Influence of Axial Load Ratio on Shear Behavior ofThrough-Diaphragm Connections of Concret
土木工程英语必背重要词汇
土木工程专业裂缝宽度容许值: allowable value of crack width使最优化: optimized次最优化: suboptimization主梁截面: girder section主梁: girder|main beam|king post桥主梁: bridge girder单墩: single pier结构优化设计: optimal structure designing多跨连续梁: continuous beam on many supports裂缝crackcrevice刚构桥: rigid frame bridge刚度比: ratio of rigidity|stiffness ratio等截面粱: uniform beam|uniform cross-section beam 桥梁工程: bridgeworks|LUSAS FEA|Bridge Engineering桥梁工程师: Bridge SE预应力混凝土: prestressed concrete|prestre edconcrete 预应力混凝土梁: prestressed concrete beam预应力混凝土管: prestressed concrete pipe最小配筋率minimum steel ratio轴向拉力, 轴向拉伸: axial tension英语重点词汇承台: bearing platform|cushioncap|pile caps桩承台: pile cap|platformonpiles低桩承台: low pile cap拱桥: hump bridge|arch bridge|arched bridge强度: intensity|Strength|Density刚强度: stiffness|stiffne|westbank stiffness箍筋: stirrup|reinforcement stirrup|hooping预应力元件: prestressed element等效荷载: equivalent load等效荷载原理: principle of equivalent loads模型matrixmodelmouldpattern承载能力极限状态: ultimate limit states正常使用极限状态: serviceability limit state 弹性: elasticity|Flexibility|stretch平截面假定: plane cross-section assumption抗拉强度intensity of tensiontensile strength安全系数safety factor标准值: standard value,|reference value作用标准值: characteristic value of an action重力标准值: gravity standard设计值: design value|value|designed value作用设计值: design value of an action荷载设计值: design value of a load可靠度: Reliability|degree of reliability不可靠度: Unreliability高可靠度: High Reliability几何特征: geometrical characteristic塑性plastic natureplasticity应力图: stress diagram|stress pattern压应力: compressive stress|compression stress配筋率: reinforcement ratio纵向配筋率: longitudinal steel ratio有限元分析: FEA|finite element analysis (FEA)|ABAQUS有限元法: finite element method线性有限元法: Linear Finite Element Method裂缝控制: crack control控制裂缝钢筋: crack-control reinforcement应力集中: stress concentration主拉应力: principal tensile stress非线性nonlinearity非线性振动: nonlinear vibration弯矩: bending moment|flexural moment|kN-m弯矩图: bending moment diagram|moment curve弯矩中心: center of moments|momentcenter剪力: shearing force|shear force|shear剪力墙: shear wall|shearing wall|shear panel弹性模量elasticity modulus剪力图: shear diagram|shearing force diagram剪力和弯矩图: Shear and Moment Diagrams剪力墙结构: shear wall structure轴力: shaft force|axial force框架结构frame construction板单元: plate unit曲率curvature材料力学mechanics of materials结构力学: Structural Mechanics|theory of structures 弯曲刚度: bending stiffness|flexural rigidity截面弯曲刚度: flexural rigidity of section弯曲刚度,抗弯劲度: bending stiffness钢管混凝土结构: encased structures极限荷载: ultimate load极限荷载设计: limit load design|ultimate load design 板壳力学: Plate Mechanic主钢筋: main reinforcement|Main Reinforcing Steel 钢筋混凝土的主钢筋: main bar悬臂梁: cantilever beam|cantilever|outrigger悬链线: Catenary,|catenary wire|chainetteribbed stiffener加劲肋: stiffening rib|stiffener|ribbed stiffener短加劲肋: short stiffener支承加劲肋: bearing stiffener技术标准technology standard水文: Hydrology招标invite public bidding连续梁: continuous beam|through beam多跨连续梁: continuous beam on many supports wind resistance抗风: Withstand Wind |wind resistance基础的basal初步设计predesignpreliminary plan技术设计: technical design|technical project施工图设计: construction documents design基础foundationbasebasis 结构形式: Type of construction|form of structure屋顶结构形式: roof form地震earthquake地震活动: Seismic activity|seismic motion耐久性: durability|permanence|endurance耐久性试验: endurance test|life test|durability test短暂状况: transient situation偶然状况: accidental situation永久作用: permanent action永久作用标准值: characteristic value of permanent action可变作用: variable action可变作用标准值: characteristic value of variable action可变光阑作用: iris action偶然作用: accidental action作用效应偶然组合: accidental combination for action effects作用代表值: representative value of an action作用标准值: characteristic value of an action地震作用标准值: characteristic value of earthquake action可变作用标准值: characteristic value of variable action作用频遇值Frequent value of an action安全等级: safety class|Security Level|safeclass设计基准期: design reference period作用效应: effects of actions|effect of an action作用效应设计值Design value of an action effect分项系数: partial safety factor|partial factor作用分项系数: partial safety factor for action抗力分项系数: partial safety factor for resistance作用效应组合: combination for action effects结构重要性系数Coefficient for importance of a structure桥涵桥涵跟桥梁比较类似,主要区别在于:单孔跨径小于5m或多孔跨径之和小于8m的为桥涵,大于这个标准的为桥梁水力: hydraulic power|water power|water stress跨度span人行道sidewalk无压力: stress-free净高clear height矩形rectangle无铰拱: arch without articulation|fixed end arch荷载load荷载强度: loading intensity|loading inte ity荷载系数: load factor|loading coefficient桥头堡bridgeheadbridge tower美观pleasing to the eyebeautifulartistic经济的economicaloecumenicaleconomic适用be applicable防水waterproof剪切模量: shear modulus|rigidity modulus|GXY剪切强度: shear strength|shearing strength|Fe-Fe扭转剪切强度: torsional shear strength剪切破坏: shear failure|shear fracture|shear damage 纯剪切破坏: complete shear failure局部剪切破坏: local shear failure永久冻土: permafrost|perennial frost土的侧压力: earth lateral pressure收缩shrinkpull backcontract徐变: creep摩擦系数: coefficient of friction|friction factor风荷载: wind load|wind loading风荷载标准值: characteristi cvalue of windload 风荷载体型系数: shape factor of windload温度作用: temperature action支座: support|bearing|carrier 外支座: outer support|outersu ort代表值: central value|representative value结构自重: self-weightstructure|dead load最不利分布: Least favorable distribution,抗震antiknockquake-proofearthquake proofing constructionearthquake-resistanceearthquake proof钢结构steel structure钢结构设计: Design Of Steel Structure钢结构设计规范: Code for design of steel structures 混凝土结构设计规范: Code for design of concrete structures预应力混凝土结构设计软件: PREC温度梯度: temperature gradient|thermal gradient动力系数: dynamic coefficient制动力系数: Braking force coefficient动力学kineticsdynamicsdyn内摩擦角: angle of internal friction有效内摩擦角: effective angle of internal friction主效应main effect主效应: Main effect,主效应模型: Main effect model超静定的: hyperstatic超静定结构: statically indeterminate structure静定: statically determinate静定梁: statically determinate beam附属设备: accessories|accessory equipment稳定系数: coefficient of stabilizationearth pressure at rest静土压力: earthpressureatrest挡土墙retaining wallabamurus主动土压力: active earth pressure被动土压力: passive earth pressure土层soil horizon土层剖面: soil profile土层剖面特性: soil-profile characteristics密度densitythickness宽度width净距: clear distance|gabarit|Clearance钢筋强度标准值: characteristic value of strength of steel bar钢材强度标准值: characteristic value of strength of steel折减系数: reduction factor|discount coefficient强度折减系数: strength reduction factor线性linearity线性代数linear algebra位移displacement位移角: angle of displacement|angle of slip应变量: dependent variable|strain capacityuniform stress均布应力: uniform stress非均布应力: non-uniform stress均布荷载: uniformly distributed load集中荷载: concentrated load|point load可变集中荷载: variable concentrated load法向集中荷载: normal point load影响线: influence line反力影响线: influence line for reaction影响线方程: equation of the influence line车辆荷载: car load|vehicular load|traffic load计算跨径: calculated span重力加速度: acceleration of gravity膨胀系数: coefficient of expansion|expansivity术语termterminology恒载: dead load|deadloading|permanent load活载: live load楼面活载: floor live load概率分布: probability distribution 联合概率分布: Joint probability distribution,边缘概率分布: Marginal probability distribution,拱腹: soffit|intrados|arch soffit三铰拱: three hinged arch土木工程系: Department of Civil Engineering土木工程师协会: ICE土木工程师协会: Institute of Civil Engineers作用准永久值: quasi-permanentvalueofanaction 直径diameter验算: checking|check calculation验算公式: check formula变形验算: deformation analysis建筑材料tignum刚度rigidityseveritystiffness单元: cell|Unit|module节点node位移方程式: strain displacement equation三维three dimensional 3d插值: Interpolation|interpolate|Spline插值法: interpolation|method of interpolation轴对称axial symmetryrotational symetryaxisymmetric(al)应变矩阵strain matrix应变矩阵: strain matrix单元应变矩阵: element strain matrix应力应变矩阵: stress-strainmatrix阻尼矩阵: damping matrix|daraf|damped matrix 弹性系数矩阵: elastic coefficient matrix雅可比矩阵: Jacobi matrix|jacobian matrix刚度矩阵: stiffness matrix|rigidity matrix质量矩阵: mass matrix|ma matrix节点力: nodal forces等效节点力: equivalent nodal force节点荷载: joint load|nodal loads节点荷载: joint load|nodal loads一致节点荷载: consistent nodal load应力矩阵: stress matrix挠度: deflection|flexivity|flexure转角: corners|intersection angle|rotor angle单元刚度矩阵: element stiffness matrix边界条件: boundary condition|edge conditions疲劳强度: fatigue strength|endurance strength抗疲劳强度: fatigue resistance工程局: construction bureau沉井基础: open caisson foundation水泥cement水泥砂浆cement mortar石膏: Gypsum|plaster|Plaster of Paris简支梁: simply supported beam|simple beam简支梁桥: simple supported girder bridge平衡条件: equilibrium condition|balance condition约束条件: constraint condition|constraint数值解: numerical solution|arithmeticsolution力法: force method|brute force method位移法: displacement method|di lacement method力矩分配法: moment distribution method|moment diagram理论力学: Theoretical Mechanics弹性力学: Theory of Elastic Mechanics结构动力学: Structural Dynamics|Clough高等结构动力学: Advancd Dynamics of Structures测量学: surveying|metrology|geodesy道路工程: road works|highway construction铁路工程: railway engineering|rairoad engineering隧道: Tunnels|subway|underpass轨道: orbit|track|trajectory砂子: sand抗压强度pressive strength焊接技术: Welding Engineering Technology (WET)断裂力学: Fracture Mechanics|fracturing mechanics基础工程: foundation engineering|foundation works 地质学: geology|die Geologie, opl.|geognosy岩土力学: rock mechanics|rock-soil mechanics工程力学: engineering mechanics轴线axes拱脚: arch springing|abutment|spring木桥: timber bridge|wodden bridge|Woodbridge枕木sleeper crosstie残余应力: residual stress|remaining stress 复合应力: combined stress|compound stress初始应力: initial stress|primary stress屈服极限: yield limit|minimum yield|yield strength疲劳屈服极限: fatigue yield limit应力幅值: stress amplitude冲击韧性: impact toughness|Impelling strength反弯点: knick point|pointofcontraflexure桁架: truss|tru|Girder网架结构: space truss structure|grid structure锚孔: anchor eye大跨度: High-span柱: column|pillar|Clmn. Coloumn常微分方程: Ordinary Differentical Equations|ODE|ODEs增大系数: enhancementcoefficient浮桥flying bridge raft bridgepontoon bridge pontoonfloat bridge浮桥: pontoon bridge|pontoon|floating bridge轮渡: Ferry|Ferries|ferry boat钢桥: steel bridge立面图: elevation|elevation drawing|profile背立面图: back elevation平面图: plan|plan view|planar graph泥石流: debris flow|rollsteinfluten|mud-rock flow大型泥石流: macrosolifluction滑坡泥石流: landslide模板: template|die plate, front board|formwork沉降: settlement|sedimentation|subside沉降缝: settlement joint伸缩缝: expansion joint路灯street lamp排水系统: drainage system|sewerage system泄水管: drain pipe|Scupper Pipe|tap pipe土力学: soil mechanics|Bodenmechanik高等土力学: Advanced Soil Mechanics扩展(扩大)基础: spread foundation桩基础: pile foundation|pile footing|Pile砂桩基础: sand pile foundation群桩基础: multi-column pier foundation沉箱基础caisson foundation沉箱基础: caisson foundation|laying foundation管状沉箱基础: cylinder caisson foundation气压沉箱基础: pneumatic caisson foundation桩承台: pile cap|platformonpiles桩: pile|pile group|pale灌注桩: cast-in-place pile|cast in place管灌注桩: driven cast-in-place pile灌注混凝土基础: cast-in-place concrete foundation 承台结构: suspended deck structure工作机理working mechanism铆钉: rivet|rivet riv|clinch bolt卵石: cobble|gravel|pebble钢筋混凝土结构: reinforced concrete structure预应力混凝土结构: prestressed concrete structure软化: softening|mollification|malacia强化: reinforcement|consolidate|intensification固体力学: solid mechanics|механика твердого тела 虚功原理: principle of virtual work偏心距: eccentricity|throw of eccentric偏心距增大系数: amplified coefficient of eccentricity 强度准则: strength criterion变形: Deformation|Transforms|deform工程建设: engineering construction石油工程建设: Petroleum Engineering Construction 偏心受压: eccentric compression偏心受压构件: eccentric compression member弹性支承: elastomeric bearing|yielding support temperature load温度荷载: temperature load施工控制: construction control经纬仪theodolite transit instrument夹具jig tongs clamp切线: tangent|Tangent line,|tangential line水平角: horizontal angle|inclination高程index elevation height altitude沼泽marsh swamp glade水准仪water level公寓apartment砂浆mortar sand pulp骨料skeletal material aggregate骨料级配: aggregate grading|aggregate gradation碱性的: alkalic|basic|alkalescent耐碱性的: alkali-proof风洞试验: wind tunnel test先张法: pre-tensioning|pretensioning method配合比设计: mix design|design of mix proportion 和易性: workability渗透性osmosis penetrability水泥浆: grout|cement slurry|cement paste对称的symmetrical symmetric(al)扭转reverseturn around (an undesirable situation)扭转应力: torsion stress|warping stress容许扭转应力: allowable twisting stress扭转角: angle of torsion|angle of twist夯实回填土: tamped backfill|tamped/compacted backfill圆锥贯入仪: cone penetrometer水化(作用): hydration水化热: heat of hydration|heat of hydratation振捣器: vibrating tamper|vibrorammer|vibrator板振捣器: slab vibrator破裂fracture burst结合力: binding force|Adhesion|cohesion碎石gravel gravely脆性brittleness脆性材料: brittleness material|brittle material脆性破坏: brittle failure|brittle fracture素混凝土: plain concrete素混凝土结构: plain concrete construction含水量liquid water content钢筋: Reinforcement|bar tendon主钢筋: main reinforcement|Main Reinforcing Steel钢筋条: reinforcement bar|steel bar极限抗拉应力: ultimate tensile strength极限抗拉强度: ultimate tensile strength|UTS混凝土板: concrete slab预制混凝土板: precast concrete plank锚固: anchoring|anchorage|Anchor锚具: anchorage|anchorage device|ground tackle削弱weaken埋置: embedding|elutriator|imbedment预应力钢筋: prestressed reinforcement回弹: resilience|spring back|rebound有说服力的: persuasive|convincing|convictive形心centre of figurecentre of formcentroid重心center of gravity(n) core; main part惯性矩: moment of inertia极惯性矩: polar moment of inertia质心centroid center of mass回转半径: radius of gyration|turning radius容许应力: allowable stress|permissible stress排架: shelving|bent frame|bent桩排架: pile bent纵梁longeron carling横梁: beam|cross beam|transverse beam缆索cable thick rope阻尼damping刚架: rigid frame|frame|stiffframe缀板batten plate缀板: batten plate|stay plate|batte latebatten plate缀板: batten plate|stay plate|batte late上部缀板: upper stay plate推力: thrust|Push|Push Power槽钢channel steel特征值: Eigenvalue,|characteristic value冷拔钢丝: cold drawn wire自振频率: natural frequency of vibration自振周期: natural period of vibration土壤加固工程: soil stabilization works结构加固工程: structural fortification应力分析: stress analysis|stress distribution结构分析: structural analysis|ETABS NL结构稳定性: structural stability结构工程: Structural Engineering|structural works 认可标准: recognized standard|approved standard 官方认可标准: officially recognized standard,再循环: recycle|recirculation|recycling快硬水泥: rapid hardening cement|ferrocrete曲率半径: radius of curvature|curve radius|ρ刚性系数: coefficient of rigidity乡郊地区: rural area饱和saturation饱和密度: saturated density|Saturation density脚手架staging scaffold falsework立体剖面图: sectional axonometric drawing结构控制: structural control收缩量: Shrinkage|amount of shrinkage间距space between 钢管steel tube工字钢桩: steel H pile钢绞线: Steel Strand|Steel Stranded Wire|strand群震: swarm earthquake系统误差: systematic error|fixed error|system error最大剪应力: maximum shear|maximum shearing stress最大剪应变: maximum shear strain千斤顶: jack|lifting jack|Wheeljack地震系数: seismic coefficient|seismic factor。
材料力学中英对照词汇
材料力学中英对照词汇A安全因数safety factorB半桥接法half bridge闭口薄壁杆 t hin-walled tubes比例极限propor tiona l limit边界条件bounda ry condit ions变截面梁beam of variab le crosssectio n 变形deform ation变形协调方程compati bili ty equati on 标距gage length泊松比Poisso n’s ratio补偿块compen satin g blockC材料力学mechani cs of materi al s冲击荷载impact load初应力,预应力initia l stress纯剪切pure shear纯弯曲pure bendin g脆性材料brittl e materi alsD大柔度杆long column s单位荷载unit load单位力偶unit couple单位荷载法 u nit-load method单向应力,单向受力uniaxi al stress等强度梁beam of consta nt streng th低周疲劳low-cyclefatigu e电桥平衡bridge balanc ing电阻应变计 resist ancestrain gage电阻应变仪r esist ancestrain indica tor 叠加法superp ositi on method叠加原理superp ositi on princi ple 动荷载dynami c load断面收缩率p ercen tagereduct ion in area多余约束redund ant restra i ntE二向应力状态stateo f biaxia l stressF分布力distri buted force复杂应力状态 stateof triaxi al stress复合材料composi te materi alG杆,杆件bar刚度stiffn ess刚架,构架frame刚结点rigidj oint高周疲劳high-cyclefatigu e各向同性材料i sotro pi cal materi al功的互等定理reciprocal-work theore m工作应变计a ctive strain gage工作应力workin g stress构件struct ural member惯性半径radius of gyrati on of an area惯性积product of inerti a惯性矩,截面二次轴距moment ofinerti a广义胡克定律 genera lizedHook’slawH横向变形latera l deform ation胡克定律Hook’s law滑移线slip-linesJ基本系统primar y system畸变能理论d istor tionenergy theory畸变能密度 distor tiona l strain energydensit y极惯性矩,截面二次极矩polarmoment of inerti a极限应力ultimate stress极限荷载limitl oad挤压应力bearin g stress剪力shear force剪力方程equati on of shear force剪力图shear forcediagra m剪流shear flow剪切胡克定律Hook’slawforshear剪切shear交变应力,循环应力cyclic stress截面法method of sectio ns截面几何性质geomet ri cal propertiesofan area截面核心core of sectio n静不定次,超静定次数degree of astatic allyindete rmina te proble m静不定问题,超静定问题statical l yindete rmina te proble m静定问题static allydeterm i nate proble m静荷载static l oad静矩,一次矩static moment颈缩neckin gK开口薄壁杆b ar of thin-walled open crosssectio n抗拉强度ultima te stress in tensio n抗扭截面系数sectio n modulu s in torsio n抗扭强度ultima te stress in torsio n抗弯截面系数sectio n modulu s in bendingL拉压刚度axial rigidi ty拉压杆,轴向承载杆 a xiall y loaded bar理想弹塑性假设elasti c-perfectly plasti cassump tion力法forcemethod力学性能mechani cal proper ties连续梁contin uousbeam连续条件contin uity conditi on梁beams临界应力critic al stress临界荷载critic al loadM迈因纳定律 M i ner’s law名义屈服强度offset yieldi ng stress莫尔强度理论Mohr theory of failure敏感栅sensiti ve gridN挠度deflec tion挠曲轴deflec tioncurve挠曲轴方程 e quati on of deflection curve挠曲轴近似微分方程approxi matel ydifferentia l equati on of the deflecti oncurve内力intern al forces扭力矩twisti ng moment扭矩torsio nal moment扭矩图torque diagra m扭转torsio n扭转极限应力 ultima te stress in torsio n扭转角angel of twist扭转屈服强度yieldi ng stress in torsio n扭转刚度torsio nal rigidi tyO欧拉公式Euler’s formul aP疲劳极限,条件疲劳极限endura ncelimit疲劳破坏fatigu e rupture疲劳寿命fatigu e life偏心拉伸eccent ric tensio n偏心压缩eccent ric compre ssion平均应力averag e stress平面弯曲planebendin g平面应力状态stateo f planestress平行移轴定理 parall el axis theore m平面假设planecross-sectio n assump tionQ强度streng th强度理论theory of streng th强度条件streng th conditi on切变模量shearmodulu s切应变shear strain切应力shear stress切应力互等定理theore m of conjug ate sheari ng stress屈服yield屈服强度yieldstreng th全桥接线法 full bridgeR热应力thermal stressS三向应力状态 stateof triaxi al stress三轴直角应变花three-elemen t rectangular rosett e三轴等角应变花three-elemen t del tarosett e失稳buckli ng伸长率elonga tion圣维南原理S aint-Venant’sprinci ple 实验应力分析experi menta l stress analysis塑性变形,残余变形plasti c deform ationductil e materi als塑性材料,延性材料塑性铰plasti c hingeT弹簧常量spring consta nt弹性变形elasti c deform ation弹性模量modulu s of elasti c ity体积力body force体积改变能密度densit y of energy ofvolume change体应变volume strainW弯矩bendin g moment弯矩方程equati on of bendin g moment弯矩图bendin g moment diagra m弯曲bendin g弯曲刚度flexural rigidi t y弯曲正应力n ormal stress in bendin g弯曲切应力s hearstress in bendin g弯曲中心shear center位移法displa cemen t method位移互等定理reciprocal-displa cemen ttheore m稳定条件stabil ity conditi on稳定性stabil ity稳定安全因数safety factor for stabil i tyX细长比,柔度slende rness ratio线性弹性体 l inear elasti c body约束扭转constraint torsio n相当长度,有效长度equivalent l ength相当应力equivalent stress小柔度杆short column s形心轴centro i dal axis形状系数shapefactor许用应力allowa ble stress许用应力法 allowa ble stress method许用荷载allowa ble load许用荷载法a llowa ble load methodY应变花strain rosett e应变计strain gage应变能strain energy应变能密度 strain energy densit y应力stress应力速率stress ratio应力比stress ratio应力幅stress amplit ude应力状态stateof stress应力集中stress concen trati on应力集中因数stress concen trati on factor应力-寿命曲线,S-N曲线stress-cycl ecurve应力-应变图stress-strain diagra m应力圆,莫尔圆Mohr’s circle for stressesZ正应变normal strain正应力normal stress中面middle plane中柔度杆interm ediat e column s中性层neutra l surface中性轴neutra l axis轴shaft轴力axial force轴力图axial forcediagra m轴向变形axial deform ation轴向拉伸axial tensio n轴向压缩axial compre ssion主平面princi pal planes主应力princi pal stress主应力迹线p rinci pal stress trajec tory主轴princi pal axis主惯性矩princi pal moment of inerti a主形心惯性矩princi pal centro idalmoment s of inerti a主形心轴princi pal centro i dalaxi s转角angel of rotati on转轴公式transformati on equati on自由扭转free torsio n组合变形combin ed deform ation组合截面composi te area最大切应力理论maximu m shear stresstheory最大拉应变理论maximu m tensil e straintheory最大拉应力理论maximu m tensil e stresstheory最大应力maximu m stress最小应力minimu m stress。
风力发电英文对照
风力发电机用专业英语中文对照风力发电机 wind turbine风电场 wind power station wind farm风力发电机组 wind turbine generator system WTGS 水平轴风力发电机 horizontal axis wind turbine垂直轴风力发电机 vertical axis wind turbine轮毂(风力发电机) hub (for wind turbine)机舱 nacelle支撑结构 support structure for wind turbine关机 shutdown for wind turbine正常关机 normal shutdown for wind turbine紧急关机 emergency shutdown for wind turbine空转 idling锁定 blocking停机 parking静止 standstill制动器 brake停机制动 parking brake风轮转速 rotor speed控制系统 control system保护系统 protection system偏航 yawing设计和安全参数 design situation设计工况 design situation载荷状况 load case外部条件 external conditions设计极限 design limits极限状态 limit state使用极限状态 serviceability limit states极限限制状态 ultimate limit state最大极限状态 ultimate limit state安全寿命 safe life严重故障 catastrophic failure潜伏故障 latent fault dormant failure风特性wind characteristic风速 wind speed风矢量 wind velocity旋转采样风矢量 rotationally sampled wind velocity 额定风速 rated wind speed切入风速 cut-in speed切出风速 cut-out speed年平均annual average年平均风速 annual average wind speed平均风速mean wind speed极端风速 extreme wind speed安全风速 survival wind speed参考风速reference wind speed风速分布 wind speed distribution瑞利分布RayLeigh distribution威布尔分布 Weibull distribution风切变 wind shear风廓线风切变律 wind profile wind shear law风切变指数wind shear exponent对数风切变律 logarithmic wind shear law风切变幂律 power law for wind shear下风向down wind上风向 up wind阵风gust粗糙长度 roughness length湍流强度 turbulence intensity湍流尺度参数turbulence scale parameter湍流惯性负区 inertial sub-range风场 wind site测量参数 measurement parameters测量位置 measurement seat最大风速 maximum wind speed风功率密度 wind power density风能密度 wind energy density日变化 diurnal variation年变化 annual variation轮毂高度 hub height风能 wind energy标准大气状态 standard atmospheric state风切变影响 influence by the wind shear阵风影响 gust influence风速频率 frequency of wind speed环境 environment工作环境 operational environment气候 climate海洋性气候 ocean climate大陆性气候 continental climate露天气候 open-air climate室内气候 indoor climate极端 extreme日平均值 daily mean极端最高 extreme maximum年最高 annual maximum年最高日平均温度 annual extreme daily mean of temperature月平均温度 mean monthly temperature空气湿度 air humidity绝对湿度 absolute humidity相对湿度 relative humidity降水 precipitation雨 rain冻雨 freezing rain霜淞 rime雨淞 glaze冰雹 hail露 dew雾 fog盐雾 salt fog雷暴 thunderstorm雪载 snow load标准大气压 standard air pressure平均海平面 mean sea level海拔 altitude辐射通量 radiant flux太阳辐射 solar radiation直接太阳辐射 direct solar radiation天空辐射 sky radiation太阳常数 solar constant太阳光谱 solar spectrum黑体 black body白体 white body温室效应 greenhouse effect环境温度 ambient temperature表面温度 surface temperature互联 interconnection输出功率output power额定功率 rated power最大功率 maximum power电网连接点 network connection point电力汇集系统 power collection system风场电器设备 site electrical facilities 功率特性power performance静电功率输出 net electric power output 功率系数 power performance自由流风速 free stream wind speed扫掠面积 swept area轮毂高度 hub height测量功率曲线 measurement power curve外推功率曲线 extrapolated power curve年发电量 annual energy production可利用率 availability数据组功率特性测试 data set for power performance measurement 精度 accuracy测量误差 uncertainty in measurement分组方法 method of bins测量周期 measurement period测量扇区 measurement sector日变化 diurnal variations浆距角 pitch angle距离常数 distance constant试验场地 test site气流畸变 flow distortion障碍物 obstacles复杂地形带 complex terrain风障 wind break声压级 sound pressure level声级 weighted sound pressure level; sound level视在声功率级 apparent sound power level指向性 directivity音值 tonality声的基准面风速 acoustic reference wind speed标准风速 standardized wind speed基准高度 reference height基准粗糙长度 reference roughness length基准距离 reference distance掠射角 grazing angle风轮风轮 wind rotor风轮直径 rotor diameter风轮扫掠面积 rotor swept area风轮仰角 tilt angle of rotor shaft风轮偏航角 yawing angle of rotor shaft风轮额定转速 rated turning speed of rotor风轮最高转速 maximum turning speed of rotor风轮尾流 rotor wake尾流损失 wake losses风轮实度 rotor solidity实度损失 solidity losses叶片数 number of blades叶片 blade等截面叶片 constant chord blade变截面叶片variable chord blade叶片投影面积 projected area of blade叶片长度 length of blade叶根 root of blade叶尖tip of blade叶尖速度 tip speed浆距角 pitch angle翼型 airfoil前缘 leading edge后缘tailing edge几何弦长 geometric chord of airfoil平均几何弦长 mean geometric of airfoil气动弦线 aerodynamic chord of airfoil翼型厚度 thickness of airfoil翼型相对厚度 relative thickness of airfoil厚度函数 thickness function of airfoil中弧线 mean line弯度 degree of curvature翼型族 the family of airfoil弯度函数 curvature function of airfoil叶片根梢比 ratio of tip-section chord to root-section chord叶片展弦比 aspect ratio叶片安装角setting angle of blade叶片扭角 twist of blade叶片几何攻角 angle of attack of blade叶片损失blade losses叶尖损失tip losses颤振flutter迎风机构orientation mechanism调速机构 regulating mechanism风轮偏测式调速机构 regulating mechanism of turning wind rotor out of the wind sideward变浆距调速机构regulating mechanism by adjusting the pitch of blade整流罩 nose cone顺浆 feathering阻尼板spoiling flap风轮空气动力特性 aerodynamic characteristics of rotor叶尖速度比 tip-speed ratio额定叶尖速度比 rated tip-speed ratio升力系数 lift coefficient阻力系数 drag coefficient推或拉力系数 thrust coefficient偏航系统滑动制动器sliding shoes偏航 yawing主动偏航active yawing被动偏航 passive yawing偏航驱动 yawing driven解缆 untwist塔架tower独立式塔架 free stand tower拉索式塔架 guyed tower塔影响效应 influence by the tower shadow <<功率特性测试>>功率特性 power performance净电功率输出 net electric power output功率系数 power coefficient自由流风速 free stream wind speed扫掠面积swept area测量功率曲线 measured power curve外推功率曲线 extrapolated power curve年发电量 annual energy production数据组 data set可利用率 availability精度 accuracy测量误差 uncertainty in measurement分组方法 method of bins测量周期 measurement period测量扇区 measurement sector距离常数 distance constant试验场地 test site气流畸变 flow distortion复杂地形地带 complex terrain风障 wind break声压级 sound pressure level声级 weighted sound pressure level视在声功率级 apparent sound power level指向性 directivity音值 tonality声的基准风速 acoustic reference wind speed 标准风速 standardized wind speed基准高度 reference height基准粗糙长度 reference roughness基准距离 reference distance掠射角 grazing angle比恩法 method of bins标准误差 standard uncertainty风能利用系数 rotor power coefficient力矩系数 torque coefficient额定力矩系数 rated torque coefficient起动力矩系数starting torque coefficient最大力矩系数maximum torque coefficient过载度 ratio of over load风力发电机组输出特性 output characteristic of WTGS调节特性 regulating characteristics平均噪声 average noise level机组效率efficiency of WTGS使用寿命 service life度电成本 cost per kilowatt hour of the electricity generated by WTGS 发电机同步电机 synchronous generator异步电机 asynchronous generator感应电机 induction generator转差率 slip瞬态电流 transient rotor笼型 cage绕线转子 wound rotor绕组系数 winding factor换向器 commutator集电环 collector ring换向片 commutator segment励磁响应 excitation response制动系统制动系统 braking制动机构 brake mechanism正常制动系 normal braking system紧急制动系 emergency braking system空气制动系 air braking system液压制动系 hydraulic braking system电磁制动系 electromagnetic braking system机械制动系 mechanical braking system辅助装置 auxiliary device制动器释放 braking releasing制动器闭合 brake setting液压缸 hydraulic cylinder溢流阀 relief valve泻油 drain齿轮马达 gear motor齿轮泵 gear pump电磁阀solenoid液压过滤器 hydraulic filter液压泵hydraulic pump液压系统 hydraulic system油冷却器 oil cooler压力控制器pressure control valve压力继电器pressure switch减压阀reducing valve安全阀 safety valve设定压力setting pressure切换switching旋转接头rotating union压力表pressure gauge液压油hydraulic fluid液压马达hydraulic motor油封oil seal刹车盘 brake disc闸垫 brake pad刹车油 brake fluid闸衬片 brake lining传动比 transmission ratio齿轮gear齿轮副gear pair平行轴齿轮副 gear pair with parallel axes齿轮系 train of gears行星齿轮系 planetary gear train小齿轮 pinion大齿轮 wheel , gear主动齿轮 driving, gear从动齿轮 driven gear行星齿轮 planet gear行星架 planet carrier太阳轮 sun gear内齿圈 ring gear外齿轮external gear内齿轮internal内齿轮副 internal gear pair增速齿轮副 speed increasing gear增速齿轮系 speed increasing gear train中心距 center distance增速比 speed increasing ratio齿面 tooth flank工作齿面 working flank非工作齿面non-working flank模数 module齿数 number of teeth啮合干涉 meshing interference齿廓修行 profile modification , profile correction 啮合 engagement, mesh齿轮的变位 addendum modification on gears变位齿轮 gears with addendum modification圆柱齿轮 cylindrical gear直齿圆柱齿轮 spur gear斜齿圆柱齿轮 helical gear single-helical gear 节点 pitch point节圆pitch circle齿顶圆 tip circle齿根圆 root circle直径和半径 diameter and radius齿宽 face width齿厚 tooth thickness压力角 pressure angle圆周侧隙 circumferential backlash蜗杆 worm蜗轮 worm wheel联轴器 coupling刚性联轴器 rigid coupling万向联轴器 universal coupling安全联轴器 security coupling齿 tooth齿槽 tooth space斜齿轮 helical gear人字齿轮 double-helical gear齿距 pitch法向齿距 normal pitch轴向齿距 axial pitch齿高 tooth depth输入角 input shaft输出角 output shaft柱销pin柱销套roller行星齿轮传动机构planetary gear drive mechanism 中心轮 center gear单级行星齿轮系 single planetary gear train柔性齿轮 flexible gear刚性齿轮 rigidity gear柔性滚动轴承 flexible rolling bearing输出联接 output coupling刚度 rigidity扭转刚度 torsional rigidity弯曲刚度 flexural rigidity扭转刚度系数 coefficient of torsional起动力矩 starting torque传动误差 transmission error传动精度 transmission accuracy固有频率 natural frequency弹性联接 elastic coupling刚性联接 rigid coupling滑块联接 Oldham coupling固定联接 integrated coupling齿啮式联接 dynamic coupling花键式联接 splined coupling牙嵌式联接 castellated coupling径向销联接 radial pin coupling周期振动 periodic vibration随机振动 random vibration峰值 peak value临界阻尼 critical damping阻尼系数 damping coefficient阻尼比 damping ratio减震器 vibration isolator振动频率 vibration frequency幅值 amplitude位移幅值displacement amplitude速度幅值 velocity amplitude加速度幅值 acceleration amplitude控制与监控系统远程监视 telemonitoring协议 protocol实时 real time单向传输 simplex transmission半双工传输 half-duplex transmission双工传输 duplex transmission前置机 front end processor运输终端 remote terminal unit调制解调器 modulator-demodulator数据终端设备 data terminal equipment接口 interface数据电路 data circuit信息 information状态信息 state information分接头位置信息 tap position information监视信息 monitored information设备故障信息 equipment failure information 告警 alarm返回信息 return information设定值 set point value累积值 integrated total integrated value瞬时测值 instantaneous measured计量值 counted measured metered measured metered reading 确认 acknowledgement信号 signal模拟信号 analog signal命令 command字节 byte位bit地址 address波特 baud编码 encode译码 decode代码 code集中控制 centralized control可编程序控制 programmable control微机程控 minicomputer program模拟控制 analogue control数字控制 digital control强电控制 strong current control弱电控制 weak current control单元控制 unit control就地控制 local control联锁装置 interlocker模拟盘 analogue board配电盘 switch board控制台 control desk紧急停车按钮 emergency stop push-button限位开关 limit switch限速开关 limit speed switch有载指示器on-load indicator屏幕显示 screen display指示灯 display lamp起动信号 starting signal公共供电点 point of common coupling闪变 flicker数据库data base硬件 hardware硬件平台 hardware platform层 layer level class模型 model响应时间 response time软件 software软件平台 software platform系统软件 system software自由脱扣 trip-free基准误差 basic error一对一控制方式 one-to-one control mode一次电流 primary current一次电压 primary voltage二次电流 secondary current二次电压 secondary voltage低压电器 low voltage apparatus额定工作电压 rated operational voltage额定工作电流 rated operational current运行管理 operation management安全方案 safety concept外部条件 external conditions失效 failure故障 fault控制柜 control cabinet冗余技术 redundancy正常关机 normal shutdown失效-安全 fail-safe排除故障 clearance空转 idling外部动力源 external power supply锁定装置 locking device运行转速范围 operating rotational speed range临界转速 activation rotational speed最大转速 maximum rotational speed过载功率 over power临界功率activation power最大功率 maximum power短时切出风速 short-term cut-out wind speed外联机试验 field test with turbine试验台 test-bed台架试验 test on bed防雷系统 lighting protection system外部防雷系统 external lighting protection system 内部防雷系统 internal lighting protection system 等电位连接 equipotential bonding接闪器 air-termination system引下线 down-conductor接地装置 earth-termination system接地线 earth conductor接地体 earth electrode环形接地体 ring earth external基础接地体 foundation earth electrode等电位连接带 bonding bar等电位连接导体 bonding conductor保护等级 protection lever防雷区 lighting protection zone雷电流 lighting current电涌保护器 surge suppressor共用接地系统 common earthing system接地基准点 earthing reference points持续运行 continuous operation持续运行的闪变系数 flicker coefficient for continuous operation 闪变阶跃系数 flicker step factor最大允许功率 maximum permitted最大测量功率 maximum measured power电网阻抗相角 network impedance phase angle正常运行 normal operation功率采集系统 power collection system额定现在功率 rated apparent power额定电流 rated current额定无功功率 rated reactive power停机 standstill起动 start-up切换运行 switching operation扰动强度 turbulence intensity电压变化系数 voltage change factor风力发电机端口 wind turbine terminals风力发电机最大功率 maximum power of wind turbine风力发电机停机 parked wind turbine安全系统 safety system控制装置 control device额定载荷 rated load周期 period相位 phase频率 frequency谐波 harmonics瞬时值 instantaneous value同步 synchronism振荡oscillation共振 resonance波 wave辐射radiation衰减 attenuation阻尼 damping畸变 distortion电electricity电的 electric静电学 electrostatics电荷 electric charge电压降 voltage drop电流 electric current导电性 conductivity电压 voltage电磁感应 electromagnetic induction励磁 excitation电阻率 resistivity导体 conductor半导体 semiconductor电路 electric circuit串联电路 series circuit电容 capacitance电感 inductance电阻 resistance电抗 reactance阻抗 impedance传递比 transfer ratio交流电压 alternating voltage交流电流 alternating current脉动电压 pulsating voltage脉动电流 pulsating current直流电压 direct voltage直流电流 direct current瞬时功率 instantaneous power有功功率 active power无功功率 reactive power有功电流 active current无功电流 reactive current功率因数 power factor中性点 neutral point相序 sequential order of the phase电气元件 electrical device接线端子 terminal电极 electrode地 earth接地电路 earthed circuit接地电阻 resistance of an earthed conductor 绝缘子 insulator绝缘套管 insulating bushing母线 busbar螺纹管 solenoid绕组 winding电阻器 resistor电感器 inductor电容器 capacitor继电器 relay电能转换器 electric energy transducer 电机 electric machine发电机 generator电动机 motor变压器 transformer变流器 converter变频器 frequency converter整流器 rectifier逆变器 inverter传感器 sensor耦合器 electric coupling放大器 amplifier振荡器oscillator滤波器 filter半导体器件 semiconductor光电器件 photoelectric device触头 contact开关设备 switchgear控制设备 control gear闭合电路 closed circuit断开电路 open circuit通断 switching联结 connection串联 series connection并联 parallel connection星形联结 star connection三角形联结 delta connection主电路 main circuit辅助电路 auxiliary circuit控制电路 control circuit信号电路 signal circuit保护电路 protective circuit换接 change-over circuit换向 commutation输入功率 input power输入 input输出 output加载 to load充电 to charge放电 to discharge有载运行 on-load operation空载运行 no-load operation开路运行 open-circuit operation 短路运行 short-circuit operation 满载 full load效率 efficiency损耗 loss过电压 over-voltage过电流 over-current欠电压 under-voltage特性 characteristic绝缘物 insulant隔离 to isolate绝缘 insulation绝缘电阻 insulation resistance 品质因数 quality factor泄漏电流 leakage current闪烙 flashover短路 short circuit噪声 noise极限值 limiting value额定值 rated value额定 rating环境条件 environment condition 使用条件 service condition工况 operating condition额定工况 rated condition负载比 duty ratio绝缘比 insulation ratio介质试验 dielectric test常规试验 routine test抽样试验 sampling test验收试验 acceptance test投运试验 commissioning test维护试验 maintenance test加速 accelerating特性曲线 characteristic额定电压rated voltage额定电流 rated current额定频率rated frequency温升 temperature rise温度系数 temperature coefficient端电压 terminal voltage短路电流 short circuit current可靠性 reliability有效性 availability耐久性 durability维修 maintenance维护 preventive maintenance工作时间 operating time待命时间 standby time修复时间 repair time寿命 life使用寿命 useful life平均寿命 mean life耐久性试验 endurance test寿命试验 life test可靠性测定试验 reliability determination test 现场可靠性试验 field reliability test加速试验 accelerated test安全性 fail safe应力 stress强度 strength试验数据 test data现场数据 field data电触头 electrical contact主触头 main contact击穿 breakdown耐电压 proof voltage放电 electrical discharge透气性 air permeability电线电缆 electric wire and cable电力电缆 power cable通信电缆 telecommunication cable油浸式变压器 oil-immersed type transformer干式变压器 dry-type transformer自耦变压器 auto-transformer有载调压变压器 transformer fitted with OLTC 空载电流 non-load current阻抗电压 impedance voltage电抗电压 reactance voltage电阻电压 resistance voltage分接 tapping配电电器 distributing apparatus控制电器 control apparatus开关 switch熔断器 fuse断路器 circuit breaker控制器 controller接触器 contactor机械寿命 mechanical endurance电气寿命 electrical endurance旋转电机 electrical rotating machine直流电机 direct current machine交流电机 alternating current machine同步电机 synchronous machine异步电机 asynchronous machine感应电机 induction machine励磁机 exciter饱和特性 saturation characteristic开路特性 open-circuit characteristic负载特性 load characteristic短路特性 short-circuit characteristic额定转矩 rated load torque规定的最初起动转矩 specifies breakaway torque交流电动机的最初起动电流 breakaway starting current if an a.c. 同步转速 synchronous speed转差率 slip短路比 short-circuit ratio同步系数 synchronous coefficient空载 no-load系统system触电;电击 electric block正常状态 normal condition接触电压 touch voltage跨步电压 step voltage对地电压 voltage to earth触电电流 shock current残余电流 residual current安全阻抗 safety impedance安全距离safety distance安全标志 safety marking安全色 safety color中性点有效接地系统 system with effectively earthed neutral检修接地 inspection earthing工作接地 working earthing保护接地 protective earthing重复接地 iterative earth故障接地 fault earthing过电压保护 over-voltage protection过电流保护 over-current protection断相保护 open-phase protection防尘 dust-protected防溅protected against splashing防滴 protected against dropping water防浸水 protected against the effects of immersion 过电流保护装置 over-current protective device保护继电器 protective relay接地开关 earthing switch漏电断路器 residual current circuit-breaker灭弧装置 arc-control device安全隔离变压器 safety isolating transformer避雷器 surge attester ; lightning arrester保护电容器 capacitor for voltage protection安全开关 safety switch限流电路 limited current circuit振动 vibration腐蚀 corrosion点腐蚀 spot corrosion金属腐蚀 corrosion of metals化学腐蚀 chemical corrosion贮存 storage贮存条件 storage condition运输条件 transportation condition空载最大加速度 maximum bare table acceletation电力金具悬垂线夹 suspension clamp耐张线夹 strain clamp挂环 link挂板 clevis球头挂环 ball-eye球头挂钩 ball-hookU型挂环 shackleU型挂钩U-bolt联板 yoke plate牵引板 towing plate挂钩 hook吊架 hanger调整板 adjusting plate花篮螺栓 turn buckle接续管 splicing sleeve补修管 repair sleeve调线线夹 jumper clamp防振锤 damper均压环 grading ring屏蔽环 shielding ring间隔棒 spacer重锤 counter weight线卡子 guy clip心形环 thimble设备线夹 terminal connectorT形线夹 T-connector硬母线固定金具 bus-bar support母线间隔垫bus-bar separetor母线伸缩节 bus-bar expansion外光检查 visual ins振动试验 vibration tests老化试验 ageing tests冲击动载荷试验 impulse load tests 耐腐试验 corrosion resistance tests 棘轮扳手 ratchet spanner专用扳手 special purpose spanner万向套筒扳手 flexible pliers可调钳 adjustable pliers夹线器 conductor holder电缆剪 cable cutter卡线钳 conductor clamp单卡头 single clamp双卡头 double clamp安全帽 safety helmet安全带 safety belt绝缘手套 insulating glove绝缘靴 insulating boots护目镜 protection spectacles缝焊机 seam welding machine。
材料、结构力学名词英文
力学 mechanics 牛顿力学 Newtonian mechanics 经典力学 classical mechanics 静力学 statics 运动学 kinematics 动力学 dynamics子波 wavelet 次级子波 secondary wavele 驻波 standing wave声强 intensity of sound 声强计 phonometer 声调 intonation音色 musical quality 音调 pitch 声级 sound level声压[强] sound pressure 声源 sound source 声阻抗 acoustic impedance声抗 acoustic reactance 声阻 acoustic resistance 声导纳 acoustic admittance声导 acoustic conductance 声纳 acoustic susceptance 声共振 acoustic resonance声波 sound wave 超声波 supersonic wave 声速 sound velocity次声波 infrasonic wave 亚声速 subsonic speed又称“亚音速”。
超声速 supersonic speed又称“超音速”。
声呐 sonar 共鸣 resonance回波 echo 回声 echo 拍 beat 拍频 beat frequency群速 group velocity 相速 phase velocity 能流 energy flux能流密度 energy flux density 材料力学 mechanics of materials, strength of materials 应力 stress 法向应力 normal stress 剪[切]应力 shear stress单轴应力 uniaxial stress 双轴应力 biaxial stress 拉[伸]应力 tensile stress压[缩]应力 compressive stress 周向应力 circumferential stress纵向应力 longitudinal stress 轴向应力 axial stress弯[曲]应力 bending stress, flexural stress 扭[转]应力 torsional stress局部应力 localized stress 残余应力 residual stress 热应力 thermal stress最大法向应力 maximum normal stress 最小法向应力 minimum normal stress最大剪应力 maximum shear stress 主应力 principal stress主剪应力 principal shear stress 工作应力 working stress 许用应力 allowable stress应力集中 stress concentration 应力集中系数 stress concentration factor应力状态 state of stress 应力分析 stress analysis结构[强度]分析 structured analysis 应变 strain 剪[切]应变 shear strain法向应变 normal strain 拉[伸]应变 tensile strain 压[缩]应变 compressive strain 体积应变 volumetric strain 残余应变 residual strain 热应变 thermal strain最大法向应变 maximum normal strain 主应变 principal strain主剪应变 principal shear strain 名义应变 nominal strain应变状态 state of strain 载荷 load又称“荷载”。
部分包覆钢-混凝土组合墙轴压稳定性能研究
钢结构(中英文),38(6),12-21(2023)DOI :10.13206/j.gjgS 22101102ISSN 2096-6865CN 10-1609/TF部分包覆钢-混凝土组合墙轴压稳定性能研究朱㊀杰1,3㊀朱浩川2㊀肖志斌2,3㊀叶灵鹏2㊀金振奋2,3(1.浙江大学建筑工程学院,杭州㊀310058;2.浙江大学建筑设计研究院有限公司,杭州㊀310028;3.浙江大学平衡建筑研究中心,杭州㊀310028)摘㊀要:部分包覆钢-混凝土组合墙(简称PEC 墙)在装配式建筑领域具有广阔的应用前景,近年来在建筑结构中逐步推广应用,但其稳定性能方面的研究尚待完善㊂对PEC 墙稳定性能展开研究,基于既有试验和有限元分析结果,考察计算长度㊁材料强度㊁主钢件钢板厚度㊁构件截面尺寸等参数对墙体稳定性能影响,提出PEC 墙轴压稳定曲线计算公式,公式计算值与有限元结果吻合良好㊂采用有限元软件ABAQUS 建立有限元分析模型,基于既有试验数据进行对比,验证模型准确性㊂之后,对PEC 墙轴心受压稳定性能展开数值参数分析,考察构件各参数对其稳定性能的影响,包括:计算长度㊁材料强度㊁主钢件钢板厚度㊁构件截面尺寸等㊂参数分析过程采用控制变量法,逐个研究各参数对PEC 墙体稳定性能的影响程度,总结受力特点及规律㊂基于组合结构的稳定理论,按组合截面中混凝土与主钢件的构成,综合确定组合截面的等效强度f EQ ㊁等效弹性模量E EQ ,并推导了PEC 墙构件的正则化长细比λn ㊂然后,基于有限元分析结果绘制PEC 墙的轴压稳定曲线,将钢结构四类截面稳定曲线与PEC 墙稳定曲线进行对比,总结规律,寻找适用于PEC 墙构件稳定曲线的计算方法㊂最后,基于参数分析结果,总结各构件参数对PEC 墙稳定曲线的影响,在PEC 墙轴压稳定曲线的计算公式中引入关键构件参数作为控制变量,同时基于不同计算长度下构件破坏形态特点,提出了 三段式 PEC 墙轴压稳定曲线计算公式㊂研究表明:1)构件计算长度l 0对PEC 墙破坏形式有较大影响,随着l 0增加,构件破坏形态及其极限承载力由材料强度控制转变为整体稳定控制;2)PEC 墙各构件参数中,主钢件翼缘厚度㊁构件截面厚度对稳定性能影响较为显著,材料强度㊁主钢件腹板厚度㊁构件截面高度等对稳定性能影响相对较小;3)国内外尚未颁布PEC 墙体设计的相关规范,我国现行设计规范GB 50017 2017‘钢结构设计标准“提供的四类截面稳定曲线均不适用于PEC 墙轴压稳定系数的确定;4)提出了PEC 墙轴压稳定系数 三段式 计算公式,公式计算值与有限元结果吻合良好,对不同材料㊁不同尺寸的PEC 墙均可保持较高精度,可用于PEC 墙轴压稳定系数的确定㊂关键词:部分包覆钢-混凝土组合墙;PEC 墙;轴心受压;稳定性能;正则化长细比㊂第一作者:朱杰,男,1998年出生,硕士研究生㊂通信作者:朱浩川,男,1986年出生,博士,高级工程师,zhuhao-chuan@㊂收稿日期:2022-10-111㊀概㊀述部分包覆钢-混凝土组合构件是开口截面主钢件外周轮廓间包覆混凝土,且混凝土与主钢件共同受力的结构构件,该类构件可实现工厂预制㊁现场安装,是理想的装配式构件,近年来在建筑结构中逐步得到推广应用[1-3]㊂作为其中的重要形式,部分包覆钢-混凝土组合剪力墙(Partially Encased Compos-ite Shear Wall,简称PEC 墙)中主钢件采用工字型钢和钢板焊接组成,工字型钢翼缘间及钢板两侧包覆混凝土,其典型截面形式如图1所示㊂相较于传统混凝土剪力墙构件,PEC 剪力墙具有厚度小㊁强度高㊁施工方便㊁连接可靠等突出优势,作为竖向承重和水平抗侧力构件已成功用于多个实际工程[1-3],在装配式建筑领域具有广阔的应用前景㊂国内对PEC 构件进行了大量试验和理论研究㊂赵根田等[4-5]对PEC 柱的轴压承载力进行了试验研究;林德慧等[6-8]对PEC 柱轴压和压弯整体稳定性进行分析,提出PEC 柱轴压和压弯承载力计算公21部分包覆钢-混凝土组合墙轴压稳定性能研究图1㊀PEC 墙典型截面Fig.1㊀Typical cross section of PEC wall式;张其林[9]㊁蒋路[10]㊁石韵[11]等对PEC 墙抗震性能进行试验研究,结果表明PEC 墙具有良好的耗能和变形能力;张莉莉等[12]对PEC 联肢墙的抗震性能进行试验和有限元研究,总结构件水平往复加载下的屈服机制和破坏形态;周雨楠等[13]考察轴压比对PEC 短肢墙抗震性能影响,并基于塑性截面法提出PEC 短肢墙截面强度计算公式㊂综上,目前PEC 墙相关研究主要集中在组合截面强度计算和构件抗震性能方面,尚无PEC 墙体稳定性能方面的研究成果,相关理论和设计方法亟待深入,便于该类构件和结构体系的推广和应用㊂本文采用通用有限元软件ABAQUS 对PEC 墙轴压稳定性能展开研究,基于既有试验建立并验证有限元模型,考察计算长度㊁材料强度㊁主钢件钢板厚度㊁构件截面尺寸等参数对墙体稳定性能影响,提出PEC 墙体轴压稳定系数计算公式,为相关研究提供参考㊂2㊀有限元模型2.1㊀建模基本参数PEC 构件由钢和混凝土两种材料组成,其中:主钢件采用S4R 壳单元模拟,应力-应变关系采用理想弹塑性本构;混凝土采用C3D8R 实体单元模拟,应力-应变关系采用GB 50010 2010‘混凝土结构设计规范“[14]中的单轴塑性损伤本构;单元网格大小为50mm㊂主钢件与混凝土之间定义为摩擦接触,摩擦系数取0.4;构件两加载边设置为铰接,可绕弱轴方向(平面外)自由转动;初始缺陷采用第一阶弹性屈曲模态,其值参考相关研究取构件长度的1/1000[15];轴压构件加载方式采用位移加载,计算采用弧长法进行分析求解㊂2.2㊀有限元模拟结果验证鉴于国内外缺乏PEC 墙轴压试验研究及相关数据,本文采用上述方法对文献[4,16]的3组PEC 柱轴压试验进行有限元模拟,通过试验结果对比验证有限元模型的准确性㊂PEC 柱试件截面形式如图2所示,H ㊁B ㊁t f ㊁t w 和l 0分别为截面高㊁截面宽㊁主钢件翼缘厚㊁主钢件腹板厚和构件计算长度㊂试验及有限元模拟结果对比见图3㊁4和表1㊂图2㊀PEC 柱截面示意Fig.2㊀Cross section of PEC column各组PEC 柱轴压破坏形态均为整体失稳,试件在轴压作用下沿弱轴弯曲,跨中挠度随荷载基本呈线性增加;当荷载达到极限时,试件发生平面外失稳;之后随着荷载继续加载,跨中位置主钢件翼缘局部屈曲㊁混凝土剥落,试件承载力急剧下降㊂上述试验现象和有限元模拟结果吻合良好,试件破坏形态对比如图3所示,其中图3a㊁图3b 为PEC2-3构件,图3c㊁图3d㊁图3e 为PEC1-2构件,试件荷载-轴向位移曲线如图4所示,图中N 为构件轴压荷载,Δ为构件轴向位移㊂表1为各组PEC 轴压柱的轴压极限承载力对比,其中N u,test 为各组试验平均值,N u,FEM 为有限元模拟结果㊂可以看出,两者吻合良好,平均误差仅-1.26%㊂综上,通过与既有PEC 柱轴压试验进行对比,有限元分析得到的破坏形态㊁荷载-位移曲线㊁极限承载力等均与试验结果吻合良好㊂本文建立的数值模拟方法能够正确反映PEC 构件的受力特性,可用于后续PEC 墙稳定性能分析㊂3㊀参数分析采用本文有限元方法对PEC 墙轴心受压进行参数分析,考察构件各参数对稳定性能的影响㊂试件截面形式如图5所示,其中,H 和B 分别为PEC 墙的截面高度和厚度,t f 和t w 分别为主钢件翼缘厚度和腹板厚度,截面两端翼缘间距为284mm㊂基本模型截面参数H =1200mm,B =200mm,t f =10mm ,t w =8mm,钢材为Q345,混凝土强度等级为C30,墙31朱㊀杰,等/钢结构(中英文),38(6),12-21,2023㊀㊀㊀a 试验整体失稳N =2925kN;b 有限元整体失稳N =2941kN;c 试验中部破坏N =2055kN;d 有限元中部破坏(主钢件)N =2139kN;e 有限元中部破坏(混凝土)N =2139kN㊂图3㊀试件破坏形态对比Fig.3㊀Comparison of failuremodes图4㊀PEC1-2㊁PEC2-3的荷载-轴向位移曲线对比Fig.4㊀Comparison of load-displacement curves体计算长度分别为1500,3000,4500,6000mm㊂3.1㊀计算长度对PEC 墙破环形式的影响不同计算长度的轴压试件达到极限状态时,主钢件应力㊁混凝土受压损伤分别如图6㊁7所示㊂可以看出,当试件计算长度较小时(l 0=1500mm),主钢件全截面进入塑性,试件端部翼缘因约束较强发生局部屈曲,混凝土大面积出现损伤;随着试件计算长度增加,主钢件塑性开展㊁混凝土受压损伤主要集中在跨中,材料破坏区域明显减少;当计算长度增加至一定程度(l 0=6000mm),试件表现为失稳破坏,混凝土无明显损伤,侧向位移急剧增加,承载力显著减小㊂表1㊀极限荷载试验值与有限元模拟结果对比Table 1㊀Comparison of test values and finite element simulation试件组编号H ˑB ˑt w ˑt f /mm l 0/mm N u ,test /mm N u ,FEM /mm N u ,FEM -N u ,testN u ,test/%PEC 1-1~6200ˑ200ˑ6ˑ81800260626110.82PEC 2-1~3200ˑ200ˑ8ˑ12200032783191-2.66C -2~5450ˑ450ˑ9.7ˑ9.7300097959461-3.33㊀㊀不同计算长度轴压试件的荷载-位移曲线如图8所示㊂可以看出,当计算长度较小时(l 0=1500mm ),试件达到极限状态后仍具备一定承载能力,轴向荷载随位移增加缓慢下降;当计算长度较大时(l 0ȡ41部分包覆钢-混凝土组合墙轴压稳定性能研究图5㊀PEC 墙有限元模型截面形式㊀mm Fig.5㊀PEC wall s finite element model㊀㊀㊀3000mm ),试件达到极限状态后发生整体失稳,轴向荷载随位移增加急剧下降㊂综上,计算长度对轴压试件极限状态的破坏形式影响显著㊂随着构件计算长度不断增加,PEC 墙破坏形式由材料强度控制变为整体稳定控制㊂3.2㊀钢材强度、混凝土强度的影响为考察钢材强度㊁混凝土强度㊁主钢件厚度㊁构㊀㊀a l 0=1500mm;b l 0=3000mm;c l 0=4500mm;d l 0=6000mm㊂图6㊀不同计算长度下主钢件中部应力图㊀MPa Fig.6㊀Steel stress diagram in different calculationlengthsa l 0=1500mm;b l 0=3000mm;c l 0=4500mm;d l 0=6000mm㊂图7㊀不同计算长度下混凝土损伤图Fig.7㊀Concrete damage diagram in different calculationlengths图8㊀不同计算长度轴压试件荷载-轴向位移曲线Fig.8㊀Load-displacement curves of axial compressionspecimen in different calculation lengths件截面尺寸等参数对PEC 墙轴压稳定性能影响,定义PEC 墙轴压构件稳定系数φ,其计算式为:φ=N uN p(1a)N p =f a A a +f c A c(1b)式中:N u 为构件极限承载力;N p 为构件截面强度;f a 为主钢件钢材屈服强度;A a 为主钢件截面面积;f c 为混凝土抗压强度;A c 为混凝土截面面积㊂为考察主钢材强度㊁混凝土强度对PEC 墙轴压性能的影响,钢材强度等级分别选取Q235㊁Q345㊁Q420㊁Q460,混凝土强度等级分别选取C30㊁C40㊁C50,构件极限承载力与稳定系数结果如图9~12所示㊂由图9㊁11可知:当计算长度较小时(l 0=1500mm),构件极限承载力N u 随材料强度增加而提高,其值51朱㊀杰,等/钢结构(中英文),38(6),12-21,2023图9㊀钢材强度等级对极限承载力的影响Fig.9㊀Effect of steel strength oncapacity图10㊀钢材强度等级对稳定系数的影响Fig.10㊀Effect of steel strength onstability图11㊀混凝土强度等级对极限承载力的影响Fig.11㊀Effect of concrete strength on capacity略高于构件截面强度;随着计算长度增加,构件破坏模式由强度破坏转变为整体稳定破坏,材料强度对构件极限承载力影响逐渐减小;当计算长度较大时(l 0=6000mm),材料强度提高对构件极限承载力已无影响㊂由图10㊁12可知:钢材强度对PEC 轴压稳定系数φ有一定影响,钢材强度越高,φ值越小,l 0=3000mm 时,钢材强度等级由Q235提升到Q420时,φ值减小19.2%,这是由于随着钢材强度的增图12㊀混凝土强度等级对稳定系数的影响Fig.12㊀Effect of concrete strength on stability加,构件截面强度增加幅度大于极限承载力的增加幅度㊂混凝土强度对φ值影响较小,l 0=3000mm 时,混凝土强度等级由C30提升到C50时,φ值仅增加8.10%㊂3.3㊀主钢件钢板厚度的影响考察主钢件腹板㊁翼缘厚度对PEC 墙轴压性能的影响,腹板t w 分别取8,10,12,14mm;翼缘t f 分别取10,12,14,16mm,构件极限承载力与稳定系数结果如图13~16所示㊂图13㊀腹板厚度t w 对极限承载力的影响Fig.13㊀Effect of web thickness oncapacity图14㊀腹板厚度t w 对稳定系数的影响Fig.14㊀Effect of web thickness on stability61部分包覆钢-混凝土组合墙轴压稳定性能研究图15㊀翼缘厚度t f 对极限承载力的影响Fig.15㊀Effect of flange thickness oncapacity图16㊀翼缘厚度t f 对稳定系数的影响Fig.16㊀Effect of flange thickness on stability由图13㊁15可知:随着腹板㊁翼缘厚度增加,主钢件截面积增大,构件极限承载力均有一定程度提高㊂由图14㊁16可知:腹板厚度增加,稳定系数φ值越小,l 0=3000mm 时,腹板t w 由8mm 增加到14mm 时,φ值减小8.24%,这是由于随着腹板厚度的增加,构件截面强度也随着增加,且增加幅度要大于构件极限承载力的增加幅度;增加翼缘厚度,φ值有略微提高,l 0=3000mm 时,翼缘t f 由10mm 增加到16mm,φ值增加2.96%㊂表明,主钢件截面厚度对构件稳定性影响较小㊂增加主钢件翼缘厚度t f ,对提高PEC 墙轴压承载力和稳定性能具有更积极的作用㊂3.4㊀构件截面尺寸的影响为考察构件截面高度H 和厚度B 对PEC 墙轴压性能的影响,H 分别取900,1200,1600mm,B 分别取150,200,250,300mm㊂构件极限承载力与稳定系数结果如图17~20所示㊂由图17㊁19可知:随着H ㊁B 增加,PEC 墙截面积增大,构件极限承载力均有较大程度提高㊂图18为截面高度H 对稳定系数的影响关系曲线㊂可以图17㊀截面高度H 对极限承载力的影响Fig.17㊀Effect of cross section height oncapacity图18㊀截面高度H 对稳定系数的影响Fig.18㊀Effect of cross section height onstability图19㊀截面厚度B 对极限承载力的影响Fig.19㊀Effect of cross section thickness on capacity看出:随着截面高度H 由900mm 增至1600mm,构件的稳定系数增加11.4%~16.2%㊂图20为截面厚度B 对稳定系数的影响关系曲线㊂可以看出:随着截面厚度由150mm 增至300mm,构件的稳定系数增加11.6%~246.4%㊂表明,截面厚度B 对构件稳定性能影响显著,截面高度H 对构件稳定性能的影响较小㊂4㊀PEC 墙轴压稳定理论针对钢-混凝土组合构件,Virdi 等[17]提出可利71朱㊀杰,等/钢结构(中英文),38(6),12-21,2023图20㊀截面厚度B 对稳定系数的影响Fig.20㊀Effect of cross section thickness on stability用钢结构构件稳定曲线进行计算,但其准确性有待验证㊂目前,我国现行设计规范GB 50017 2017‘钢结构设计标准“[18](简称‘钢标“)涉及构件稳定性能的相关规定中,已全面采用正则化长细比λn 进行衡量㊂本文给出PEC 墙正则化长细比λn 的等效表达式,并基于此提出PEC 墙轴压稳定曲线(φ-λn 曲线)计算公式㊂4.1㊀正则化长细比λn根据文献[19]的规定,构件正则化长细比可表述为截面强度N p 与欧拉临界荷载N cr 的比值,按式(2)计算:λn =N pN cr (2)㊀㊀PEC 墙的构件截面强度N p 可由式(1b)计算,欧拉临界荷载N cr 可按式(3)计算:N cr =π2(E a I a +E c I c )l 20(3)式中:E a 为主钢件钢材弹性模量;I a 为主钢件截面惯性矩;E c 为混凝土弹性模量;I c 为混凝土截面惯性矩㊂将式(1b)㊁式(3)代入式(2)中,可得PEC 墙的构件正则化长细比λn :λn =λπf EQE EQ(4a)λ=l 0i(4b)i =E a I a +E c I cE a A a +E c A c (4c)f EQ =f a A a +f c A c A a +A c(4d)E EQ =E a A a +E c A cA a +A c(4e)式中:λ为构件长细比;i 为组合截面回转半径;f EQ 为组合截面等效强度;E EQ 为组合截面等效弹性模量㊂4.2㊀PEC 墙轴压稳定系数计算公式本文对简支PEC 墙轴心受压构件进行有限元参数分析,选取不同的材料强度(钢材Q345~Q460,混凝土C30~C50)㊁主钢件钢板厚度(翼缘t f 为10~16mm,腹板t w 为8~14mm)㊁截面尺寸(B 为150~300mm,H 为900~1600mm)㊁构件计算长度(l 0为300~40000m)建立共464个试件,构件正则化长细比λn 取值范围为0.2~3.0,部分试件稳定系数φ模拟结果如图21所示㊂图中同时给出‘钢标“中提供的a㊁b㊁c㊁d 四类截面的稳定曲线㊂由图21可以看出:墙轴心受压构件的稳定系数φ与‘钢标“中钢构件稳定曲线存在较大差异:当正则化长细比较小时(λn <0.4),构件极限状态由材料强度控制,钢材㊁混凝土进入塑性产生强化,此时φ值明显高于各稳定曲线,且大于1.0;当λn 范围在0.4~1.2时,φ值与‘钢标“中c 类截面稳定曲线较接近,但λn 值相等时不同试件稳定系数φ值仍存在一定差异,表明λn 不能归化材料强度差异;当正则化长细比较大时(λn >1.2),φ值与‘钢标“中d 类截面稳定曲线较接近,但数值较‘钢标“曲线更低,结果偏于不安全㊂因此,‘钢标“给出的稳定曲线无法准确计算PEC 墙轴压稳定系数,文献[17]所提出的利用钢构件稳定曲线对钢-混凝土组合构件进行计算的方法对PEC 墙并不适用,有必要提出适用于PEC 剪力墙稳定系数的计算公式㊂基于上述稳定系数φ在不同λn 的分段特点和大量有限元计算结果,本文提出适用于PEC 墙轴压的稳定曲线三段式计算公式,如式(5)㊂其中,λ0㊁λ1为稳定曲线分段特征值,其准确值由式(5d)㊁式(5e)计算㊂图21中给出了λ0,λ1的平均值位置㊂图21㊀部分试件稳定系数模拟结果Fig.21㊀Part of stability coefficient simulation results当λn ɤλ0时,有:81部分包覆钢-混凝土组合墙轴压稳定性能研究φ=1.0(5a)㊀㊀当λn <λ0ɤλ1时,有:φ=12λ2n[(α1+α2λn +λ2n )-α1+α2λn +λ2n-4λ2n](5b)㊀㊀当λn >λ1时,有:φ=12λ2n[(α3+α4λn +λ2n )-α3+α4λn +λ2n-4λ2n](5c)λ0=-8.6f EQE EQ +0.673(5d)λ1=17.7f EQ E EQ +0.666(5e)α1=0.667+1.4ˑ10-5M ua -1.31ˑ10-9M ua(5f)α2=3.71-2.09ˑ102f EQE EQ+3.69ˑ103f EQE EQ(5g)α3=1.80-1.88ˑ10-3I a +2.12ˑ10-7I a(5h)α4=0.444+1.39ˑ10-3I a -1.65ˑ10-7I a(5i)式中:αi 为形状系数;f EQ ㊁E EQ 分别为组合截面等效强度㊁等效弹性模量,按式(4d)㊁(4e)计算;M ua 为主钢件抗弯承载力㊂4.3㊀稳定系数计算公式与有限元结果对比采用本文方法进行P EC 墙轴压稳定系数计算时,需先根据材料性能和构件截面尺寸等初始条件,得到f EQ ㊁E EQ ㊁I a ㊁M ua 等参数㊂因此,对于不同材料性能㊁截面尺寸的P EC 墙,其稳定系数无法通过单一的曲线表示㊂本文给出4组构件参数条件下,式(5)计算值与有限元结果的对比算例,各组构件参数见表2,结果如图22~25所示㊂可以看出,本文公式得到的稳定曲线与有限元结果基本重合,平均误差为0.80%,最大误差为7.19%㊂表2㊀算例构件参数Table 2㊀Initial parameters of examples membersmm构件编号钢材强度等级混凝土强度等级腹板厚度t w翼缘厚度t f截面宽度B截面高度H PEC-a Q 345C 308102001200PEC-b Q 420C 308102001200PEC-c Q 345C 308122001200PEC-dQ 345C 308102501200图22㊀PEC-a 构件Fig.22㊀PEC-a members㊀㊀采用式(5)计算得到的稳定系数与464个有限元模拟结果进行对比,其中,样本参数选取如下:混凝土强度等级C 30~C 50,钢材强度等级Q 235~Q 460,正则化长细比0.2~3.0,这些参数取值已涵盖实际工程中的PEC 墙体主要使用范围,计算结果对比如图26所示㊂可以看出,本文公式与有限元模图23㊀PEC-b 构件Fig.23㊀PEC-b members拟结果吻合良好,样本平均误差为3.50%,标准偏差为4.43%,公式计算值精度服从N (1.24%,4.45%2)的正态分布,误差在99%置信水平区间为[-0.71%,1.77%]㊂综上,本文提出的PEC 墙轴压稳定系数公式计算值与有限元结果吻合良好,对不同材料㊁不同尺寸91朱㊀杰,等/钢结构(中英文),38(6),12-21,2023图24㊀PEC-c 构件Fig.24㊀PEC-c members的PEC 墙均可保持较高精度,可用于实际PEC 墙轴压稳定系数的确定㊂图25㊀PEC-d 构件Fig.25㊀PEC-dmembers图26㊀式(5a )~(5c )计算值和有限元结果对比Fig.26㊀Finite element simulation and formula compute5㊀结㊀论本文对部分包覆钢-混凝土组合墙轴压稳定性能进行研究,分析各参数对PEC 墙稳定性能影响,并基于参数分析结果提出PEC 墙轴压稳定系数计算公式,得到以下结论:1)构件计算长度l 0对PEC 墙破坏形式有较大影响㊂随着l 0增加,构件破坏形态及其极限承载力由材料强度控制转变为整体稳定控制㊂2)PEC 墙各构件参数中,主钢件翼缘厚度㊁构件截面厚度对稳定性能影响较为显著,材料强度㊁主钢件腹板厚度㊁构件截面高度等对稳定性能影响相对较小㊂3)国内外尚未颁布PEC 墙体设计的相关规范㊂我国现行设计规范GB 50017 2017‘钢结构设计标准“提供的四类截面稳定曲线均不适用于PEC 墙轴压稳定系数的确定㊂4)本文提出的PEC 墙轴压稳定系数 三段式计算公式,可同时考虑材料性能㊁构件尺寸等影响㊂公式计算值与有限元结果吻合良好,具有较高精度,可用于PEC 墙轴压稳定系数的确定,为相关研究和工程实际应用提供参考㊂参考文献[1]㊀蒋路,谢骁蒙.预制装配式部分包覆钢-混凝土组合剪力墙结构研发与应用[J].施工技术,2020,49(15):22-24,37.[2]㊀徐晓珂,王平山,李进军,等.部分包覆钢-混凝土组合结构技术体系的应用研究[J].建筑结构,2020,50(18):9-15,21.[3]㊀李慧,覃祚威,陈忠,等.装配式部分包覆钢-混凝土组合框架-支撑体系设计及项目实践[J].施工技术(中英文),2021,50(24):69-74.[4]㊀赵根田,郭雅茹,吴光兴,等.H 形钢部分包裹混凝土组合中长柱轴心受压承载力试验研究[J].建筑钢结构进展,2019,21(4):19-27.[5]㊀赵根田,朱晓娟,冯超.部分包裹混凝土复合柱的轴心受压性能[J].内蒙古科技大学学报,2012,31(2):200-204.[6]㊀林德慧,陈以一,李杰.部分包覆钢-混凝土组合柱单向压弯面内整体稳定承载力的工程计算[J].建筑结构,2021,51(7):14-21.[7]㊀林德慧,陈以一,李杰.部分包覆钢-混凝土组合柱轴压整体稳定承载力的工程计算[J].建筑结构,2021,51(7):22-29.[8]㊀林德慧,陈以一.部分填充钢-混凝土组合柱整体稳定分析[J].工程力学,2019,36(增刊1):71-77,85.[9]㊀张其林,黄亚男,吴杰,等.装配式部分外包组合短肢剪力墙抗震性能试验研究[J].施工技术,2019,48(2):100-106,125.[10]蒋路,赫约西,杨宇焜,等.装配式部分包覆钢-混凝土组合剪力墙抗震性能试验研究[J /OL].建筑结构学报,2022.[2022-06-13].https:// /10.14006/j.jzjgxb.2021.0569.[11]石韵,周巧玲,苏明周,等.混合联肢部分外包组合剪力墙抗震性能试验研究[J].土木工程学报,2021,54(3):29-40.[12]张莉莉,杨宇焜,蒋路,等.PEC 联肢墙结构的弹塑性时程分析方法研究[J].工程抗震与加固改造,2021,43(1):57-62,18.[13]周雨楠,黄亚男,徐国军,等.PEC 短肢剪力墙轴压比影响及承载力计算方法[J].佳木斯大学学报(自然科学版),2018,2部分包覆钢-混凝土组合墙轴压稳定性能研究36(6):843-848,875.[14]中华人民共和国住房和城乡建设部.混凝土结构设计规范:GB50010 2010[S].北京:中国建筑工业出版社,2011.[15]中华人民共和国住房和城乡建设部.预制混凝土构件量检验标准:T/CECS631 2019[S].北京:中国计划出版社,2019.[16]CHicoine T,Tremblay R,Massicotte B,et al.Behavior andstrength of partially encased composite columns with built-up shapes[J].Journal of Structural Engineering,2002,128(3):279-288.[17]Virdi K S,Dowling P J.A unified design method for compositecolumns[C]//IABSE Symposium.Tokyo:1976:165-184. [18]中华人民共和国住房和城乡建设部.钢结构设计标准:GB50017 2017[S].北京:中国建筑工业出版社,2018. [19]中华人民共和国住房和城乡建设部.部分包覆钢-混凝土组合结构技术规程:T/CECS719 2020[S].北京:中国建筑工业出版社,2020.Research on Axial Compression Stability of Partially Encased Composite WallJie Zhu1,3㊀Haochuan Zhu2㊀Zhibin Xiao2,3㊀Lingpeng Ye2㊀Zhenfen Jin2,3(1.College of Civil Engineering and Architecture,Zhejiang University,Hangzhou310058,China;2.The Architectural Design&Research Institute ofZhejiang University Co.,Ltd.,Hangzhou310028,China;3.Center for Balance Architecture,Zhejiang University,Hangzhou310028,China) Abstract:Partially encased composite walls(PEC walls)have been widely used in the field of prefabricated buildings.In recent years,it has been gradually applied in building structures.However,the researches on the stability performance of PEC remain to be improved.In this paper,the stability performance of PEC wall under axial compression is studied.Based on the existing experiments,a finite element model is established.The influence of parameters such as calculation length,material strength,main steel section thickness and,section size of components on the wall stability is investigated,and the calculation formula of the PEC wall axial compression stability curve is proposed.The research shows that the calculated values of the formula are in good agreement with the finite element results.In this paper,the finite element software ABAQUS is used to establish a finite element analysis model,and the accuracy of the model is verified by existing experimental data.Then,this paper analyzes the the axial compression stability performance of PEC wall under parameters,and investigates the influence of different parameters on the stability performance of components,including calculated length,material strength,steel section thickness of the main steel parts,and the cross-sectional size of the components.The parameter analysis process adopts the control variable method to study the influence of each parameter on the stability performance of PEC wall, and summarize the mechanical characteristics and regulations.Then,based on the stability theory of the composite structure,the equivalent strength f EQ and equivalent elastic modulus E EQ of the composite section are comprehensively determined according to the composition of concrete and main steel parts in the composite section,and the regularized slenderness ratioλn of the PEC wall components is derived.Then,based on the results of finite element analysis,the axial stability curve of PEC wall is drawn,and the stability curves of four types of sections of steel structure are compared with the stability curve of PEC wall,the regulation is summarized,and the calculation method suitable for the stability curve of PEC wall components is found.Finally,based on the parameter analysis results,the influence of each component parameter on the stability curve of PEC wall is summarized,and the key component parameters are introduced as control variables in the calculation formula of the axial compression stability curve of PEC wall, and the calculation formula of the axial compression stability curve of the"three-stage"PEC wall is proposed based on the characteristics of the failure mode of the components under different calculated lengths.The results show that:1)the calculated length l0of the component has a great influence on the destruction form of PEC wall,and with the increase of l0,the destruction form of the component and its ultimate bearing capacity change from material strength control to overall stability control;2)among the parameters of each component of PEC wall,the flange thickness and the section thickness of the main steel parts had significant effects on the stability performance,and the material strength,web thickness of the main steel parts, and the cross-sectional height of the components had relatively little effect on the stability performance;3)the relevant specifications for PEC wall design have not been promulgated at home and abroad,and the four types of section stability curves provided by Chinaᶄs current design code Steel Structure Design Standard(GB50017 2017)are not applicable to the determination of the axial compressive stability coefficient of PEC wall;4)the calculation formula of the axial compressive stability coefficient of PEC wall proposed in this paper is"three-stage".The calculated value of the formula is in good agreement with the finite element results,and can maintain high accuracy for PEC walls of different materials and sizes,which can be used to determine the axial compressive stability coefficient of PEC walls.Key words:partially encased composite wall;PEC wall;axial compression;stability;regularization slenderness ratio12。
外文翻译---机床主轴单元
附录A 英文原文Machine tool spindle unitsA.1 IntroductionMachine tool spindles basically fulfill two tasks:rotate the tools (drilling, milling and grinding) or work piece (turning) precisely in space transmit the required energy to the cutting zone for metal removalObviously spindles have a strong influence on metal removal rates and quality of the machined parts. This paper reviews the current state.and presents research challenges of spindle technology.A.1.1.Historical reviewClassically, main spindles were driven by belts or gears and the rotational speeds could only be varied by changing either the transmission ratio or the number of driven poles by electrical switches.Later simple electrical or hydraulic controllers were developed and the rotational speed of the spindle could be changed by means of infinitely adjustable rotating transformers (Ward Leonard system of motor control).The need for increased productivity led to higher speed machining requirements which led to the development of new bearings, power electronics and inverter systems. The progress in the field of the power electronics (static frequency converter) led to the development of compact drives with low-cost maintenance using high frequency three-phase asynchronous motors.Through the early 1980’s high spindle speeds were achievable only by using active magnetic bearings. Continuous developments in bearings, lubrication, the rolling element materials and drive systems (motors and converters) have allowed the construction of direct drive motor spindles which currently fulfill a wide range of requirements.A.1.2. Principal setupToday, the overwhelming majority of machine tools are equipped with motorized spindles. Unlike externally driven spindles, the motorized spindles do not require mechanical transmission elements like gears and couplings.The spindles have at least two sets of mainly ball bearing systems. The bearing system is the component with the greatest influence on the lifetime of a spindle. Most commonly the motor is arranged between the two bearing systems.Due to high ratio of ‘power to volume’ active cooling is often required, which is generally implemented through water based cooling. The coolant flows through a cooling sleeve around the stator of the motor and often the outer bearing rings.Seals at the tool end of the spindle prevent the intrusion of chips and cutting fluid. Often this is done with purge air and a labyrinth seal.A standardized tool interface such as HSK and SK is placed at the spindles front end. A clamping system is used for fast automatictool changes. Ideally, an unclamping unit (drawbar) which can also monitor the clamping force is needed for reliable machining. If cutting fluid has to be transmitted through the tool to the cutter, adequate channels and a rotary union become required features of the clamping system.Today, nearly every spindle is equipped with sensors for monitoring the motor temperature (thermistors or thermocouples) and the position of the clamping system. Additional sensors formonitoring the bearings, the drive and the process stability can be attached, but are not common in many industrial applications.A.1.3. State of the artSpindles with high power and high speeds are mainly developed for the machining of large aluminum frames in the aerospace industry. Spindles with extremely high speeds and low power are used in electronics industry for drilling printed circuit boards (PCB).A.1.4. Actual development areas in industryCurrent developments in motor spindle industrial application focus on motor technology, improving total cost of ownership(TCO) and condition monitoring for predictive maintenance Another central issue is the development of drive systems which neutralize the existing constraints of power and output frequency while reducing the heating of the spindle shaft.Particular attention was paid to the increase of the reliable reachable rotational speeds in the past. However, the focus has changed towards higher torque at speeds up to 15,000 rpm. Because of Increased requirements in reliability, life-cycle and predictable maintenance the ‘condition monitoring’ systems in motor spin dles have become more important. Periodic and/or continuous observation of the spindle status parameters is allowing detection of wear, overheating and imminent failures.Understanding the life cycle cost (LCC) of the spindles has steadily gained importance in predicting their service period with maintenance, failure and operational costs.2. Fields of application and specific demandsSpindles are developed and manufactured for a wide range of machine tool applications with a common goal of maximizing the metal removal rates and part machining accuracy.The work materials range from easy to machine materials like aluminum at high speeds with high power spindles, to nickel and titanium alloys which require spindles having high torque and stiffness at low speeds. Cutting work materials with abrasive carbon or fiber-reinforced plastics (FRP) content need good seals at the spindle front end.Spindles for drilling printed circuit boards operate in the angular speed range of 100,000 to 300,000 rpm. The increase in productivity and speed in this application field over the last few years was possible with the development of precision air bearings.Spindles used in die and mould machining have to fulfill the roughing operations (high performance cutting, HPC) at high feed rates as well as the finishing processes (high-speed cutting, HSC) at high cutting speeds. Depending on the strategy and the machinery of the mould and die shop either two different machine tools equipped with two different spindles are used or one machine is equipped with a spindle changing unit. Another possibility is to use a spindle which can fulfill both, HSC and HPC conditions, but this still remains a compromise regarding overall productivity.Aerospace spindles are defined by high power as well as high rotational speeds. Today’s spindles allow a material removal rate(MRR) of more than 10 l of aluminum per minute.Grinding is a finishing operation where high accuracy is necessary, which requires stiff spindles with bearings having minimum runout. The present internal cylindrical grinding spindles have a runout requirement of less than 1 mm.Spindle units which are used mainly for boring and drilling operations require high axial stiffness, which is achieved by using angular contact bearings with high contact angles. On the contrary, high-speed milling operations use spindles with bearings having small contact angles inorder to reduce the dependency of radial stiffness on the centrifugal forces.Contemporary machining centers tend to have multi functions where milling, drilling, grinding and sometimes honing operations can be realized on the same work piece. The bottleneck for the enhancement of the multi-technology machines is still the spindle, which cannot satisfy all the machining operations with the same degree of performance. Reconfigurable and modular machine tools require interchangeable spindles with standardized mechanical, hydraulic, pneumatic and electrical interfaces.A.3. Spindle analysisThe aim of modeling and analysis of spindle units is to simulate the performance of the spindle and optimize its dimensions during the design stage in order to achieve maximum dynamic stiffness and increased material removal rate with minimal dimensions and power consumption. The mechanical part of the spindle assembly consists of hollow spindle shaft mounted to a housing with bearings. Angular contact ball bearings are most commonly used in high-speed spindles due to their low-friction properties and ability to withstand external loads in both axial and radial directions. The spindle shaft is modeled by beam, brick or pipe elements in finite element environment. The bearing stiffness is modeled as a function of ball bearing contact angle, preload caused by the external load or thermal expansion of the spindle during operation. The equation of motion is derived in matrix form by including gyroscopic and centrifugal effects, and solved to obtain natural frequencies, vibration mode shapes and frequency response function at the tool attached to the spindle. If the bearing stiffness is dependent on the speed, or if the spindle needs to be simulated under cutting loads, the numerical methods are used to predict the vibrations along the spindle axis as well as contact loads on the bearings.Spindle simulation models allow for the optimization of spindle design parameters either to achieve maximum dynamic stiffness at all speeds for general operation, or to reach maximum axial depth of cut at the specified speed with a designated cutter for a specificmachining application. The objective of cutting maximum material at the desired speed without damaging the bearings and spindle is the main goal of spindle design while maintaining all other quality and performance metrics, e.g. accuracy and reliability.doe s not always lead to accurate identification of the spindle’s dynamic parameters;A.3.2. Theoretical modelingTheoretical models are based on physical laws, and used to predict and improve the performance of spindles during the design stage. The models provide mathematical relation between the inputs F (force, speed) and the outputs q (deflections, bearing loads, and temperature). The mathematical models can be expressed in state space forms or by a set of ordinary differential equations. In both cases linear or nonlinear behavior of the spindles can be modeled.A.3.2.1. Mechanical modeling of shaft and housingFinite element (FE) methods are most commonly used to model structural mechanics and dynamics of the spindles. The method is based on discretization of the structure at finite element locations by partial derivative differential equations. The analysis belongs to the class of rotor-dynamic studies where the axis-symmetric shaft is usually modeled by beam elements, which lead to construction of mass (Me) and stiffness (Ke) matrices.Timoshenko beam element is most commonly used because it considers the bending, rotary inertia and shear effects, hence leads to improved prediction of natural frequencies and mode shapes of the spindle .The element PIPE16 of the commonly known FEA software ANSYS is alsoan implementation of the Timoshenko theory and use the mass matrix and stiffness matrix As an example in the finite element model in Fig. 1, the black dots represent nodes, and each node has three Cartesian translational displacements and two rotations . The pulley is modeled as a rigid disk, the bearing spacer as a bar element, and the nut and sleeve as a lumped mass. The spindle in this case has two front bearings in tandem and three bearings in tandem at the rear. The five bearings are in overall back-to-back configuration. The tool is assumed to be rigidly connected to the tool holder which is fixed to the spindle shaft rigidly or through springs with stiffness in both directions translation and rotation. The flexibility of the spindle mounting has to be reflected in the model of the spindle-machine system. Springs are also used between the spindle housing and spindle head, whose stiffness is obtained from experience.Fig. 1. The finite element model of the spindle-bearing-machine-tool system附录 B 中文翻译机床主轴单元B.1.介绍机床主轴基本上完成两个任务:在空间精确的旋转刀具(钻削,铣削,磨削)或工件(车削)。
钢筋混凝土剪力墙的延性计算方法
收稿日期:2009-10-22基金项目:国家自然科学基金(90815029)、国家科技支撑计划项目(2006BA J01B02)作者简介:司林军(1980-),男,山东定陶县人,博士研究生,从事钢筋混凝土剪力墙的弹塑性研究。
文章编号:1673-9469(2010)01-0007-05钢筋混凝土剪力墙的延性计算方法司林军1,李国强1,2,孙飞飞1,2(1.同济大学建筑工程系,上海200092;2.土木工程防灾国家重点实验室,上海200092)摘要:本文考虑了轴压比、剪跨比、边缘约束构件及其含箍特征值对剪力墙位移延性的影响,建立了考虑端部混凝土约束的剪力墙位移延性比的计算方法,并用39片不同轴压比的钢筋混凝土剪力墙在往复水平荷载作用下的延性比试验结果对本文计算方法进行了验证。
对影响剪力墙位移延性的因素进行了参数分析,试验和理论分析都表明,为保证剪力墙达到预期的延性要求,应限制剪力墙的轴压比并设置合适的约束边缘构件。
关键词:钢筋混凝土剪力墙;轴压比;剪跨比;约束边缘构件;位移延性中图分类号:T U313 文献标识码:ACalculation method for predicting ductility of rein forced concrete shear wallsSI Lin 2jun 1,LI G uo 2qiang1,2,S UN Fei 2fei1,2(1.Department of Building Engineering ,T ongji University ,Shanghai 200092,China ;2.S tate K ey Laboratory for Disaster Reduction in Civil Engineering ,T ongji University ,Shanghai 200092,China )Abstract :An attem pt has been made to investigate the deformation ductility of RC shear walls under cyclic loading.A calculation method for the deformation ductility ratio of shear walls is established with consider 2ation of the confinement of boundary zones at both ends.The influence of axial com pression ratio ,shear -span ratio and the characteristic value of stirrup in confined boundary zone on the ductility of the walls are studied.The experimental results of 39RC shear walls subjected to horizontal cyclic loading with different axial com pression ratio are em ployed to verify the proposed calculation ing the established meth 2od ,factors influencing the deformation ductility of shear walls are studied.It is concluded that to make the shear walls have expected ductility ,the axial com pression ratio should be limited and the confined bound 2ary zones must be provided.K ey w ords :RC shear wall ;axial com pression ratio ;shear -span ratio ;confined boundary zone ;displace 2ment ductility 剪力墙结构是目前工业民用建筑中广泛使用的一种结构形式,众多学者对其抗震性能进行了大量的试验与模拟计算分析研究[1,4-10]。
新能源常用语中英文对照
新能源常用语中英文对照新能源常用语对照英文传统能源Conventional energy source可再生能源Renewable energy sources高能效技术Energy-efficient technology环境友好型Environmentally friendly可持续性发展Sustainable development生态平衡系统Balanced ecological system生物燃料Biofuel矿物燃料Fossil fuel绿色电力Green power温室气体Greenhouse gases (GHG)温室气体减排GHG emission reduction生态系统Ecosystem全球变暖Global warming京都议定书Kyoto Protocol风力发电场Wind power plant地热发电厂Geothermal power plant光伏发电Photovoltaic power generation水力发电Hydroelectric generation潮汐发电厂Tidal power station核电站Nuclear power plant垃圾电厂Refuse power plant国际固体废物协会International Solid Waste Association (ISWA)0.风力发电Wind Power Generation风力机、风轮机Wind turbine风力发电机Wind-driven generator风力发电机组Wind turbine generator system (WTGS) 风能发电机集群Wind farm风能利用率Utilization rate of wind energy风矢量Wind velocity海上风力发电场Offshore wind farm标准大气压Standard/normal atmospheric pressure 标准风速Standardized wind speed风场布置Wind farm layout风地图Wind atlas电力汇集系统(风力发电机组)Power collection system (for WTGS)电网连接点(风力发电机组)Network connection point ( for WTGS) 电网阻抗相角Network impedance phase angle风力机端口Wind turbine terminal马格努斯效应式风力机Magnus effect type wind turbine风车Windmill风轮实度Rotor solidity风轮尾流Rotor wake风轮偏侧式调速机构Regulating mechanism of turning wind rotor out of the wind sideward尾翼Tail fins顺桨Feathering桨距角Pitch angle节圆Pitch circle, nodal circle节点Pitch point, nodal point变速箱Gearbox旋转采样风矢量Rotationally sampled wind velocity 变速风力发电机Variable speed wind turbine变桨距调节机构Regulating mechanism by adjusting the pitch of blade定桨距失速调节型Constant pitch stall regulated type 变桨距调节型Variable pitch regulated type主动失速调节型Active stall regulated type双馈型风力发电机Double-fed wind turbine generator永磁直驱风力发电机Permanent magnetic direct-driven wind turbine generator恒速恒频Constant speed and frequency变速恒频Variable speed constant frequency 节距角Pitch angle叶尖速比Tip speed ratio叶轮Blade整流罩Spinner, nose cone叶片数Number of blades叶片安装角Blade angle, setting angle of blade 齿数Number of teeth齿市Tooth depth齿面Tooth flank工作齿面Work flank齿槽Tooth space齿根圆Root circle齿顶圆Tip circle柱销套Roller叶根Blade root蜗轮Worm wheel叶片展弦比Aspect ratio叶片根梢比Ratio of tip section chord to root section chord等截面叶片Constant chord blade变截面叶片Variable chord blade叶片扭角Twist of blade增强型玻璃钢翼型叶片Enhanced GRP/FRP airfoil blade叶片几何攻角Angle of attack of blade叶片投影面积Projected area of blade瑞利分布Rayleigh distribution威布尔分布Weibull distribution平均几何弦长Mean geometric chord of airfoil机械寿命Mechanical endurance啮合干涉Meshing interference比恩法Method of bins滑块联接Oldham coupling前缘Leading edge弯度Degree of curvature弯度函数Curvature function of airfoil弯曲刚度Flexural rigidity升力系数Lift coefficient背风Leeward软并网Soft cut-in自动/人工解缆Automatic /manual cable untwisting 停车机构Halt gear风电场Wind farm, wind field, wind power station 风力气象站Wind synoptic station气流Wind stream, airflow气流畸变Flow distortion颤振Flutter外部动力源External power source外推功率曲线Extrapolated power curve自由流风速Free stream wind speed风气候Wind climate风玫瑰图、风向图Wind rose风系、风况Wind regime横向风Cross wind风能潜势Wind energy potential风能密度Wind energy density风功率密度Wind power density风能利用率Utilization rate of wind energy 风资源评估Wind resource assessment启动风速Start-up wind speed切入风速Cut-in wind speed切出风速Cut-out wind speed短时切出风速Short term cut-out wind speed 极端风速Extreme wind speed额定风速Rated wind velocity距离常数Distance constant位移幅值Displacement amplitude对数风切变律Logarithmic wind shear law风廓线风切变律Wind profile wind shear law 对数变幂律Power low for wind shear声的基准风速Acoustic reference wind speed 视在声功率级Apparent sound power level 衰减Attenuation齿啮式联接Dynamic coupling齿宽Face width, tooth width齿廓修形Profile modification齿向修形Axial modification径向销联接Radial pin coupling支撑结构Support structure下风向Downwind direction上风向Upwind direction指向性Directivity (for WTGS)风轮扫掠面积Rotor swept area风剪切Wind shear塔影效应Tower-shadow effect三维旋转效应Three-dimensional (3-D) rotational effect非定常空气动力特征Unsteady aerodynamic characteristic风切变影响Influence by the wind shear风切变指数Wind shear exponent大风安全保护Security protection against gale (strong wind) 迎风机构Orientation mechanism, windward rudder风速表、风速计Anemometer,anemograph风速测定站Anemometry station安全风速Survival wind speed极端风速Extreme wind speed参考风速Reference wind speed水平轴风力机Horizontal axis wind turbine垂直轴风力机Vertical axis wind turbine翼型族The family of airfoil可变几何翼型风力机Variable geometry type wind turbine文丘里管式风力机Venturi tube wind turbine风机控制器Controller for wind turbine全永磁悬浮风力发电机All-permanent magnet suspension wind power generator风场电气设备Site electrical facilities湍流强度、扰动强度、紊流强度Turbulence intensity湍流尺度参数Turbulence scale parameter湍流惯性负区Inertial sub range环境温度Ambient temperature空气动力学Aerodynamics空气制动系统Air braking system室内气候Indoor climate透气性Air permeability防滴Protected against dropping water防溅Protected against splashing防浸水Protected against the effect of immersion 风轮空气动力特性Aerodynamic characteristics of rotor基准粗糙长度Reference roughness length容量可信度Capacity confidence level光电器件Photoelectric device太阳轮Sun gear内齿圈Annulus gear,ring gear内齿轮副Internal gear pair圆柱齿轮Cylindrical gear人字齿轮Double helical gear柔性齿轮Flexible gear刚性齿轮Rigid gear从动齿轮Driven gear主动齿轮Driving gear变位齿轮Gear with addendum modification 小齿轮Pinion大齿轮Gearwheel, main gear行星齿轮Planet gear单级行星齿轮系Single planetary gear train多级行星齿轮系Multiple stage planetary gear train 行星齿轮传动机构Planetary gear drive mechanism 增速齿轮副Speed increasing gear pair非工作齿轮Non working flank齿轮扳手Ratcher spanner柔性滚动试验Flexible rolling bearing空载最大加速度Maximum bare table acceleration 过载度Ratio of overload风力机最大功率Maximum power of wind turbine 最大转速Maximum rotational speed最大系数Maximum torque coefficient风轮最高转速Maximum turning speed of rotor 风轮仰角Angle of rotor shaft空转Idling锁定blocking停机Parking静止Standstill尾迹损失Wake loss轮毂高度Hub height变桨系统Pitch system变桨调节Pitch regulation活动桨Active pitch调向系统Yaw system静音离网型Silent off-network主动偏航Active yawing被动偏航Passive yawing风轮偏航角Yawing angle of rotor shaft气动弦线Aerodynamic chord of airfoil轴向齿距Axial pitch球头挂环Ball eye球头挂钩Ball hook可调钳Adjustable pliers联板Yoke plate接闪器Air termination system发动机舱Engine nacelle微观选址Micro-siting集网风能Central-grid wind energy孤网风能Isolated-grid wind energy 离网风能Off-grid wind energy风柴混合互补系统Wind-diesel hybrid system 潜伏故障Latent fault, dormant failure 严重故障Catastrophic failure使用极限状态Serviceability limit state最大极限状态Ultimate limit state。
钢筋混凝土圆柱的抗剪切计算公式
钢筋混凝土圆柱的抗剪切计算公式English Answer:Shear strength of reinforced concrete columns iscritical in ensuring the structural integrity and safety of buildings and other structures. The ability of a column to resist shear forces is governed by a combination of factors, including the concrete's compressive strength, the reinforcement's yield strength, and the geometry of the column.Methods for Calculating Shear Strength.Several methods are available for calculating the shear strength of reinforced concrete columns. The most commonly used methods include:1. ACI 318-19 Method: This method is based on the American Concrete Institute (ACI) code and is widely usedin the United States. It considers the contribution of bothconcrete and reinforcement to the shear resistance.2. EC2 Method: This method is based on the Eurocode 2 (EC2) and is commonly used in Europe. It also considers the contributions of concrete and reinforcement but uses different equations and coefficients compared to the ACI method.3. AS 3600 Method: This method is based on the Australian Standard (AS 3600) and is primarily used in Australia and New Zealand. It is similar to the ACI method in terms of the factors considered but has some unique features.Factors Affecting Shear Strength.The shear strength of reinforced concrete columns is influenced by several factors, including:1. Concrete Compressive Strength (f'c): Higher concrete compressive strength generally results in higher shear strength.2. Reinforcement Yield Strength (fy): The yield strength of the reinforcement contributes to the shear resistance. Higher yield strength reinforcement provides better shear capacity.3. Column Geometry: The aspect ratio (length-to-diameter ratio) of the column affects its shear strength. Columns with smaller aspect ratios are generally more susceptible to shear failure.4. Axial Load: The axial load applied to the column can influence its shear strength. Higher axial loads can reduce the shear capacity.Shear Reinforcement.In addition to the factors mentioned above, shear reinforcement plays a crucial role in enhancing the shear strength of reinforced concrete columns. Shear reinforcement, typically in the form of stirrups or ties, helps to resist shear forces by confining the concrete andpreventing it from cracking and splitting.Importance of Accurate Calculation.Accurately calculating the shear strength of reinforced concrete columns is essential for ensuring the structural safety of buildings and civil engineering structures. Inadequate shear strength can lead to premature failure and catastrophic consequences. By employing appropriate calculation methods and considering the influencing factors, engineers can design columns that can withstand the anticipated shear loads.中文回答:钢筋混凝土圆柱抗剪切计算公式。
双材料层合梁弯曲正应力的弹性解与试验分析
Vol.60No.3工程与试验ENGINEERING&TEST Sep.2020双材料层合梁弯曲正应力的弹性解与试验分析李苗苗1,吴晓2(1.常德职业技术学院土建系,湖南常德415000;2.湖南文理学院机械工程学院,湖南常德415000)摘要:利用双材料层合梁弯曲时的轴向静力平衡方程,确定了双材料层合梁弯曲时中性层的位置,采用弹性力学方法推导出了双材料层合梁拉伸区及压缩区弯曲正应力的表达式。
通过层合梁的弯曲应力试验,验证了弹性力学方法给出的双材料层合梁弯曲正应力计算公式的正确性。
通过试验及理论计算可知:弹性力学方法计算结果、材料力学方法计算结果与试验结果基本吻合;弹性力学方法给出的层合梁弯曲正应力公式考虑了剪切变形对层合梁弯曲正应力的影响,所以弹性力学方法对测试点的计算结果大部分优于材料力学方法对测试点的计算结果。
讨论分析表明,弹性力学方法推导出的双材料层合梁弯曲正应力公式计算结果与试验结果较为接近,可以在实际工程中推广应用。
关键词:双材料;层合梁;弯曲;正应力;试验;弹性力学中图分类号:0343文献标识码:A doi:10.3969/j.issn.1674-3407.2020.03.002Flexible Solution and Experimental Analysis onBending Normal Stress in Bi-material Laminated BeamLi Miaomiao1,Wu Xiao2(1.Department of Civil Architecture,Changde Vocational Technical College,Changde415000,Hunan,China;2.College of Mechanical Engineering,Hunan University of Arts and Science,Changde415000,Hunan,China)Abstract:Using the axial static equilibrium equation,the location of the neutral layer of the bending bi-material laminated beam is determined.Based on the elastic mechanics method,the calculation formulas of the bending normal stress on the stretching zone and the compression zone in the bi-material laminated beam are obtained.After the bending stress experiment on the laminated beam,it is verified that the calculation formula of the bending normal stress in the bi-material laminated beam by the elastic mechanics method is correct.The experiment and theoretical calculation show that the calculation results by the elastic mechanics and the material mechanics are basically consistent with the experimental results.Because the elastic mechanics takes into account the influence of the shear deformation on the bending normal stress of the laminated beam,the calculation results on the test points are better than most of the material mechanics.The analysis shows that the calculation results of the bending normal stress in the bi-material laminated beam by the elastic mechanics method are closer to the experimental values,so this method can be extended in practical engineering.Keywords:bi-material;laminated beam;bending;normal stress;experiment;elastic mechanics1引言在土木、机械等实际工程中,许多钢结构、混凝土承载构件都是螺栓连接的层合梁或高强粘合剂粘合的层合梁。
各向异性对软土力学特性影响的离散元模拟
DOI :10.16030/ki.issn.1000-3665.202006027各向异性对软土力学特性影响的离散元模拟赵 洲1,宋 晶1,2,3,刘锐鸿1 ,杨守颖1 ,李志杰1(1. 中山大学地球科学与工程学院,广东 广州 510275;2. 广东省地球动力作用与地质灾害重点实验室,广东 广州 510275;3. 广东省地质过程与矿产资源探查重点实验室,广东 广州 510275)摘要:软土预压工程中,初始和诱发各向异性对软土力学性质的影响十分显著,而现有研究缺乏对初始和诱发各向异性的统一研究方法。
采用离散单元法,以颗粒长宽比作为定量评价指标,构建真实形态的颗粒模型,生成5组不同沉积角的初始各向异性试样,并进行竖直和水平两方向加载的双轴模拟实验,研究了初始各向异性和诱发各向异性对软土力学特性影响;在细观层面,以颗粒为对象研究了颗粒接触形式和转动角度的变化规律,以接触为对象研究了配位数和接触法向各向异性的发展趋势,在此基础上探究抗剪强度指标与各向异性关系。
结果表明:初始和诱发各向异性共同影响试样力学性质,当加载方向和软土沉积方向垂直时,土体有最大的峰值强度。
颗粒接触形式中面面接触的比例随加载的进行逐渐增大,并影响着试样初始模量和抗剪强度,配位数和接触法向各向异性受颗粒接触形式的影响有不同的演化规律,并在加载后期趋于稳定;同时,初始各向异性试样相较各向同性试样有更大的黏聚力,诱发各向异性主要影响试样内摩擦角,进而影响试样抗剪强度。
关键词:软土;各向异性;峰值应力;抗剪强度指标;细宏观性质中图分类号:TU411.3 文献标志码:A 文章编号:1000-3665(2021)02-0070-08Discrete element simulation of the influence of anisotropy on themechanical properties of soft soilZHAO Zhou 1,SONG Jing1,2,3,LIU Ruihong 1 ,YANG Shouying 1 ,LI Zhijie1(1. School of Earth Sciences and Engineering , Sun Yat-Sen University , Guangzhou , Guangdong 510275, China ;2. Guangdong Provincial Key Lab of Geodynamics and Geohazards , Guangzhou , Guangdong 510275, China ;3. Guangdong Provincial Key Laboratory of Geological Processes and Mineral Resource Exploration ,Guangzhou , Guangdong 510275, China )Abstract :The initial and induced anisotropy has a significant effect on the mechanical properties of soft soil in preloading engineering. However, there is a lack of unified research methods for the initial and induced anisotropy. Discrete element method is adopted in this study, and the length-width ratio of particles is used as the quantitative evaluation index. Five types of initial anisotropy samples with different deposition angles are generated. The effects of initial anisotropy and induced anisotropy on the mechanical properties of soft soil are studied by vertical and horizontal loading. At the micro level, the contact form and rotation angle of particles are examined from the point of view of particles, and the development trend of coordination number and contact normal to anisotropy is studied from the point of view of contact. The relationship between shear strength index收稿日期:2020-06-12;修订日期:2020-08-04基金项目:国家自然科学基金项目(41877228;41402239;41877229);广东省自然科学基金项目(2019A1515010554);广州市科技计划项目(201904010136)第一作者:赵洲(1995-),男,硕士研究生,主要从事软土微观结构及数值模拟。
轻木框架木板墙分析:有限元模型与应力分析说明书
Finite-Element Mode for Parametric Analysis of Wood Frame Shear WallsJie Bai*, Na Li, Pengcheng DuanSchool of Civil Engineering,Guizhou University,Guiyang, 550000, China****************,****************,****************Abstract—Light wood-frame house is still developing in China and systematic research on light wood-frame house has yet to be carried out. In this paper, the analysis model of wood-frame shear walls is set by using ABAQUS. In terms of finite element program's computing results, the effect of opening size and location on shear walls is analyzed. The results have shown that the larger the opening is, the more significantly the bearing capacity reduces; the location of the opening has an obvious influence on resistance of shear walls to lateral loading.Keywords—wood-frame shear walls; finite-element model; stress; axial compression ratio; openingI.I NTRODUCTIONThe light wooden structure is the use a uniformly dense wood component specifications to withstand all kinds of planes and space houses the role of the force system. Is widely used in some developed countries, this form of light wood frame structure in North America, Canada and Japan, more complete theoretical system, technology is relatively mature. With the recent light wood structure house more widely used in China, itis necessary to carry out theoretical and experimental studies for systematic light wood structures, in order to promote the development of China's light wooden architecture.After the 1980s, due to the significant reduction in China's timber supply, the development of wooden architecture basically stagnant. In recent years, a growing concern with the Chinese construction industry, energy saving and environmental protection construction, wood frame house abroad to enter the Chinese market, and a lot of light wood construction lumber imports, China's wooden architecture began to recover, using a range of light wood frame construction also gradually expanded.Based on the wood frame shear walls is composed of light wood frame houses system, the most important force component, its study on the performance is to improve the basic content of the theoretical system of light wood frame. In this paper, finite element software ABAQUS of light wood frame shear wall parametric analysis, dimension width respectively 1.2m, 2.4m combine different location, these several dimensions the order of wood frame shear walls model finite element analysis. Gain corresponding influence law and main parameters affecting wood frame shear walls force performance.II.F INITE E LEMENT M ETHODS FOR S HEAR W ALLA NALYSIS M ODELIn this chapter, a finite element analysis of shear walls is conducted. Two commercial finite element programs, ANSYS and ABAQUS, are demonstrated. The new analytic model is implemented into ABAQUS and validated against the measured experimental data for monotonic and parametric studies (Table I).The solution of nonlinear finite element equations is accomplished using the Newton-Raphson iterative algorithm. Typically automatic incremental solution control is used, where convergence occurs when the magnitude of the out-of-balance force or moment is within 0.005% of the maximum magnitude of force or moment. Some analyses require direct control increment. Implicit direct-integration is used for dynamic analyses.TABLE I. F INITE-E LEMENT R EPRESENTATION OF S TRUCTURALC OMPONENTSStructuralComponentFinite-Element RepresentationABAQUSElementDesignation Framing Beam element: 2-node B21SheathingSolid element: 8-node plain stress,reduced integrationCPS8RSheathing-to-FramingConnectionsSpring element: 2-nodes,nonlinear SPRING2 Chord Splices Spring element: 2-nodes, linear SPRING2This work was financially supported by Guizhou Province Science andTechnology Foundation (QianKeHe J [2010] 2246).International Conference on Structural, Mechanical and Materials Engineering (ICSMME 2015)III. V ALIDATE F INITE E LEMENT M ODELExperimental studies of wood-frame shear walls have been performed by many researchers in recent years. This paper establishes a new finite-element model based on making a parametric analysis on wood-frame shear walls. For the accuracy of the model, analog values and experimental data [2] contrast verification. After verification (Fig. 1), the model established in this paper has a high degree of accuracy. Therefore, you can use this model to analyze the parameters of wood structural shear walls.Fig. 1.Load-displacement curve.IV. P ARAMETRIC A NALYSISThis paper has established a wood-frame shear wall model with four different shear wall opening locations. Q1 is the opening width (1.2m) in the middle position. Q2 is the opening width (1.2m) in the offset position. Q3 is the opening width (2.4m) in the middle position. Q4 is the opening width (2.4m) in the offset position. Q5 is the whole piece of the wall. Q6 is that the axial force is applied to the entire piece of wall. Q7 is that the axial force is applied to opening width (1.2m) in the middle position. Q8 is that axial force is applied to opening width (2.4m) in the middle position. The following four shear wall models will carry out a parameters analysis, like Fig. 2.Fig. 2. Schematic model.A. Wood frame shear wall Lateral Force.The shear wall structure has a good carrying capacity, and has good integrity and space effect, then the frame structure has better lateral force-resisting capability. A shear wall is an important bearing member to the light wood-frame house, and lateral force-resisting capability of research is essential. Shear wall opening and changes in the opening location will affect its resistance to lateral forces and this is the article to study one of the elements. Fig. 3 can be seen very intuitively: The bigger the opening, the smaller the lateral resistance of wall. At the same time, the lateral resistance of the wall will be significantly reduced by non-centered opening.Fig. 3. Force and displacement relationship.B. Stress analysis of framingFrom Fig. 4, the centered opening has little influence on stress distribution of side columns. When the opening is offset, the side columns near the opening are under the tensile stress, the uptrend of wall is more obvious under the load effect. Stress on both sides of the opening will be increased by the large opening and bias.Fig. 4. Curves of framing force distribution.C. Stress Analysis of top plateFrom Fig. 5, the larger the opening, the bigger the stress of top beams, and the top beam stress will be increased when the eccentricity becomes greater, and stress of the joint between top beam and the plate is larger.Fig. 5.Curves of top plate force distribution.D. Stress Analysis plateFrom Fig. 6, under the same displacement, the average stress value of plate Model Q5 is greater than those of Model Q1 and Q2, and the stress on plate is most homogeneous; the part above the opening is close to 0, showing that the opening cannot transmit force effectively, resulting in a decline in overall mechanical properties of the wall.Fig. 6. Plate stress cloudE. Influence of under axial compressionFrom Fig. 7, when the axial compression stress is applied, the member stress of Model Q8 has relatively more uniformly increased than Model Q5; the stress near the opening in Model Q6 increases more sharply than in Model Q1. The analysis results have shown that the bigger the opening, the larger the influential region of axial compression ratio. Contrast load - displacement curve can be seen in Fig. 8; applying axial compression can effectively improve the bearing capacity of the wall, with an increase in displacement loading; the axial pressure helps to improve the ability to resist side obviously.Fig. 7. Curves of top plate force distributionFig. 8. Load - displacement curveV. C ONCLUSIONSA preliminary analysis for the opening size and location on the shear wall shows that the opening size and location on the shear wall has obvious influences to resist lateral load of the shear wall. In short:1) The lateral bearing capacity of the wall will reduce opening. The larger the opening, the more significantly the bearing capacity reduces ;2) The location of the opening has obvious influences on the wall stress. The bearing capacity will decrease obviously and the stress of columns near opening is adverse by the large opening bias ;3) A proper axial compression ratio will improve the carrying capacity of the wall effectively, but attention should be paid to reinforcing the top beam and the upper part of the opening .R EFERENCES[1]Wood Design Manual.2005: Canada Wood Council.[2]Y.H. Qian. The finite element analysis of wood frame shear walls.D .Yangzhou University, 2012.[3]J.P. Judd, Finite Element Analysis of Wood Shear Walls andDiaphragms Using ABAQUS. ABAQUS Users Conference, 2002.[4]J. Xu, J. Daniel, and F. Dolan, “ASCE, Development of a Wood-FrameShear Wall Model in ABAQUS.” J. Struct. Eng., pp. 978-984, 2009. [5] A.S. Blasetti, R.M. Hoffman, and D.W. Dinehart, “Simplified hystereticfinite-element model for wood and viscoelastic polymer connections forthe dynamic analysis of shear walls.” J. Struct. Eng., vol. 134, pp. 77-86, 2008.[6]G. Doudak, I. Smith, G. McClure, M. Mohammad, and P. Lepper, “Testsand finite element models of wood light-frame shear walls with openings.” J. Struct. Eng. and Mat., vol. 8, no.4, pp. 165-174, 2006. [7]M. He , H. Magnusson, F. Lam, and H.G.L. Prion.” Cyclic performanceof perforated wood shear walls with oversize OSB panels.” J. Struct.Eng. vol. 125, no. 1, pp.10–18, 1999.[8] B. Folz, and A. “Filiatrault Cyclic analysis of wood shear walls.” J.Struct. Eng. vol 127, no. 4, pp. 433–441, 2001.。
风切变效应对风力机叶片结构性能的影响分析
机械设计与制造172Machinery Design&Manufacture第5期2021年5月风切变效应对风力机叶片结构性能的影响分析杨瑞,全佩,张康康(兰州理工大学能源与动力工程学院,甘肃兰州730050)摘要:利用ANSYS软件的复合材料模块建立某5WM水平轴风力机叶片的铺层模型,通过静力分析和模态分析研究了风切变效应对叶片结构特性的影响。
采用Fluent软件对风力机叶片在有无风切变來流的情况下进行数值模拟,将数值模拟所获得的载荷加载到叶片铺层结构上,研究风切变效应对风力机叶片结构特性是否产生影响。
结果显示:风切变效应使來流风速的均值减小,从而导致所获载荷降低,使叶片的最大应力和最大位移减小;当有预应力干扰时,叶片的模态频率和叶尖变形量都明显提高,这会对叶片的结构特性产生影响。
关键词:风切变;风力机;静力分析;模态分析中图分类号:TH16;TK83文献标识码:A文章编号:1001-3997(2021)05-0172-04Analysis of Influence of Wind Shear Effect on StructuralPerformance of Wind Turbine BladesYANG Rui,QUAN Pei,ZHANG Kang-kang(College of Energy and Power Engineering,Lanzhou University ofTechnology,Gansu Lanzhou730050,China)Abstract:A5WM horizontal-axis wind turbine blade layup model is established by using ANSYS composite module.The influences of wind shear effect on blade structural characteristics are studied by static analysis and modal ing Fluent software,the three-dimensional numerical simulation of the wind turbine blade with or without wind shear effect is carried out to obtain the load distribution on the blade surface.The load is applied to the blade structure to study the influence of wind shear effect on the structural characteristics of the rotor blade at the rated wind speed.The results show that the wind shear effect reduces the mean ofthe incoming wind speed,r esulting in a decrease in the load and a decrease in the maximum stress and maximum displacement of the blade.When the prestressing force is applied,the modal frequency and tip deformation ofthe blade are obviously improved,which has an influence on the structural characteristics qfthe blade.Key Words: Wind Shear;Wind Turbine;Static Analysis;Modal Analysis1引言在大气层中,平均风速会随着高度的增加而增加,这种变化规律称为风切变。
加速型IGV对高负荷轴流风扇性能影响研究
第41卷第2期Vol.41㊀No.2重庆工商大学学报(自然科学版)J Chongqing Technol &Business Univ(Nat Sci Ed)2024年4月Apr.2024加速型IGV 对高负荷轴流风扇性能影响研究肖国锋,赛庆毅,刘㊀扬上海理工大学能源与动力工程学院,上海200093摘㊀要:目的为了进一步提升小型高负荷轴流风扇在微小空间的高通流及高负荷能力,提出一种加速型进口导叶(IGV )结构设计方案㊂方法采用三维设计软件Pro /E 设计不同加速型IGV ,通过数值模拟方法研究其对风扇不同流量系数下的压力系数㊁全压效率以及流道损失的影响㊂结果采用加速型IGV 使得风扇流道内通流能力增强,叶片尾缘气流延缓分离,下游流动更加均匀;随着进口气流加速程度的提高,设计工况点全压效率基本呈单调递增的趋势;相比无加速IGV 风扇,当IGV 加速程度为1.1㊁1.2时,在设计工况点,风扇压力系数提升百分比为1.61%,1.24%,效率分别提升了3.49%,5.05%;IGV 的加速程度从1.0增至1.5时,风扇效率提高6.69%㊂结论在小型高负荷轴流风扇中,加速型IGV 与无加速IGV 相比,加速型IGV 对风扇压力系数以及效率的提升具有更优的效果,并且IGV 加速程度也并非越大越好,当加速程度为1.1㊁1.2时风性能表现最优,为小型高负荷轴流风扇的研究提供相关设计参考㊂关键词:轴流风扇;进口导叶;加速型;压力系数;全压效率中图分类号:TK83;TK05㊀㊀文献标识码:A ㊀㊀doi:10.16055/j.issn.1672-058X.2024.0002.006㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀收稿日期:2022-12-28㊀修回日期:2023-02-07㊀文章编号:1672-058X(2024)02-0042-08基金项目:国家重点研发计划(2021YFF0600605-3).作者简介:肖国锋(1997 ),男,江西赣州人,硕士研究生,从事叶轮机械设计及优化研究.通讯作者:赛庆毅(1975 ),男,山东威海人,副教授,博士,从事叶轮机械设计及流体测控技术研究.Email:saiqingyi@.引用格式:肖国锋,赛庆毅,刘扬.加速型IGV 对高负荷轴流风扇性能影响研究[J].重庆工商大学学报(自然科学版),2024,41(2):42 49.XIAO Guofeng SAI Qingyi LIU Yang.Research on the effect of accelerated inlet guide vane on the performance of high-loadaxial fans J .Journal of Chongqing Technology and Business University Natural Science Edition 2024 41 2 42 49.Research on the Effect of Accelerated Inlet Guide Vane on the Performance of High-load Axial Fans XIAO Guofeng SAI Qingyi LIU YangSchool of Energy and Power Engineering University of Shanghai for Science and Technology Shanghai 200093 ChinaAbstract Objective In order to further improve the high-pass flow and high-load capacity of small high-load axial flow fans in small space an accelerated inlet guide vane IGV structure design scheme was proposed.Methods The 3D design software Pro /E was used to design different accelerated IGVs and their effects on the pressure coefficient full pressure efficiency and runner losses at different flow coefficients of the fan were investigated by numerical simulation methods.Results The use of accelerated IGV increased the flow capacity in the flow channel delayed the separation of the airflow at the trailing edge of the blade and made the downstream flow more uniform.With the increase in the acceleration degree of the inlet airflow the total pressure efficiency at the design point basically showed a monotonous increasing pared with non-accelerated IGV fan when the IGV acceleration degree was 1.1and 1.2 at the design operating point the fan pressure coefficient was increased by 1.61%and 1.24% and the efficiency was increased by 3.49%and 5.05% respectively.When the acceleration degree of IGV increased from 1.0to 1.5 the fan efficiency was increased by 6.69%.Conclusion In small high-load axial flow fans accelerated IGV has better effects on fan pressure coefficient and efficiency than non-accelerated IGV and the greater the acceleration degree of IGV is not the better.When the acceleration degree is 1.1and 1.2 the wind performance is the best which provides relevant design references for small high-load axial flow fans.Keywords axial flow fan inlet guide vane accelerated type pressure coefficient total pressure efficiency第2期肖国锋,等:加速型IGV对高负荷轴流风扇性能影响研究1㊀引㊀言小型高压高负荷轴流风机在许多特殊的场合有着十分广泛的应用,例如微小空间排气换热,空调通风㊁工业除尘等㊂相对于小型离心风机,小型高压高负荷轴流风机具有尺寸小及轻便的特点,在一些安装空间受限的场合发挥重要的作用㊂姚武等[1]基于MATLAB 轴流风机设计平台,设计了一台压比为1.5的高负荷轴流风机,实现了风机内部流体高效率运行且有较宽的稳定工作范围㊂王松涛等[2]设计了一种高负荷高通流能力的轴流风机,相比离心式风机,其迎风面积更小且流动效率更高㊂金东海等[3]对高负荷低速风扇TA36A转子叶型进行了数值优化设计,一定程度上拓宽了其失速裕度,使其具有高稳定工作裕度17.97%和高效率89.42%的显著特点,但均未对进口导叶结构设计进行进一步研究与分析㊂在高负荷轴流风机中进口导叶对气流产生预旋作用,因此设计合理的进口导叶对高负荷风机内流特征的改善㊁整机效率的提升具有重要的现实意义㊂滕礼志等[4]通过给定的出口气流参数设计3种进口导叶方案,研究表明:导叶出口流场能够为压气机整机提供真实气流参数,且有较小导叶流动损失㊂国内外很多学者对风扇进口导叶可调设计进行了广泛的研究[5-10],研究表明,进口导叶安装角的调节拓宽了风扇喘振裕度,提高了非设计点效率以及风扇稳定工作范围,在设计工况的气动性能的提升上未有较多的研究㊂李景银等[11]提出一种提高可逆风机正反风效率的新方法,在完全可逆风机动叶上下游设置安装角度为90ʎ的完全对称翼型的前后导叶,结果表明前导叶对进口气流方向无影响,但后导叶可以大幅降低出口周向旋绕速度,带前后导叶风机气动性能相比于无导叶风机有明显提高㊂叶学民等[12]以BMCR工况及安装角为3ʎ的两级动叶可调轴流风机为研究对象,设计了不同的轴向㊁周向位置和叶片长度的长短复合式导叶,同时对风机整机和局部进行数值模拟,以实现对风机导叶结构的最优配置㊂目前,对于小型高负荷轴流风扇进口导叶的研究,主要通过改变进口导叶的安装角变化来拓宽非设计工况的失速裕度和工作范围,改善风扇整机运行性能;其次,IGV对气流产生的负预旋导致进口导叶流动损失较大,且对于风机加速比的研究多集中在子午加速轴流风机动叶以及多级轴流风机转子部分[13-14],而对带加速型IGV的小型高负荷轴流风扇的研究尚少,本文基于某小型高负荷单级P+R+S轴流风扇,针对带不同加速型IGV的风扇展开数值模拟,深入分析其对小型高负荷轴流风扇性能的影响㊂2㊀数值计算方法2.1㊀计算模型以某单级高负荷轴流风扇为研究对象,原模型如图1所示,风扇基本结构包含集流器㊁进口导叶㊁动叶㊁静叶以及扩压筒,叶片叶型均采用机翼型,关键设计参数列于表1中㊂本文在不改变原模型IGV叶片设计关键参数及IGV轮毂轴向长度的基础上,仅改变导叶进口轮毂半径得到不同加速型IGV,各IGV模型的轮毂结构参数列于表2中㊂其中IGV的加速程度用N表示,N越大,加速程度越高㊂图2为加速型IGV结构简图㊂集流器+机匣进口导叶动叶静叶扩压筒图1㊀原型风扇模型Fig.1㊀Model of the original fan表1㊀风扇关键设计参数Table1㊀Key design parameters of fans设计参数数㊀值设计流量(Q/m3㊃h-1)230设计压力(P0/Pa)600额定转速(n/r㊃min-1)5800叶轮直径(D t/mm)120叶尖间隙(h/mm)0.5进口导叶轮毂直径(D2/mm)94.8动叶轮毂比(υ)0.79进口导叶片数22动叶片数15静叶片数22表2㊀六种风扇模型IGV轮毂结构参数Table2㊀Structure parameters of IGV hub for six fan models 模型名称轮毂轴长(d0/mm)进口轮毂半径(d1/mm)出口轮毂半径(d2/mm)加速程度(N=d1/d2) P031.047.4047.40 1.0P131.043.0947.40 1.1P231.039.5047.40 1.2P331.036.4647.40 1.3P431.033.8647.40 1.4P531.031.6047.40 1.534重庆工商大学学报(自然科学版)第41卷d 1d 0d 2气流方向图2㊀加速型IGV 结构简图Fig.2㊀Structure diagram of accelerated IGV2.2㊀网格划分及可靠性验证采用ICEM 软件对风扇流体域进行网格划分,延长了风扇流体域的进口和出口㊂流体域分为进口和出口的扩展区㊁进口导叶区㊁动叶旋转区及静叶扩压区五部分[16]㊂此整体网格划分采用混合网格,扩展区采用六面体单元生成结构化网格,其余区域采用四面体单元生成非结构化网格㊂由于风扇内部流动的复杂性,对各叶片叶尖㊁轮毂加密处理㊂为验证风扇网格数对计算结果的无关性,在设计流量下,对网格数分别为321万㊁489万㊁614万㊁768万㊁988万的模型P 1进行了数值模拟,结果列于表3,风扇全压与效率随网格数的增加逐步提高,当网格数达到614万时,风扇全压与效率不发生显著变化,最终选用整机网格数为614万的方案进行计算㊂表3㊀网格无关性验证Table 3㊀Validation of grid independence网格数/万全压(P t /Pa )风扇效率(η)321610.50.5727489613.90.5732614617.00.5749768617.10.5750988617.30.5753为验证模拟的可靠性,对原模型风扇各部件进行加工,依据国标GB /T1236-2000‘工业通风机用标准化风道进行性能试验“[15]的标准,试验装置采用出口侧试验风洞,对原型P 0风扇的气动性能进行试验测量㊂图3为风机性能实验装置图㊂气流方向试验风机测压孔整流网喷嘴可变排气系统(辅助风机与流量调节风门)图3㊀出口侧试验风洞装置图Fig.3㊀Installation diagram of outlet side test wind tunel图4为原型P 0风扇模拟与实验结果曲线对比㊂对原型P 0风扇压力系数随流量系数变化的模拟结果与实验结果进行比较,其中φ=Q V /3600Au ()(1)Ψ=P t /ρu 2()(2)A =πD t /1000()2/4(3)u =πD t /1000()n /60(4)式(1) 式(4)中,φ为流量系统;Ψ为压力系数;Q V 为体积流量(m 3㊃h -1);A 为动叶特征面积(m 2);P t 为风扇全压(Pa);ρ为空气密度(kg㊃m -3);D t 为叶轮外径(mm );u 为圆周速度(m㊃s -1);n 为动叶转速(r ㊃min -1)㊂由图4可知,模拟值与实验值的曲线整体趋势大致相似,其最大误差在2%,在可接受范围内,验证了数值模拟结果的可靠性㊂图4㊀原型P 0风扇模拟与实验结果对比Fig.4㊀Comparison between simulation and experimentalresults of prototype P 0fan2.3㊀控制方程及边界条件采用FLUENT 软件对流体域进行数值计算,湍流模型选取Realizable k -ε模型[16],压力-速度耦合采用SIMPLE 算法;动量方程㊁能量方程和湍流耗散方程均采用二阶迎风格式[16]㊂动叶区设置为旋转区域,其余四部分计算域设定为静止区域,旋转区域和静止区域采用多重参考系MRF 进行耦合,壁面选用无滑移边界条件,近壁面区采用标准壁面函数,动静区域采用Interface 交界面,入口边界条件设置为速度入口,出口为自由出流㊂当各参数的残差小于10-4,且进㊁出口截面的总压均不随迭代时间而改变时,则认为计算已经收敛㊂3㊀结果与分析3.1㊀风扇性能图5为不同IGV 风扇模型的压力系数及风扇效率曲线对比,设计工况点对应压力系数为0.376,流量系数为0.155㊂从图5(a)可以看出,当流量系数φ为0.147~0.19时,P 1与P 2的压力系数相比原型P 0均有44第2期肖国锋,等:加速型IGV对高负荷轴流风扇性能影响研究提升,而P4与P5压力系数均小于原型P0,其中P5下降最多;当流量系数为0.147~0.155时,P3与P0压力系数基本一致,当流量系数为0.155~0.19时,P3压力系数逐渐低于P0㊂由图5(b)可知,当流量系数为0.147~0.19时,风扇效率曲线从P1到P5呈递增趋势㊂当N由1.0增至1.5时,P1 P5风扇的设计工况点效率较原型P0分别提升3.49%㊁5.05%㊁5.75%㊁6.33%㊁6.69%㊂由此可见,N为1.1与1.2时,相比无加速IGV风扇,(a)不同流量系数下的压力系数分布(b)不同流量系数下的风扇效率分布图5㊀风扇性能曲线Fig.5㊀Fan performance curves3.2㊀内流特征及损失分析3.2.1㊀IGV流道速度分布IGV出口气流速度大小分布和角度对动叶进口气流参数尤为重要㊂图6为风扇叶栅基元级速度三角形,图7为IGV出口速度沿叶片展向分布曲线,其中c1为IGV出口速度㊂由图7可知,由于端壁效应,在0.1倍相对叶高以下及0.9倍相对叶高以上端壁附近气流速度梯度较大,随着加速程度的增大,IGV出口速度呈现减小的趋势㊂在0.05~0.95倍相对叶高内,原型P0实际的c1稍高于其几何设计下的c1,其在叶片尾缘叶根至叶顶呈现 凹形 分布,0.5倍相对叶高处c1稍小,原型P0的IGV尾缘气流速度均匀性较差,从而使得气流进入后级动叶入口损失较大,导致整机效率较低㊂随着加速程度N的增大, 凹形 分布趋势逐渐减小并消失,IGV尾缘流场得到较好改善,进入后级动叶流场较为稳定,从而随着加速程度的提高,风扇效率均有不同程度的提升㊂β2w2α2c2uczc3β1w1uc1α1αcI G V叶栅动叶叶栅静叶叶栅轴向Δα图6㊀风扇叶栅基元级速度三角形Fig.6㊀Velocity triangle of fan cascade primitivelevel图7㊀IGV出口速度沿叶高分布Fig.7㊀Distribution of IGV outlet velocityalong blade height流道内速度分布反映了流道内的流量分布和流动分离特征,图8㊁图9及图10为IGV不同叶高截面的速度分布图㊂由图8(a)可知,15%叶高处P0导叶压力面叶根70%弦长至尾缘下游气流速度梯度较大,造成局部气流分离严重㊂由图9(a)50%叶高及图10(a)85%叶高的速度分布可知,原型P0的IGV吸力面叶中至叶顶的高速区分布相对叶根增大,且气流沿圆周方向速度变化较大,导致尾缘吸力面气流分离,IGV出口尾迹扰动使得后级动叶入口流场紊乱,流动损失增加,导致风扇效率下降㊂由图8㊁图9及图10可知,IGV不同的加速程度对流道全叶高范围内的气流流动均有影响;当N值由1.0增至1.5时,IGV流道内速度梯度逐渐减小,气流在叶片表面分离减少,IGV通流能力增强,尾缘流场畸变得到改善,后级动叶入口流动分布更优,这也是风扇整机效率上升的重要原因之一㊂54重庆工商大学学报(自然科学版)第41卷V e l o c i t y(m?s-1)0.03.06.09.012.015.018.021.024.027.030.0(a)P(b)P1(c)P2(d)P3(e)P4(f)P5图8㊀IGV0.15倍叶高速度分布Fig.8㊀Velocity distribution of inlet guide vane0.15times of blade height0.03.06.09.012.015.018.021.024.027.030.0(a)P0(b)P1(c)P2(d)P3(e)P4(f)P5V e l o c i t y(m?s-1)图9㊀IGV0.5倍叶高速度分布Fig.9㊀Velocity distribution of inlet guide vane0.5times of blade height0.03.06.09.012.015.018.021.024.027.030.0(a)P0(b)P1(c)P2(d)P3(e)P4(f)P5V e l o c i t y(m?s-1)图10㊀IGV0.85倍叶高速度分布Fig.10㊀Velocity distribution of IGV0.85times of blade height3.2.2㊀IGV流道涡结构及湍动能分布Q准则是一种判别流场内旋涡区域的方法,可以直观地识别涡核结构和位置,Q的定义[17]为Q=12ΩijΩij-e ij e ij()(5)式(5)中,еij为应变速率张量;Ωij为涡量张量㊂图11为Q=1.14ˑ106s-2时六种模型IGV吸力面及轮毂区域涡量识别图,Q>0表示流体微团旋转运动占据主导㊂由于导叶无叶顶间隙,叶片涡分布主要为通道马蹄涡与叶片脱落尾涡㊂由图10(a)可知,原型P0IGV中旋涡从前缘开始扩散,高强度涡集中在导叶吸力面,吸力面流动分离严重;在通道内横向速度梯度及主流气流牵引作用下,马蹄涡分支在通道吸力面由前缘叶根向尾缘叶中倾斜发展,并与压力面尾涡混合出现在叶片尾缘,导致尾迹涡强度增大,从而损失较大㊂当N为1.1与1.2时,IGV吸力面马蹄涡分支尺度明显减小,其与导叶尾涡干涉作用减弱,降低了尾迹涡流强度,导叶出口气流流动均匀性得到较大改善,使得动叶入口流场紊乱程度减小,P1与P2动叶作功能力增强,风扇效率提升,这与速度沿叶高分布分析结果一致㊂比较图11(d)㊁11(e)及11(f)可知,P3㊁P4及P5吸力面马蹄涡分支几乎消失㊂湍流动能分布表征了流体湍流脉动的程度,反应流体微团之间发生碰撞和动量交换的程度㊂图12为部分模型IGV出口截面湍动能分布图,图13为部分模型动叶出口截面湍动能分布图㊂由于动叶叶顶间隙的存在,间隙附近湍动能分布较高,原型P0的IGV出口以64第2期肖国锋,等:加速型IGV对高负荷轴流风扇性能影响研究及动叶出口高湍动能区域较大,表明导叶与动叶尾缘涡流强度较大,叶片尾缘附面层分离明显㊂当N由1.0增至1.5时,动叶区气流湍流脉动减弱,出口附近湍动能降低幅度较大,这也从另一方面体现了IGV加速程度的增大,对于提升后级动叶区整体气流流动的均匀性,增强流道通流能力,提升风扇效率具有一定的意义㊂通道马蹄涡分支吸力面尾缘脱落涡(a)P0(b)P1(c)P2(d)P3(e)P4(f)P5图11㊀IGV流道Q准则涡量识别图Fig.11㊀The vorticity identification diagram of theQ criterion of the IGV flow051015202530354045 T K E(J?k g-1)I G V出口高湍动能区(a)P(b)P1(c)P3(d)P5图12㊀IGV出口截面湍动能分布Fig.12㊀Turbulent kinetic energy distribution of IGVoutlet section06111722283339445055后级动叶出口商湍动能区(a)P(b)P1(c)P3(d)P5T K E(J?k g-1)图13㊀动叶出口截面湍动能分布Fig.13㊀Turbulent kinetic energy distribution ofrotating blade outlet section3.2.3㊀IGV气流折转角气流折转角Δα是IGV对气流旋绕能力的重要参数㊂图14为IGV气流折转角Δα沿叶高的分布曲线㊂由于端壁效应,IGV通道端壁附近气流流动紊乱,气流转折角较其余叶高部分小㊂随着IGV加速程度的提高,叶片对气流的折转能力有所减小,且加速程度越高,Δα越小㊂在0.05~0.95倍相对叶高内,原型P0实际的Δα高于其几何设计下的Δα㊂原型P0实际的Δα过大,导致后级动叶入口攻角过正,导致动叶出口落后角更快地增大,使得相对速度气动弯角不能继续增大,使得其作功能力低于P1及P2;而P3㊁P4及P5由于IGV的Δα远低于原型P0几何设计下的Δα,做功能力依次低于原型P0㊂由图6㊁图7及图14可知,随着IGV 加速程度的提高,风扇整机对气流的做功能力先增大后减小㊂3.2.4㊀导叶总压损失系数图15为IGV出口总压损失系数沿径向分布曲线,定义导叶总压损失系数ω为ω=P tin-P tr12ρu2in(6)74重庆工商大学学报(自然科学版)第41卷式(6)中,P tin为进口平面平均总压(Pa);P tr为计算点总压(Pa);u in为进口0.5倍叶展处平均速度(m㊃s-1)㊂从图15可以看出,叶根与叶顶处总压损失系数较其余叶高部分明显增大,而加速型IGV在0.1倍相对叶高以下以及0.8倍相对叶高以上两部分总压损失较大㊂P1在全叶高范围内导叶总压损失系数均小于原型P0,最多减小9%,全叶高平均总压损失系数减小约42.4%㊂综合分析图7 图10及图15可知,N越大,流动分离越少,IGV总压损失系数较原型P0减小越多,风扇效率提高越明显㊂图14㊀导叶气流折转角Δα沿叶高分布Fig.14㊀Distribution of guide vane air flow angleΔαalong leafheight图15㊀IGV出口总压损失系数沿叶高分布Fig.15㊀Total pressure loss coefficient of IGV outletdistributed along blade height4㊀结㊀论IGV加速程度越大,流道内气流流动分离减少,通流能力增强,导叶总压损失系数越小,风机效率呈单调递增趋势,当加速程度为1.1~1.5时,风机设计工况点效率较无加速时分别提高了3.49%㊁5.05%㊁5.75%㊁6.33%㊁6.69%㊂IGV对气流的折转能力会影响后级动叶作功能力,从而影响整机性能,随着IGV加速程度的提高,风扇整机对气流的作功能力先增大后减小㊂表明在高负荷轴流风扇中IGV加速程度并非越大越好㊂综合5种加速型IGV的高负荷轴流风扇的压力系数与效率,当IGV 加速程度为1.2时风扇性能最优㊂参考文献References1 ㊀姚武徐惠坚孙强胜.轴流高负荷风机气动设计J .电站系统工程2018 34 1 54 55.YAO Wu XU Hui-jian SUN Qiang-sheng.Aerodynamic design of a high load axial fan J .Power System Engineering2018 34 1 54 55.2 ㊀王松涛丁骏朱伟等.高效高负荷高通流能力轴流风机气动设计参数选择与三维叶片技术J .风机技术201860 2 25-33 65.WANG Song-tao DING Jun ZHU Wei et al.On the aerodynamic design parameter selection and three dimensional blading techniques of highly efficient highly loaded and large flow capacity axial fan J .Chinese Journal of Turbomachinery 2018 60 2 25-33 65.3 ㊀金东海李泯江桂幸民.高负荷低速轴流风扇数值优化设计与实验研究J .推进技术2009 30 6 696 702.JIN Dong-hai LI Min-jiang GUI Xing-min.Numerical design optimization of a high-loaded low speed axial-flow fan and experimental research J .Journal of Propulsion Technology 2009 30 6 696 702.4 ㊀滕礼志孙鹏徐佳汇等.扇形叶栅实验进口导叶设计及数值分析J .大连海事大学学报2016 42 3 95 101.TENG Li-zhi SUN Peng XU Jia-hui et al.Inlet guide vane design and numerical simulation of the sectorial cascade test J .Journal of Dalian Maritime University 2016 42395 101.5 ㊀SHI H T LIU B J YU X J.Criteria for designing low-lossand wide operation range variable inlet guide vanes J .Aerospace Science and Technology 2018 80 1 177 191.6 ㊀RODGERS C.Centrifugal compressor inlet guide vanes forincreased surge margin J .Journal of Turbomachinery 1991113 4 696 702.84第2期肖国锋,等:加速型IGV对高负荷轴流风扇性能影响研究7 ㊀张申吴孟龙范俊岩等.可调进口导叶在两级同轴离心压气机上的应用J .汽车零部件2020 1 10 1 4. ZHANG Shen WU Meng-long FAN Jun-yan et al. Application of the VIGV in a double stage centrifugal compressor J .Automobile Parts 2020 1 10 1 4.8 ㊀雷鹏金东海桂幸民.高负荷风扇前后可调变弯度导叶的数值研究J .西北工业大学学报2017 35 1 55 62. LEI Peng JIN Dong-hai GUI Xing-min.Numerical investigation of a variable inlet guide vane with two rotating segments in a highly loaded two stage fan J .Journal of Northwestern Polytechnical University 2017 35 1 55 62.9 ㊀陈节贵彭铖杨金广等.带可调进口导叶的多级轴流压气机非设计点性能计算J .热科学与技术2018 171 73 79.CHEN Jie-gui PENG Cheng YANG Jin-guang et al.off design performance calculation of multistage axial compressor with variable inlet guide vanes J .Journal of Thermal Science and Technology 2018 17 1 73 79.10 王萌王明金王忠义等.低工况下轴流压气机可转导叶调节规律研究J .热能动力工程2021 36 9 33 41. WANG Meng WANG Min-jin WANG Zhong-yi et al. Research on the adjustment law of variable inlet guide vane of axial compressor at off-design condition J .Journal of Engineering For Thermal Energy and Power 2021 369 33 41.11 李景银陈魏巍吕峰.带有前后导叶的新型可逆轴流风机数值研究J .机械工程学报2010 46 2 139 144.LI Jing-yin CHEN Wei-wei LU Feng.Numerical investigation on a new type of fully reversible axial fan with two blade rows on both sides of the rotor J .Journal of Mechanical Engineering 2010 46 2 139 144.12 叶学民李新颖李春曦.第一级导叶改进对两级动叶可调轴流风机性能的影响J .动力工程学报2014 34 3 228-235 252.YE Xue-min LI Xi-ying LI Chun-xi.Effects of first-stage guide vane improvement on performance of two-stage variable vane axial flow fan J .Journal of Chinese Society of Power Engineering 2014 34 3 228-235 252.13 李一明王雷李宝宽.动静叶可调子午加速轴流通风机气动性能研究J .热力发电2014 43 8 64 70.LI Yi-ming WANG Lei LI Bao-kuan.Aerodynamic performance of stator/rotor adjustable axial-flow fan with meridian acceleration J .Thermal Power Generation 201443 8 64 70.14 李斌赛庆毅张波等.加速比对子午加速轴流风机气动性能影响的研究J .建模与仿真2020 9 3 332 344.LI Bin SAI Qing-yi ZHANG Bo et al.Study on influence of acceleration ratio on aerodynamic performance of meridional accelerated axial fan J .Modeling and Simulation 2020 93 332 344.15 工业通风机用标准化风道性能试验GB/T1236-2017S .北京中国标准出版社2017.Industrial fan Performance testing using standardized airways GB/T1236-2017S .Beijing Standards Press of China 2017.16 叶学民李鹏敏李春曦.双凹槽叶顶结构下的轴流风机性能及叶片振动特性研究J .机械工程学报2015 514167 174.YE Xue-min LI Peng-min LI Chun-xi.Study on performance and vibration characteristics of axial fan with double groove tip structure J .Journal of Mechanical Engineering 2015 51 4 167 174.17 李春曦张超张锐星等.Gurney襟翼对动叶可调轴流风机性能的影响J .动力工程学报2020 40 5 404 411.LI Chun-xi ZHANG Chao ZHANG Rui-xing et al.Effect of Gurney flap on performance and aeroacoustics of variable pitch axial fans J .Journal of Chinese Society of Power Engineering 2020 40 5 404 411.责任编辑:陈㊀芳94。
钛铝层状复合材料界面损伤有限元模拟
陕西理工大学学报!自然科学版)Journal of Shaanxi University of TechnoloZ ( Natural Sciencc Edition)2021年4月第37卷第2期Apo.2021VoL37 No. 2引用格式:陈丽,樊瑜瑾•钛/铝层状复合材料界面损伤有限元模拟[J ]・陕西理工大学学报!自然科学版),2021,37(2":9e13.钛/铝层状复合材料界面损伤有限元模拟陈丽,樊瑜瑾"(昆明理工大学机电工程学院,云南昆明650500)摘 要:基于双线性内聚力模型,采用ABAQUS 软件建立了钛/铝层状复合材料的端部缺口弯 曲试验有限元模型,通过数值模拟得到载荷-位移曲线与试验曲线,对比曲线验证了模型的有 效性。
在数值模型基础上进一步研究界面参数中界面刚度、能量释放率、剪切强度对于复合材 料性能的影响。
结果表明:界面刚度对材料的峰值破坏载荷的影响不大;能量释放率、剪切强 度是影响材料性能的主要因素,随着两者的增大,界面失效的峰值载荷及对应位移都有一定的 增大。
关键词:内聚力模型;金属层状复合材料;有限元模拟中图分类号:TB331 文献标识码:A 文章编号:2096-3998(2021)02-0009-05金属层状复合材料与单一金属材料相比具有较好的比强度,良好的导电、导热、耐高温氧化、抗磨损 等性能,可广泛应用于汽车、航空航天、厨具用品、机械电子等工业领域$T )由于结合界面性能薄弱,其 中层与层之间的断裂是金属层状复合板的主要损伤形式之一,会严重影响材料的使用性能,因此对于界 面的断裂行为研究很有必要。
目前,内聚力单元是研究复合材料界面层的有效方法,大量学者运用内聚力单元对复合材料层间损 伤行为进行了一系列研究。
内聚力模型的概念最初由Barenblat e 5%和Dugdl 6%先后于1959年和I960 年提出。
朱兆一等[7%基于内聚力模型,研究了纤维增强复合材料层合板胶接结构时的最大承载能力和 界面损伤失效行为。
Q235剪切型耗能梁段超强系数的建议
第40卷第3期2020年6月 地 震 工 程 与 工 程 振 动EARTHQUAKEENGINEERINGANDENGINEERINGDYNAMICSVol.40No.3 Jun.2020 收稿日期:2019-06-15; 修订日期:2019-12-05 基金项目:国家自然科学基金项目(51708444);陕西省自然科学基础研究计划项目(2018JQ5074);陕西省教育厅专项科研计划项目(18JK0456) Supportedby:NationalNaturalScienceFoundationofChina(51708444);NaturalScienceBasicResearchProgramofShaanxi(2018JQ5074);SpecialResearchProgramofShaanxiProvincialDepartmentofEducation(18JK0456) 作者简介:关彬林(1989-),男,博士研究生,主要从事新型钢结构体系抗震性能研究.E mail:guanbinlin@163.com 通讯作者:连 鸣(1987-),男,副教授,博士,主要从事新型钢结构体系抗震性能与设计理论研究.E mail:lianming0821@163.com文章编号:1000-1301(2020)03-0117-13DOI:10.13197/j.eeev.2020.03.117.guanbl.012Q235剪切型耗能梁段超强系数的建议关彬林1,连 鸣1,2,苏明周1,2(1.西安建筑科技大学土木工程学院,陕西西安710055;2.西安建筑科技大学结构工程与抗震教育部重点实验室,陕西西安710055)摘 要:含可更换剪切型耗能梁段钢框筒是一种耗能性能良好的结构,利用位于部分裙梁跨中的耗能梁段集中塑性变形,有利于震后损坏耗能梁段的快速替换和结构功能的快速恢复。
在整体结构的设计和性能分析中,Q235耗能梁段的超强系数和剪切铰模型至关重要。
双轴疲劳问题
The influence of constant axial compression pre-stress on the fatiguefailure of torsionloaded tube springsThis paper reports the results of a series of biaxial static compression and torsion experiments performed to evaluate the effects of static compression stress on the fatigue lifethose smooth tubes made of high strength spring steel. Compression pre-stress was introduced by a solid steel bar inserted into a hollow spring and loaded with a screw-joint. Theexperimentally obtained results show a significant extension of fatigue strain life as aresult of combining axial compression loading with torsion. Cracking behavior wasobserved and it was noted that compression pre-stresses contribute to retardation of thefatigue crack initiation process and, consequently, contribute to the extension of fatiguelife. The fatigue shear crack initiated in a transverse direction. This crack continues to propagate in the same direction until it starts to propagate as a macro-crack on the maximumshear plane.摘要:本文讨论了一系列双轴压、扭组合静态力试验,以此来评估静态压应力对于弹簧钢光滑管疲惫寿命的影响。
抗扭强度英语
抗扭强度英语Torsional strength is an important mechanical property of materials and structures that indicates their resistance to rotational forces or torques. It is a measure of the maximum torque that a material or structure can withstand before it undergoes torsional deformation or failure.Torsional strength is particularly relevant in engineering applications where rotational forces are present, such as in shafts, gears, and various types of machinery. To ensure the reliability and durability of such components, it is crucial to understand and design for their torsional strength requirements.There are several factors that influence the torsional strength of a material or structure. One of the key factors is the material's shear strength, which is the resistance of a material to shearing forces. Materials with high shear strength tend to have higher torsional strength as well. For example, high-strength steel alloys are commonly used in applications that require high torsional strength.Another important factor is the geometry of the structure. The cross-sectional shape and dimensions of a component play a significant role in determining its torsional strength. For instance, a solid circular shaft is known to have higher torsional strength compared to a hollow or non-circular one with the same mass. This is because the circular shape distributes the torque more evenly across the entire cross-section, resulting in higher resistance to torsional deformation.In addition to shear strength and geometry, the type of loading alsoaffects the torsional strength. There are two main types of loading: pure torsion and combined torsion with axial loading. Pure torsion refers to a situation where a component is subjected to a pure twisting moment without any axial force. Combined torsion, on the other hand, occurs when a component experiences both torsion and an axial force simultaneously. The presence of axial loading can significantly reduce the torsional strength of a component due to additional bending stresses and potential buckling.To determine the torsional strength of a material or structure, various testing methods are employed. One commonly used method is the torsion test, which involves applying a twisting moment to a sample until it fractures. The torque at failure is then measured, and the torsional strength can be calculated based on the dimensions of the sample.In conclusion, the torsional strength of a material or structure is a critical property in engineering applications. It is influenced by factors such as shear strength, geometry, and the type of loading. Understanding and designing for torsional strength requirements are essential for ensuring the reliability and durability of components subjected to rotational forces. Various testing methods, such as the torsion test, can be employed to determine the torsional strength of materials and structures.。
提高剪力墙轴压比限值的方法
文章编号:100926825(2006)1020053202提高剪力墙轴压比限值的方法收稿日期:2005210219作者简介:陈 哲(19702),男,工程硕士,工程师,广州市住宅建筑设计院有限公司,广东广州 510055陈 哲摘 要:简述了提高墙轴压比限值的意义,探讨了配筋构件的受压机理,对规范提高柱轴压比限值的原理和措施进行了研究、论证了提高墙轴压比限值的假定措施,以推广提高剪力墙轴压比限值的方法。
关键词:受压构件,承载力,轴压比中图分类号:TU375.1文献标识码:A1 提高墙轴压比限值的意义墙刚度比柱大,也更易做到“隐梁隐柱”,因此在高层建筑中广为应用。
采取措施减少墙柱截面可减少结构面积、削减地震反应。
规范提供了提高柱轴压比限值的方法,对使用数量更多的墙则没有。
某工程因建筑要求限制,导致计算轴压比超限:采用C60混凝土,墙厚达850mm ,结果仍达0.62,而规范规定应为0.5。
解决方法有两个:1)提高混凝土强度,但混凝土等级大于C60时轴压比限值要降低,效果欠佳,而且高强混凝土的购置、施工、养护难度较大。
2)墙内埋型钢,考虑型钢的贡献,但型钢的配钢率、截面尺寸等要求较严,且混凝土梁板与型钢墙连接复杂、施工困难。
综合上述分析得出:剪力墙内配复合密箍和芯柱可提高其轴压比限值。
倘若论点成立,就可通过增加配筋来减小墙截面,这对减小结构面积、降低结构刚度以削弱地震反应有积极的意义。
2 配筋构件受压机理2.1 配置了纵筋的受压构件的受力特性纵筋属于直接配筋,是通过在主压应力方向加设钢筋来增强构件的抗压承载力。
1)几何(变形)条件。
首先必须明确:构件受压后发生压缩变形,从构件开始受力直至破坏,一个平截面始终保持平面,即截面上各点(钢筋和混凝土)的应变值相等,这已为许多试验所证实。
这也是以下分析研究过程的理论基础。
2)力学(平衡)方程。
轴压构件的力学平衡方程为:N =N c +N s =σc A c +σs A s 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(a) Interior diaphragm
(b) Exterior diaphragm
(c) Through
Fig. 1
Connection methods
Accepted date: 2014-11-19. *Supported by the National Natural Science Foundation of China (No. 51268054 and No. 51468061) , the Natural Science Foundation of Tianjin (No. 13JCQNJC07300) and Foundation of Xinjiang University (No. XY110137). Zhang Guangtai, born in 1963, male, Dr, Prof. Correspondence to Rong Bin, E-mail: rongbin2010@.
Composite structures constructed by concrete-filled square steel tubular columns and H-shaped steel beams have been widely applied in practical projects because of their advantages such as high bearing capacity, good seismic performance and rapid construction. Researchers have carried out a large number of experimental studies and theoretical analyses on the connection methods between concrete-filled square steel tubular columns and H-
Zhang Guangtai(张广泰)1, Han Jianhong(韩建红)1,Rong Bin(荣 Apostolos Fafitis4 彬)2,3,
(1. School of Civil Engineering, Xinjiang University, Urumqi 830046, China; 2. School of Civil Engineering, Tianjin University, Tianjin 300072, China; 3. Key Laboratory of Coast Civil Structure Safety(Tianjin University), Ministry of Education, Tianjin 300072, China; 4. Department of Civil and Environmental Engineering, Arizona State University, Tempe 85287, USA) © Tianjin University and Springer-Verlag Berlin Heidelberg 2015
Abstract:Nonlinear finite element analysis and parametric studies were carried out to study the influence of axial load ratio on the shear behavior of the through-diaphragm connections of concrete-filled square steel tubular columns. The analysis reveals that smaller axial load ratio can improve the shear bearing capacity and ductility while larger axial load ratio will decrease the shear behavior of the through-diaphragm connections. The parametric studies indicate that the axial load ratio should be limited to less than 0.4 and its influence should be considered in the analysis and design of such connections. Keywords : through-diaphragm connection; concrete-filled square steel tubular column; axial load ratio; shear bearing capacity; ductility
TRANSACTIONS OF TIANJIN UNIVERSITY
2015, 21: 341-346
DOI 10.1007/s12209-015-2483-z
Influence of Axial Load Ratio on Shear Behavior of Through-Diaphragm Connections of Concrete-Filled Square Steel Tubular Columns*
shaped steel beams[1-5]. The domestic technical specification CECS159: 2004[6], includes the provisions for interior-diaphragm, exterior-diaphragm and through-diaphragm connections for composite structures. As shown in Fig. 1, the steel beams are connected to the concretefilled square steel tubular columns by means of diaphragms and shear plates to transfer moment and shear loads from steel beams to panel zones of the connection.