QTZ80塔吊计算书
塔吊计算书
QTZ80塔吊格构基础设计计算书基本参数1、塔吊基本参数塔吊型号:QTZ80;塔吊自重Gt:490kN;最大起重荷载Q:60kN;塔吊起升高度H:40.50m;塔身宽度B: 1.6m;2、格构柱基本参数格构柱计算长度lo:5.9m;格构柱缀件类型:缀板;格构柱缀件节间长度a1:0.6m;格构柱分肢材料类型:L160x14;格构柱基础缀件节间长度a2:0.6m;格构柱钢板缀件参数:宽420mm,厚10mm;格构柱截面宽度b1:0.50m;格构柱基础缀件材料类型:L160x14;3、基础参数桩中心距a:2.8m;桩直径d:0.9m;桩入土深度l:18.5m;桩型与工艺:泥浆护壁钻(冲)孔灌注桩;桩混凝土等级:C30;桩钢筋型号:HRB400;桩钢筋直径:25mm;承台宽度Bc:4.6m;承台厚度h:1.35m;承台混凝土等级为:C35;承台钢筋等级:HRB400;承台钢筋直径:25;承台保护层厚度:100mm;承台箍筋间距:200mm;4、塔吊计算状态参数地面粗糙类别:B类田野乡村;风荷载高度变化系数:2.09;主弦杆材料:角钢/方钢;主弦杆宽度c:140mm;非工作状态:所处城市:福建莆田市,基本风压ω0:0.70 kN/m2;额定起重力矩Me:800kN·m;基础所受水平力P:74kN;塔吊倾覆力矩M:1712kN·m;工作状态:所处城市:福建莆田市,基本风压ω0:0.7 kN/m2,额定起重力矩Me:800kN·m;基础所受水平力P:18.9kN;塔吊倾覆力矩M:1718kN·m;非工作状态下荷载计算一、塔吊受力计算1、塔吊竖向力计算承台自重:G c=25×Bc×Bc×h=25×4.60×4.60×1.35=714.15kN;作用在基础上的垂直力:F k=Gt+Gc=490.00+714.15=1204.15kN;2、塔吊倾覆力矩总的最大弯矩值M kmax=1712.00kN·m;3、塔吊水平力计算挡风系数计算:φ = (3B+2b+(4B2+b2)1/2)c/Bb挡风系数Φ=0.46;水平力:V k=ω×B×H×Φ+P=0.70×1.60×40.50×0.46+74.00=94.87kN;4、每根格构柱的受力计算作用于承台顶面的作用力:F k=1204.15kN;M kmax=1712.00kN·m;V k=94.87kN;图中x轴的方向是随时变化的,计算时应按照倾覆力矩Mmax最不利方向进行验算。
塔吊计算书
附塔机基础及平衡重和塔吊计算书○1基础计算书一、参数信息塔吊型号:QTZ80,塔吊起升高度H:50.00m,塔身宽度B:1.6m,基础埋深d:1.60m,自重G:600kN,基础承台厚度hc:1.00m,最大起重荷载Q:60kN,基础承台宽度Bc:5.50m,混凝土强度等级:C35,钢筋级别:HRB400,基础底面配筋直径:25mm二、塔吊对交叉梁中心作用力的计算1、塔吊竖向力计算塔吊自重:G=600kN;塔吊最大起重荷载:Q=60kN;作用于塔吊的竖向力:Fk=G+Q=600+60=660kN;2、塔吊弯矩计算风荷载对塔吊基础产生的弯矩计算:Mkmax=960kN·m;三、塔吊抗倾覆稳定验算基础抗倾覆稳定性按下式计算:e=Mk /(Fk+Gk)≤Bc/3式中 e──偏心距,即地面反力的合力至基础中心的距离; Mk──作用在基础上的弯矩;Fk──作用在基础上的垂直载荷;Gk ──混凝土基础重力,Gk=25×5.5×5.5×1=756.25kN;Bc──为基础的底面宽度;计算得:e=960/(660+756.25)=0.678m < 5.5/3=1.833m;基础抗倾覆稳定性满足要求!四、地基承载力验算依据《建筑地基基础设计规范》(GB50007-2011)第5.2条承载力计算。
计算简图:混凝土基础抗倾翻稳定性计算: e=0.678m < 5.5/6=0.917m 地面压应力计算: P k =(F k +G k )/A P kmax =(F k +G k )/A + M k /W式中:F k ──塔吊作用于基础的竖向力,它包括塔吊自重和最大起重荷载,F k =660kN ; G k ──基础自重,G k =756.25kN ; Bc ──基础底面的宽度,取Bc=5.5m ;M k ──倾覆力矩,包括风荷载产生的力矩和最大起重力矩,M k = 960kN ·m ; W ──基础底面的抵抗矩,W=0.118Bc 3=0.118×5.53=19.632m 3; 不考虑附着基础设计值:P k =(660+756.25)/5.52=46.818kPaP kmax =(660+756.25)/5.52+960/19.632=95.717kPa ; P kmin =(660+756.25)/5.52-960/19.632=0kPa ; 实际计算取的地基承载力设计值为:f a =160.000kPa ;地基承载力特征值f a 大于压力标准值P k =46.818kPa ,满足要求!地基承载力特征值1.2×f a 大于无附着时的压力标准值P kmax =95.717kPa ,满足要求!五、基础受冲切承载力验算依据《建筑地基基础设计规范》(GB 50007-2011)第8.2.7条。
QTZ80(6013)塔机基础计算书
QTZ80(6013)塔机基础计算书QTZ80(6013)塔机(臂长60米,端部起重量1.0吨,最大起重量6吨),独立安装高度不大于37.4米,采用基础6.0mx6.0mx1.5m 、配筋HRB335双层双向Φ25@195、地面承受力220KPa 时,能满足使用要求,符合技术和安全规范。
1、抗倾覆稳定性验算塔式起重机独立安装时,基础所承受的载荷如图所示。
取其工作状态和非工作状态中最不利工况进行稳定性校核。
根据塔式起重机设计规范,塔机稳定的条件为:P imin3M Fn h b e Fv Fg +=≤+ (1) 地面压力按公式(2)验算:2()[]3B B Fv Fg P P b+=≤ (2) 式中: e ——偏心距,即地面反力的合力至基础中心的距离m ;M ——作用在基础上的弯矩;M=2400KN.mF V ——作用在基础上的垂直载荷;F V =650KN.F n ——作用在基础上的水平荷载力;Fn=85KN.F g ——混凝土基础的重力;Fn=24 KN/m3xbxhxl.PB——地面计算压应力;〔PB〕——地面计算许用压应力,由实地勘探和基础处理情况而定,一般情况取〔PB 〕=2×105 ~3×105Pa 。
取〔PB〕=220KPa。
经计算结果:e=1.3≤b/3=2m.P b =216KPa≤〔PB〕=220KPa.稳定性验算通过。
2、地基承载力验算DP k =2(F V +F g )/3xlxa ≤〔P B 〕根据塔机受力情况,产生的地基反力如上图所示。
P k ——基础底面边缘的最大压力值MPa ;l ——矩形基础底面的长边宽度m ;a ——合力作用点至基础底面最大压力边缘的距离m ;其中:a=b/2-e ;计算结果:P k =127KPa ≤〔P B 〕=220KPa 。
满足地基承载力要求,验算通过。
3、结论从上述计算可知,基础的抗倾覆稳定性、地基承载力都满足要求,故基础符合设计要求和安全规范。
QTZ80塔机矩形板式基础计算书
QTZ80塔机矩形板式基础计算书一、塔机属性塔机型号QTZ80塔机独立状态的最大起吊高度H0(m) 40塔机独立状态的计算高度H(m) 43塔身桁架结构方钢管塔身桁架结构宽度B(m) 1.6二、塔机荷载塔机竖向荷载简图1、塔机自身荷载标准值塔身自重G0(kN) 251起重臂自重G1(kN) 37.4起重臂重心至塔身中心距离R G1(m) 222、风荷载标准值ωk(kN/m2)3、塔机传递至基础荷载标准值4、塔机传递至基础荷载设计值倾覆力矩设计值M'(kN·m) 1.2×(37.4×22-19.8×6.3-89.4×11.8)+1.4×0.5×45.27×43=934.4 三、基础验算矩形板式基础布置图基础布置基础长l(m) 5.3 基础宽b(m) 5.3 基础高度h(m) 1.25基础参数基础混凝土强度等级C25 基础混凝土自重γc(kN/m3) 25 基础上部覆土厚度h’(m)0 基础上部覆土的重度γ’(kN/m3) 19 基础混凝土保护层厚度δ(mm)40地基参数地基承载力特征值f ak(kPa) 150 基础宽度的地基承载力修正系数ηb0.3基础及其上土的自重荷载标准值:G k=blhγc=5.3×5.3×1.25×25=877.81kN基础及其上土的自重荷载设计值:G=1.2G k=1.2×877.81=1053.38kN荷载效应标准组合时,平行基础边长方向受力:M k''=G1R G1+G2R Qmax-G3R G3-G4R G4+0.9×(M2+0.5F vk H/1.2)=37.4×22+3.8×11.5-19.8×6.3-89.4×11.8+0.9×(690+0.5×19.02×43/1.2)=614.54kN·mF vk''=F vk/1.2=19.02/1.2=15.85kN荷载效应基本组合时,平行基础边长方向受力:M''=1.2×(G1R G1+G2R Qmax-G3R G3-G4R G4)+1.4×0.9×(M2+0.5F vk H/1.2) =1.2×37.4×22+3.8×11.5-19.8×6.3-89.4×11.8)+1.4×0.9×(690+0.5×19.02×43/1.2) =922.98kN·mF v''=F v/1.2=26.63/1.2=22.19kN基础长宽比:l/b=5.3/5.3=1≤1.1,基础计算形式为方形基础。
塔吊QTZ80计算书
浙江宝业建设集团有限公司 第1页 共7页塔吊基础计算书(QTZ80)本计算书主要依据施工图纸及以下规范及参考文献编制:《塔式起重机设计规范》(GB/T13752-1992)、《地基基础设计规范》(GB50007-2002)、《建筑结构荷载规范》(GB50009-2001)、《建筑安全检查标准》(JGJ59-99)、《混凝土结构设计规范》(GB50010-2002)、《建筑桩基技术规范》(JGJ94-2008)等编制。
一、塔吊的基本参数信息塔吊型号:QTZ80, 塔吊起升高度H :95.000m ,塔身宽度B :1.6m , 基础埋深D :-5.500m ,自重F 1:480.5kN , 基础承台厚度Hc :1.200m ,最大起重荷载F 2:80kN , 基础承台宽度Bc :6.000m ,桩钢筋级别:HRB335, 桩直径或者方桩边长:0.400m , 桩间距a :3.4m , 承台箍筋间距S :200.000mm ,承台混凝土的保护层厚度:50mm , 空心桩的空心直径:0.20m 。
二、塔吊基础承台顶面的竖向力和弯矩计算塔吊自重(包括压重)F 1=480.5kN ;塔吊最大起重荷载F 2=80.00kN ;作用于桩基承台顶面的竖向力F k =F 1+F 2=560.50kN ;1、塔吊风荷载计算依据《建筑结构荷载规范》(GB50009-2001)中风荷载体型系数:地处江苏苏州,基本风压为ω0=0.45kN/m 2;查表得:荷载高度变化系数μz =1.86;挡风系数计算:φ=[3B+2b+(4B 2+b 2)1/2]c/(Bb)=[(3×1.6+2×2.5+(4×1.62+2.52)0.5)×0.13]/(1.6×2.5)=0.45;因为是角钢/方钢,体型系数μs =2.049;高度z 处的风振系数取:βz =1.0;浙江宝业建设集团有限公司 第2页 共7页所以风荷载设计值为:ω=0.7×βz ×μs ×μz ×ω0=0.7×1.00×2.049×1.86×0.45=1.2kN/m 2;2、塔吊弯矩计算风荷载对塔吊基础产生的弯矩计算:M ω=ω×φ×B×H×H×0.5=1.2×0.45×1.6×85×65×0.5=1827.523kN·m ;M kmax =Me +M ω+P ×h c =630+1827.523+85×1.2=2559.52kN ·m ;三、承台弯矩及单桩桩顶竖向力的计算1. 桩顶竖向力的计算依据《建筑桩技术规范》(JGJ94-2008)的第5.1.1条,在实际情况中x 、y 轴是随机变化的,所以取最不利情况计算。
QTZ80塔式起重机塔身及附着整机稳定性计算书2
Af=17.167cm2
λ =lo/r=179/1.76=101.7
ϕ =0.59
σ =Nf/ ϕAf=11712/0.59 × 17.167=115.6MPa
由于斜腹杆是单角钢,其许用应力要折减,其表达式为:
0.6+0.0025 λ =0.6+0.0025 × 101.7=0.85 则 [ σ ]=175 × 0.85=149MPa σ <[ σ ] 安全 8. 附着式塔身验算 附着式塔身按标准节几何尺寸进行验算。由于附着式的Nf 均比独立式 小,而且标准节的斜腹杆材料与加强标准节相同,故不再验算腹杆稳定性。
×
C oy
Moy + C Wy
HyM
Hy
45451
1
= 173.18 × 0.754 × 1.144 =148.3MPa<[ σ ]
+
45451
1- 0.9 × 617232
8.2 整体强度验算
工况Ⅱ、方位Ⅱ、C 截面
×
0.949
×
8356600+0.967 14430
×
7950000
FN=51.784t Mx=83.566t
1
FN
×
Coy Moy + C HyM Hy Wy
0 . 9 FEy
47946
= 265.4 × 0.54 × 1.575
=123MPa<[ σ ]
1
+
1-
0.9
47946 × 457549
×
0.84
×
12114400+0.86 22121
× 11382400
18
7.3 主肢单肢稳定验算 工况Ⅱ、方位Ⅱ时,主肢单肢压力在 A 截面为最大,N1=93.633t
QTZ80塔吊计算书
一.参数信息1. 塔吊参数:塔吊型号: QTZ80塔身宽度B=1.7m,未采用附着装置前,基础受力为最大,有关资料如下表:工况塔机垂直力F v(kN)水平力F h(kN)倾覆力矩M(kN﹒m)工作状态663.4 38.36 1286.59非工作状态603.4 98.2 2546.642. 承台参数:承台厚度:h=1.25m承台宽度:b=3m混凝土强度等级: C30承台主筋:双层双向20﹫150承台箍筋:10﹫200mm保护层厚度:25mm3. 桩参数:桩型:泥浆护壁钻(冲)孔灌注桩桩间距:a=1.7m桩直径:0.8m桩混凝土强度:C30桩身配筋:1216保护层厚度:100mm桩入土深度:38.26m4. 荷载参数:钢筋自重 1kN/m3;混凝土自重 24kN/m3;5. 地质参数:序号土名称土厚度(m) 土侧阻力特征值(kPa) 土端阻力特征值(kPa)1 3淤泥 5.16 6 02 4-2粉质粘土夹粉土 3.8 18 03 6粘土 13.7 30 04 7粉质粘土 6.2 25 05 7-夹含砾粉砂 5.3 32 06 8-1粉砂 1.3 31 07 8-2圆砾 1.6 55 08 10-1全风化粉砂质泥岩 1.2 42 09 10-3中风化粉砂质泥岩 1 0.9 14006. 塔吊计算简图二.工作状态时验算1. 塔吊承台设计验算1) 承台截面主筋验算A. 矩形承台弯矩的计算(依据《建筑桩基技术规范》JGJ94-94)ii x y N m ∑=11 II y X N m ∑=11其 中恒载分项系数取1.2,活载分项系数取1.4;Mx1,My1---计算截面处XY 方向的弯矩设计值(KN.m ); xi,yi----单桩相对承台中心轴的XY 方向距离(m ); Ni1-----扣除承台自重的单桩桩顶竖向力设计值(KN)。
N=1.2×663.4/4+(1.4×1286.59+1.4×38.36×1.25)×(1.7/2)/[4×(1.7/2)2]=748.54kN经计算得到弯矩设计值:Mx1=My1=2×748.54×(1.7/2-1.7/2)=0kN.mB. 承台截面主筋的计算a 依据《混凝土结构设计规范》(GB50010-2002)受弯构件承载力计算。
QTZ塔吊基础天然基础计算书
Q T Z80塔吊天然基础的计算书(一)计算依据1.《建筑桩基技术规范》JGJ94-2008;2.《混凝土结构设计规范》(GB50010-2002);3.《建筑结构荷载规范》(GB 50009-2001);4.《南明区大健康欧美医药园项目岩土工程勘察报告》;5.《QTZ80塔式起重机使用说明书》;6.建筑、结构设计图纸;7.《简明钢筋混凝土结构计算手册》。
(二)参数数据信息塔吊型号:QTZ80(6013)塔吊起升高度H:塔身宽度B:1665mm 基础节埋深d:自重G:596kN(包括平衡重)基础承台厚度hc:最大起重荷载Q:60kN 基础承台宽度Bc:混凝土强度等级:C35 钢筋级别:Q235A/HRB335基础底面配筋直径:25mm公称定起重力矩Me:800kN·m 基础所受的水平力P:80kN标准节长度b:主弦杆材料:角钢/方钢宽度/直径c:120mm所处城市:贵州省贵阳市基本风压ω:m2地面粗糙度类别:D类密集建筑群,房屋较高,风荷载高度变化系数μz:。
地基承载力特征值fak:147kPa基础宽度修正系数ηb :基础埋深修正系数ηd:基础底面以下土重度γ:20kN/m3基础底面以上土加权平均重度γm:20kN/m3(三)塔吊基础承载力作用力的计算1、塔吊竖向力计算塔吊自重:G=596kN(整机重量422+平衡重174);塔吊最大起重荷载:Q=60kN ;作用于塔吊的竖向力:F k =G +Q =596+60=656kN ;2、塔吊风荷载计算依据《建筑结构荷载规范》(GB50009-2001)中风荷载体型系数: 地处贵州省贵阳市,基本风压为ω0=m 2; 查表得:风荷载高度变化系数μz =; 挡风系数计算:φ=[3B+2b+(4B 2+b 2)1/2]c/(Bb)=[(3×+2×5+(4×+52)×]/×5)= 因为是角钢/方钢,体型系数μs =; 高度z 处的风振系数取:βz =; 所以风荷载设计值为:ω=×βz ×μs ×μz ×ω0=××××=m 2;3、塔吊弯矩计算风荷载对塔吊基础产生的弯矩计算:M ω=ω×φ×B×H×H×=×××100×100×=1609kN·m; M kmax =Me +M ω+P ×h c =800+1609+80×=2521kN ·m ;(四)塔吊抗倾覆稳定验算基础抗倾覆稳定性按下式计算: e =M k /(F k +G k )≤Bc/3式中 e ──偏心距,即地面反力的合力至基础中心的距离; M k ──作用在基础上的弯矩; F k ──作用在基础上的垂直载荷;G k ──混凝土基础重力,G k =25×××=1479kN ; Bc ──为基础的底面宽度; 计算得:e=2521/(656+1479)= < 3=; 基础抗倾覆稳定性满足要求!(五)塔吊基础地基承载力验算依据《建筑地基基础设计规范》(GB50007-2002)第条承载力计算。
QTZ80塔式起重机塔身及附着整机稳定性计算书
=0.1t
表 2 塔上部各部份惯性载荷表
序 名称
号
1
起重臂
2 起重臂长拉杆
3 起重臂短拉杆
4
变幅卷扬机
5
配电箱
6
平衡臂
7
平衡臂平台
8
平衡臂拉杆
9
起升机构
10
平衡重
11
顶升机构
12
∑
重量 FN kg
5858 1028 394 353 350 1048 287 363 1266 13800 358
距回转中心的 距离 R m 24.85 18.8 6.3 7.8 -3.9 -6.2 -8.18 -6.1 -9.13 -11.09 -1.2
MX=My=72.953t.m
FNB=42.246t 3.3.5 非工作况、方位Ⅱ MB=MΣ+Q附.R=-42.658+0.482 × 3=-41.212t.m
Mx=My=MB/ 2 =-29.141t.m
Q=FW Σ=2.596t
Qx=Qy=Q/ 2 =2.596/ 2 =1.836t FNB=FN Σ+Q附=32.059+0.482=32.541t
3.3 塔身截面的内力计算
3.3.1 工况Ⅰ,方位Ⅰ:
吊重风载荷
FWI=QI× 3%=(1.3+0.482) × 3%=0.053t
MnWI=FWIR=0.053 × 55=2.94t.m
吊重惯性载荷
2 ∏ nRQ 2 ∏× 0.67 × 55 × 1.782
FHI= g × 60 × t =
9.8 × 60 × 7
8
Mx=My=MB/ 2 =87.142/ 2 =61.619t.m
塔吊计算书
附塔机基础及平衡重和塔吊计算书○1基础计算书一、参数信息塔吊型号:QTZ80,塔吊起升高度H:50.00m,塔身宽度B:1.6m,基础埋深d:1.60m,自重G:600kN,基础承台厚度hc:1.00m,最大起重荷载Q:60kN,基础承台宽度Bc:5.50m,混凝土强度等级:C35,钢筋级别:HRB400,基础底面配筋直径:25mm二、塔吊对交叉梁中心作用力的计算1、塔吊竖向力计算塔吊自重:G=600kN;塔吊最大起重荷载:Q=60kN;作用于塔吊的竖向力:Fk=G+Q=600+60=660kN;2、塔吊弯矩计算风荷载对塔吊基础产生的弯矩计算:Mkmax=960kN·m;三、塔吊抗倾覆稳定验算基础抗倾覆稳定性按下式计算:e=Mk /(Fk+Gk)≤Bc/3式中 e──偏心距,即地面反力的合力至基础中心的距离; Mk──作用在基础上的弯矩;Fk──作用在基础上的垂直载荷;Gk ──混凝土基础重力,Gk=25×5.5×5.5×1=756.25kN;Bc──为基础的底面宽度;计算得:e=960/(660+756.25)=0.678m < 5.5/3=1.833m;基础抗倾覆稳定性满足要求!四、地基承载力验算依据《建筑地基基础设计规范》(GB50007-2011)第5.2条承载力计算。
计算简图:混凝土基础抗倾翻稳定性计算: e=0.678m < 5.5/6=0.917m 地面压应力计算: P k =(F k +G k )/A P kmax =(F k +G k )/A + M k /W式中:F k ──塔吊作用于基础的竖向力,它包括塔吊自重和最大起重荷载,F k =660kN ; G k ──基础自重,G k =756.25kN ; Bc ──基础底面的宽度,取Bc=5.5m ;M k ──倾覆力矩,包括风荷载产生的力矩和最大起重力矩,M k = 960kN ·m ; W ──基础底面的抵抗矩,W=0.118Bc 3=0.118×5.53=19.632m 3; 不考虑附着基础设计值:P k =(660+756.25)/5.52=46.818kPaP kmax =(660+756.25)/5.52+960/19.632=95.717kPa ; P kmin =(660+756.25)/5.52-960/19.632=0kPa ; 实际计算取的地基承载力设计值为:f a =160.000kPa ;地基承载力特征值f a 大于压力标准值P k =46.818kPa ,满足要求!地基承载力特征值1.2×f a 大于无附着时的压力标准值P kmax =95.717kPa ,满足要求!五、基础受冲切承载力验算依据《建筑地基基础设计规范》(GB 50007-2011)第8.2.7条。
QTZ80塔式起重机平衡臂部份计算书
板 , 板厚 8mm, 截面呈长方形方管。
截面积 A=34.91+0.8 ×23=53.31cm2
截面模量 Wx=
7.8
× 2 5 3- 6 . 3 × 2 2 . 6 3 6 × 25
=327.7cm3
Mxmax Fn
844000
29224
G= 2 Wx + 2 A = 2 × 3 2 7 . 7 + 2 × 5 3 .3 1
F=32748Kg 取动载系数 ϕ =1.05 Σ X=0 R0X=FCos31.80× 1.05=29224Kg Σ Y=0 Roy=1.05 × (15000-FSin31.80+1320+1266+350)
Roy=713Kg
Mx max=8440
轴力 FN=29224Kg
4. 主肢强度计算
主肢选用25a 号普通槽钢,在受力最大的B 截面前后1.5m 的长度上封
设 计 计 算 书
目录
1. 结构型式及主要尺寸 ------2 2. 平衡重计算 ------------------2 3. 臂架内力计算 ---------------4 4. 主肢强度计算 ---------------4
1
-9.13
-11560
平衡臂拉杆
363
-5
-1815
配电箱
350
-3.9
-1365
配重
G
-11.09
-11.09G
2
11221 10288 9735
θ = 3 1 . 80
θ
438 802
210 7026
3
3098 8330
3. 臂架内力计算 计算牵臂绝拉力 F FCos31.80× 0.21+FSin31.80× 9.74 =350 × 3.1+1266 × 8.33+1320 × 6.02+15000 × 10.29
QTZ80(TC5613)基础计算书
0.95
1290.57 Kn 4.00 m
单桩相对承台中心轴的XY方向距离xi,yi,xj,yj 单桩桩顶竖向力标准值Nik
a/20.5 (Fk+Gk)/n±Mykxi/∑xj ±Mxkyi/∑yj (Fk+Gk)/n+Mykxi/∑xj
2 2 2
Nikmax Nikmin 标准节宽度B
单桩相对承台中心轴的XY方向距离xi,yi 扣除承台自重的单桩桩顶竖向力设计值Ni1 承台弯矩Mx1=My1 系数αl 混凝土抗压强度fc 混凝土保护层厚度t 承台的计算高度ho 钢筋受拉强度设计值fy
(Fk+Gk)/n-Mykxi/∑xj2
1.6 M a/2-B/2 Ni-Gk/n 2*Ni1*xi 1 16.7 N/mm2 0.05 Hc-t 210 N/mm2
18.08
4.25
0.39
1.94
972.07 1290.57702.252.83540.55 84.33
1.20 364.98 875.96
塔吊最大弯矩Mkmax 单桩个数n 作用于桩基承台顶面的竖向力Fk
2.215 1
0.7×βz×µs×µz×ω0
40 M 300 KN.M 18.5 KN 1m
ω×φ×B×H×H×0.5 Me+Mω+P×hc
4个 547.5 Kn 5.3 M
25×Bc×Bc×Hc
基础承台宽度Bc
桩基承台的自重标准值Gk 承台底面的弯矩标准值Mxk,Myk 桩间距a
塔吊型号:QTZ80(TC5613) 塔吊自重F1 塔吊最大起重荷载F2 作用于桩基承台顶面的竖向力Fk
487.5 Kn 60 Kn 547.5 Kn 0.8 kN/m2 1.56 2.8 M 1.6 M 0.12 M
QTZ80塔吊基础计算1
塔吊天然基础的计算书一. 参数信息塔吊型号: QTZ80 自重(包括压重):F1=480.00kN 最大起重荷载: F2=60.00kN塔吊倾覆力距: M=1335.00kN.m 塔吊起重高度: H=47.00m 塔身宽度: B=1.60m混凝土强度等级:C35 钢筋级别: Ⅱ级地基承载力特征值: 237.50kPa基础最小宽度: Bc=5.00m 基础最小厚度: h=1.35m 基础埋深: D=2.00m预埋件埋深: h=0.00m二. 基础最小尺寸计算基础的最小厚度取:H=1.35m基础的最小宽度取:Bc=5.00m三. 塔吊基础承载力计算依据《建筑地基基础设计规范》(GB50007-2002)第5.2条承载力计算。
计算简图:由于偏心距 e=M/(F+G)=1335.00/(540.00+1843.75)=0.56≤B/6=0.83所以按小偏心计算,计算公式如下:当考虑附着时的基础设计值计算公式:式中 F──塔吊作用于基础的竖向力,它包括塔吊自重,压重和最大起重荷载,F=540.00kN;G──基础自重与基础上面的土的自重,G=25.0×B c×B c×H c+20.0×B c ×B c×D =1843.75kN;B c──基础底面的宽度,取B c=5.00m;W──基础底面的抵抗矩,W=B c×B c×B c/6=20.83m3;M──倾覆力矩,包括风荷载产生的力距和最大起重力距,M=1.4×1335.00=1869.00kN.m;经过计算得到:最大压力设计值 P max=1.2×(540.00+1843.75)/5.002+1869.00/20.83=204.13kPa最小压力设计值 P min=1.2×(540.00+1843.75)/5.002-1869.00/20.83=24.71kPa有附着的压力设计值 P k=1.2×(540.00+1843.75)/5.002=114.42kPa四. 地基基础承载力验算地基基础承载力特征值计算依据《建筑地基基础设计规范》GB 50007-2002第5.2.3条。
塔吊桩基础安全验算塔吊(QTZ80)
塔吊桩基础安全验算塔吊(QTZ80)基础设计(单桩)计算书1、计算参数2、基本参数QZT80(6012)臂长60米塔式起重机,塔身尺寸1.80m,基坑开挖深度 m;承台面标高 m,设两道附墙件。
2、QZT80(6012)塔机主要技术参数:公称起重力矩800KN.m ,最大起重量60KN,基本臂最大幅度处额定起重量12KN,最大独立起升高度42m,附着最大起升高度150m,工作幅度:2.5~60米。
起升速度:2倍率钢丝绳时为8 0米/分、40米/分、5米/分。
4倍率钢丝绳时为40米/分、20米/分、2.5米/分。
回转速度:0~0.54转/分。
变幅速度米/分。
塔机载荷:最大起重量6吨,最大辐度起重量1.2吨。
(2)计算参数1)塔机基础受力情况荷载工况基础荷载P(KN) M(KN·m)F k F h M M z工作状态971.00 45.00 1967.00 305.00 非工作状态961.00 2168.00 0比较桩基础塔机的工作状态和非工作状态的受力情况,塔机基础按非工作状态计算如图:F k=971.00KN,F h=45.00KN,M=2168.00+45.00×2.40=2276.00kN.mF k=971.0×1.35=1310.85KN,F h=45×1.35KN=60.75KN, M k=(2168.0+45×2.40)×1.35=3072.6kN.m2)桩顶以下岩土力学资料3)基础设计主要参数基础桩采用1根φ1200人工挖孔灌注桩,桩顶标高 m,桩端不设扩大头,桩端入全风化花岗岩0.50m;桩混凝土等级C35,fc=16.70N/mm2,Ec=3.15×104N/mm2;f t=1.57N/mm2,桩长14.00m;,钢筋HRB335,f y=300.00N/mm2,E2=2.00×105N/mm2;承台尺寸长(a)=4.50m、宽(b)=4.5.00m、高(h)=1.40m;桩中心与承台中心重合,承台面标高 m;承台混凝土等级C35,f t=16.70N/mm2,γ砼=25 N/mm3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
塔吊四桩基础的计算书依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2009)。
一. 参数信息塔吊型号:QTZ80(ZJ5710)塔机自重标准值:Fk1=777.00kN起重荷载标准值:Fqk=60kN 塔吊最大起重力矩:M=810kN.m非工作状态下塔身弯矩:M=1668kN.m 塔吊独立计算高度:H=43m(塔吊安装高度111.35m)塔身宽度:B=1.6m 桩身混凝土等级:C30承台混凝土等级:C35 保护层厚度:H=50mm矩形承台边长:H=3m 承台厚度:Hc=1.3m承台箍筋间距:S=200mm 承台钢筋级别:HRB400承台顶面埋深:D=0m 桩直径:d=0.8m桩间距:a=2.1m 桩钢筋级别:HRB400桩入土深度:46.75m 桩型与工艺:泥浆护壁钻(冲)孔灌注桩计算简图如下:二. 荷载计算1. 自重荷载及起重荷载1) 塔机自重标准值F k1=777kN2) 基础以及覆土自重标准值G k=3×3×1.30×25=292.5kN承台受浮力:F lk=3×3×0.80×10=72kN3) 起重荷载标准值F qk=60kN2. 风荷载计算1) 工作状态下塔机塔身截面对角线方向所受风荷载标准值a. 塔机所受风均布线荷载标准值(Wo=0.2kN/m2)=0.8×1.49×1.95×1.674×0.2=0.78kN/m2=1.2×0.78×0.35×1.6=0.52kN/mb. 塔机所受风荷载水平合力标准值F vk=q sk×H=0.52×43.00=22.49kNc. 基础顶面风荷载产生的力矩标准值M sk=0.5F vk×H=0.5×22.49×43.00=483.47kN.m2) 非工作状态下塔机塔身截面对角线方向所受风荷载标准值a. 塔机所受风均布线荷载标准值(本地区Wo=0.60kN/m2)=0.8×1.55×1.95×1.674×0.60=2.43kN/m2=1.2×2.43×0.35×1.60=1.63kN/mb. 塔机所受风荷载水平合力标准值F vk=q sk×H=1.63×43.00=70.18kNc. 基础顶面风荷载产生的力矩标准值M sk=0.5F vk×H=0.5×70.18×43.00=1508.83kN.m 3. 塔机的倾覆力矩工作状态下,标准组合的倾覆力矩标准值M k=1668+0.9×(810+483.47)=2832.13kN.m非工作状态下,标准组合的倾覆力矩标准值M k=1668+1508.83=3176.83kN.m三. 桩竖向力计算非工作状态下:Q k=(F k+G k)/n=(777+292.50)/4=267.38kNQ kmax=(F k+G k)/n+(M k+F vk×h)/L=(777+292.5)/4+(3176.83+70.18×1.30)/2.97=1367.95kN Q kmin=(F k+G k-F lk)/n-(M k+F vk×h)/L=(777+292.5-72)/4-(3176.83+70.18×1.30)/2.97=-851.20kN工作状态下:Q k=(F k+G k+F qk)/n=(777+292.50+60)/4=282.38kNQ kmax=(F k+G k+F qk)/n+(M k+F vk×h)/L=(777+292.5+60)/4+(2832.13+22.49×1.30)/2.97=1245.99kN Q kmin=(F k+G k+F qk-F lk)/n-(M k+F vk×h)/L=(777+292.5+60-72)/4-(2832.13+22.49×1.30)/2.97=-699.24kN四. 承台受弯计算1. 荷载计算不计承台自重及其上土重,第i桩的竖向力反力设计值:工作状态下:最大压力N i=1.35×(F k+F qk)/n+1.35×(M k+F vk×h)/L=1.35×(777+60)/4+1.35×(2832.13+22.49×1.30)/2.97=1583.37kN 最大拔力N i=1.35×(F k+F qk)/n-1.35×(M k+F vk×h)/L=1.35×(777+60)/4-1.35×(2832.13+22.49×1.30)/2.97=-1018.39kN 非工作状态下:最大压力N i=1.35×F k/n+1.35×(M k+F vk×h)/L=1.35×777/4+1.35×(3176.83+70.18×1.30)/2.97=1748.02kN最大拔力N i=1.35×F k/n-1.35×(M k+F vk×h)/L=1.35×777/4-1.35×(3176.83+70.18×1.30)/2.97=-1223.54kN2. 弯矩的计算依据《塔式起重机混凝土基础工程技术规程》第6.4.2条其中M x,M y1──计算截面处XY方向的弯矩设计值(kN.m);x i,y i──单桩相对承台中心轴的XY方向距离(m);N i──不计承台自重及其上土重,第i桩的竖向反力设计值(kN)。
由于非工作状态下,承台正弯矩最大:M x=M y=2×1748.02×0.25=874.01kN.m承台最大负弯矩:M x=M y=2×-1223.54×0.25=-611.77kN.m3. 配筋计算根据《混凝土结构设计规》GB50010-2010第6.2.10条式中α1──系数,当混凝土强度不超过C50时,α1取为1.0,当混凝土强度等级为C80时,α1取为0.94,期间按线性插法确定;f c──混凝土抗压强度设计值;h0──承台的计算高度;f y──钢筋受拉强度设计值,f y=360N/mm2。
底部配筋计算:αs=874.01×106/(1.000×16.700×3000.000×12502)=0.0112=1-(1-2×0.0112)0.5=0.0112γs=1-0.0112/2=0.9944A s=874.01×106/(0.9944×1250.0×360.0)=1953.2mm2顶部配筋计算:αs=611.77×106/(1.000×16.700×3000.000×12502)=0.0078=1-(1-2×0.0078)0.5=0.0078γs=1-0.0078/2=0.9944A s=611.77×106/(0.9961×1250.0×360.0)=1364.8mm2五. 承台剪切计算最大剪力设计值:V max=1748.02kN依据《混凝土结构设计规》(GB50010-2010)的第6.3.4条。
我们考虑承台配置箍筋的情况,斜截面受剪承载力满足下面公式:式中λ──计算截面的剪跨比,λ=1.500f t──混凝土轴心抗拉强度设计值,f t=1.570N/mm2;b──承台的计算宽度,b=3000mm;h0──承台计算截面处的计算高度,h0=1250mm;f y──钢筋受拉强度设计值,f y=360N/mm2;S──箍筋的间距,S=200mm。
经过计算承台已满足抗剪要求,只需构造配箍筋!六. 承台受冲切验算角桩轴线位于塔机塔身柱的冲切破坏锥体以,且承台高度符合构造要求,故可不进行承台角桩冲切承载力验算七. 桩身承载力验算桩身承载力计算依据《建筑桩基础技术规》(JGJ94-2008)的第5.8.2条根据第二步的计算方案可以得到桩的轴向压力设计值,取其中最大值N=1.35×1367.95=1846.74kN桩顶轴向压力设计值应满足下面的公式:其中Ψc──基桩成桩工艺系数,取0.75f c──混凝土轴心抗压强度设计值,f c=14.3N/mm2;A ps──桩身截面面积,A ps=502655mm2。
桩身受拉计算,依据《建筑桩基技术规》JGJ94-2008 第5.8.7条受拉承载力计算,最大拉力N=1.35×Q kmin=-1149.12kN经过计算得到受拉钢筋截面面积 A s =3192.013mm 2。
由于桩的最小配筋率为0.20%,计算得最小配筋面积为1005mm 2综上所述,全部纵向钢筋面积1005mm 2八. 桩竖向承载力验算依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2009)的第6.3.3和6.3.4条 轴心竖向力作用下,Q k =282.38kN ;偏向竖向力作用下,Q kmax =1367.95kN.m桩基竖向承载力必须满足以下两式:单桩竖向承载力特征值按下式计算:其中 R a ──单桩竖向承载力特征值;q sik ──第i 层岩石的桩侧阻力特征值;按下表取值;q pa ──桩端端阻力特征值,按下表取值;u ──桩身的周长,u=2.51m ;A p ──桩端面积,取A p =0.50m 2;l i ──第i 层土层的厚度,取值如下表;厚度及侧阻力标准值表如下: 序号土层号 土层名称 土层厚度m (约) 钻孔灌注桩摩阻力标准值(KPa ) 桩周土摩擦力 桩端土承载力 12-1 淤泥 2.8 5.0 0 22-2 淤泥 9.7 5.5 0 33-2 粘土 9.3 16 250 44-1 粉质粘土 3.3 22 350 54-2 淤泥质粘土 13.8 11 200 6 5-1 粉质粘土 7.85 23 400最大压力验算:R a =2.51×(2.8×5+9.7×5.5+9.3×16+3.3×22+13.8×11+7.85×23)+400×0.50=1762.06kN由于: R a = 1762.06 > Q k = 282.38,最大压力验算满足要求!由于: 1.2R a = 2114.47 > Q kmax = 1367.95,最大压力验算满足要求!九. 桩的抗拔承载力验算依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2009)的第6.3.5条偏向竖向力作用下,Q kmin=-851.20kN.m桩基竖向承载力抗拔必须满足以下两式:式中G p──桩身的重力标准值,水下部分按浮重度计;λi──抗拔系数;R a=2.51×(0.750×2.8×5+0.750×9.7×5.5+0.750×9.3×16+0.750×3.3×22+0.750×13.8×11+0.700×7.85×23)=1265.554kNG p=0.503×(46.75×25-46.75×10)=352.487kN由于: 1265.55+352.49 >= 851.2,抗拔承载力满足要求!十. 桩式基础格构柱计算依据《钢结构设计规》(GB50017-2011)。