y=x2之间有什么关系?【例1】抛物线y=13(x-2)2的开口向上,对称轴是直线x=2 ,顶点坐标是(2,0) ,当x <2 时,y随x的增大而减小;当x =2 时,函数y取得最小值,值为0 .【例2】如果将抛物线y=3x2向右平移1个单位,那么所得的抛物线的表达式是( C ) (A)y=3x2-1 (B)y=3x2+1(C)y=3(x-1)2 (D)y=3(x+1)2合作探究1.将阅读教材时“生成的问题”和通过“自学指导”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.续表探索新知合作探究教师指导1.易错点:对于二次函数的图象,只要|a|相等,则它们的形状相同,只是开口方向不同,且|a|越大,开口越小.2.归纳小结:(1)二次函数y=a(x+h)2(a≠0)的图象性质:开口方向:a>0时,开口向上,a<0时,开口向下,顶点(-h,0) ,对称轴x=-h .最值:a>0时,有最小值y=0 .当a<0时,有最大值y=0 .增减性:a>0且x>-h时,y随x的增大而增大;x<-h时,y随x的增大而减小;a<0且x>-h时,y随x的增大而减小,x<-h时,y随x的增大而增大. (2)y=ax2和y=a(x+h)2的图象有如下关系:y=ax2y=a(x+h)2.3.方法规律:(1)解决二次函数y=a(x+h)2(a≠0)的性质的问题要熟记性质,同时注意多运用数形结合的思想方法来考虑.(2)由抛物线y=ax2的图象通过平移得到y=a(x+h)2的图象,左右平移的规律是(四字口诀)左加右减.当堂 1.抛物线y=35(x-2)2的开口向,顶点训练为,对称轴是,当时,y随x增大而减小;当x= 时,y有最值为.2.抛物线y=2x2.若抛物线不动,把y轴向右平移3个单位,那么在新坐标系下抛物线解析式为.3.抛物线y=3(x-1)2图象上有A(-1,y1),B(√2,y2),C(2,y3)三点.则y1,y2,y3大小关系为.板书设计第3课时二次函数y=a(x+h)2的图象和性质探究二次函数y=a(x+h)2的图象归纳二次函数y=a(x+h)2的性质教学反思课题21.2 二次函数的图象和性质课时第4课时上课时间教学目标1.知识与技能使学生理解函数y=a(x+h)2+k的图象与函数y=ax2的图象之间的关系.会确定函数y=a(x+h)2+k的图象的开口方向、对称轴和顶点坐标.2.过程与方法让学生经历函数y=a(x+h)2+k性质的探索过程,理解函数y=a(x+h)2+k的性质.3.情感、态度与价值观经历、探索二次函数y=a(x+h)2+k图象性质的过程,培养观察、思考、归纳的良好思维习惯.教学重难点重点:二次函数y=a(x+h)2+k的图象与性质.难点:运用二次函数y=a(x+h)2+k的图象与性质解决简单的实际问题.教学活动设计二次设计课堂导入1.填空:函数开口方向对称轴顶点坐标最值y=3x2向上y轴或x=0(0,0)最小值0y=-2x2+3向下y轴或x=0(0,3)最大值3y=x2-4向上y轴或x=0(0,-4)最小值-4 y=0.6(x-5)2向上x=5(5,0)最小值0y=-3(x+1)2向下x=-1(-1,0)最大值0 2.函数y=12x2+1的图象由y=12x2向上平移1个单位得到;函数y=12(x-2)2的图象由y=12x2向右平移两个单位得到.探索新知合作探究自学指导知识模块一二次函数y=a(x+h)2+k的图象与y=ax2之间的关系阅读教材P16~17,完成下面内容:1.在同一直角坐标系中,画出下列函数y=12x2,y=12(x-2)2,y=12(x-2)2+1的图象.2.观察它们的图象,回答:它们的开口方向都向上,对称轴分别为y轴、直线x=2 、直线x=2 ,顶点坐标分别为(0,0) 、(2,0) 、(2,1) .请同学们完成填空,并观察三个图象之间的关系.【例题】说出抛物线y=2(x+1)2-3的开口方向、对称轴和顶点坐标,并指出它是由抛物线y=2x2通过怎样的平移得到的.知识模块二二次函数y=a(x+h)2+k的图象与性质1.(1)a>0,开口向上;a<0,开口向下;(2)对称轴是x= -h ;(3)顶点坐标是(-h,k) .2.从二次函数y=a(x+h)2+k的图象可以看出:如果a>0,当x<-h时,y随x的增大而减小,当x>-h时,y随x的增大而增大;如果a<0,当x<-h时,y随x的增大而增大,当x>-h 时,y随x的增大而减小.续表探索新知合作探究合作探究1.将阅读教材时“生成的问题”和通过“自学指导”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.教师指导1.易错点:抛物线的增减性根据函数图象运用数形结合思想;二次函数的平移问题用到的知识点为:二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点.2.归纳小结:一般地,抛物线y=a(x+h)2+k与y=ax2形状相同,位置不同,把抛物线y=ax2向上(下)向左(右)平移,可以得到抛物线y=a(x+h)2+k.平移的方向、距离要根据h、k 的值决定. 二次函数y=a(x+h)2+k的图象与性质(1)①a>0,开口向上;a<0,开口向下;②对称轴是x= -h ;③顶点坐标是(-h,k) .(2)从二次函数y=a(x+h)2+k的图象可以看出:如果a>0,当x<-h时,y随x的增大而减小,当x>-h时,y随x的增大而增大;如果a<0,当x<-h时,y随x的增大而增大,当x>-h 时,y随x的增大而减小.3.方法规律:由抛物线y=ax2的图象通过平移得到y=a(x+h)2+k的图象,平移的规律是左加右减,上加下减.当堂训练1.将抛物线y=-8x2先向左平移2个单位,再向下平移4个单位后,得到抛物线的解析式为.2.抛物线y=-9(x+2)2-5的开口方向是,对称轴是,当x=时,y有最值,当时,y随x的增大而增大,当时,y随x的增大而减小.3.若一抛物线形状与y=2x2+7x相同,顶点坐标是(4,-2),则其解析式为.板书设计第4课时二次函数y=a(x+h)2+k的图象和性质二次函数y=a(x+h)2+k的图象与y=ax2之间的关系二次函数y=a(x+h)2+k的图象与性质教学反思课题21.2 二次函数的图象和性质课时第5课时上课时间教学目标1.知识与技能(1)掌握用描点法画出函数y=ax2+bx+c的图象.(2)掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标.2.过程与方法经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质.3.情感、态度与价值观经历、探索二次函数y=ax2+bx+c图象性质的过程,培养观察、思考、归纳的良好思维习惯.教学重难点重点:通过配方确定抛物线的对称轴,顶点坐标.难点:理解二次函数y=ax2+bx+c(a≠0)的性质.教学活动设计二次设计课堂导入旧知回顾:1.你能说出函数y=-3(x+2)2+4图象的开口方向、对称轴和顶点坐标及其性质吗?解:开口向下,对称轴是直线x=-2,顶点坐标是(-2,4).在对称轴右侧y随x的增大而减小,在对称轴左侧y随x的增大而增大.当x=-2时,有最大值4.2.函数y=-3(x+2)2+4图象与函数y=-3x2的图象有什么关系?解:函数y=-3(x+2)2+4的图象是由函数y=-3x2的图象向上平移4个单位,向左平移2个单位得到的.探索新知合作探究自学指导知识模块一掌握二次函数y=ax2+bx+c的图象与性质阅读教材P18~19,完成下面的内容:填空:y=-2x2-8x-7=-2(x2+4x)- 7=-2(x2+4x+ 4 )- 7 + 8=-2(x+ 2 )2+ 1知识模块二二次函数图象与性质的应用【例1】已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的是( C )(A)ab>0,c>0 (B)ab>0,c<0(C)ab<0,c>0 (D)ab<0,c<0【例2】已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于(-1,0),则下列结论错误的是( D )(A)当x=2时,有最大值(B)当x<2时,y随x的增大而增大(C)-b2a=2(D)抛物线与x轴的另一个交点为(2,0)合作探究1.将阅读教材时“生成的问题”和通过“自学指导”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.续表探索新知合作探究2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.教师指导1.易错点:用配方法求抛物线的顶点坐标和对称轴时,首先要把二次项系数化为1.2.归纳小结:(1)一般式化为顶点式的思路:①二次项系数化为 1 ;②加、减一次项系数一半的平方;③写成平方的形式. (2)二次函数y=ax2+bx+c的图象与性质.二次函数y=ax2+bx+c的对称轴是x=-b2a,顶点坐标是-b2a,4ac-b24a.若a>0:当x<-b2a时,y随x 的增大而减小;当x>-b2a时,y随x的增大而增大;当x=-b2a时,y最小值= 4ac-b24a;若a<0:当x<-b2a时,y随x的增大而增大;当x>-b2a时,y 随x的增大而减小,当x= -b2a时,y最大值= 4ac-b24a.3.方法规律:二次函数y=ax2+bx+c(a≠0)图象的画法五点绘图法:利用公式法或配方法,确定图象的开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取五点为:顶点,与y轴的交点(0,c),以及点(0,c)关于对称轴对称的点(2h,c),与x轴的交点(x1,0) ,(x2,0) (若与x轴没有交点,则取两个关于对称轴对称的点).当堂训练 1.抛物线y=-2x 2+4x+6的开口 ,对称轴为 ,顶点坐标是 ,当x= 时,y 有最 值 ,当 时,y 随x 的增大而增大,当 时,y 随x 的增大而减小.2.通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标. (1)y=-x 2-6x;(2)y=13x 2-4x+3.3.已知抛物线y=-x 2+ax-4的顶点在坐标轴上,求a 的值.板书设计第5课时 二次函数y=ax 2+bx+c 的图象和性质二次函数y=ax 2+bx+c 的图象与性质二次函数图象与性质的应用教学反思课题21.2 二次函数的图象和性质 课时 第6课时 上课时间教学目标 1.知识与技能会用待定系数法求二次函数的表达式,会求两图象的交点坐标.2.过程与方法经历确定二次函数表达式的过程,体会求二次函数表达式的思想方法.3.情感、态度与价值观培养观察、思考、归纳的良好思维习惯,增强学生数学应用意识.教学 重难点重点:用待定系数法求二次函数的解析式. 难点:由条件灵活选择解析式类型. 教学活动设计二次设计课堂导入 旧知回顾:1.正比例函数图象经过点(1,-2),该函数解析式是 y=-2x .2.在直角坐标系中,直线l 过(1,2)和(3,-1)两点,求直线l 的函数关系式. 思考:一般地,函数关系式中有几个独立的系数,我们就需要相同个数的独立条件才能求出函数关系式.例如:我们确定正比例函数y=kx(k ≠0)只需要一个独立条件;确定一次函数y=kx+b(k ≠0)需要两个独立条件.如果要确定二次函数y=ax 2+bx+c 的关系式,需要几个条件呢? 探索新知 合作探究自学指导阅读教材P21~22,完成下面的内容:通过学习,你会发现求y=ax 2+bx+c 的解析式需要三个独立条件.(学生先独立思考,然后教师出示解题步骤)【例1】 已知二次函数经过(-1,10),(1,4),(2,7),求这个二次函数解析式.解:设二次函数解析式为y=ax 2+bx+c(a ≠0).因为二次函数y=ax 2+bx+c 过点(-1,10),(1,4),(2,7)三点.所以{a -b +c =10,a +b +c =4,4a +2b +c =7,解得{a =2,b =−3,c =5,所以所求二次函数的解析式为y=2x 2-3x+5.【例2】 见教材第22页,学生先独立思考,然后小组讨论.总结解决此类问题的方法.学生看书,教师巡视,督促每一位学生认真自学,鼓励学生质疑问难. 合作探究1.将阅读教材时“生成的问题”和通过“自学指导”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.续表探索 2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生新知合作探究成新知”.教师指导1.易错点:确定二次函数的表达式时,注意选择合适的二次函数形式.2.归纳小结:(1)求二次函数的解析式y=ax2+bx+c,需要求出a,b,c 的值.由已知条件(如二次函数图象上三个点的坐标)列出关于a,b,c 的方程组,求出a,b,c 的值,就可以写出二次函数的解析式.(2)求两函数图象的交点坐标,就是两函数关系式联立组成方程组的解.3.方法规律:求二次函数的关系式,应恰当地选用二次函数关系式的形式,一般,有如下几种情况: (1)已知抛物线上三点的坐标,一般选用一般式;(2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;(3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;(4)已知抛物线上纵坐标相同的两点,常选用顶点式.当堂训练1.已知二次函数的图象经过点(2,-1),并且当x=5时有最大值4,则二次函数解析式为.2.一条抛物线的形状与抛物线y=-7(x-5)2相同,其顶点坐标是(-9,6),这个抛物线解析式为.3.抛物线图象经过(-1,11),(1,9),(0,0)三点,这个图象对应的函数解析式为.4.求二次函数y=x2-x-5的图象与一次函数y=2x-1的图象的交点坐标.板书设计第6课时确定二次函数的表达式例1例2归纳教学反思课题21.3 二次函数与一元二次方程课时1课时上课时间教学目标1.知识与技能理解二次函数图象与x 轴交点的个数与一元二次方程的根的个数之间的关系. 2.过程与方法经历类比、观察、发现、归纳的探索过程,体会函数与方程相互转化的数学思想和数形结合的数学思想.3.情感、态度与价值观培养观察、思考、归纳的良好思维习惯,增强学生数学应用意识.教学 重难点重点:二次函数与一元二次方程的关系的探索过程. 难点:准确理解二次函数与一元二次方程的关系. 教学活动设计二次设计课堂导入旧知回顾:1.一次函数y=kx+b 的图象经过(0,3),(4,0),则方程kx+b=0的解是 x=4 . 2.如图,一次函数y=kx+b 的图象如图所示,则方程kx+b=1的解是 x=-2 .思考:对于二次函数y=ax 2+bx+c(a ≠0),当y 取一个确定值时,它就变成了一个一元二次方程,由此可知一元二次方程与二次函数有着密切的关系.那么,二次函数y=ax 2+bx+c(a ≠0)与一元二次方程ax 2+bx+c=0(a ≠0)之间到底有怎样的关系呢?通过本节课的学习我们将能解决这个问题.探索新自学指导知识模块一 一元二次方程与二次函数的关系。
沪科版九年级数学上册第21章二次函数与反比例函数21
二次函数二次函数说课稿一、教材分析:1、教材的地位和作用这节课是在学生已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。
二次函数是初中阶段研究的最后一个具体的函数,也是最重要的,在历年来的中考题中占有较大比例。
同时,二次函数和以前学过的一元二次方程、一元二次不等式有着密切的联系。
进一步学习二次函数将为它们的解法提供新的方法和途径,并使学生更为深刻的理解“数形结合”的重要思想。
而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。
所以这节课在整个教材中具有承上启下的重要作用。
2、教学目标和要求:(1)知识与技能:使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法。
(2)过程与方法:通过学生的学与教师的引,经历二次函数概念的探索过程,通过当堂练习提高学生解决问题的能力.(3)情感、态度与价值观:通过观察、交流归纳等数学活动加深对二次函数概念的理解,发展学生的数学思维,增强学好数学的愿望与信心.3、教学重点:对二次函数概念的理解。
4、教学难点:由实际问题确定函数解析式。
二、说教法学法:1、先学后教,当堂训练2、利用研究学习,通过思维深入,领悟教学过程三、说教学过程:1.自我学习展示学习目标:1.认识二次函数2.会列出二次函数关系式自学指导:看课本P2-P3页,看清三个问题中函数的表示方法,熟记二次函数的概念及后面的满足条件。
思考二次函数为什么要满足这样的要求?5分钟完成。
中间给1分钟讨论。
【设计意图】首先展示学习目标和自学指导,让学生明确本节课要学习的内容和要达到的目标,自学指导可以让学生清楚的知道要做什么,要想什么,2.(1)用周长为20m的篱笆围成矩形场地,场地面积y(m²)与矩形一边长x(m)之间的关系是什么?由一名学生上黑板演版,其他同学在学案上做,做完后由学生找错误,教师点评。
然后教师提问:以上三个例子所列出的函数与一次函数有何相同点与不同点?【设计意图】通过具体事例,让学生列出关系式,进一步提高学生由实际问题列出函数关系式的能力,并启发学生观察,思考,归纳出二次函数与一次函数的联系: (1)函数解析式均为整式(这表明这种函数与一次函数有共同的特征)。
沪科版九年级上册数学教案 21.2.2 二次函数y=ax2+bx+c的图象和性质
第二十一章二次函数与反比例函数21.2 二次函数的图像与性质21.2.2 二次函数y=ax2+bx+c的图象和性质【知识与技能】1.使学生掌握用描点法画出函数y=ax2+bx+c的图象.2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标.【过程与方法】让学生通过绘画、观察二次函数y=ax2+bx+c的图象,理解二次函数y=ax2+bx+c的开口方向、对称轴和顶点坐标以及性质的.【情感态度与价值观】通过建立二次函数的数学模型解决实际问题,培养学生分析问题、解决问题的能力,提高学生用数学的意识.通过配方确定抛物线的对称轴、顶点坐标.理解二次函数y=ax2+bx+c(a≠0)的性质.多媒体课件.(课件展示问题)由前面的知识,我们知道,函数y=2x2的图象,向上平移2个单位,可以得到函数y=2x2+2的图象;函数y=2x2的图象,向右平移3个单位,可以得到函数y=2(x-3)2的图象,那么函数y=2x2的图象,如何平移,才能得到函数y=2(x-3)2+2的图象呢?函数y=-4(x-2)2+1具有哪些性质?【教学说明】通过这些练习题,使学生对以前的知识加以复习巩固,以便这节课的应用.这几个问题可找层次较低的学生回答,由其他同学给予评价.一、思考探究,获取新知你能确定y=-2x 2+4x+6的开口方向、对称轴、顶点坐标吗?具有哪些性质? 学生讨论得到:把二次函数y=ax 2+bx+c 转化成y=a(x-h)2+k 的形式再通过配方,确定抛物线的开口方向、对称轴和顶点坐标,再描点画图.解:y=-2x 2+4x+6 =-2(x 2-2x)+6 =-2(x 2-2x+1-1)+6 =-2[(x-1)2-1]+6 =-2(x-1)2+8因此,抛物线开口向下,对称轴是直线x=1,顶点坐标为(1,8). 你能从上图中总结出二次函数y =ax 2+bx +c(a ≠0)的性质吗? 【归纳结论】二次函数y=ax 2+bx +c(a ≠0)的对称轴是x=-ab2,顶点坐标是(-ab 2,a b ac 442 )【教学说明】让学生仔细观察所画图形,相互交流得出结论. 二、典例精析,掌握新知问题1:你将用什么方法来研究上面提出的问题?(画出二次函数y =2(x -1)2和二次函数y =2x 2的图象,并加以观察) 问题2:你能在同一直角坐标系中,画出二次函数y =2x 2与y =2(x -1)2的图象吗?教学要点1.让学生完成下表填空。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第21章二次函数与反比例函数
21.1 二次函数
【知识与技能】
认识二次函数,知道二次函数自变量的取值范围,并能熟练地列出二次函数关系式.【过程与方法】
通过对实际问题的探索,熟练地掌握列二次函数关系式和求自变量的取值范围.
【情感态度】
培养学生探索新知的能力,鼓励学生通过观察、猜想、验证,主动地获取知识.
【教学重点】
能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围.
【教学难点】
熟练地列出二次函数关系式.
一、情景导入,初步认知
1.什么叫函数?它有几种表示方法?
2.什么叫一次函数?(y=kx+b)自变量是什么?函数是什么?常量是什么?为什么要有k≠0的条件?k值对函数性质有什么影响?
【教学说明】复习这些问题是为了帮助学生弄清自变量、函数、常量等概念,加深对函数定义的理解.强调k≠0的条件,以便与二次函数中的a进行比较.
二、思考探究,获取新知
1.函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数.看下面两个例子中两个变量之间存在怎样的关系.
问题1 某水产养殖户用长40米的围网,在水库中围一块矩形的水面,投放鱼苗,要使围成的水面的面积最大,则它的边长应是多少米?
设:围成的矩形的一边长为x米,那么,矩形水面的另一边长为(20-x)米,若面积是Sm2,则有:S=x(20-x)
问题2 有一玩具厂,如果安排装配工15人,那么每人每天可装配玩具190个,如果
增加人数,那么每增加1人,可使每人每天少装配玩具10个,问增加多少人才能使每天装配玩具总数最多?玩具总数最多是多少?
设:增加x人,这时,共有(15+x)人,每人每天可少装配10x个玩具,因此,每人每天只装配(190-10x)个,所以,增加人数后,每天装配玩具总数y可表示为:y=(190-10x)(15+x)
在问题1中函数的表达式可化简为:
S=-x2+20x
在问题2中函数的表达式可化简为:
y=-10x2+40x+2850
2.教师引导学生观察问题1.
问题1中的函数关系式,提出以下问题让学生思考回答;
(1)这两个函数关系式的自变量各有几个?
(2)多项式-2x2+20x和-10x2+40x+2850分别是几次多项式?
(3)这两个函数关系式有什么共同特点?
(4)你能结合一次函数的概念,给这种函数下个概念吗?
【归纳结论】表达式形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数叫做x的二次函数,其中x是自变量.a叫做二次函数的系数,b叫做一次项的系数,c叫做常数项.
3.想一想,在二次函数中自变量的取值范围有什么要求呢?说出问题1、问题2中自变量的取值范围.
【归纳结论】二次函数自变量的取值范围一般都是全体实数,但是在实际问题中,自变量的取值范围应使实际问题有意义.如问题1中,自变量x的取值范围为0<x<20.
【教学说明】学生通过实际问题的分析,列出关系式,并观察、利用类比的思想总结出二次函数的概念.
三、运用新知,深化理解
1.下列关系式中,属于二次函数的是(x为自变量)( A )
【分析】紧抓二次函数的概念.
2.m 取哪些值时,函数y=(m 2-m)x 2
+mx+(m+1)是以x 为自变量的二次函数?
【分析】若函数y=(m 2-m)x 2+mx+(m+1)是二次函数,须满足的条件是:m 2-m≠0.
解:若函数y=(m 2-m)x 2+mx+(m+1)是二次函数,则m 2-m≠0.
解得m≠0且m≠1.
因此,当m≠0且m≠1时,函数y=(m 2-m)x 2+mx+(m+1)是二次函数.
3.(1)写出正方体的表面积S (cm 2)与正方体棱长a (cm )之间的函数关系;
(2)写出圆的面积y (cm 2)与它的周长x (cm )之间的函数关系;
【分析】(1)根据正方体表面积公式可得.(2)面积与半径有关,所以根据周长表示出半径就可求出面积.
解:(1)S=6a 2(a >0). (2)y= 42x (x >0). 4.正方形铁片边长为15cm ,在四个角上各剪去一个边长为x (cm )的小正方形,用余下的部分做成一个无盖的盒子.
(1)求盒子的表面积S (cm 2)与小正方形边长x (cm )之间的函数关系式;
(2)当小正方形边长为3cm 时,求盒子的表面积.
解:(1)S 2=152-4x 2=225-4x 2(0<x <
215); (2)当x=3cm 时,S=225-4×32=189(cm2).
5.已知二次函数y=x 2
+px+q,当x=1时,函数值是4;当x=2时,函数值是-5.求这个二次函数的解析式.
解:把x=1,y=4;x=2,y=-5分别代入y=x 2+px+q ,得方程组
所以这个二次函数的表达式为y=x 2-12x+15 【教学说明】理论学习完二次函数的概念后,让学生在实践中感悟什么样的函数是二次函数,将理论知识应用到实践操作中.
四、师生互动、课堂小结
先小组内交流收获和感想而后以小组为单位派代表进行总结,教师作以补充.
布置作业:教材“习题21.1”中第1、2、5题.
本节课通过简单的实际问题,学生会很容易列出函数关系式,也很容易分辨出哪个是二次函数.通过复习类比,大部分同学对于二次函数的理解都比较好,会找自变量,会列简单的函数关系式,总体效果良好!。