江苏省扬州中学2015-2016年度高一上学期期中考试-数学-Word版
江苏省扬州中学2016届高三数学上学期开学试卷理(含解析)
2015-2016学年江苏省扬州中学高三(上)开学数学试卷(理科)一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应位置)1.已知集合A={x||x|<2},B={x|>0},则A∩B=.2.已知命题p:∀x∈(1,+∞),log2x>0,则¬p为.3.若复数(其中i为虚数单位)的实部与虚部相等,则实数a= .4.记不等式x2+x﹣6<0的解集为集合A,函数y=lg(x﹣a)的定义域为集合B.若“x∈A”是“x∈B”的充分条件,则实数a的取值范围为.5.袋子里有两个不同的红球和两个不同的白球,从中任取两个球,则这两个球颜色相同的概率为.6.曲线y=x﹣cosx在点(,)处的切线方程为.7.已知(+)n的二项展开式中,前三项系数成等差数列,则n= .8.若函数f(x)=是奇函数,则使f(x)>3成立的x的取值范围为.9.已知α为第二象限角,,则cos2α= .10.若函数f(x)=2|x﹣a|(a∈R)满足f(1+x)=f(1﹣x),且f(x)在[m,+∞)上单调递增,则实数m的最小值等于.11.已知知函数f(x)=,x∈R,则不等式f(x2﹣2x)<f(3x﹣4)的解集是.12.已知函数f(x)=若|f(x)|≥ax,则a的取值范围是.13.已知f(x)是定义在[﹣2,2]上的奇函数,当x∈(0,2]时,f(x)=2x﹣1,函数g (x)=x2﹣2x+m.如果对于∀x1∈[﹣2,2],∃x2∈[﹣2,2],使得g(x2)=f(x1),则实数m的取值范围是.14.已知函数y=f(x)是定义域为R的偶函数,当x≥0时,f(x)=,若关于x的方程[f(x)]2+af(x)+=0,a∈R有且仅有8个不同实数根,则实数a的取值范围是.二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明、证明过程或演算步骤)15.已知,求值:(1)tanα;(2).16.已知命题p:关于实数x的方程x2+mx+1=0有两个不等的负根;命题q:关于实数x的方程4x2+4(m﹣2)x+1=0无实根.(1)命题“p或q”真,“p且q”假,求实数m的取值范围.(2)若关于x的不等式(x﹣m)(x﹣m+5)<0(m∈R)的解集为M;命题q为真命题时,m的取值集合为N.当M∪N=M时,求实数m的取值范围.17.设f(x)=sinxcosx﹣cos2(x+).(Ⅰ)求f(x)的单调区间;(Ⅱ)在锐角△ABC中,角A,B,C的对边分别为a,b,c,若f()=0,a=1,求△ABC 面积的最大值.18.如图为某仓库一侧墙面的示意图,其下部是矩形ABCD,上部是圆AB,该圆弧所在的圆心为O,为了调节仓库内的湿度和温度,现要在墙面上开一个矩形的通风窗EFGH(其中E,F在圆弧AB上,G,H在弦AB上).过O作OP⊥AB,交AB 于M,交EF于N,交圆弧AB于P,已知OP=10,MP=6.5(单位:m),记通风窗EFGH的面积为S(单位:m2)(1)按下列要求建立函数关系式:(i)设∠POF=θ(rad),将S表示成θ的函数;(ii)设MN=x(m),将S表示成x的函数;(2)试问通风窗的高度MN为多少时?通风窗EFGH的面积S最大?19.已知函数f(x)=+.(1)求函数f(x)的定义域和值域;(2)设F(x)=•[f2(x)﹣2]+f(x)(a为实数),求F(x)在a<0时的最大值g(a);(3)对(2)中g(a),若﹣m2+2tm+≤g(a)对a<0所有的实数a及t∈[﹣1,1]恒成立,求实数m的取值范围.20.设函数f(x)=lnx,g(x)=(m>0).(1)当m=1时,函数y=f(x)与y=g(x)在x=1处的切线互相垂直,求n的值;(2)若函数y=f(x)﹣g(x)在定义域内不单调,求m﹣n的取值范围;(3)是否存在实数a,使得f()•f(e ax)+f()≤0对任意正实数x恒成立?若存在,求出满足条件的实数a;若不存在,请说明理由.【选修4-4:坐标系与参数方程】21.在平面直角坐标xOy中,已知曲线C的参数方程为(t为参数),曲线与直线l:y=x相交于A,B两点,求线段AB的长.【选修4-4:坐标系与参数方程】22.在极坐标系中,求圆ρ=2cosθ的圆心到直线的距离.23.一位网民在网上光顾某淘宝小店,经过一番浏览后,对该店铺中的A,B,C,D,E五种商品有购买意向.已知该网民购买A,B两种商品的概率均为,购买C,D两种商品的概率均为,购买E种商品的概率为.假设该网民是否购买这五种商品相互独立.(1)求该网民至少购买4种商品的概率;(2)用随机变量η表示该网民购买商品的种数,求η的概率分布和数学期望.24.设P n=(1﹣x)2n﹣1,Q n=1﹣(2n﹣1)x+(n﹣1)(2n﹣1)x2,x∈R,n∈N*(1)当n≤2时,试指出P n与Q n的大小关系;(2)当n≥3时,试比较P n与Q n的大小,并证明你的结论.2015-2016学年江苏省扬州中学高三(上)开学数学试卷(理科)参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应位置)1.已知集合A={x||x|<2},B={x|>0},则A∩B={x|﹣1<x<2} .【考点】交集及其运算.【专题】计算题.【分析】利用绝对值不等式及分式不等式的解法,我们易求出集合A,B,再根据集合交集运算法则,即可求出答案.【解答】解:∵集合A={x||x|<2}=(﹣2,2)B={x|>0}=(﹣1,+∞)∴A∩B=(﹣1,2)={x|﹣1<x<2}故答案为:{x|﹣1<x<2}【点评】本题考查的知识点是交集及其运算,其中根据绝对值不等式及分式不等式的解法,求出集合A,B,是解答本题的关键.2.已知命题p:∀x∈(1,+∞),log2x>0,则¬p为∃x∈(1,+∞),log2x≤0.【考点】命题的否定.【专题】阅读型.【分析】首先分析题目已知命题p:∀x∈(1,+∞),log2x>0,求¬p.由否命题的定义:否命题是一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定.可直接得到答案.【解答】解:已知命题p:∀x∈(1,+∞),log2x>0,因为否命题是一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定.则¬p为∃x∈(1,+∞),log2x≤0.即答案为∃x∈(1,+∞),log2x≤0.【点评】此题主要考查否命题的概念问题,需要注意的是否命题与命题的否定形式的区别,前者是对条件结论都否定,后者只对结论做否定.3.若复数(其中i为虚数单位)的实部与虚部相等,则实数a= ﹣1 .【考点】复数代数形式的乘除运算.【专题】数系的扩充和复数.【分析】利用复数的运算法则、实部与虚部的定义即可得出.【解答】解:复数==﹣ai+1,∵Z的实部与虚部相等,∴﹣a=1,解得a=﹣1.故答案为:﹣1.【点评】本题考查了复数的运算法则、实部与虚部的定义,属于基础题.4.记不等式x2+x﹣6<0的解集为集合A,函数y=lg(x﹣a)的定义域为集合B.若“x∈A”是“x∈B”的充分条件,则实数a的取值范围为(﹣∞,﹣3] .【考点】必要条件、充分条件与充要条件的判断.【专题】简易逻辑.【分析】根据条件求出A,B,结合充分条件和必要条件的定义进行求解即可.【解答】解:由x2+x﹣6<0得﹣3<x<2,即A(﹣3,2),由x﹣a>0,得x>a,即B=(a,+∞),若“x∈A”是“x∈B”的充分条件,则A⊆B,即a≤﹣3,故答案为:(﹣∞,﹣3]【点评】本题主要考查充分条件和必要条件的关系的应用,比较基础.5.袋子里有两个不同的红球和两个不同的白球,从中任取两个球,则这两个球颜色相同的概率为.【考点】古典概型及其概率计算公式.【专题】排列组合.【分析】从中任取两个球共有红1红2,红1白1,红1白2,红2白1,红2白2,白1白2,共6种取法,其中颜色相同只有2种,根据概率公式计算即可【解答】解:从中任取两个球共有红1红2,红1白1,红1白2,红2白1,红2白2,白1白2,共6种取法,其中颜色相同只有2种,故从中任取两个球,则这两个球颜色相同的概率P==;故答案为:.【点评】本题考查了古典概型概率的问题,属于基础题6.曲线y=x﹣cosx在点(,)处的切线方程为2x﹣y﹣=0 .【考点】利用导数研究曲线上某点切线方程.【专题】计算题;导数的概念及应用;直线与圆.【分析】求出函数的导数,求得切线的斜率,再由点斜式方程即可得到所求切线方程.【解答】解:y=x﹣cosx的导数为y′=1+sinx,即有在点(,)处的切线斜率为k=1+sin=2,则曲线在点(,)处的切线方程为y﹣=2(x﹣),即为2x﹣y﹣=0.故答案为:2x﹣y﹣=0.【点评】本题考查导数的运用:求切线方程,掌握导数的几何意义和运用点斜式方程是解题的关键.7.已知(+)n的二项展开式中,前三项系数成等差数列,则n= 8 .【考点】二项式定理.【专题】计算题;二项式定理.【分析】展开式中前三项的系数分别为1,,,成等差数列可得n的值【解答】解:展开式中前三项的系数分别为1,,,由题意得2×=1+,∴n=8或1(舍).故答案为:8.【点评】本题考查二项式定理的运用,考查学生的计算能力,比较基础.8.若函数f(x)=是奇函数,则使f(x)>3成立的x的取值范围为(0,1).【考点】函数奇偶性的性质.【专题】函数的性质及应用.【分析】根据f(x)为奇函数,便有f(﹣x)=﹣f(x),从而可以求出a=1,从而得到,容易判断该函数在(0,+∞)上单调递减,并可判断x<0时,f(x)<1,且f(1)=3,从而可由f(x)>3得到f(x)>f(1),从而便得到0<x<1,这便求出了使f(x)>3成立的x的取值范围.【解答】解:f(x)为奇函数;∴f(﹣x)=﹣f(x);即;∴1﹣a•2x=a﹣2x;∴a=1;∴;①x>0时,x增大时,2x﹣1增大,从而f(x)减小;∴f(x)在(0,+∞)上单调递减;∴由f(x)>3得,f(x)>f(1);解得0<x<1;②x<0时,2x﹣1<0,∴f(x)<1;∴不满足f(x)>3;综上所述,使f(x)>3的x的取值范围为(0,1).故答案为:(0,1).【点评】考查奇函数的定义,根据单调性定义判断函数单调性的方法,指数函数的单调性,以及根据减函数的定义解不等式的方法.9.已知α为第二象限角,,则cos2α= .【考点】二倍角的正弦;同角三角函数间的基本关系.【专题】计算题;压轴题;三角函数的求值.【分析】由α为第二象限角,可知sinα>0,cosα<0,从而可求得sinα﹣cosα的值,利用cos2α=﹣(sinα﹣cosα)(sinα+cosα)可求得cos2α.【解答】解:∵,两边平方得:1+sin2α=,∴sin2α=﹣,①∴(sinα﹣cosα)2=1﹣sin2α=,∵α为第二象限角,∴sinα>0,cosα<0,∴sinα﹣cosα=,②∴cos2α=﹣(sinα﹣cosα)(sinα+cosα)=(﹣)×=.故答案为:.【点评】本题考查同角三角函数间的基本关系,突出二倍角的正弦与余弦的应用,求得sinα﹣cosα的值是关键,属于中档题.10.若函数f(x)=2|x﹣a|(a∈R)满足f(1+x)=f(1﹣x),且f(x)在[m,+∞)上单调递增,则实数m的最小值等于 1 .【考点】指数函数单调性的应用.【专题】开放型;函数的性质及应用.【分析】根据式子f(1+x)=f(1﹣x),对称f(x)关于x=1对称,利用指数函数的性质得出:函数f(x)=2|x﹣a|(a∈R),x=a为对称轴,在[1,+∞)上单调递增,即可判断m的最小值.【解答】解:∵f(1+x)=f(1﹣x),∴f(x)关于x=1对称,∵函数f(x)=2|x﹣a|(a∈R)x=a为对称轴,∴a=1,∴f(x)在[1,+∞)上单调递增,∵f(x)在[m,+∞)上单调递增,∴m的最小值为1.故答案为:1.【点评】本题考查了指数型函数的单调性,对称性,根据函数式子对称函数的性质是本题解决的关键,难度不大,属于中档题.11.已知知函数f(x)=,x∈R,则不等式f(x2﹣2x)<f(3x﹣4)的解集是(1,2).【考点】其他不等式的解法.【专题】函数的性质及应用;不等式的解法及应用.【分析】讨论x的符号,去绝对值,作出函数的图象,由图象可得原不等式即为或,分别解出它们,再求并集即可.【解答】解:当x≥0时,f(x)==1,当x<0时,f(x)==﹣1﹣,作出f(x)的图象,可得f(x)在(﹣∞,0)上递增,不等式f(x2﹣2x)<f(3x﹣4)即为或,即有或,解得≤x<2或1<x<,即有1<x<2.则解集为(1,2).故答案为:(1,2).【点评】本题考查函数的单调性的运用:解不等式,主要考查二次不等式的解法,属于中档题和易错题.12.已知函数f(x)=若|f(x)|≥ax,则a的取值范围是[﹣2,0] .【考点】绝对值不等式的解法;函数的图象.【专题】不等式的解法及应用.【分析】①当x>0时,根据ln(x+1)>0恒成立,求得a≤0.②当x≤0时,可得x2﹣2x≥ax,求得a的范围.再把这两个a的取值范围取交集,可得答案.【解答】解:当x>0时,根据ln(x+1)>0恒成立,则此时a≤0.当x≤0时,根据﹣x2+2x的取值为(﹣∞,0],|f(x)|=x2﹣2x≥ax,x=0时左边=右边,a取任意值.x<0时,有a≥x﹣2,即a≥﹣2.综上可得,a的取值为[﹣2,0],故答案为[﹣2,0].【点评】本题主要考查绝对值不等式的解法,体现了分类讨论的数学思想,属于中档题.13.已知f(x)是定义在[﹣2,2]上的奇函数,当x∈(0,2]时,f(x)=2x﹣1,函数g (x)=x2﹣2x+m.如果对于∀x1∈[﹣2,2],∃x2∈[﹣2,2],使得g(x2)=f(x1),则实数m的取值范围是[﹣5,﹣2] .【考点】指数函数综合题;特称命题.【专题】函数的性质及应用.【分析】求出函数f(x)的值域,根据条件,确定两个函数的最值之间的关系即可得到结论.【解答】解:∵f(x)是定义在[﹣2,2]上的奇函数,∴f(0)=0,当x∈(0,2]时,f(x)=2x﹣1∈(0,3],则当x∈[﹣2,2]时,f(x)∈[﹣3,3],若对于∀x1∈[﹣2,2],∃x2∈[﹣2,2],使得g(x2)=f(x1),则等价为g(x)max≥3且g(x)min≤﹣3,∵g(x)=x2﹣2x+m=(x﹣1)2+m﹣1,x∈[﹣2,2],∴g(x)max=g(﹣2)=8+m,g(x)min=g(1)=m﹣1,则满足8+m≥3且m﹣1≤﹣3,解得m≥﹣5且m≤﹣2,故﹣5≤m≤﹣2,故答案为:[﹣5,﹣2]【点评】本题主要考查函数奇偶性的应用,以及函数最值之间的关系,综合性较强.14.已知函数y=f(x)是定义域为R的偶函数,当x≥0时,f(x)=,若关于x的方程[f(x)]2+af(x)+=0,a∈R有且仅有8个不同实数根,则实数a的取值范围是(,).【考点】函数的零点与方程根的关系;函数奇偶性的性质;根的存在性及根的个数判断.【专题】函数的性质及应用;不等式的解法及应用.【分析】求出f(x)的单调性,以及极值和值域,可得要使关于x的方程[f(x)]2+af(x)+=0,a∈R,有且仅有8个不同实数根,转化为t2+at+=0的两根均在(﹣1,﹣),由二次方程实根的分布,列出不等式组,解得即可.【解答】解:当0≤x≤2时,y=﹣x2递减,当x>2时,y=﹣()x﹣递增,由于函数y=f(x)是定义域为R的偶函数,则f(x)在(﹣∞,﹣2)和(0,2)上递减,在(﹣2,0)和(2,+∞)上递增,当x=0时,函数取得极大值0;当x=±2时,取得极小值﹣1.当0≤x≤2时,y=﹣x2∈[﹣1,0].当x>2时,y=﹣()x﹣∈[﹣1,﹣)要使关于x的方程[f(x)]2+af(x)+=0,a∈R,有且仅有8个不同实数根,设t=f(x),则t2+at+=0的两根均在(﹣1,﹣).则有,即为,解得<a<.即有实数a的取值范围是(,).故答案为:(,).【点评】本题考查函数的单调性和奇偶性的运用,主要考查方程与函数的零点的关系,掌握二次方程实根的分别是解题的关键,属于中档题.二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明、证明过程或演算步骤)15.已知,求值:(1)tanα;(2).【考点】两角和与差的正切函数;同角三角函数间的基本关系;二倍角的余弦.【专题】计算题.【分析】(1)由题意,可由正切的和角公式展开得,由此方程解出tanα;(2)由正弦与余弦的二倍角公式将这形为,再由同角三角关系,将其变为将正切值代入即可求出代数式的值.【解答】解:(1)由题意,可得,解得tanα=﹣(2)==由(1)tanα=﹣,∴==﹣【点评】本题考查了两角的和的正切公式,正弦、余弦的二倍角公式,同角三角函数的基本关系,解题的关键是牢固记忆公式,能根据这些公式灵活变形,求出代数式的值,三角函数由于公式多,可选择的方法多,故解题时要注意选取最合适的方法解题16.已知命题p:关于实数x的方程x2+mx+1=0有两个不等的负根;命题q:关于实数x的方程4x2+4(m﹣2)x+1=0无实根.(1)命题“p或q”真,“p且q”假,求实数m的取值范围.(2)若关于x的不等式(x﹣m)(x﹣m+5)<0(m∈R)的解集为M;命题q为真命题时,m的取值集合为N.当M∪N=M时,求实数m的取值范围.【考点】复合命题的真假.【专题】简易逻辑.【分析】(1)分别求出命题p,q为真时的m的范围,通过讨论p,q的真假得到关于m的不等式组,解出即可;(2)先求出关于M、N的x的范围,根据N⊆M,得到不等式组,解出即可.【解答】解:(1)若方程x2+mx+1=0有两不等的负根,则,解得:m>2,即命题p:m>2,若方程4x2+4(m﹣2)x+1=0无实根,则△=16(m﹣2)2﹣16=16(m2﹣4m+3)<0解得:1<m<3.即命题q:1<m<3.由题意知,命题p、q应一真一假,即命题p为真,命题q为假或命题p为假,命题q为真.∴或,解得:m≥3或1<m≤2.(2)∵M∪N=M,∴N⊆M,∵M=(m﹣5,m),N=(1,3),∴,解得:3≤m≤6.【点评】本题考查了复合命题的判断,考查二次函数的性质,集合的关系,是一道中档题.17.设f(x)=sinxcosx﹣cos2(x+).(Ⅰ)求f(x)的单调区间;(Ⅱ)在锐角△ABC中,角A,B,C的对边分别为a,b,c,若f()=0,a=1,求△ABC 面积的最大值.【考点】正弦函数的单调性;两角和与差的正弦函数;余弦定理.【专题】三角函数的图像与性质;解三角形.【分析】(Ⅰ)由三角函数恒等变换化简解析式可得f(x)=sin2x﹣,由2k≤2x≤2k,k∈Z可解得f(x)的单调递增区间,由2k≤2x≤2k,k∈Z 可解得单调递减区间.(Ⅱ)由f()=sinA﹣=0,可得sinA,cosA,由余弦定理可得:bc,且当b=c时等号成立,从而可求bcsinA≤,从而得解.【解答】解:(Ⅰ)由题意可知,f(x)=sin2x﹣=sin2x﹣=sin2x﹣由2k≤2x≤2k,k∈Z可解得:k≤x≤k,k∈Z;由2k≤2x≤2k,k∈Z可解得:k≤x≤k,k∈Z;所以f(x)的单调递增区间是[k,k],(k∈Z);单调递减区间是:[k,k],(k∈Z);(Ⅱ)由f()=sinA﹣=0,可得sinA=,由题意知A为锐角,所以cosA=,由余弦定理a2=b2+c2﹣2bccosA,可得:1+bc=b2+c2≥2bc,即bc,且当b=c时等号成立.因此S=bcsinA≤,所以△ABC面积的最大值为.【点评】本题主要考查了正弦函数的图象和性质,余弦定理,基本不等式的应用,属于基本知识的考查.18.如图为某仓库一侧墙面的示意图,其下部是矩形ABCD,上部是圆AB,该圆弧所在的圆心为O,为了调节仓库内的湿度和温度,现要在墙面上开一个矩形的通风窗EFGH(其中E,F在圆弧AB上,G,H在弦AB上).过O作OP⊥AB,交AB 于M,交EF于N,交圆弧AB于P,已知OP=10,MP=6.5(单位:m),记通风窗EFGH的面积为S(单位:m2)(1)按下列要求建立函数关系式:(i)设∠POF=θ(rad),将S表示成θ的函数;(ii)设MN=x(m),将S表示成x的函数;(2)试问通风窗的高度MN为多少时?通风窗EFGH的面积S最大?【考点】函数模型的选择与应用.【专题】计算题;应用题;函数的性质及应用;导数的综合应用.【分析】(1)由题意知,OF=OP=10,MP=6.5,OM=3.5.(i)在Rt△ONF中与矩形EFGH中表示出边长,从而由S=EF×FG写出面积公式S=10sinθ(20cosθ﹣7),注意角θ的取值范围;(ii)在Rt△ONF中与矩形EFGH中利用勾股定理等表示出边长,从而写出S=EF×FG=x,注意x的取值范围;(2)方法一:选择(i)中的函数模型,利用导数确定函数的单调性,从而示函数的最大值及最大值点,再代入求NM的长度即可;方法二:选择(ii)中的函数模型,利用导数确定函数的单调性,从而示函数的最大值及最大值点即可.【解答】解:(1)由题意知,OF=OP=10,MP=6.5,故OM=3.5.(i)在Rt△ONF中,NF=OFsinθ=10sinθ,ON=OFcosθ=10cosθ.在矩形EFGH中,EF=2MF=20sinθ,FG=ON﹣OM=10cosθ﹣3.5,故S=EF×FG=20sinθ(10cosθ﹣3.5)=10sinθ(20cosθ﹣7).即所求函数关系是S=10sinθ(20cosθ﹣7),0<θ<θ0,其中cosθ0=.(ii)因为MN=x,OM=3.5,所以ON=x+3.5.在Rt△ONF中,NF===.在矩形EFGH中,EF=2NF=,FG=MN=x,故S=EF×FG=x.即所求函数关系是S=x,(0<x<6.5).(2)方法一:选择(i)中的函数模型:令f(θ)=sinθ(20cosθ﹣7),则f′(θ)=cosθ(20cosθ﹣7)+sinθ(﹣20sinθ)=40cos2θ﹣7cosθ﹣20.由f′(θ)=40cos2θ﹣7cosθ﹣20=0,解得cosθ=,或cosθ=﹣.因为0<θ<θ0,所以cosθ>cosθ0,所以cosθ=.设cosα=,且α为锐角,则当θ∈(0,α)时,f′(θ)>0,f(θ)是增函数;当θ∈(α,θ0)时,f′(θ)<0,f(θ)是减函数,所以当θ=α,即cosθ=时,f(θ)取到最大值,此时S有最大值.即MN=10cosθ﹣3.5=4.5m时,通风窗的面积最大.方法二:选择(ii)中的函数模型:因为S=,令f(x)=x2(351﹣28x﹣4x2),则f′(x)=﹣2x(2x﹣9)(4x+39),因为当0<x<时,f′(x)>0,f(x)单调递增,当<x<时,f′(x)<0,f(x)单调递减,所以当x=时,f(x)取到最大值,此时S有最大值.即MN=x=4.5m时,通风窗的面积最大.【点评】本题考查了导数在实际问题中的应用及三角函数的应用,属于中档题.19.已知函数f(x)=+.(1)求函数f(x)的定义域和值域;(2)设F(x)=•[f2(x)﹣2]+f(x)(a为实数),求F(x)在a<0时的最大值g(a);(3)对(2)中g(a),若﹣m2+2tm+≤g(a)对a<0所有的实数a及t∈[﹣1,1]恒成立,求实数m的取值范围.【考点】函数恒成立问题;函数的定义域及其求法;函数的值域.【专题】函数的性质及应用.【分析】(1)由1+x≥0且1﹣x≥0可求得定义域,先求[f(x)]2的值域,再求f(x)的值域;(2)F(x)=a++,令t=f(x)=+,则=﹣1,由此可转化为关于t的二次函数,按照对称轴t=﹣与t的范围[,2]的位置关系分三种情况讨论,借助单调性即可求得其最大值;(3)先由(2)求出函数g(x)的最小值,﹣≤g(a)对a<0恒成立,即要使﹣≤g min(a)恒成立,从而转化为关于t的一次不等式,再根据一次函数的单调性可得不等式组,解出即可.【解答】解:(1)由1+x≥0且1﹣x≥0,得﹣1≤x≤1,所以函数的定义域为[﹣1,1],又[f(x)]2=2+2∈[2,4],由f(x)≥0,得f(x)∈[,2],所以函数值域为[,2];(2)因为F(x)==a++,令t=f(x)=+,则=﹣1,∴F(x)=m(t)=a(﹣1)+t=,t∈[,2],由题意知g(a)即为函数m(t)=,t∈[,2]的最大值.注意到直线t=﹣是抛物线m(t)=的对称轴.因为a<0时,函数y=m(t),t∈[,2]的图象是开口向下的抛物线的一段,①若t=﹣∈(0,],即a≤﹣,则g(a)=m()=;②若t=﹣∈(,2],即﹣<a≤﹣,则g(a)=m(﹣)=﹣a﹣;③若t=﹣∈(2,+∞),即﹣<a<0,则g(a)=m(2)=a+2,综上有g(a)=,(3)易得,由﹣≤g(a)对a<0恒成立,即要使﹣≤g min(a)=恒成立,⇒m2﹣2tm≥0,令h(t)=﹣2mt+m2,对所有的t∈[﹣1,1],h(t)≥0成立,只需,解得m的取值范围是m≤﹣2或m=0,或m≥2.【点评】本题考查函数恒成立问题,考查函数定义域、值域的求法,考查学生对问题的转化能力,恒成立问题往往转化为函数最值问题解决.20.设函数f(x)=lnx,g(x)=(m>0).(1)当m=1时,函数y=f(x)与y=g(x)在x=1处的切线互相垂直,求n的值;(2)若函数y=f(x)﹣g(x)在定义域内不单调,求m﹣n的取值范围;(3)是否存在实数a,使得f()•f(e ax)+f()≤0对任意正实数x恒成立?若存在,求出满足条件的实数a;若不存在,请说明理由.【考点】导数在最大值、最小值问题中的应用;利用导数研究曲线上某点切线方程.【专题】导数的概念及应用;导数的综合应用;不等式的解法及应用.【分析】(1)分别求出f(x)、g(x)的导数,求得在x=1处切线的斜率,由两直线垂直的条件,解方程即可得到n;(2)求出y=f(x)﹣g(x)的导数,可得,得的最小值为负,运用基本不等式即可求得m﹣n的范围;(3)假设存在实数a,运用构造函数,求出导数,求得单调区间和最值,结合不等式恒成立思想即有三种解法.【解答】解:(1)当m=1时,,∴y=g(x)在x=1处的切线斜率,由,∴y=f(x)在x=1处的切线斜率k=1,∴,∴n=5.(2)易知函数y=f(x)﹣g(x)的定义域为(0,+∞),又,由题意,得的最小值为负,∴m(1﹣n)>4,∴,∴m+(1﹣n)>4或m+1﹣n<﹣4,∴m﹣n>3或m﹣n<﹣5;(3)解法一、假设存在实数a,使得f()•f(e ax)+f()≤0对任意正实数x恒成立.令θ(x)=,其中x>0,a>0,则θ'(x)=,设,∴δ(x)在(0,+∞)单调递减,δ(x)=0在区间(0,+∞)必存在实根,不妨设δ(x0)=0,即,可得(*)θ(x)在区间(0,x0)上单调递增,在(x0,+∞)上单调递减,所以θ(x)max=θ(x0),θ(x0)=(ax0﹣1)•ln2a﹣(ax0﹣1)•lnx0,代入(*)式得,根据题意恒成立.又根据基本不等式,,当且仅当时,等式成立即有,即ax0=1,即.代入(*)式得,,即,解得.解法二、假设存在实数a,使得f()•f(e ax)+f()≤0对任意正实数x恒成立.令θ(x)=ax•ln2a﹣ax•lnx+lnx﹣ln2a=(ax﹣1)(ln2a﹣lnx),其中x>0,a>0根据条件对任意正数x恒成立,即(ax﹣1)(ln2a﹣lnx)≤0对任意正数x恒成立,∴且,解得且,即时上述条件成立,此时.解法三、假设存在实数a,使得f()•f(e ax)+f()≤0对任意正实数x恒成立.令θ(x)=ax•ln2a﹣ax•lnx+lnx﹣ln2a=(ax﹣1)(ln2a﹣lnx),其中x>0,a>0要使得(ax﹣1)(ln2a﹣lnx)≤0对任意正数x恒成立,等价于(ax﹣1)(2a﹣x)≤0对任意正数x恒成立,即对任意正数x恒成立,设函数,则φ(x)的函数图象为开口向上,与x正半轴至少有一个交点的抛物线,因此,根据题意,抛物线只能与x轴有一个交点,即,所以.【点评】本题考查导数的运用:求切线的斜率和单调区间、极值和最值,主要考查函数的单调性的运用,以及不等式恒成立思想的运用,考查运算能力,具有一定的综合性.【选修4-4:坐标系与参数方程】21.在平面直角坐标xOy中,已知曲线C的参数方程为(t为参数),曲线与直线l:y=x相交于A,B两点,求线段AB的长.【考点】参数方程化成普通方程.【专题】坐标系和参数方程.【分析】将曲线C的参数方程化为普通方程为:x=8y2(亦可直接用参数方程解A,B点),与直线l构造方程组,解得求出点的坐标,根据点到点的距离公式即可求出答案.【解答】解:∵,∴x=(4y)2,即x=8y2,∴方程组,解得或,所以,故AB==.【点评】本题主要考查了直线与抛物线的位置关系:相交关系的应用,考查学生的计算能力,属于基础题.【选修4-4:坐标系与参数方程】22.在极坐标系中,求圆ρ=2cosθ的圆心到直线的距离.【考点】圆的参数方程;直线的参数方程.【专题】坐标系和参数方程.【分析】将圆ρ=2cosθ化为ρ2=2ρcosθ,利用化为直角坐标方程,可得圆心(1,0),把展开即可直角坐标方程,利用点到直线的距离公式即得出圆心到直线的距离.【解答】解:将圆ρ=2cosθ化为ρ2=2ρcosθ,普通方程为x2+y2﹣2x=0,圆心为(1,0),又,即,∴直线的普通方程为,故所求的圆心到直线的距离.【点评】本题考查了极坐标方程化为直角坐标方程、点到直线的距离公式,考查了计算能力,属于基础题.23.一位网民在网上光顾某淘宝小店,经过一番浏览后,对该店铺中的A,B,C,D,E五种商品有购买意向.已知该网民购买A,B两种商品的概率均为,购买C,D两种商品的概率均为,购买E种商品的概率为.假设该网民是否购买这五种商品相互独立.(1)求该网民至少购买4种商品的概率;(2)用随机变量η表示该网民购买商品的种数,求η的概率分布和数学期望.【考点】离散型随机变量的期望与方差;互斥事件的概率加法公式;相互独立事件的概率乘法公式;离散型随机变量及其分布列.【专题】概率与统计.【分析】(1)记“该网民购买i种商品”为事件A i,i=4,5,由互斥事件概率加法公式能求出该网民至少购买4种商品的概率.(2)随机变量η的可能取值为0,1,2,3,4,5,分别求出相应的概率,由此能求出η的概率分布和数学期望.【解答】解:(1)记“该网民购买i种商品”为事件A i,i=4,5,则:,,…所以该网民至少购买4种商品的概率为.答:该网民至少购买4种商品的概率为.…(2)随机变量η的可能取值为0,1,2,3,4,5,,,=,=,,.…所以:随机变量η的概率分布为:故.…【点评】本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,解题时要认真审题,注意排列组合的合理运用,是中档题.24.设P n=(1﹣x)2n﹣1,Q n=1﹣(2n﹣1)x+(n﹣1)(2n﹣1)x2,x∈R,n∈N*(1)当n≤2时,试指出P n与Q n的大小关系;(2)当n≥3时,试比较P n与Q n的大小,并证明你的结论.【考点】不等式比较大小.【专题】计算题;证明题.【分析】(1)分n=1和n=2两种情况进行解答;(2)分类讨论:x=0,x>0和x<0三种情况.利用复合函数的单调性进行解答即可.【解答】解:(1)当n=1时,P n=1﹣x,Q n=1﹣x,则P n=Q n;当n=2,x=0时,P n=1,Q n=1,则P n=Q n;当n=2,x>0时,P n=(1﹣x)3=1﹣3x+3x2﹣x3,Q n=1﹣3x+3x2,则P n﹣Q n=﹣x3<0,所以P n <Q n;当n=2,x<0时,P n﹣Q n=﹣x3>0,所以P n>Q n;(2)当n≥3时,①当x=0时,P n=Q n;②当x≠0时,令F(x)=1﹣(2n﹣1)x+(n﹣1)(2n﹣1)x2,则F′(x)=﹣(2n﹣1)(1﹣x)2n﹣2+(2n﹣1)﹣2(n﹣1)(2n﹣1)x,F″(x)=(2n﹣1)(2n﹣2)(1﹣x)2n﹣3﹣2(n﹣1)(2n﹣1)=(2n﹣1)(2n﹣2)(1﹣x)2n﹣3﹣1.当x>0时,F″(x)<0.F″(x)单调递减;当x<0时,F″(x)>0.F″(x)单调递增;∴F′(x)<F′(0)=0,∴F(x)单调递减;当x>0时,F(x)<F(0)=0,当x<0时,F(x)>F(0)=0,∴当x>0时,P n<Q n.当x<0时,P n>Q n.【点评】本题考查了不等式比较大小.总结:不等式大小比较的常用方法.(1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果;(2)作商(常用于分数指数幂的代数式);(3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性;(7)寻找中间量或放缩法;(8)图象法.其中比较法(作差、作商)是最基本的方法.。
江苏省扬州中学2016届高三上学期1月质量监测 数学 Word版含答案
x 0,1 时, f ( x) 3x 1,则 f (log 1 12) 的值为
3
▲
.
11.在等腰梯形 ABCD 中, AB // CD , AB 3 , BC 2 , ABC 45 ,则 AC BD 的
值为
▲
.
12.已知抛物线的顶点在坐标原点,焦点在 x 轴上, ABC 的三个顶点都在抛物线上,并且
③ 若 / / , m , n ,则m / / n ④若 , m, n , n m, 则n ; 其中正确命题的序号为 ▲ .
9.在平面直角坐标系 xOy 中, 已知双曲线
x2 y 2 1 a 0, b 0 的焦点到一条渐近线 l 的 a 2 b2
2016.1.3
3.一组数据 8,12,x,11,9 的平均数是 10,则这样数据的方差是 4.从 1,1 内任意取两个实数,这两个数的平方和小于 1 的概率为 5.如图是一个算法的流程图, 则最后输出的 S ▲ .
. .
6.在等比数列 an 中, a3a7 8 , a4 a6 6 , 则 a2 a8 ▲ .
扬州中学高三数学综合练习
一、填空题:本大题共 14 小题,每小题 5 分,共 70 分. 1.已知集合 A {2,3}, B {1, a}, 若A B {2}, 则A B 2. 若复数 z 满足 z (1 i ) 2 (其中 i 为虚单位) ,则 z ▲ ▲ . ▲ ▲ .
20. (本小题满分 16 分) 已知数列 {a n} 满足 a1 x , a2 3x , Sn1 Sn Sn1 3n2 2 (n ≥ 2 , n N* ) , Sn 是数列 {an } 的前 n 项和. (1)若数列 {a n} 为等差数列. (ⅰ)求数列的通项公式 a n ; (ⅱ)设数列 {bn } 满足 b1
江苏省扬州中学2015-2016学年高一(上)10月月考数学试卷(解析版)
2015-2016学年江苏省扬州中学高一(上)10月月考数学试卷一、填空题:本大题共14小题,每小题5分,共70分.1.已知集合A={1,4},B={0,1,a},A∪B={0,1,4},则a=.2.已知集合M+{x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=.3.函数f(x)=的定义域为.4.已知f(x)=2x2+bx+1是定义域在R上的偶函数,则b=.5.函数的值域为.6.已知函数f(x+1)=2x2﹣4x,则函数f(2)=.7.函数y=|x﹣a|的图象关于直线x=3对称.则a=.8.函数f(x)=的单调增区间为.9.函数f(x)=的最大值为.10.不等式(|x|﹣1)(x﹣2)>0的解集是.11.已知函数f(x)=在区间(﹣2,+∞)上为增函数,则实数a的取值范围是.12.设函数f(x)满足f(﹣x)=﹣f(x)(x∈R),且在(0,+∞)上为增函数,且f(1)=0,则不等式的解集为.13.若定义在R上的函数对任意的x1,x2∈R,都有f(x1+x2)=f(x1)+f(x2)﹣1成立,且当x>0时,f(x)>1,若f(4)=5,则不等式f(3m﹣2)<3的解集为.14.若∃x1,x2∈R,x1≠x2,使得f(x1)=f(x2)成立,则实数a的取值范围是.二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤.15.已知集合A={|a+1|,3,5},B={2a+1,a2+2a,a2+2a﹣1},当A∩B={2,3}时,求A∪B.16.已知A={x|3≤x<7},B={x|2<x<10},C={x|x<a},全集为实数集R.(1)求A∪B,(∁R A)∩B;(2)如果A∩C≠∅,求a的取值范围.17.已知定义在R上的奇函数f(x),当x>0时,f(x)=﹣x2+2x(Ⅰ)求函数f(x)在R上的解析式;(Ⅱ)若函数f(x)在区间[﹣1,a﹣2]上单调递增,求实数a的取值范围.18.已知二次函数f(x)=x2﹣mx+m﹣1(m∈R).(1)若函数在区间[3,+∞)上是单调增函数,求m的取值范围;(2)函数在区间[﹣1,1]上的最小值记为g(m),求g(m)的解析式.19.设a为实数,函数f(x)=x|x﹣a|.(1)讨论f(x)的奇偶性;(2)当0≤x≤1时,求f(x)的最大值.20.定义在D上的函数f(x),如果满足对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界,已知函数f(x)=1+x+ax2(1)当a=﹣1时,求函数f(x)在(﹣∞,0)上的值域,判断函数f(x)在(﹣∞,0)上是否为有界函数,并说明理由;(2)若函数f(x)在x∈[1,4]上是以3为上界的有界函数,求实数a的取值范围.2015-2016学年江苏省扬州中学高一(上)10月月考数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分.1.已知集合A={1,4},B={0,1,a},A∪B={0,1,4},则a=4.【考点】并集及其运算.【专题】集合.【分析】由已知中集合A={1,4},B={0,1,a},A∪B={0,1,4},可得:a∈A,再由集合元素的互异性,可得答案.【解答】解:∵集合A={1,4},B={0,1,a},A∪B={0,1,4},∴a∈A,即a=1,或a=4,由集合元素的互异性可得:a=1不满足条件,故a=4,故答案为:4【点评】本题考查的知识点是集合的交集,并集,补集及其运算,难度不大,属于基础题.2.已知集合M+{x|﹣1<x<3},N={x|﹣2<x<1},则M∩N={x|﹣1<x<1}.【考点】交集及其运算.【专题】集合.【分析】根据M与N,找出两集合的交集即可.【解答】解:∵M={x|﹣1<x<3},N={x|﹣2<x<1},∴M∩N={x|﹣1<x<1},故答案为:{x|﹣1<x<1}【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.3.函数f(x)=的定义域为(﹣∞,).【考点】函数的定义域及其求法.【专题】函数的性质及应用.【分析】要使函数有意义只要满足8﹣12x>0即可.【解答】解:要使函数有意义,须满足8﹣12x>0,解得x<,故函数f(x)的定义域为(﹣∞,),故答案为:(﹣∞,).【点评】本题考查函数的定义域及其求法,属基础题.4.已知f(x)=2x2+bx+1是定义域在R上的偶函数,则b=0.【考点】函数奇偶性的判断.【专题】计算题;函数的性质及应用.【分析】利用函数奇偶性的定义,f(x)是偶函数,可得f(﹣x)=f(x),代入解析式得到结果.【解答】解:由已知函数f(x)是偶函数,所以有f(﹣x)=f(x),即:(﹣x)2+b(﹣x)+1=x2+bx+1,即:2bx=0,因为x∈R时,此等式恒成立,所以,b=0故答案为:0.【点评】本题考查函数奇偶性,以及代数恒等式成立的问题.本题在得到2bx=0时,是对于x∈R等式都成立.基本知识的考查.5.函数的值域为.【考点】函数的值域.【专题】计算题.【分析】令t=,则t≥0,则y=t﹣t2,结合二次函数的性质即可求解【解答】解:令t=,则t≥0y=t﹣t2=∴函数的值域为(﹣]故答案为:(﹣]【点评】本题主要考查了换元法求解函数的值域,其中二次函数性质的应用是求解的关键6.已知函数f(x+1)=2x2﹣4x,则函数f(2)=﹣2.【考点】函数的值.【专题】函数的性质及应用.【分析】解法一:x+1=2,可得x=1,代入f(x+1)=2x2﹣4x,可得答案;解法二:利用配凑法,求出函数f(x)的解析式,代入x=2,可得答案;解法三:利用换元法,求出函数f(x)的解析式,代入x=2,可得答案;【解答】解法一:∵函数f(x)满足:f(x+1)=2x2﹣4x,令x+1=2,则x=1,f(2)=2×1﹣4×1=﹣2.解法二:∵函数f(x)满足:f(x+1)=2x2﹣4x=2x2+4x+2﹣8(x+1)+6=2(x+1)2﹣8(x+1)+6,∴f(x)=2x2﹣8x+6,f(2)=2×22﹣4×2+6=﹣2.解法三:∵函数f(x)满足:f(x+1)=x2﹣2x仅t=x+1,则x=t﹣1则f(t)=2(t﹣1)2﹣4(t﹣1)=2t2﹣8t+6∴f(x)=2x2﹣8x+6,f(2)=2×22﹣4×2+6=﹣2.故答案为:﹣2【点评】本题考查的知识点是函数的值,函数的解析式,熟练掌握求函数解析式的各种方法是解答的关键.7.函数y=|x﹣a|的图象关于直线x=3对称.则a=3.【考点】函数的图象与图象变化.【专题】计算题.【分析】由含绝对值符号函数对称性我们易得函数y=|x﹣a|的图象关于直线x=a对称,又由函数y=|x﹣a|的图象关于直线x=3对称,我们易得a的值.【解答】解:∵y=|x﹣a|的图象关于直线x=a对称,又∵y=|x﹣a|的图象关于直线x=3对称,故a=3;故答案:3.【点评】本题考查的知识点是含绝对值符号函数的对称性,熟练掌握是绝对值符号函数的对称性是解答本题的关键.8.函数f(x)=的单调增区间为[0,2].【考点】复合函数的单调性;函数单调性的判断与证明.【专题】函数的性质及应用.【分析】根据复合函数的单调性之间的关系求函数的单调区间.【解答】解:设t=g(x)=﹣x2+4x,则y=在定义域上单调递增,由t=g(x)=﹣x2+4x≥0,解得x2﹣4x≤0,即0≤x≤4,又函数由t=g(x)=﹣x2+4x的对称轴为x=2,抛物线开口向下,∴函数t=g(x)=﹣x2+4x的单调增区间为[0,2],单调减区间为[2,4].∴函数f(x)=的单调增区间为[0,2].故答案为:[0,2].【点评】本题主要考查复合函数的单调性的判断和应用,注意要先求函数的定义域.9.函数f(x)=的最大值为.【考点】函数的最值及其几何意义.【专题】计算题.【分析】把解析式的分母进行配方,得出分母的范围,从而得到整个式子的范围,最大值得出.【解答】解:f(x)===,∵≥∴0<≤,∴f(x)的最大值为,故答案为.【点评】此题为求复合函数的最值,利用配方法,反比例函数或取倒数,用函数图象一目了然.10.不等式(|x|﹣1)(x﹣2)>0的解集是(﹣1,1)∪(2,+∞).【考点】其他不等式的解法.【专题】计算题.【分析】不等式(|x|﹣1)(x﹣2)>0可转化为或,根据“大于看两边,小于看中间”的原则,去掉绝对值符号,将问题转化为一个整式不等式组后,即可求了答案.【解答】解:∵(|x|﹣1)(x﹣2)>0∴或即或解得﹣1<x<1,或x>2∴不等式(|x|﹣1)(x﹣2)>0的解集是(﹣1,1)∪(2,+∞)故答案为:(﹣1,1)∪(2,+∞)【点评】本题考查的知识点是绝对值不等式的解法,其中根据“大于看两边,小于看中间”的原则,去掉绝对值符号,将原不等式转化为一个整式不等式,是解答本题的关键.11.已知函数f(x)=在区间(﹣2,+∞)上为增函数,则实数a的取值范围是{a|a>}.【考点】函数单调性的性质.【专题】函数的性质及应用.【分析】把函数f(x)解析式进行常数分离,变成一个常数和另一个函数g(x)的和的形式,由函数g(x)在(﹣2,+∞)为增函数得出1﹣2a<0,从而得到实数a的取值范围.【解答】解:∵函数f(x)==a+,结合复合函数的增减性,再根据f(x)在(﹣2,+∞)为增函数,可得g(x)=在(﹣2,+∞)为增函数,∴1﹣2a<0,解得a>,故答案为:{a|a>}.【点评】本题考查利用函数的单调性求参数的范围,属于基础题.12.设函数f(x)满足f(﹣x)=﹣f(x)(x∈R),且在(0,+∞)上为增函数,且f(1)=0,则不等式的解集为[﹣1,0)∪(0,1].【考点】抽象函数及其应用;函数单调性的性质.【专题】计算题;函数的性质及应用.【分析】由f(﹣x)=﹣f(x),化简不等式得.再分x>0和x<0时两种情况加以讨论,利用函数的单调性和f(1)=0,分别解关于x的不等式得到x的取值范围.最后综合可得原不等式的解集.【解答】解:∵函数f(x)满足f(﹣x)=﹣f(x)(x∈R),∴f(x)﹣f(﹣x)=f(x)+f(x)=2f(x),因此,不等式等价于,化简得或,①当x>0时,由于在(0,+∞)上f(x)为增函数且f(1)=0,∴由不等式f(x)≤0=f(1),得0<x≤1;②当x<0时,﹣x>0,不等式f(x)≥0化成﹣f(x)≤0,即f(﹣x)≤0=f(1),解之得﹣x≤1,即﹣1≤x<0.综上所述,原不等式的解集为[﹣1,0)∪(0,1].故答案为:[﹣1,0)∪(0,1]【点评】本题给出函数的单调性和奇偶性,求解关于x的不等式.着重考查了函数的简单性质及其应用、不等式的解法等知识,属于中档题.13.若定义在R上的函数对任意的x1,x2∈R,都有f(x1+x2)=f(x1)+f(x2)﹣1成立,且当x>0时,f(x)>1,若f(4)=5,则不等式f(3m﹣2)<3的解集为(﹣∞,).【考点】抽象函数及其应用;函数单调性的性质.【专题】计算题;不等式的解法及应用.【分析】根据题意证出f(0)=1,进而证出F(x)=f(x)﹣1为奇函数.利用函数单调性的定义,结合题中的条件证出F(x)=f(x)﹣1是R上的增函数,因此y=f(x)也是R上的增函数.由f(4)=5代入题中等式算出f(2)=3,将原不等式转化为f(3m﹣2)<f(2),利用单调性即可求出原不等式的解集.【解答】解:由题意,可得令x1=x2=0,则f(0+0)=f(0)+f(0)﹣1,可得f(0)=1,令x1=﹣x,x2=x,则f[(﹣x)+x]=f(﹣x)+f(x)﹣1=1,∴化简得:[f(x)﹣1]+[f(﹣x)﹣1]=0,∴记F(x)=f(x)﹣1,可得F(﹣x)=﹣F(x),即F(x)为奇函数.任取x1,x2∈R,且x1>x2,则x1﹣x2>0,F(x1)﹣F(x2)=F(x1)+F(﹣x2)=[f(x1)﹣1]+[f(﹣x2)﹣1]=[f(x1)+f(﹣x2)﹣2]=[f(x1﹣x2)﹣1]=F(x1﹣x2)∵当x>0时f(x)>1,可得x>0时,F(x)=f(x)﹣1>0,∴由x1﹣x2>0,得F(x1﹣x2)>0,即F(x1)>F(x2).∴F(x)=f(x)﹣1是R上的增函数,因此函数y=f(x)也是R上的增函数.∵f(x1+x2)=f(x1)+f(x2)﹣1,且f(4)=5,∴f(4)=f(2)+f(2)﹣1=5,可得f(2)=3.因此,不等式f(3m﹣2)<3化为f(3m﹣2)<f(2),可得3m﹣2<2,解之得m,即原不等式的解集为(﹣∞,).【点评】本题给出抽象函数满足的条件,求解关于m的不等式.着重考查了函数的简单性质及其应用、不等式的解法等知识,属于中档题.14.若∃x1,x2∈R,x1≠x2,使得f(x1)=f(x2)成立,则实数a的取值范围是(﹣∞,2).【考点】特称命题.【专题】函数的性质及应用.【分析】若∃x1,x2∈R,x1≠x2,使得f(x1)=f(x2)成立,则f(x)不是单调函数,结合二次函数和一次函数的图象和性质,分类讨论不同情况下函数的单调性,综合讨论结果可得答案.【解答】解:由题意得,即在定义域内,f(x)不是单调的.分情况讨论:(1)若x≤1时,f(x)=﹣x2+ax不是单调的,即对称轴在x=满足<1,解得:a<2(2)x≤1时,f(x)是单调的,此时a≥2,f(x)为单调递增.最大值为f(1)=a﹣1故当x>1时,f(x)=ax﹣1为单调递增,最小值为f(1)=a﹣1,因此f(x)在R上单调增,不符条件.综合得:a<2故实数a的取值范围是(﹣∞,2)故答案为:(﹣∞,2)【点评】本题考查的知识点是函数的性质及应用,其中根据已知分析出函数f(x)不是单调函数,是解答的关键.二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤.15.已知集合A={|a+1|,3,5},B={2a+1,a2+2a,a2+2a﹣1},当A∩B={2,3}时,求A∪B.【考点】并集及其运算;交集及其运算.【专题】计算题;集合.【分析】由题意推出|a+1|=2,求出a的值,验证A∩B={2,3},求出A,B,然后求出A∪B.【解答】解:由A∩B={2,3}可得,2∈A,∴|a+1|=2,a=1或a=﹣3…当a=1时,此时B中有相同元素,不符合题意,应舍去当a=﹣3时,此时B={﹣5,3,2},A={2,3,5},A∩B={3,2}符合题意,所以a=﹣3,A∪B={﹣5,2,3,5}.…【点评】本题是中档题,考查集合的基本运算,集合中参数的取值问题的处理方法,考查计算能力.16.已知A={x|3≤x<7},B={x|2<x<10},C={x|x<a},全集为实数集R.(1)求A∪B,(∁R A)∩B;(2)如果A∩C≠∅,求a的取值范围.【考点】交、并、补集的混合运算;集合的包含关系判断及应用;并集及其运算.【专题】计算题;数形结合.【分析】(1)要求A∪B,就是求属于A或属于B的元素即可;要求(C R A)∩B,首先要求集合A的补集,然后再求与集合B的交集,因为A={x|3≤x<7},所以C R A={x|x<3或x≥7},找出C R A与集合B的公共解集即可;(2)由条件A∩C≠φ,在数轴上表示出集合C的解集,因为A∩C≠φ,所以a>3即可.【解答】解:(1)∵A={x|3≤x<7},B={x|2<x<10},∴A∪B={x|2<x<10};∵A={x|3≤x<7},∴C R A={x|x<3或x≥7}∴(C R A)∩B={x|x<3或x≥7}∩{x|2≤x<10}={x|2<x<3或7≤x<10}(2)如图,∴当a>3时,A∩C≠φ【点评】此题考查集合交、并、补的基本概念及混合运算的能力,数形结合的数学思想.17.已知定义在R上的奇函数f(x),当x>0时,f(x)=﹣x2+2x(Ⅰ)求函数f(x)在R上的解析式;(Ⅱ)若函数f(x)在区间[﹣1,a﹣2]上单调递增,求实数a的取值范围.【考点】奇偶性与单调性的综合.【专题】函数的性质及应用.【分析】(Ⅰ)根据函数奇偶性的对称性,即可求函数f(x)在R上的解析式;(Ⅱ)根据函数奇偶性和单调性的关系,利用数形结合即可求出a的取值范围.【解答】解:(Ⅰ)设x<0,则﹣x>0,f(﹣x)=﹣(﹣x)2+2(﹣x)=﹣x2﹣2x.又f(x)为奇函数,所以f(﹣x)=﹣f(x)且f(0)=0.于是x<0时f(x)=x2+2x.所以f(x)=.(Ⅱ)作出函数f(x)=的图象如图:则由图象可知函数的单调递增区间为[﹣1,1]要使f(x)在[﹣1,a﹣2]上单调递增,(画出图象得2分)结合f(x)的图象知,所以1<a≤3,故实数a的取值范围是(1,3].【点评】本题主要考查函数奇偶性和单调性的应用,利用二次函数图象和性质是解决本题的关键.18.已知二次函数f(x)=x2﹣mx+m﹣1(m∈R).(1)若函数在区间[3,+∞)上是单调增函数,求m的取值范围;(2)函数在区间[﹣1,1]上的最小值记为g(m),求g(m)的解析式.【考点】二次函数的性质;函数解析式的求解及常用方法.【专题】函数的性质及应用.【分析】(1)结合二次函数的图象和性质,分析对称轴和区间[3,+∞)的关系,可得m的取值范围;(2)用对称轴和区间[﹣1,1]的关系进行分类讨论,求出函数的最小值g(m).【解答】解:(1)f(x)=x2﹣mx+m﹣1=(x﹣)2﹣+m﹣1,对称轴为x=.若函数在区间[3,+∞)上是单调增函数,则≤3,解得:m≤6;(2)①若<﹣1,即m<﹣2,此时函数f(x)在区间[﹣1,1]上单调递增,所以最小值g(m)=f(﹣1)=2m.②若﹣1≤≤1,即﹣2≤m≤2,此时当x=时,函数f(x)最小,最小值g(m)=f()=﹣+m﹣1.③若>1,即m>2,此时函数f(x)在区间[﹣1,1]上单调递减,所以最小值g(m)=f(1)=0.综上g(m)=.【点评】本题主要考查了二次函数的图象和性质,综合性较强,要求熟练掌握二次函数性质和应用.19.设a为实数,函数f(x)=x|x﹣a|.(1)讨论f(x)的奇偶性;(2)当0≤x≤1时,求f(x)的最大值.【考点】函数的最值及其几何意义.【专题】函数的性质及应用.【分析】(1)讨论a=0时与a≠0时的奇偶性,然后定义定义进行证明即可;(2)讨论当a≤0和a>0时,求出函数f(x)=x|x﹣a|的表达式,即可求出在区间[0,1]上的最大值.【解答】解:(1)由题意可知函数f(x)的定义域为R.当a=0时f(x)=x|x﹣a|=x|x|,为奇函数.当a≠0时,f(x)=x|x﹣a|,f(1)=|1﹣a|,f(﹣1)=﹣|1+a|,f(﹣x)≠f(x)且f(﹣x)≠﹣f(x),∴此时函数f(x)为非奇非偶函数.(2)若a≤0,则函数f(x)=x|x﹣a|在0≤x≤1上为增函数,∴函数f(x)的最大值为f(1)=|1﹣a|=1﹣a,若a>0,由题意可得f(x)=,由于a>0且0≤x≤1,结合函数f(x)的图象可知,由,当,即a≥2时,f(x)在[0,1]上单调递增,∴f(x)的最大值为f(1)=a﹣1;当,即时,f(x)在[0,]上递增,在[,a]上递减,∴f(x)的最大值为f()=;当,即时,f(x)在[0,]上递增,在[,a]上递减,在[a,1]上递增,∴f(x)的最大值为f(1)=1﹣a.【点评】本题主要考查函数奇偶性的判断,以及分段函数的最值的求法,考查学生的运算能力.20.定义在D上的函数f(x),如果满足对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界,已知函数f(x)=1+x+ax2(1)当a=﹣1时,求函数f(x)在(﹣∞,0)上的值域,判断函数f(x)在(﹣∞,0)上是否为有界函数,并说明理由;(2)若函数f(x)在x∈[1,4]上是以3为上界的有界函数,求实数a的取值范围.【考点】函数的最值及其几何意义;函数单调性的性质.【专题】计算题;综合题.【分析】(1)当a=﹣1时,函数表达式为f(x)=1+x﹣x2,可得f(x)在(﹣∞,0)上是单调增函数,它的值域为(﹣∞,1),从而|f(x)|的取值范围是[0,+∞),因此不存在常数M>0,使|f(x)|≤M成立,故f(x)不是(﹣∞,0)上的有界函数.(2)函数f(x)在x∈[1,4]上是以3为上界的有界函数,即﹣3≤f(x)≤3在[1,4]上恒成立,代入函数表达式并化简整理,得﹣﹣≤a≤﹣在[1,4]上恒成立,接下来利用换元法结合二次函数在闭区间上最值的求法,得到(﹣﹣)max=﹣,(﹣)min=﹣,所以,实数a的取值范围是[﹣,﹣].【解答】解:(1)当a=﹣1时,函数f(x)=1+x﹣x2=﹣(x﹣)2+∴f(x)在(﹣∞,0)上是单调增函数,f(x)<f(0)=1∴f(x)在(﹣∞,0)上的值域为(﹣∞,1)因此|f(x)|的取值范围是[0,+∞)∴不存在常数M>0,使|f(x)|≤M成立,故f(x)不是(﹣∞,0)上的有界函数.(2)若函数f(x)在x∈[1,4]上是以3为上界的有界函数,则|f(x)|≤3在[1,4]上恒成立,即﹣3≤f(x)≤3∴﹣3≤ax2+x+1≤3∴≤a ≤,即﹣﹣≤a ≤﹣在[1,4]上恒成立,∴(﹣﹣)max ≤a ≤(﹣)min ,令t=,则t ∈[,1]设g (t )=﹣4t 2﹣t=﹣4(t+)2+,则当t=时,g (t )的最大值为﹣再设h (t )=2t 2﹣t=2(t ﹣)2﹣,则当t=时,h (t )的最小值为﹣∴(﹣﹣)max =﹣,(﹣)min =﹣所以,实数a 的取值范围是[﹣,﹣].【点评】本题以一个特定的二次函数在闭区间上有界的问题为例,考查了函数单调性的性质和二次函数在闭区间上值域等知识点,属于中档题.请同学们注意解题过程中变量分离和换元法求值域的思想,并学会运用.。
江苏省扬州中学2016届高三数学上学期开学试卷理(含解析)
2015-2016学年江苏省扬州中学高三(上)开学数学试卷(理科)一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应位置)1.已知集合A={x||x|<2},B={x|>0},则A∩B=.2.已知命题p:∀x∈(1,+∞),log2x>0,则¬p为.3.若复数(其中i为虚数单位)的实部与虚部相等,则实数a= .4.记不等式x2+x﹣6<0的解集为集合A,函数y=lg(x﹣a)的定义域为集合B.若“x∈A”是“x∈B”的充分条件,则实数a的取值范围为.5.袋子里有两个不同的红球和两个不同的白球,从中任取两个球,则这两个球颜色相同的概率为.6.曲线y=x﹣cosx在点(,)处的切线方程为.7.已知(+)n的二项展开式中,前三项系数成等差数列,则n= .8.若函数f(x)=是奇函数,则使f(x)>3成立的x的取值范围为.9.已知α为第二象限角,,则cos2α= .10.若函数f(x)=2|x﹣a|(a∈R)满足f(1+x)=f(1﹣x),且f(x)在[m,+∞)上单调递增,则实数m的最小值等于.11.已知知函数f(x)=,x∈R,则不等式f(x2﹣2x)<f(3x﹣4)的解集是.12.已知函数f(x)=若|f(x)|≥ax,则a的取值范围是.13.已知f(x)是定义在[﹣2,2]上的奇函数,当x∈(0,2]时,f(x)=2x﹣1,函数g (x)=x2﹣2x+m.如果对于∀x1∈[﹣2,2],∃x2∈[﹣2,2],使得g(x2)=f(x1),则实数m的取值范围是.14.已知函数y=f(x)是定义域为R的偶函数,当x≥0时,f(x)=,若关于x的方程[f(x)]2+af(x)+=0,a∈R有且仅有8个不同实数根,则实数a的取值范围是.二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明、证明过程或演算步骤)15.已知,求值:(1)tanα;(2).16.已知命题p:关于实数x的方程x2+mx+1=0有两个不等的负根;命题q:关于实数x的方程4x2+4(m﹣2)x+1=0无实根.(1)命题“p或q”真,“p且q”假,求实数m的取值范围.(2)若关于x的不等式(x﹣m)(x﹣m+5)<0(m∈R)的解集为M;命题q为真命题时,m的取值集合为N.当M∪N=M时,求实数m的取值范围.17.设f(x)=sinxcosx﹣cos2(x+).(Ⅰ)求f(x)的单调区间;(Ⅱ)在锐角△ABC中,角A,B,C的对边分别为a,b,c,若f()=0,a=1,求△ABC 面积的最大值.18.如图为某仓库一侧墙面的示意图,其下部是矩形ABCD,上部是圆AB,该圆弧所在的圆心为O,为了调节仓库内的湿度和温度,现要在墙面上开一个矩形的通风窗EFGH(其中E,F在圆弧AB上,G,H在弦AB上).过O作OP⊥AB,交AB 于M,交EF于N,交圆弧AB于P,已知OP=10,MP=6.5(单位:m),记通风窗EFGH的面积为S(单位:m2)(1)按下列要求建立函数关系式:(i)设∠POF=θ(rad),将S表示成θ的函数;(ii)设MN=x(m),将S表示成x的函数;(2)试问通风窗的高度MN为多少时?通风窗EFGH的面积S最大?19.已知函数f(x)=+.(1)求函数f(x)的定义域和值域;(2)设F(x)=•[f2(x)﹣2]+f(x)(a为实数),求F(x)在a<0时的最大值g(a);(3)对(2)中g(a),若﹣m2+2tm+≤g(a)对a<0所有的实数a及t∈[﹣1,1]恒成立,求实数m的取值范围.20.设函数f(x)=lnx,g(x)=(m>0).(1)当m=1时,函数y=f(x)与y=g(x)在x=1处的切线互相垂直,求n的值;(2)若函数y=f(x)﹣g(x)在定义域内不单调,求m﹣n的取值范围;(3)是否存在实数a,使得f()•f(e ax)+f()≤0对任意正实数x恒成立?若存在,求出满足条件的实数a;若不存在,请说明理由.【选修4-4:坐标系与参数方程】21.在平面直角坐标xOy中,已知曲线C的参数方程为(t为参数),曲线与直线l:y=x相交于A,B两点,求线段AB的长.【选修4-4:坐标系与参数方程】22.在极坐标系中,求圆ρ=2cosθ的圆心到直线的距离.23.一位网民在网上光顾某淘宝小店,经过一番浏览后,对该店铺中的A,B,C,D,E五种商品有购买意向.已知该网民购买A,B两种商品的概率均为,购买C,D两种商品的概率均为,购买E种商品的概率为.假设该网民是否购买这五种商品相互独立.(1)求该网民至少购买4种商品的概率;(2)用随机变量η表示该网民购买商品的种数,求η的概率分布和数学期望.24.设P n=(1﹣x)2n﹣1,Q n=1﹣(2n﹣1)x+(n﹣1)(2n﹣1)x2,x∈R,n∈N*(1)当n≤2时,试指出P n与Q n的大小关系;(2)当n≥3时,试比较P n与Q n的大小,并证明你的结论.2015-2016学年江苏省扬州中学高三(上)开学数学试卷(理科)参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应位置)1.已知集合A={x||x|<2},B={x|>0},则A∩B={x|﹣1<x<2} .【考点】交集及其运算.【专题】计算题.【分析】利用绝对值不等式及分式不等式的解法,我们易求出集合A,B,再根据集合交集运算法则,即可求出答案.【解答】解:∵集合A={x||x|<2}=(﹣2,2)B={x|>0}=(﹣1,+∞)∴A∩B=(﹣1,2)={x|﹣1<x<2}故答案为:{x|﹣1<x<2}【点评】本题考查的知识点是交集及其运算,其中根据绝对值不等式及分式不等式的解法,求出集合A,B,是解答本题的关键.2.已知命题p:∀x∈(1,+∞),log2x>0,则¬p为∃x∈(1,+∞),log2x≤0.【考点】命题的否定.【专题】阅读型.【分析】首先分析题目已知命题p:∀x∈(1,+∞),log2x>0,求¬p.由否命题的定义:否命题是一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定.可直接得到答案.【解答】解:已知命题p:∀x∈(1,+∞),log2x>0,因为否命题是一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定.则¬p为∃x∈(1,+∞),log2x≤0.即答案为∃x∈(1,+∞),log2x≤0.【点评】此题主要考查否命题的概念问题,需要注意的是否命题与命题的否定形式的区别,前者是对条件结论都否定,后者只对结论做否定.3.若复数(其中i为虚数单位)的实部与虚部相等,则实数a= ﹣1 .【考点】复数代数形式的乘除运算.【专题】数系的扩充和复数.【分析】利用复数的运算法则、实部与虚部的定义即可得出.【解答】解:复数==﹣ai+1,∵Z的实部与虚部相等,∴﹣a=1,解得a=﹣1.故答案为:﹣1.【点评】本题考查了复数的运算法则、实部与虚部的定义,属于基础题.4.记不等式x2+x﹣6<0的解集为集合A,函数y=lg(x﹣a)的定义域为集合B.若“x∈A”是“x∈B”的充分条件,则实数a的取值范围为(﹣∞,﹣3] .【考点】必要条件、充分条件与充要条件的判断.【专题】简易逻辑.【分析】根据条件求出A,B,结合充分条件和必要条件的定义进行求解即可.【解答】解:由x2+x﹣6<0得﹣3<x<2,即A(﹣3,2),由x﹣a>0,得x>a,即B=(a,+∞),若“x∈A”是“x∈B”的充分条件,则A⊆B,即a≤﹣3,故答案为:(﹣∞,﹣3]【点评】本题主要考查充分条件和必要条件的关系的应用,比较基础.5.袋子里有两个不同的红球和两个不同的白球,从中任取两个球,则这两个球颜色相同的概率为.【考点】古典概型及其概率计算公式.【专题】排列组合.【分析】从中任取两个球共有红1红2,红1白1,红1白2,红2白1,红2白2,白1白2,共6种取法,其中颜色相同只有2种,根据概率公式计算即可【解答】解:从中任取两个球共有红1红2,红1白1,红1白2,红2白1,红2白2,白1白2,共6种取法,其中颜色相同只有2种,故从中任取两个球,则这两个球颜色相同的概率P==;故答案为:.【点评】本题考查了古典概型概率的问题,属于基础题6.曲线y=x﹣cosx在点(,)处的切线方程为2x﹣y﹣=0 .【考点】利用导数研究曲线上某点切线方程.【专题】计算题;导数的概念及应用;直线与圆.【分析】求出函数的导数,求得切线的斜率,再由点斜式方程即可得到所求切线方程.【解答】解:y=x﹣cosx的导数为y′=1+sinx,即有在点(,)处的切线斜率为k=1+sin=2,则曲线在点(,)处的切线方程为y﹣=2(x﹣),即为2x﹣y﹣=0.故答案为:2x﹣y﹣=0.【点评】本题考查导数的运用:求切线方程,掌握导数的几何意义和运用点斜式方程是解题的关键.7.已知(+)n的二项展开式中,前三项系数成等差数列,则n= 8 .【考点】二项式定理.【专题】计算题;二项式定理.【分析】展开式中前三项的系数分别为1,,,成等差数列可得n的值【解答】解:展开式中前三项的系数分别为1,,,由题意得2×=1+,∴n=8或1(舍).故答案为:8.【点评】本题考查二项式定理的运用,考查学生的计算能力,比较基础.8.若函数f(x)=是奇函数,则使f(x)>3成立的x的取值范围为(0,1).【考点】函数奇偶性的性质.【专题】函数的性质及应用.【分析】根据f(x)为奇函数,便有f(﹣x)=﹣f(x),从而可以求出a=1,从而得到,容易判断该函数在(0,+∞)上单调递减,并可判断x<0时,f(x)<1,且f(1)=3,从而可由f(x)>3得到f(x)>f(1),从而便得到0<x<1,这便求出了使f(x)>3成立的x的取值范围.【解答】解:f(x)为奇函数;∴f(﹣x)=﹣f(x);即;∴1﹣a•2x=a﹣2x;∴a=1;∴;①x>0时,x增大时,2x﹣1增大,从而f(x)减小;∴f(x)在(0,+∞)上单调递减;∴由f(x)>3得,f(x)>f(1);解得0<x<1;②x<0时,2x﹣1<0,∴f(x)<1;∴不满足f(x)>3;综上所述,使f(x)>3的x的取值范围为(0,1).故答案为:(0,1).【点评】考查奇函数的定义,根据单调性定义判断函数单调性的方法,指数函数的单调性,以及根据减函数的定义解不等式的方法.9.已知α为第二象限角,,则cos2α= .【考点】二倍角的正弦;同角三角函数间的基本关系.【专题】计算题;压轴题;三角函数的求值.【分析】由α为第二象限角,可知sinα>0,cosα<0,从而可求得sinα﹣cosα的值,利用cos2α=﹣(sinα﹣cosα)(sinα+cosα)可求得cos2α.【解答】解:∵,两边平方得:1+sin2α=,∴sin2α=﹣,①∴(sinα﹣cosα)2=1﹣sin2α=,∵α为第二象限角,∴sinα>0,cosα<0,∴sinα﹣cosα=,②∴cos2α=﹣(sinα﹣cosα)(sinα+cosα)=(﹣)×=.故答案为:.【点评】本题考查同角三角函数间的基本关系,突出二倍角的正弦与余弦的应用,求得sinα﹣cosα的值是关键,属于中档题.10.若函数f(x)=2|x﹣a|(a∈R)满足f(1+x)=f(1﹣x),且f(x)在[m,+∞)上单调递增,则实数m的最小值等于 1 .【考点】指数函数单调性的应用.【专题】开放型;函数的性质及应用.【分析】根据式子f(1+x)=f(1﹣x),对称f(x)关于x=1对称,利用指数函数的性质得出:函数f(x)=2|x﹣a|(a∈R),x=a为对称轴,在[1,+∞)上单调递增,即可判断m的最小值.【解答】解:∵f(1+x)=f(1﹣x),∴f(x)关于x=1对称,∵函数f(x)=2|x﹣a|(a∈R)x=a为对称轴,∴a=1,∴f(x)在[1,+∞)上单调递增,∵f(x)在[m,+∞)上单调递增,∴m的最小值为1.故答案为:1.【点评】本题考查了指数型函数的单调性,对称性,根据函数式子对称函数的性质是本题解决的关键,难度不大,属于中档题.11.已知知函数f(x)=,x∈R,则不等式f(x2﹣2x)<f(3x﹣4)的解集是(1,2).【考点】其他不等式的解法.【专题】函数的性质及应用;不等式的解法及应用.【分析】讨论x的符号,去绝对值,作出函数的图象,由图象可得原不等式即为或,分别解出它们,再求并集即可.【解答】解:当x≥0时,f(x)==1,当x<0时,f(x)==﹣1﹣,作出f(x)的图象,可得f(x)在(﹣∞,0)上递增,不等式f(x2﹣2x)<f(3x﹣4)即为或,即有或,解得≤x<2或1<x<,即有1<x<2.则解集为(1,2).故答案为:(1,2).【点评】本题考查函数的单调性的运用:解不等式,主要考查二次不等式的解法,属于中档题和易错题.12.已知函数f(x)=若|f(x)|≥ax,则a的取值范围是[﹣2,0] .【考点】绝对值不等式的解法;函数的图象.【专题】不等式的解法及应用.【分析】①当x>0时,根据ln(x+1)>0恒成立,求得a≤0.②当x≤0时,可得x2﹣2x≥ax,求得a的范围.再把这两个a的取值范围取交集,可得答案.【解答】解:当x>0时,根据ln(x+1)>0恒成立,则此时a≤0.当x≤0时,根据﹣x2+2x的取值为(﹣∞,0],|f(x)|=x2﹣2x≥ax,x=0时左边=右边,a取任意值.x<0时,有a≥x﹣2,即a≥﹣2.综上可得,a的取值为[﹣2,0],故答案为[﹣2,0].【点评】本题主要考查绝对值不等式的解法,体现了分类讨论的数学思想,属于中档题.13.已知f(x)是定义在[﹣2,2]上的奇函数,当x∈(0,2]时,f(x)=2x﹣1,函数g (x)=x2﹣2x+m.如果对于∀x1∈[﹣2,2],∃x2∈[﹣2,2],使得g(x2)=f(x1),则实数m的取值范围是[﹣5,﹣2] .【考点】指数函数综合题;特称命题.【专题】函数的性质及应用.【分析】求出函数f(x)的值域,根据条件,确定两个函数的最值之间的关系即可得到结论.【解答】解:∵f(x)是定义在[﹣2,2]上的奇函数,∴f(0)=0,当x∈(0,2]时,f(x)=2x﹣1∈(0,3],则当x∈[﹣2,2]时,f(x)∈[﹣3,3],若对于∀x1∈[﹣2,2],∃x2∈[﹣2,2],使得g(x2)=f(x1),则等价为g(x)max≥3且g(x)min≤﹣3,∵g(x)=x2﹣2x+m=(x﹣1)2+m﹣1,x∈[﹣2,2],∴g(x)max=g(﹣2)=8+m,g(x)min=g(1)=m﹣1,则满足8+m≥3且m﹣1≤﹣3,解得m≥﹣5且m≤﹣2,故﹣5≤m≤﹣2,故答案为:[﹣5,﹣2]【点评】本题主要考查函数奇偶性的应用,以及函数最值之间的关系,综合性较强.14.已知函数y=f(x)是定义域为R的偶函数,当x≥0时,f(x)=,若关于x的方程[f(x)]2+af(x)+=0,a∈R有且仅有8个不同实数根,则实数a的取值范围是(,).【考点】函数的零点与方程根的关系;函数奇偶性的性质;根的存在性及根的个数判断.【专题】函数的性质及应用;不等式的解法及应用.【分析】求出f(x)的单调性,以及极值和值域,可得要使关于x的方程[f(x)]2+af(x)+=0,a∈R,有且仅有8个不同实数根,转化为t2+at+=0的两根均在(﹣1,﹣),由二次方程实根的分布,列出不等式组,解得即可.【解答】解:当0≤x≤2时,y=﹣x2递减,当x>2时,y=﹣()x﹣递增,由于函数y=f(x)是定义域为R的偶函数,则f(x)在(﹣∞,﹣2)和(0,2)上递减,在(﹣2,0)和(2,+∞)上递增,当x=0时,函数取得极大值0;当x=±2时,取得极小值﹣1.当0≤x≤2时,y=﹣x2∈[﹣1,0].当x>2时,y=﹣()x﹣∈[﹣1,﹣)要使关于x的方程[f(x)]2+af(x)+=0,a∈R,有且仅有8个不同实数根,设t=f(x),则t2+at+=0的两根均在(﹣1,﹣).则有,即为,解得<a<.即有实数a的取值范围是(,).故答案为:(,).【点评】本题考查函数的单调性和奇偶性的运用,主要考查方程与函数的零点的关系,掌握二次方程实根的分别是解题的关键,属于中档题.二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明、证明过程或演算步骤)15.已知,求值:(1)tanα;(2).【考点】两角和与差的正切函数;同角三角函数间的基本关系;二倍角的余弦.【专题】计算题.【分析】(1)由题意,可由正切的和角公式展开得,由此方程解出tanα;(2)由正弦与余弦的二倍角公式将这形为,再由同角三角关系,将其变为将正切值代入即可求出代数式的值.【解答】解:(1)由题意,可得,解得tanα=﹣(2)==由(1)tanα=﹣,∴==﹣【点评】本题考查了两角的和的正切公式,正弦、余弦的二倍角公式,同角三角函数的基本关系,解题的关键是牢固记忆公式,能根据这些公式灵活变形,求出代数式的值,三角函数由于公式多,可选择的方法多,故解题时要注意选取最合适的方法解题16.已知命题p:关于实数x的方程x2+mx+1=0有两个不等的负根;命题q:关于实数x的方程4x2+4(m﹣2)x+1=0无实根.(1)命题“p或q”真,“p且q”假,求实数m的取值范围.(2)若关于x的不等式(x﹣m)(x﹣m+5)<0(m∈R)的解集为M;命题q为真命题时,m的取值集合为N.当M∪N=M时,求实数m的取值范围.【考点】复合命题的真假.【专题】简易逻辑.【分析】(1)分别求出命题p,q为真时的m的范围,通过讨论p,q的真假得到关于m的不等式组,解出即可;(2)先求出关于M、N的x的范围,根据N⊆M,得到不等式组,解出即可.【解答】解:(1)若方程x2+mx+1=0有两不等的负根,则,解得:m>2,即命题p:m>2,若方程4x2+4(m﹣2)x+1=0无实根,则△=16(m﹣2)2﹣16=16(m2﹣4m+3)<0解得:1<m<3.即命题q:1<m<3.由题意知,命题p、q应一真一假,即命题p为真,命题q为假或命题p为假,命题q为真.∴或,解得:m≥3或1<m≤2.(2)∵M∪N=M,∴N⊆M,∵M=(m﹣5,m),N=(1,3),∴,解得:3≤m≤6.【点评】本题考查了复合命题的判断,考查二次函数的性质,集合的关系,是一道中档题.17.设f(x)=sinxcosx﹣cos2(x+).(Ⅰ)求f(x)的单调区间;(Ⅱ)在锐角△ABC中,角A,B,C的对边分别为a,b,c,若f()=0,a=1,求△ABC 面积的最大值.【考点】正弦函数的单调性;两角和与差的正弦函数;余弦定理.【专题】三角函数的图像与性质;解三角形.【分析】(Ⅰ)由三角函数恒等变换化简解析式可得f(x)=sin2x﹣,由2k≤2x≤2k,k∈Z可解得f(x)的单调递增区间,由2k≤2x≤2k,k∈Z 可解得单调递减区间.(Ⅱ)由f()=sinA﹣=0,可得sinA,cosA,由余弦定理可得:bc,且当b=c时等号成立,从而可求bcsinA≤,从而得解.【解答】解:(Ⅰ)由题意可知,f(x)=sin2x﹣=sin2x﹣=sin2x﹣由2k≤2x≤2k,k∈Z可解得:k≤x≤k,k∈Z;由2k≤2x≤2k,k∈Z可解得:k≤x≤k,k∈Z;所以f(x)的单调递增区间是[k,k],(k∈Z);单调递减区间是:[k,k],(k∈Z);(Ⅱ)由f()=sinA﹣=0,可得sinA=,由题意知A为锐角,所以cosA=,由余弦定理a2=b2+c2﹣2bccosA,可得:1+bc=b2+c2≥2bc,即bc,且当b=c时等号成立.因此S=bcsinA≤,所以△ABC面积的最大值为.【点评】本题主要考查了正弦函数的图象和性质,余弦定理,基本不等式的应用,属于基本知识的考查.18.如图为某仓库一侧墙面的示意图,其下部是矩形ABCD,上部是圆AB,该圆弧所在的圆心为O,为了调节仓库内的湿度和温度,现要在墙面上开一个矩形的通风窗EFGH(其中E,F在圆弧AB上,G,H在弦AB上).过O作OP⊥AB,交AB 于M,交EF于N,交圆弧AB于P,已知OP=10,MP=6.5(单位:m),记通风窗EFGH的面积为S(单位:m2)(1)按下列要求建立函数关系式:(i)设∠POF=θ(rad),将S表示成θ的函数;(ii)设MN=x(m),将S表示成x的函数;(2)试问通风窗的高度MN为多少时?通风窗EFGH的面积S最大?【考点】函数模型的选择与应用.【专题】计算题;应用题;函数的性质及应用;导数的综合应用.【分析】(1)由题意知,OF=OP=10,MP=6.5,OM=3.5.(i)在Rt△ONF中与矩形EFGH中表示出边长,从而由S=EF×FG写出面积公式S=10sinθ(20cosθ﹣7),注意角θ的取值范围;(ii)在Rt△ONF中与矩形EFGH中利用勾股定理等表示出边长,从而写出S=EF×FG=x,注意x的取值范围;(2)方法一:选择(i)中的函数模型,利用导数确定函数的单调性,从而示函数的最大值及最大值点,再代入求NM的长度即可;方法二:选择(ii)中的函数模型,利用导数确定函数的单调性,从而示函数的最大值及最大值点即可.【解答】解:(1)由题意知,OF=OP=10,MP=6.5,故OM=3.5.(i)在Rt△ONF中,NF=OFsinθ=10sinθ,ON=OFcosθ=10cosθ.在矩形EFGH中,EF=2MF=20sinθ,FG=ON﹣OM=10cosθ﹣3.5,故S=EF×FG=20sinθ(10cosθ﹣3.5)=10sinθ(20cosθ﹣7).即所求函数关系是S=10sinθ(20cosθ﹣7),0<θ<θ0,其中cosθ0=.(ii)因为MN=x,OM=3.5,所以ON=x+3.5.在Rt△ONF中,NF===.在矩形EFGH中,EF=2NF=,FG=MN=x,故S=EF×FG=x.即所求函数关系是S=x,(0<x<6.5).(2)方法一:选择(i)中的函数模型:令f(θ)=sinθ(20cosθ﹣7),则f′(θ)=cosθ(20cosθ﹣7)+sinθ(﹣20sinθ)=40cos2θ﹣7cosθ﹣20.由f′(θ)=40cos2θ﹣7cosθ﹣20=0,解得cosθ=,或cosθ=﹣.因为0<θ<θ0,所以cosθ>cosθ0,所以cosθ=.设cosα=,且α为锐角,则当θ∈(0,α)时,f′(θ)>0,f(θ)是增函数;当θ∈(α,θ0)时,f′(θ)<0,f(θ)是减函数,所以当θ=α,即cosθ=时,f(θ)取到最大值,此时S有最大值.即MN=10cosθ﹣3.5=4.5m时,通风窗的面积最大.方法二:选择(ii)中的函数模型:因为S=,令f(x)=x2(351﹣28x﹣4x2),则f′(x)=﹣2x(2x﹣9)(4x+39),因为当0<x<时,f′(x)>0,f(x)单调递增,当<x<时,f′(x)<0,f(x)单调递减,所以当x=时,f(x)取到最大值,此时S有最大值.即MN=x=4.5m时,通风窗的面积最大.【点评】本题考查了导数在实际问题中的应用及三角函数的应用,属于中档题.19.已知函数f(x)=+.(1)求函数f(x)的定义域和值域;(2)设F(x)=•[f2(x)﹣2]+f(x)(a为实数),求F(x)在a<0时的最大值g(a);(3)对(2)中g(a),若﹣m2+2tm+≤g(a)对a<0所有的实数a及t∈[﹣1,1]恒成立,求实数m的取值范围.【考点】函数恒成立问题;函数的定义域及其求法;函数的值域.【专题】函数的性质及应用.【分析】(1)由1+x≥0且1﹣x≥0可求得定义域,先求[f(x)]2的值域,再求f(x)的值域;(2)F(x)=a++,令t=f(x)=+,则=﹣1,由此可转化为关于t的二次函数,按照对称轴t=﹣与t的范围[,2]的位置关系分三种情况讨论,借助单调性即可求得其最大值;(3)先由(2)求出函数g(x)的最小值,﹣≤g(a)对a<0恒成立,即要使﹣≤g min(a)恒成立,从而转化为关于t的一次不等式,再根据一次函数的单调性可得不等式组,解出即可.【解答】解:(1)由1+x≥0且1﹣x≥0,得﹣1≤x≤1,所以函数的定义域为[﹣1,1],又[f(x)]2=2+2∈[2,4],由f(x)≥0,得f(x)∈[,2],所以函数值域为[,2];(2)因为F(x)==a++,令t=f(x)=+,则=﹣1,∴F(x)=m(t)=a(﹣1)+t=,t∈[,2],由题意知g(a)即为函数m(t)=,t∈[,2]的最大值.注意到直线t=﹣是抛物线m(t)=的对称轴.因为a<0时,函数y=m(t),t∈[,2]的图象是开口向下的抛物线的一段,①若t=﹣∈(0,],即a≤﹣,则g(a)=m()=;②若t=﹣∈(,2],即﹣<a≤﹣,则g(a)=m(﹣)=﹣a﹣;③若t=﹣∈(2,+∞),即﹣<a<0,则g(a)=m(2)=a+2,综上有g(a)=,(3)易得,由﹣≤g(a)对a<0恒成立,即要使﹣≤g min(a)=恒成立,⇒m2﹣2tm≥0,令h(t)=﹣2mt+m2,对所有的t∈[﹣1,1],h(t)≥0成立,只需,解得m的取值范围是m≤﹣2或m=0,或m≥2.【点评】本题考查函数恒成立问题,考查函数定义域、值域的求法,考查学生对问题的转化能力,恒成立问题往往转化为函数最值问题解决.20.设函数f(x)=lnx,g(x)=(m>0).(1)当m=1时,函数y=f(x)与y=g(x)在x=1处的切线互相垂直,求n的值;(2)若函数y=f(x)﹣g(x)在定义域内不单调,求m﹣n的取值范围;(3)是否存在实数a,使得f()•f(e ax)+f()≤0对任意正实数x恒成立?若存在,求出满足条件的实数a;若不存在,请说明理由.【考点】导数在最大值、最小值问题中的应用;利用导数研究曲线上某点切线方程.【专题】导数的概念及应用;导数的综合应用;不等式的解法及应用.【分析】(1)分别求出f(x)、g(x)的导数,求得在x=1处切线的斜率,由两直线垂直的条件,解方程即可得到n;(2)求出y=f(x)﹣g(x)的导数,可得,得的最小值为负,运用基本不等式即可求得m﹣n的范围;(3)假设存在实数a,运用构造函数,求出导数,求得单调区间和最值,结合不等式恒成立思想即有三种解法.【解答】解:(1)当m=1时,,∴y=g(x)在x=1处的切线斜率,由,∴y=f(x)在x=1处的切线斜率k=1,∴,∴n=5.(2)易知函数y=f(x)﹣g(x)的定义域为(0,+∞),又,由题意,得的最小值为负,∴m(1﹣n)>4,∴,∴m+(1﹣n)>4或m+1﹣n<﹣4,∴m﹣n>3或m﹣n<﹣5;(3)解法一、假设存在实数a,使得f()•f(e ax)+f()≤0对任意正实数x恒成立.令θ(x)=,其中x>0,a>0,则θ'(x)=,设,∴δ(x)在(0,+∞)单调递减,δ(x)=0在区间(0,+∞)必存在实根,不妨设δ(x0)=0,即,可得(*)θ(x)在区间(0,x0)上单调递增,在(x0,+∞)上单调递减,所以θ(x)max=θ(x0),θ(x0)=(ax0﹣1)•ln2a﹣(ax0﹣1)•lnx0,代入(*)式得,根据题意恒成立.又根据基本不等式,,当且仅当时,等式成立即有,即ax0=1,即.代入(*)式得,,即,解得.解法二、假设存在实数a,使得f()•f(e ax)+f()≤0对任意正实数x恒成立.令θ(x)=ax•ln2a﹣ax•lnx+lnx﹣ln2a=(ax﹣1)(ln2a﹣lnx),其中x>0,a>0根据条件对任意正数x恒成立,即(ax﹣1)(ln2a﹣lnx)≤0对任意正数x恒成立,∴且,解得且,即时上述条件成立,此时.解法三、假设存在实数a,使得f()•f(e ax)+f()≤0对任意正实数x恒成立.令θ(x)=ax•ln2a﹣ax•lnx+lnx﹣ln2a=(ax﹣1)(ln2a﹣lnx),其中x>0,a>0要使得(ax﹣1)(ln2a﹣lnx)≤0对任意正数x恒成立,等价于(ax﹣1)(2a﹣x)≤0对任意正数x恒成立,即对任意正数x恒成立,设函数,则φ(x)的函数图象为开口向上,与x正半轴至少有一个交点的抛物线,因此,根据题意,抛物线只能与x轴有一个交点,即,所以.【点评】本题考查导数的运用:求切线的斜率和单调区间、极值和最值,主要考查函数的单调性的运用,以及不等式恒成立思想的运用,考查运算能力,具有一定的综合性.【选修4-4:坐标系与参数方程】21.在平面直角坐标xOy中,已知曲线C的参数方程为(t为参数),曲线与直线l:y=x相交于A,B两点,求线段AB的长.【考点】参数方程化成普通方程.【专题】坐标系和参数方程.【分析】将曲线C的参数方程化为普通方程为:x=8y2(亦可直接用参数方程解A,B点),与直线l构造方程组,解得求出点的坐标,根据点到点的距离公式即可求出答案.【解答】解:∵,∴x=(4y)2,即x=8y2,∴方程组,解得或,所以,故AB==.【点评】本题主要考查了直线与抛物线的位置关系:相交关系的应用,考查学生的计算能力,属于基础题.【选修4-4:坐标系与参数方程】22.在极坐标系中,求圆ρ=2cosθ的圆心到直线的距离.【考点】圆的参数方程;直线的参数方程.【专题】坐标系和参数方程.【分析】将圆ρ=2cosθ化为ρ2=2ρcosθ,利用化为直角坐标方程,可得圆心(1,0),把展开即可直角坐标方程,利用点到直线的距离公式即得出圆心到直线的距离.【解答】解:将圆ρ=2cosθ化为ρ2=2ρcosθ,普通方程为x2+y2﹣2x=0,圆心为(1,0),又,即,∴直线的普通方程为,故所求的圆心到直线的距离.【点评】本题考查了极坐标方程化为直角坐标方程、点到直线的距离公式,考查了计算能力,属于基础题.23.一位网民在网上光顾某淘宝小店,经过一番浏览后,对该店铺中的A,B,C,D,E五种商品有购买意向.已知该网民购买A,B两种商品的概率均为,购买C,D两种商品的概率均为,购买E种商品的概率为.假设该网民是否购买这五种商品相互独立.(1)求该网民至少购买4种商品的概率;(2)用随机变量η表示该网民购买商品的种数,求η的概率分布和数学期望.【考点】离散型随机变量的期望与方差;互斥事件的概率加法公式;相互独立事件的概率乘法公式;离散型随机变量及其分布列.【专题】概率与统计.【分析】(1)记“该网民购买i种商品”为事件A i,i=4,5,由互斥事件概率加法公式能求出该网民至少购买4种商品的概率.(2)随机变量η的可能取值为0,1,2,3,4,5,分别求出相应的概率,由此能求出η的概率分布和数学期望.【解答】解:(1)记“该网民购买i种商品”为事件A i,i=4,5,则:,,…所以该网民至少购买4种商品的概率为.答:该网民至少购买4种商品的概率为.…(2)随机变量η的可能取值为0,1,2,3,4,5,,,=,=,,.…所以:随机变量η的概率分布为:故.…【点评】本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,解题时要认真审题,注意排列组合的合理运用,是中档题.24.设P n=(1﹣x)2n﹣1,Q n=1﹣(2n﹣1)x+(n﹣1)(2n﹣1)x2,x∈R,n∈N*(1)当n≤2时,试指出P n与Q n的大小关系;(2)当n≥3时,试比较P n与Q n的大小,并证明你的结论.【考点】不等式比较大小.【专题】计算题;证明题.【分析】(1)分n=1和n=2两种情况进行解答;(2)分类讨论:x=0,x>0和x<0三种情况.利用复合函数的单调性进行解答即可.【解答】解:(1)当n=1时,P n=1﹣x,Q n=1﹣x,则P n=Q n;当n=2,x=0时,P n=1,Q n=1,则P n=Q n;当n=2,x>0时,P n=(1﹣x)3=1﹣3x+3x2﹣x3,Q n=1﹣3x+3x2,则P n﹣Q n=﹣x3<0,所以P n <Q n;当n=2,x<0时,P n﹣Q n=﹣x3>0,所以P n>Q n;(2)当n≥3时,①当x=0时,P n=Q n;②当x≠0时,令F(x)=1﹣(2n﹣1)x+(n﹣1)(2n﹣1)x2,则F′(x)=﹣(2n﹣1)(1﹣x)2n﹣2+(2n﹣1)﹣2(n﹣1)(2n﹣1)x,F″(x)=(2n﹣1)(2n﹣2)(1﹣x)2n﹣3﹣2(n﹣1)(2n﹣1)=(2n﹣1)(2n﹣2)(1﹣x)2n﹣3﹣1.当x>0时,F″(x)<0.F″(x)单调递减;当x<0时,F″(x)>0.F″(x)单调递增;∴F′(x)<F′(0)=0,∴F(x)单调递减;当x>0时,F(x)<F(0)=0,当x<0时,F(x)>F(0)=0,∴当x>0时,P n<Q n.当x<0时,P n>Q n.【点评】本题考查了不等式比较大小.总结:不等式大小比较的常用方法.(1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果;(2)作商(常用于分数指数幂的代数式);(3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性;(7)寻找中间量或放缩法;(8)图象法.其中比较法(作差、作商)是最基本的方法.。
2015-2016学年江苏省扬州中学高三(上)开学数学试卷(理科)(解析版)
2015-2016学年江苏省扬州中学高三(上)开学数学试卷(理科)一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应位置)1.(5分)已知集合A={x||x|<2},B={x|>0},则A∩B=.2.(5分)已知命题p:∀x∈(1,+∞),log2x>0,则¬p为.3.(5分)若复数(其中i为虚数单位)的实部与虚部相等,则实数a=.4.(5分)记不等式x2+x﹣6<0的解集为集合A,函数y=lg(x﹣a)的定义域为集合B.若“x∈A”是“x∈B”的充分条件,则实数a的取值范围为.5.(5分)袋子里有两个不同的红球和两个不同的白球,从中任取两个球,则这两个球颜色相同的概率为.6.(5分)曲线y=x﹣cos x在点(,)处的切线方程为.7.(5分)已知(+)n的二项展开式中,前三项系数成等差数列,则n=.8.(5分)若函数f(x)=是奇函数,则使f(x)>3成立的x的取值范围为.9.(5分)已知α为第二象限角,,则cos2α=.10.(5分)若函数f(x)=2|x﹣a|(a∈R)满足f(1+x)=f(1﹣x),且f(x)在[m,+∞)上单调递增,则实数m的最小值等于.11.(5分)已知知函数f(x)=,x∈R,则不等式f(x2﹣2x)<f(3x﹣4)的解集是.12.(5分)已知函数f(x)=若|f(x)|≥ax,则a的取值范围是.13.(5分)已知f(x)是定义在[﹣2,2]上的奇函数,当x∈(0,2]时,f(x)=2x﹣1,函数g(x)=x2﹣2x+m.如果对于∀x1∈[﹣2,2],∃x2∈[﹣2,2],使得g(x2)=f(x1),则实数m的取值范围是.14.(5分)已知函数y=f(x)是定义域为R的偶函数,当x≥0时,f(x)=,若关于x的方程[f(x)]2+af(x)+=0,a∈R有且仅有8个不同实数根,则实数a的取值范围是.二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明、证明过程或演算步骤)15.(14分)已知,求值:(1)tanα;(2).16.(14分)已知命题p:关于实数x的方程x2+mx+1=0有两个不等的负根;命题q:关于实数x的方程4x2+4(m﹣2)x+1=0无实根.(1)命题“p或q”真,“p且q”假,求实数m的取值范围.(2)若关于x的不等式(x﹣m)(x﹣m+5)<0(m∈R)的解集为M;命题q为真命题时,m的取值集合为N.当M∪N=M时,求实数m的取值范围.17.(14分)设f(x)=sin x cos x﹣cos2(x+).(Ⅰ)求f(x)的单调区间;(Ⅱ)在锐角△ABC中,角A,B,C的对边分别为a,b,c,若f()=0,a=1,求△ABC面积的最大值.18.(16分)如图为某仓库一侧墙面的示意图,其下部是矩形ABCD,上部是圆AB,该圆弧所在的圆心为O,为了调节仓库内的湿度和温度,现要在墙面上开一个矩形的通风窗EFGH(其中E,F在圆弧AB上,G,H在弦AB上).过O作OP⊥AB,交AB于M,交EF于N,交圆弧AB于P,已知OP=10,MP=6.5(单位:m),记通风窗EFGH的面积为S(单位:m2)(1)按下列要求建立函数关系式:(i)设∠POF=θ(rad),将S表示成θ的函数;(ii)设MN=x(m),将S表示成x的函数;(2)试问通风窗的高度MN为多少时?通风窗EFGH的面积S最大?19.(16分)已知函数f(x)=+.(1)求函数f(x)的定义域和值域;(2)设F(x)=•[f2(x)﹣2]+f(x)(a为实数),求F(x)在a<0时的最大值g(a);(3)对(2)中g(a),若﹣m2+2tm+≤g(a)对a<0所有的实数a及t∈[﹣1,1]恒成立,求实数m的取值范围.20.(16分)设函数f(x)=lnx,g(x)=(m>0).(1)当m=1时,函数y=f(x)与y=g(x)在x=1处的切线互相垂直,求n的值;(2)若函数y=f(x)﹣g(x)在定义域内不单调,求m﹣n的取值范围;(3)是否存在实数a,使得f()•f(e ax)+f()≤0对任意正实数x恒成立?若存在,求出满足条件的实数a;若不存在,请说明理由.【选修4-4:坐标系与参数方程】21.(10分)在平面直角坐标xOy中,已知曲线C的参数方程为(t为参数),曲线与直线l:y=x相交于A,B两点,求线段AB的长.【选修4-4:坐标系与参数方程】22.(10分)在极坐标系中,求圆ρ=2cosθ的圆心到直线2ρsin(θ+)=1的距离.23.(10分)一位网民在网上光顾某淘宝小店,经过一番浏览后,对该店铺中的A,B,C,D,E五种商品有购买意向.已知该网民购买A,B两种商品的概率均为,购买C,D 两种商品的概率均为,购买E种商品的概率为.假设该网民是否购买这五种商品相互独立.(1)求该网民至少购买4种商品的概率;(2)用随机变量η表示该网民购买商品的种数,求η的概率分布和数学期望.24.(10分)设P n=(1﹣x)2n﹣1,Q n=1﹣(2n﹣1)x+(n﹣1)(2n﹣1)x2,x∈R,n∈N*(1)当n≤2时,试指出P n与Q n的大小关系;(2)当n≥3时,试比较P n与Q n的大小,并证明你的结论.2015-2016学年江苏省扬州中学高三(上)开学数学试卷(理科)参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应位置)1.【解答】解:∵集合A={x||x|<2}=(﹣2,2)B={x|>0}=(﹣1,+∞)∴A∩B=(﹣1,2)={x|﹣1<x<2}故答案为:{x|﹣1<x<2}2.【解答】解:已知命题p:∀x∈(1,+∞),log2x>0,因为否命题是一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定.则¬p为∃x∈(1,+∞),log2x≤0.即答案为∃x∈(1,+∞),log2x≤0.3.【解答】解:复数==﹣ai+1,∵Z的实部与虚部相等,∴﹣a=1,解得a=﹣1.故答案为:﹣1.4.【解答】解:由x2+x﹣6<0得﹣3<x<2,即A(﹣3,2),由x﹣a>0,得x>a,即B=(a,+∞),若“x∈A”是“x∈B”的充分条件,则A⊆B,即a≤﹣3,故答案为:(﹣∞,﹣3]5.【解答】解:从中任取两个球共有红1红2,红1白1,红1白2,红2白1,红2白2,白1白2,共6种取法,其中颜色相同只有2种,故从中任取两个球,则这两个球颜色相同的概率P==;故答案为:.6.【解答】解:y=x﹣cos x的导数为y′=1+sin x,即有在点(,)处的切线斜率为k=1+sin=2,则曲线在点(,)处的切线方程为y﹣=2(x﹣),即为2x﹣y﹣=0.故答案为:2x﹣y﹣=0.7.【解答】解:展开式中前三项的系数分别为1,,,由题意得2×=1+,∴n=8或1(舍).故答案为:8.8.【解答】解:f(x)为奇函数;∴f(﹣x)=﹣f(x);即;∴1﹣a•2x=a﹣2x;∴a=1;∴;①x>0时,x增大时,2x﹣1增大,从而f(x)减小;∴f(x)在(0,+∞)上单调递减;∴由f(x)>3得,f(x)>f(1);解得0<x<1;②x<0时,2x﹣1<0,∴f(x)<1;∴不满足f(x)>3;综上所述,使f(x)>3的x的取值范围为(0,1).故答案为:(0,1).9.【解答】解:∵,两边平方得:1+sin2α=,∴sin2α=﹣,①∴(sinα﹣cosα)2=1﹣sin2α=,∵α为第二象限角,∴sinα>0,cosα<0,∴sinα﹣cosα=,②∴cos2α=﹣(sinα﹣cosα)(sinα+cosα)=(﹣)×=.故答案为:.10.【解答】解:因为f(1+x)=f(1﹣x),所以,f(x)的图象关于直线x=1轴对称,而f(x)=2|x﹣a|,所以f(x)的图象关于直线x=a轴对称,因此,a=1,f(x)=2|x﹣1|,且该函数在(﹣∞,1]上单调递减,在[1,+∞)上单调递增,又因为函数f(x)在[m,+∞)上单调递增,所以,m≥1,即实数m的最小值为1.故答案为:1.11.【解答】解:当x≥0时,f(x)==1,当x<0时,f(x)==﹣1﹣,作出f(x)的图象,可得f(x)在(﹣∞,0)上递增,不等式f(x2﹣2x)<f(3x﹣4)即为或,即有或,解得≤x<2或1<x<,即有1<x<2.则解集为(1,2).故答案为:(1,2).12.【解答】解:当x>0时,根据ln(x+1)>0恒成立,则此时a≤0.当x≤0时,根据﹣x2+2x的取值为(﹣∞,0],|f(x)|=x2﹣2x≥ax,x=0时左边=右边,a取任意值.x<0时,有a≥x﹣2,即a≥﹣2.综上可得,a的取值为[﹣2,0],故答案为[﹣2,0].13.【解答】解:∵f(x)是定义在[﹣2,2]上的奇函数,∴f(0)=0,当x∈(0,2]时,f(x)=2x﹣1∈(0,3],则当x∈[﹣2,2]时,f(x)∈[﹣3,3],若对于∀x1∈[﹣2,2],∃x2∈[﹣2,2],使得g(x2)=f(x1),则等价为g(x)max≥3且g(x)min≤﹣3,∵g(x)=x2﹣2x+m=(x﹣1)2+m﹣1,x∈[﹣2,2],∴g(x)max=g(﹣2)=8+m,g(x)min=g(1)=m﹣1,则满足8+m≥3且m﹣1≤﹣3,解得m≥﹣5且m≤﹣2,故﹣5≤m≤﹣2,故答案为:[﹣5,﹣2]14.【解答】解:当0≤x≤2时,y=﹣x2递减,当x>2时,y=﹣()x﹣递增,由于函数y=f(x)是定义域为R的偶函数,则f(x)在(﹣∞,﹣2)和(0,2)上递减,在(﹣2,0)和(2,+∞)上递增,当x=0时,函数取得极大值0;当x=±2时,取得极小值﹣1.当0≤x≤2时,y=﹣x2∈[﹣1,0].当x>2时,y=﹣()x﹣∈[﹣1,﹣)要使关于x的方程[f(x)]2+af(x)+=0,a∈R,有且仅有8个不同实数根,设t=f(x),则t2+at+=0的两根均在(﹣1,﹣).则有,即为,解得<a<.即有实数a的取值范围是(,).故答案为:(,).二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明、证明过程或演算步骤)15.【解答】解:(1)由题意,可得,解得tanα=﹣(2)==由(1)tanα=﹣,∴==﹣16.【解答】解:(1)若方程x2+mx+1=0有两不等的负根,则,解得:m>2,即命题p:m>2,若方程4x2+4(m﹣2)x+1=0无实根,则△=16(m﹣2)2﹣16=16(m2﹣4m+3)<0解得:1<m<3.即命题q:1<m<3.由题意知,命题p、q应一真一假,即命题p为真,命题q为假或命题p为假,命题q为真.∴或,解得:m≥3或1<m≤2.(2)∵M∪N=M,∴N⊆M,∵M=(m﹣5,m),N=(1,3),∴,解得:3≤m≤6.17.【解答】解:(Ⅰ)由题意可知,f(x)=sin2x﹣=sin2x﹣=sin2x﹣由2k≤2x≤2k,k∈Z可解得:k≤x≤k,k∈Z;由2k≤2x≤2k,k∈Z可解得:k≤x≤k,k∈Z;所以f(x)的单调递增区间是[k,k],(k∈Z);单调递减区间是:[k,k],(k∈Z);(Ⅱ)由f()=sin A﹣=0,可得sin A=,由题意知A为锐角,所以cos A=,由余弦定理a2=b2+c2﹣2bc cos A,可得:1+bc=b2+c2≥2bc,即bc,且当b=c时等号成立.因此S=bc sin A≤,所以△ABC面积的最大值为.18.【解答】解:(1)由题意知,OF=OP=10,MP=6.5,故OM=3.5.(i)在Rt△ONF中,NF=OF sinθ=10sinθ,ON=OF cosθ=10cosθ.在矩形EFGH中,EF=2MF=20sinθ,FG=ON﹣OM=10cosθ﹣3.5,故S=EF×FG=20sinθ(10cosθ﹣3.5)=10sinθ(20cosθ﹣7).即所求函数关系是S=10sinθ(20cosθ﹣7),0<θ<θ0,其中cosθ0=.(ii)因为MN=x,OM=3.5,所以ON=x+3.5.在Rt△ONF中,NF===.在矩形EFGH中,EF=2NF=,FG=MN=x,故S=EF×FG=x.即所求函数关系是S=x,(0<x<6.5).(2)方法一:选择(i)中的函数模型:令f(θ)=sinθ(20cosθ﹣7),则f′(θ)=cosθ(20cosθ﹣7)+sinθ(﹣20sinθ)=40cos2θ﹣7cosθ﹣20.由f′(θ)=40cos2θ﹣7cosθ﹣20=0,解得cosθ=,或cosθ=﹣.因为0<θ<θ0,所以cosθ>cosθ0,所以cosθ=.设cosα=,且α为锐角,则当θ∈(0,α)时,f′(θ)>0,f(θ)是增函数;当θ∈(α,θ0)时,f′(θ)<0,f(θ)是减函数,所以当θ=α,即cosθ=时,f(θ)取到最大值,此时S有最大值.即MN=10cosθ﹣3.5=4.5m时,通风窗的面积最大.方法二:选择(ii)中的函数模型:因为S=,令f(x)=x2(351﹣28x﹣4x2),则f′(x)=﹣2x(2x﹣9)(4x+39),因为当0<x<时,f′(x)>0,f(x)单调递增,当<x<时,f′(x)<0,f(x)单调递减,所以当x=时,f(x)取到最大值,此时S有最大值.即MN=x=4.5m时,通风窗的面积最大.19.【解答】解:(1)由1+x≥0且1﹣x≥0,得﹣1≤x≤1,所以函数的定义域为[﹣1,1],又[f(x)]2=2+2∈[2,4],由f(x)≥0,得f(x)∈[,2],所以函数值域为[,2];(2)因为F(x)==a++,令t=f(x)=+,则=﹣1,∴F(x)=m(t)=a(﹣1)+t=,t∈[,2],由题意知g(a)即为函数m(t)=,t∈[,2]的最大值.注意到直线t=﹣是抛物线m(t)=的对称轴.因为a<0时,函数y=m(t),t∈[,2]的图象是开口向下的抛物线的一段,①若t=﹣∈(0,],即a≤﹣,则g(a)=m()=;②若t=﹣∈(,2],即﹣<a≤﹣,则g(a)=m(﹣)=﹣a﹣;③若t=﹣∈(2,+∞),即﹣<a<0,则g(a)=m(2)=a+2,综上有g(a)=,(3)易得,由﹣≤g(a)对a<0恒成立,即要使﹣≤g min(a)=恒成立,⇒m2﹣2tm≥0,令h(t)=﹣2mt+m2,对所有的t∈[﹣1,1],h(t)≥0成立,只需,解得m的取值范围是m≤﹣2或m=0,或m≥2.20.【解答】解:(1)当m=1时,,∴y=g(x)在x=1处的切线斜率,由,∴y=f(x)在x=1处的切线斜率k=1,∴,∴n=5.(2)易知函数y=f(x)﹣g(x)的定义域为(0,+∞),又,由题意,得的最小值为负,∴m(1﹣n)>4,由m>0,1﹣n>0,∴,∴m+(1﹣n)>4或m+1﹣n<﹣4,∴m﹣n>3或m﹣n<﹣5,(舍去,理由由m>0,1﹣n>0);(3)解法一、假设存在实数a,使得f()•f(e ax)+f()≤0对任意正实数x恒成立.令θ(x)=,其中x>0,a>0,则θ'(x)=,设,∴δ(x)在(0,+∞)单调递减,δ(x)=0在区间(0,+∞)必存在实根,不妨设δ(x0)=0,即,可得(*)θ(x)在区间(0,x0)上单调递增,在(x0,+∞)上单调递减,所以θ(x)max=θ(x0),θ(x0)=(ax0﹣1)•ln2a﹣(ax0﹣1)•lnx0,代入(*)式得,根据题意恒成立.又根据基本不等式,,当且仅当时,等式成立即有,即ax0=1,即.代入(*)式得,,即,解得.解法二、假设存在实数a,使得f()•f(e ax)+f()≤0对任意正实数x恒成立.令θ(x)=ax•ln2a﹣ax•lnx+lnx﹣ln2a=(ax﹣1)(ln2a﹣lnx),其中x>0,a>0根据条件对任意正数x恒成立,即(ax﹣1)(ln2a﹣lnx)≤0对任意正数x恒成立,∴且,解得且,即时上述条件成立,此时.解法三、假设存在实数a,使得f()•f(e ax)+f()≤0对任意正实数x恒成立.令θ(x)=ax•ln2a﹣ax•lnx+lnx﹣ln2a=(ax﹣1)(ln2a﹣lnx),其中x>0,a>0要使得(ax﹣1)(ln2a﹣lnx)≤0对任意正数x恒成立,等价于(ax﹣1)(2a﹣x)≤0对任意正数x恒成立,即对任意正数x恒成立,设函数,则φ(x)的函数图象为开口向上,与x正半轴至少有一个交点的抛物线,因此,根据题意,抛物线只能与x轴有一个交点,即,所以.【选修4-4:坐标系与参数方程】21.【解答】解:∵,∴x=(4y)2,即x=8y2,∴方程组,解得或,所以,故AB==.【选修4-4:坐标系与参数方程】22.【解答】解:将圆ρ=2cosθ化为ρ2=2ρcosθ,普通方程为x2+y2﹣2x=0,圆心为(1,0),又,即,∴直线的普通方程为,故所求的圆心到直线的距离.23.【解答】解:(1)记“该网民购买i种商品”为事件A i,i=4,5,则:,,…(2分)所以该网民至少购买4种商品的概率为.答:该网民至少购买4种商品的概率为.…(3分)(2)随机变量η的可能取值为0,1,2,3,4,5,,,=,=,,.…(8分)所以:随机变量η的概率分布为:故.…(10分)24.【解答】解:(1)当n =1时,P n =1﹣x ,Q n =1﹣x ,则P n =Q n ; 当n =2,x =0时,P n =1,Q n =1,则P n =Q n ;当n =2,x >0时,P n =(1﹣x )3=1﹣3x +3x 2﹣x 3,Q n =1﹣3x +3x 2,则P n ﹣Q n =﹣x 3<0,所以P n <Q n ;当n =2,x <0时,P n ﹣Q n =﹣x 3>0,所以P n >Q n ; (2)当n ≥3时,①当x =0时,P n =Q n ;②当x ≠0时,令F (x )=1﹣(2n ﹣1)x +(n ﹣1)(2n ﹣1)x 2, 则F ′(x )=﹣(2n ﹣1)(1﹣x )2n ﹣2+(2n ﹣1)﹣2(n ﹣1)(2n ﹣1)x ,F ″(x )=(2n ﹣1)(2n ﹣2)(1﹣x )2n ﹣3﹣2(n ﹣1)(2n ﹣1)=(2n ﹣1)(2n ﹣2)(1﹣x )2n ﹣3﹣1.当x >0时,F ″(x )<0.F ″(x )单调递减; 当x <0时,F ″(x )>0.F ″(x )单调递增; ∴F ′(x )<F ′(0)=0, ∴F (x )单调递减;当x >0时,F (x )<F (0)=0, 当x <0时,F (x )>F (0)=0, ∴当x >0时,P n <Q n .当x<0时,P n>Q n.。
江苏省扬州中学高一上学期期中考试 数学
江苏省扬州中学2014—2015学年度第一学期期中考试高一数学试卷 2014.11一、填空题(每小题5分,共70分) 1.已知全集,集合,则等于 ▲ . 2.集合的子集个数为 ▲ . 3.函数()lg(2)f x x =-+定义域为 ▲ .4.若函数在上递减,在上递增,则实数= ▲ .5.下列各组函数中,表示相同函数的是 ▲ . ①与 ② 与③与 ④与6.若函数3log ,(0)()2,(0)x x x f x x >⎧=⎨≤⎩,则 ▲ .7.已知幂函数的图象经过点,则 ▲ .8.如果函数的零点所在的区间是,则正整数 ▲ .9.已知偶函数在单调递减,,若,则实数的取值范围是 ▲ . 10.如果指数函数在上的最大值与最小值的差为,则实数 ▲ . 11.若2134,1xym x y==+=,则实数 ▲ . 12.对于函数定义域中任意的,给出如下结论:①()()()2121x f x f x x f +=⋅; ②()()()2121x f x f x x f ⋅=+; ③当时,()[]1212()()0x x f x f x -->; ④当时,()()1212()22f x f x x x f ++<, 那么当时,上述结论中正确结论的序号是 ▲ .13.已知函数ln ,(05)()10,(5)xe xf x x x ⎧<≤⎪=⎨->⎪⎩,若(其中),则的取值范围是 ▲ . 14.已知实数满足,,则 ▲ .16.(本小题满分14分)f x已知函数()(1)当时,求函数的定义域;(2)若函数的定义域为,求实数的取值范围.17.(本小题满分14分)已知函数(其中且).(1)判断函数的奇偶性并证明;(2)解不等式.18.(本小题满分16分)某商场经调查得知,一种商品的月销售量Q (单位:吨)与销售价格(单位:万元/吨)的关系可用下图的一条折线表示.(1)写出月销售量Q 关于销售价格的函数关系式;(2)如果该商品的进价为5万元/吨,除去进货成本外,商场销售该商品每月的固定成本为10 万元,问该商品每吨定价多少万元时,销售该商品的月利润最大?并求月利润的最大值.19. (本小题满分16分) 已知函数,(1)判断的奇偶性并说明理由;(2)当时,判断在上的单调性并用定义证明;(3)当时,若对任意,不等式()9f x m >恒成立,求实数的取值范围.20.(本小题满分16分)已知二次函数(其中)满足下列3个条件: ①的图象过坐标原点; ②对于任意都有11()()22f x f x -+=--成立; ③方程有两个相等的实数根, 令()()1g x f x x λ=--(其中),(1)求函数的表达式;(2)求函数的单调区间(直接写出结果即可);(3)研究函数在区间上的零点个数.命题、校对:高二数学备课组高一数学试卷答案 2014.11一、填空题1. {1} 2. 4 3. 4. 5 5.③ 6. 7. 8. 2 9. 10.或 11. 36 12. ①③ 13. 14. -2 二、解答题15.解:由题意得,解得或, 当时,,满足要求,此时; 当时,,不满足要求,综上得:,。
江苏省扬州中学2015-2016学年高一上学期期中考试数学试题(有答案)AwPKMw
江苏省扬州中学2015-2016学年第一学期期中考试高一数学试卷2015.11一、填空题:本大题共14小题,每小题5分,共70分.1.若{}224,x x x ∈++,则x = ▲2.函数2log (3)y x =-的定义域为 ▲3. 已知1249a =(a >0) ,则23log a = ▲ 4.二次函数y =3x 2+2(m -1)x +n 在区间(),1-∞上是减函数,在区间[)1,+∞上是增函数,则实数m = ▲5. 在平面直角坐标系xOy 中,将函数1x y e +=的图像沿着x 轴的正方向平移1个单位长度,再作关于y 轴的对称变换,得到函数f (x )的图像,则函数f (x )的解析式为f (x )= ▲6.三个数3.0222,3.0log ,3.0===c b a 之间的大小关系是 ▲ (用a ,b ,c 表示)7. 已知函数()()3,10,5,10.n n f n f f n n -≥⎧⎪=⎨+<⎡⎤⎪⎣⎦⎩则()8f = ▲ 8. 已知函数()f x 是偶函数,且当0x >时,3()1f x x x =++,则当0x <时,()f x 的解析式为 ▲9.若方程062ln =-+x x 在Z n n n ∈+),1,(内有一解,则n = ▲ 10.化简:1022292(lg8lg125)316--⎛⎫⎛⎫+⨯++ ⎪ ⎪⎝⎭⎝⎭= ▲11.由等式3232123123(1)(1)(1)x x x x x x λλλμμμ+++=++++++定义映射123123:(,,)(,,)f λλλμμμ=,则=)3,2,1(f ▲12.若关于x 的方程0122=++x mx 至少有一个负根,则实数m 的取值范围是 ▲13.如图,在平面直角坐标系xOy 中,过原点O 的直线与函数3x y =的图象交于A ,B两点,过B 作y 轴的垂线交函数9x y =的图象于点C ,若AC 平行于y 轴,则点A 的坐标是 ▲14. 已知函数()(),11+=+x f x f 当[]1,0∈x 时,().113--=x x f 若对任意实数x ,都有()()f x t f x +<成立,则实数t 的取值范围 ▲二、解答题:本大题共6小题,共90分.解答应写出文字说明,证明过程或演算步骤.15.(本题14分)设,{|13},{|24},{|1}U R A x x B x x C x a x a ==≤≤=<<=≤≤+,a 为实数,(第13题)(1)分别求,()U AB AC B ; (2)若BC C =,求a 的取值范围.16.(本题14分)已知函数()12()51m h x m m x+=-+为幂函数,且为奇函数.(1)求m 的值;(2)求函数()()g x h x =在10,2x ∈⎡⎤⎢⎥⎣⎦的值域.17.(本题14分)已知函数f (x )=2ax +1x(a ∈R ). (1)当12a =时,试判断f (x )在]1,0(上的单调性并用定义证明你的结论; (2)对于任意的(0,1]x ∈,使得f (x )≥6恒成立,求实数a 的取值范围.18.(本题16分)如图,在长为10千米的河流OC 的一侧有一条观光带,观光带的前一部分为曲线段OAB ,设曲线段OAB 为函数2(0)y ax bx c a =++≠,[0,6]x ∈(单位:千米)的图象,且图象的最高点为(4,4)A ;观光带的后一部分为线段BC .(1)求函数为曲线段OABC 的函数(),[0,10]y f x x =∈的解析式;(2)若计划在河流O C 和观光带OABC 之间新建一个如图所示的矩形绿化带MNPQ ,绿化带由线段MQ ,QP ,PN 构成,其中点P 在线段BC 上.当OM 长为多少时,绿化带的总长度最长?19.(本题16分)已知函数)1,0(11log )(≠>--=a a x mx x f a是奇函数. (1)求实数m 的值; (2)是否存在实数a p ,,当)2,(-∈a p x 时,函数()f x 的值域是(1,)+∞.若存在,求出实数a p ,;若不存在,说明理由;(3)令函数2()()6(1)5f x g x ax x a =-+--,当]5,4[∈x 时,求函数()g x 的最大值.20.(本题16分)已知函数()c bx x x f ++=22为偶函数,关于x 的方程()()21+=x a x f 的构成集合{}1, (1)求,a c b ,的值;(2)若[]2,2-∈x ,求证:()1215+-≤x x f ;(3)设()g x =[]2,0,21∈x x 使得()()m x g x g ≥-21,求实数m 的取值范围.命题、校对、审核:高二数学备课组高一期中数学试卷答案 2015.11一、填空题1.1 2.(3,)+∞ 3.4 4.-2 5.x e -6.c a b << 7.7 8.31x x --+ 9.2 10.133 11.(2,3,1)- 12. ]1,(-∞ 13.3722123389;103sin(2);111293352132,2)y x π=-、; 、-、、; 、; 、-15; 14、(log 14.442(,)(,)333-∞--- 二、解答题15. (1) A ∩B={x |2<x ≤3},…………………………………………3分U B={x |x ≤2或x ≥4} …………………………………………5分A ∪(U B)= {x |x ≤3或x ≥4} …………………………………………8分 (2)∵B ∩C=C ∴C ⊆B …………………………………………10分∴2<a <a +1<4 ∴2<a <3 …………………………………………14分16. 解 (1) ∵函数()12()51m h x m m x +=-+为幂函数 ∴2511m m -+= 解得05m =或 …………………………………3分又 ∵奇函数 ∴0m =…………………………………6分(2) 由(1)可知 ()g x x =10,2x ∈⎡⎤⎢⎥⎣⎦t ,则[0,1]t ∈ …………………………………9分211()22g t t t ⇒=-++ 得值域为1,12⎡⎤⎢⎥⎣⎦…………………………………14分17. 解:(1)∵12a = ∴1()f x x x=+ ()f x 在]1,0(上的单调递减 …………………………………2分证明:取任意的21,x x ,且1021≤<<x x(*))1()(11)()(212121211221221121x x x x x x x x x x x x x x x x x f x f --=-+-=--+=- ∵1021≤<<x x ∴021<-x x ,1021<<x x得 (*)式大于0 ,即0)()(21>-x f x f所以()f x 在]1,0(上的单调递减 …………………………………8分(2)由f (x )≥6在]1,0(上恒成立,得2ax +1x≥6 恒成立 即2)1()1(62x x a -≥ ),1[)1(+∞∈x9))1()1(6(ma x 2=-⇒x x 2992≥≥⇒a a 即 …………………………………14分 注:本题若含参二次函数讨论求解,自行酌情给分。
2015-2016学年江苏省扬州中学高一(下)期中数学试卷
2015-2016学年江苏省扬州中学高一(下)期中数学试卷一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上) 1.(★★★★)求值cos105o= .2.(★★★★)计算:= .3.(★★★)在△ABC中,若A=30o,,则= 2 .4.(★★★★)已知等差数列{a n}的前n项和为S n,若a 3=6,S 3=12,则公差d等于2 .5.(★★★★)已知△ABC中,AB= ,BC=1,A=30o,则AC= 1或2 .6.(★★★)已知等比数列{a n}的各项均为正数,a 3=3,,则a 4+a 5= .7.(★★★★)在△ABC中,若c 2=bccosA+cacosB+abcosC,则△ABC的形状是直角三角形.8.(★★★)已知数列{a n}是等差数列,S n是其前n项和,且S 12>0,S 13<0,则使a n<0成立的最小值n是 7 .9.(★★★★)钝角三角形ABC的三边长为a,a+1,a+2(a∈N),则a= 2 .10.(★★★)已知sinα= +cosα,且α∈(0,),则的值为.11.(★★★★)设数列{a n}的前n项和为S n,关于数列{a n},下列命题正确的序号是①②.①若数列{a n}既是等差数列又是等比数列,则a n=a n+1;②若,则数列{a n}是等差数列;③若,则数列{a n}是等比数列.12.(★★★)在等差数列{a n}中,已知,则a 1= -3或.13.(★★)△ABC中,∠C=90o,点M在边BC上,且满足BC=3BM,若,则sin∠BAC= .14.(★★★)已知数列{a n}为等差数列,满足,则当a 4取最大值时,数列{a n}的通项公式为a n= .二、解答题:(本大题共6道题,计90分.解答应写出必要的文字说明、证明过程或演算步骤) 15.(★★★★)设{a n}是公比不为1的等比数列,且a 5,a 3,a 4成等差数列.(1)求数列{a n}的公比;(2)若a 4+a 5<a 3a 4<a 2+a 3,求a 1的取值范围.16.(★★★)在锐角△ABC中,角A,B,C所对的边分别为a,b,c,已知,(1)求cos(B+C)的值;(2)若a=2,,求b的值.17.(★★★★)已知函数f(x)=- sin 2x+sinxcosx.(Ⅰ)求f()的值;(Ⅱ)设α∈(0,π),f()= - ,求sinα的值.18.(★★★)已知数列{a n}满足,且当n≥2,且n∈N *时,有,(1)求证:数列为等差数列;(2)已知函数,试问数列是否存在最小项,如果存在,求出最小项;如果不存在,说明理由.19.(★★★)如图,一个半圆和长方形组成的铁皮,长方形的边AD为半圆的直径,O为半圆的圆心,AB=2,BC=4,现要将此铁皮剪出一个△PMN,其中边MN⊥BC,点P在曲线MAB上运动.(1)设∠MOD=30o,若PM=PN,求△PMN的面积;(2)求剪下的铁皮△PMN面积的最大值.20.(★★)已知正项数列{a n}的前三项分别为1,3,5,S n为数列的前n项和,满足:nS 2n+1-(n+1)S 2n=(n+1)(3n3+An 2+Bn)(A,B∈R,n∈N *).(1)求A,B的值;(2)求数列{a n}的通项公式;(3)若数列{b n}满足(n+1)a n= + +…+ (n∈N +),求数列{b n}的前n项和T n.(参考公式:1 2+2 2+…+n 2= n(n+1)(2n+1))。
江苏省扬州中学高一数学月考试卷(2015.12)
江苏省扬州中学2015-2016学年第一学期月考考试高一数学试卷2015.12一、填空题:本大题共14小题,每小题5分,共70分. 1.函数cos 2y x =的最小正周期为__ __.2.若{U n n =是小于9的正整数},{A n U n =∈是奇数},={U B n n ∈是3的倍数},则(A B)U C ⋃= ____ . 3. 计算=︒-)330sin( .4.不等式1tan >x 的解集为 .5.圆心角为3π弧度,半径为6的扇形的面积为 __. 6.已知角α的终边上一点P (1,-2),则sin 2cos sin cos αααα+=-___________. 7.设0sin 33a =,0cos55b =,0tan 35c =,5log 3=d ,则,,a b c ,d 按从大到小的顺序是 . 8.计算:43310.25()log 18log 22-⨯-+-= .9. 设函数)0(sin >=ωωx y 在区间⎥⎦⎤⎢⎣⎡-4,5ππ上是增函数,则ω的取值范围为 ____ . 10. 函数()()πϕπϕ<≤-+=,2cos x y 的图像向右平移2π个单位后,与函数)32sin(π+=x y 的图像重合,则ϕ= .11.设),2(ππα∈,函数322)(sin )(+-=x xx f α的最大值为43,则α=_________. 12. 给出下列命题:①小于090的角是第一象限角; ②将3sin()5y x π=+的图象上所有点向左平移25π个单位长度可得到3sin()5y x π=-的图象;③若α、β是第一象限角,且αβ>,则sin sin αβ>; ④若α为第二象限角,则2α是第一或第三象限的角;⑤函数tan y x =在整个定义域内是增函数. 其中正确的命题的序号是_______.(注:把你认为正确的命题的序号都填上)13. 若关于x 的函数2222sin ()(0)tx x t xf x t x t+++=>+的最大值为M ,最小值为N ,且4M N +=,则实数t 的值为 .14. 对于函数()f x ,等式 4)1()1(=-⋅+x f x f 对定义域中的每一个x 都成立,已知当[0,1]x ∈ 时,2)(x x f =(1)1m x --+(0)m >,若当[0,2]x ∈时,都有4)(1≤≤x f ,则m 的取值范围是___________.二、解答题:本大题共6小题,共90分.解答应写出文字说明,证明过程或演算步骤. 15. (本题14分) 已知角α的终边经过点P (4-,3), (1)求()()απααπ+-+-tan cos )sin(的值;(2)求1sin cos cos sin 22+-+αααα的值.16. (本题14分)已知函数21)(-+=x x x f 的定义域为集合A ,函数a a x a x x g +++-=22)12()(的定义域为集合B .(1)求集合A 、B ; (2)若A B A = ,求实数a 的取值范围.17. (本题14分)已知直线6x π=是函数)2sin()(ϕ+=x x f )20(πϕ<<图象的一条对称轴.(1)求函数)(x f 的解析式; (2)求函数)(x f -的单调增区间; (3)作出函数()f x 在[]0,x π∈上的图象简图(列表,画图).18. (本题16分)已知函数(32)1xf x -=- ([0,2])x ∈,函数3)2()(+-=x f xg . (1)求函数()y f x =与()y g x =的解析式,并求出()f x ,()g x 的定义域; (2)设22()[()]()h x g x g x =+,试求函数()y h x =的最值.19. (本题16分)设二次函数()f x 在[-1,4]上的最大值为12,且关于x 的不等式()0f x <的解集为(0,5). (1)求()f x 的解析式; (2) 若],2,0[),62sin(3)(ππ∈+=x x x g 求函数))(()(x g f x h =的值域;(3)若对任意的实数x 都有(22cos )(1cos )f x f x m -<--恒成立,求实数m 的取值范围.20. (本题16分)设()f x 是定义在D 上的函数,若对任何实数(0,1)α∈以及D 中的任意两数1x 、2x ,恒有()1212(1)()(1)()f x x f x f x αααα+-≤+-,则称()f x 为定义在D 上的C 函数.(1)证明:函数21()f x x =是定义域上的C 函数; (2)判断函数21()(0)f x x x=<是否为定义域上的C 函数,请说明理由; (3)若()f x 是定义域为R 的函数,且最小正周期为T ,试证明()f x 不是R 上的C 函数.江苏省扬州中学2015-2016学年第一学期月考考试高一数学试卷(答案)2015.12一、填空题1.π 2.}8,4,2{ 3. 21 4.},24|{Z k k x k x ∈+<<+ππππ 5.π6 6.0 7. a b c d >>> 8. 6 9. ]2,0( 10. 65π 11. 32π12.④ 13. 2 14. ]3,0(二、解答题 15.解:(1);154(2)5416.解:(1)10212x x x x +≥⇒>≤--或,22(21)01x a x a a x a x a -+++≥⇒≥+≤或 ),1[],(),,2(]1,(+∞+-∞=+∞--∞=a a B A(2)11211≤≤-⇒⎩⎨⎧≤+-≥⇒⊆⇔=a a a B A A B A17. 解:(1))62sin()(π+=x x f ;(2)函数()x f 的增区间为Z k k k ∈++],65,3[ππππ (3)列表()x f 在],0[π∈x 上的图象简图如下图所示:18.解:(1)设32xt =-∈(t [-1,7],则3log (t 2)x =+, 于是有3()log (t 2)1f t =+-,[1,7]t ∈-,∴3()log (2)1f x x =+-()[1,7]x ∈-, 根据题意得3()(2)3log 2g x f x x =-+=+,又由721≤-≤-x 得91≤≤x , ∴2log )(3+=x x g ()[1,9]x ∈(2)∵3()log 2,[1,9]g x x x =+∈∴要使函数22()[()]()h x g x g x =+有意义,必须21919x x ⎧≤≤⎨≤≤⎩∴13x ≤≤,∴222223333()[()]()(log 2)2log (log )6log 6h x g x g x x x x x =+=+++=++ (13x ≤≤)设x t 3log =,则66)(2++=t t x h ()332-+=t )10(≤≤t 是()1,0上增函数,∴0=t 时min )(x h =6,1=t 时13)(max =x h ∴函数()y h x =的最大值为13,最小值为6. 19. 解:(1)()x x x f 1022-=; (2)225)25(2)(2--=x x f ,]3,23[)(-∈x g;239))((max=x g f ,225))((min -=x g f ∴值域为]239,225[- (3)设t=1-x cos ,则0≤t≤2,∴f (2-2cosx )<f (1-x cos -m ),2·2t·(2t-5)<2·(t-m )·(t-m-5)则 (3t-m-5)(t+m )<0,(5)0(1)(2)0m m m m --<⎧∴⎨-+<⎩,∴实数m 的取值范围为{}51|-<>m m m 或. 20.(1)证明如下:对任意实数12,x x 及()0,1α∈,有()()()()()121211f x x f x f x αααα+----()()()222121211x x x x αααα=+----()()()2212121121x x x x αααααα=----+-()()21210x x αα=---≤,即()()()()()121211fx x f x f x αααα+-≤+-,∴()21f x x =是C 函数; 6分(2)()()210f x x x=<不是C 函数, 说明如下(举反例):取13x =-,21x =-,12α=,则()()()()()121211fx x f x f x αααα+----()()()11111231022262f f f =-----=-++>, 即()()()()()121211fx x f x f x αααα+->+-,∴()()210f x x x=<不是C 函数; 10分 (3)假设()f x 是R 上的C 函数, 若存在m n <且[),0,m n T ∈,使得()()f m f n ≠. (i )若()()f m f n <, 记1x m =,2x m T =+,1n mTα-=-,则01α<<,且()121n x x αα=+-, 那么()()()()()()121211f n fx x f x f x αααα=+-≤+-()()()()1f m f m T f m αα=+-+=,这与()()f m f n <矛盾;(ii )若()()f m f n >, 记1x n =,2x n T =-,1n mTα-=-,同理也可得到矛盾; ∴()f x 在[)0,T 上是常数函数, 又因为()f x 是周期为T 的函数,所以()f x 在R 上是常数函数,这与()f x 的最小正周期为T 矛盾. 所以()f x 不是R 上的C 函数. 16分。
《解析》江苏省扬州中学2016-2017学年高一上学期期中考试数学试卷Word版含解析
2016-2017学年江苏省扬州中学高一(上)期中数学试卷一、填空题(5*14=70)1.已知集合A={x|﹣1≤x<2},集合B={x|x<1},则A∩B=.2.函数f(x)=ln(x﹣2)的定义域为.3.已知4a=2,lgx=a,则x=.4.函数f(x)=x2﹣4x+5,x∈[1,5],则该函数值域为.5.已知函数f(x)=ax3+bx+1,且f(﹣2)=3,则f(2)=.6.计算﹣lg2﹣lg5=.7.集合A={x|ax2+2x+1=0}中只有一个元素,则a的值是.8.若函数f(x)=﹣x2+2ax与函数g(x)=在区间[1,2]上都是减函数,则实数a的取值范围是.9.函数f(x)=2log a(x﹣2)+3(a>0,a≠1)恒过定点的坐标为.10.已知函数f(x﹣1)=x2﹣2x,则f(x)=.11.已知偶函数f(x)在[0,+∞)上为增函数,且f(x﹣1)>f(3﹣2x),求x的取值范围.12.f(x)是定义在(﹣∞,+∞)上的偶函数,且在(﹣∞,0]上是增函数,设a=f(log47),b=f(),c=f(0.20.6),则a,b,c大小关系是.13.已知函数y=lg(﹣1)的定义域为A,若对任意x∈A都有不等式﹣m2x﹣2mx>﹣2恒成立,则正实数m的取值范围是.14.已知函数,关于x的方程f2(x)+a|f(x)|+b=0(a,b∈R)恰有6个不同实数解,则a的取值范围是.二、解答题:(14+14+14+16+16+16)15.(14分)已知全集为R,集合A={x|y=lgx+},B={x|<2x﹣a≤8}.(I)当a=0时,求(∁R A)∩B;(2)若A∪B=B,求实数a的取值范围.16.(14分)已知二次函数y=f(x)满足f(﹣2)=f(4)=﹣16,且f(x)最大值为2.(1)求函数y=f(x)的解析式;(2)求函数y=f(x)在[t,t+1](t>0)上的最大值.17.(14分)已知函数f(x)=log a(ax2﹣x+1),其中a>0且a≠1.(1)当a=时,求函数f(x)的值域;(2)当f(x)在区间上为增函数时,求实数a的取值范围.18.(16分)设f(x)是(﹣∞,+∞)上的奇函数,且f(x+2)=﹣f(x),当0≤x≤1时,f(x)=x.(1)求f(π)的值;(2)求﹣1≤x≤3时,f(x)的解析式;(3)当﹣4≤x≤4时,求f(x)=m(m<0)的所有实根之和.19.(16分)设a为实数,函数f(x)=x|x﹣a|.(1)讨论f(x)的奇偶性;(2)当0≤x≤1时,求f(x)的最大值.20.(16分)设函数f(x)=ka x﹣a﹣x(a>0且a≠1)是奇函数.(1)求常数k的值;(2)若a>1,试判断函数f(x)的单调性,并加以证明;(3)若已知f(1)=,且函数g(x)=a2x+a﹣2x﹣2mf(x)在区间[1,+∞)上的最小值为﹣2,求实数m的值.2016-2017学年江苏省扬州中学高一(上)期中数学试卷参考答案与试题解析一、填空题(5*14=70)1.(2016•南通模拟)已知集合A={x|﹣1≤x<2},集合B={x|x<1},则A∩B={x|﹣1≤x<1} .【考点】交集及其运算.【专题】集合思想;定义法;集合.【分析】由集合A与B,求出两集合的交集即可.【解答】解:∵A={x|﹣1≤x<2},集合B={x|x<1},∴A∩B={x|﹣1≤x<1},故答案为:{x|﹣1≤x<1}【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(2015•广州一模)函数f(x)=ln(x﹣2)的定义域为(2,+∞).【考点】函数的定义域及其求法.【专题】函数的性质及应用.【分析】根据对数函数f(x)的解析式,真数大于0,列出不等式,求出解集即可.【解答】解:∵函数f(x)=ln(x﹣2),∴x﹣2>0;解得x>2,∴该函数的定义域为(2,+∞).故答案为:(2,+∞).【点评】本题考查了对数函数定义域的应用问题,是基础题目.3.(2014•陕西)已知4a=2,lgx=a,则x=.【考点】对数的运算性质.【专题】计算题.【分析】化指数式为对数式求得a,代入lgx=a后由对数的运算性质求得x的值.【解答】解:由4a=2,得,再由lgx=a=,得x=.故答案为:.【点评】本题考查了指数式与对数式的互化,考查了对数的运算性质,是基础题.4.(2016秋•广陵区校级期中)函数f(x)=x2﹣4x+5,x∈[1,5],则该函数值域为[1,10] .【考点】二次函数在闭区间上的最值.【专题】函数的性质及应用.【分析】根据函数f(x)的解析式,利用二次函数的性质求得函数的最值,从而求得函数的值域.【解答】解:由于函数f(x)=x2﹣4x+5=(x﹣2)2+1,x∈[1,5],则当x=2时,函数取得最小值为1,当x=5时,函数取得最大值为10,故该函数值域为[1,10],故答案为[1,10].【点评】本题主要考查求二次函数在闭区间上的最值,二次函数的性质的应用,属于中档题.5.(2016秋•广陵区校级期中)已知函数f(x)=ax3+bx+1,且f(﹣2)=3,则f(2)=﹣1.【考点】函数奇偶性的性质;函数的值.【专题】计算题;转化思想;函数的性质及应用.【分析】利用函数的奇偶性的性质,化简求解即可.【解答】解:函数f(x)=ax3+bx+1,且f(﹣2)=3,则f(2)=8a+2b+1=﹣(﹣8a﹣2b+1)+2=﹣3+2=﹣1故答案为:﹣1.【点评】本题考查函数的奇偶性的性质的应用,考查计算能力.6.(2015秋•安吉县期末)计算﹣lg2﹣lg5=3.【考点】对数的运算性质.【专题】计算题;函数思想;函数的性质及应用.【分析】利用指数的运算法则以及导数的运算法则化简求解即可.【解答】解:=4﹣2=3.故答案为:3.【点评】本题考查导数的运算法则的应用,考查计算能力.7.(2016秋•广陵区校级期中)集合A={x|ax2+2x+1=0}中只有一个元素,则a的值是0或1.【考点】集合的表示法.【专题】计算题;集合思想;集合.【分析】根据集合A={x|ax2+2x﹣1=0}只有一个元素,可得方程ax2﹣2x﹣1=0只有一个根,然后分a=0和a≠0两种情况讨论,求出a的值即可【解答】解:根据集合A={x|ax2+2x﹣1=0}只有一个元素,可得方程ax2+2x﹣1=0只有一个根,①a=0,x=,满足题意;②a≠0时,则应满足△=0,即(﹣2)2﹣4a×1=4﹣4a=0解得a=1.所以a=0或a=1.故答案为:0或1.【点评】本题主要考查了元素与集合的关系,以及一元二次方程的根的情况的判断,属于基础题8.(2016秋•广陵区校级期中)若函数f(x)=﹣x2+2ax与函数g(x)=在区间[1,2]上都是减函数,则实数a的取值范围是(0,1] .【考点】函数单调性的性质.【专题】函数的性质及应用.【分析】由函数f(x)=﹣x2+2ax在区间[1,2]上是减函数,可得[1,2]为其减区间的子集,进而得a的限制条件,由反比例函数的性质可求a的范围,取其交集即可求出.【解答】解:因为函数f(x)=﹣x2+2ax在[1,2]上是减函数,所以﹣=a≤1①,又函数g(x)=在区间[1,2]上是减函数,所以a>0②,综①②,得0<a≤1,即实数a的取值范围是(0,1].故答案为:(0,1].【点评】本题考查函数单调性的性质,函数在某区间上单调,该区间未必为函数的单调区间,而为单调区间的子集.9.(2016秋•广陵区校级期中)函数f(x)=2log a(x﹣2)+3(a>0,a≠1)恒过定点的坐标为(3,3).【考点】对数函数的图象与性质.【专题】转化思想;数学模型法;函数的性质及应用.【分析】令真数等于1,求出相应的坐标,可得答案.【解答】解:令x﹣2=1,则x=3,f(3)=2log a(3﹣2)+3=3,故函数f(x)=2log a(x﹣2)+3(a>0,a≠1)恒过定点的坐标为(3,3),故答案为:(3,3).【点评】本题考查的知识点是对数函数的图象和性质,熟练掌握对数函数的图象和性质,是解答的关键.10.(2016秋•广陵区校级期中)已知函数f(x﹣1)=x2﹣2x,则f(x)=x2﹣1.【考点】函数解析式的求解及常用方法.【专题】函数思想;换元法;函数的性质及应用.【分析】利用换元法求解即可.【解答】解:函数f(x﹣1)=x2﹣2x,令x﹣1=t,则x=t+1那么f(x﹣1)=x2﹣2x转化为f(t)=(t+1)2﹣2(t+1)=t2﹣1.所以得f(x)=x2﹣1故答案为:x2﹣1.【点评】本题考查了解析式的求法,利用了换元法.属于基础题.11.(2015秋•白山校级期中)已知偶函数f(x)在[0,+∞)上为增函数,且f(x﹣1)>f (3﹣2x),求x的取值范围.【考点】奇偶性与单调性的综合.【专题】函数的性质及应用.【分析】利用函数f(x)的奇偶性及在[0,+∞)上的单调性,可把f(x﹣1)>f(3﹣2x)转化为关于x﹣1与3﹣2x的不等式,从而可以求解.【解答】解:因为偶函数f(x)在[0,+∞)上为增函数,所以f(x﹣1)>f(3﹣2x)⇔f(|x﹣1|)>f(|3﹣2x|)⇔|x﹣1|>|3﹣2x|,两边平方并化简得3x2﹣10x+8<0,解得,所以x的取值范围为().故答案为:().【点评】本题为函数奇偶性及单调性的综合考查.解决本题的关键是利用性质去掉符号“f”,转化为关于x﹣1与3﹣2x的不等式求解.12.(2016秋•广陵区校级期中)f(x)是定义在(﹣∞,+∞)上的偶函数,且在(﹣∞,0]上是增函数,设a=f(log47),b=f(),c=f(0.20.6),则a,b,c大小关系是c>a>b.【考点】奇偶性与单调性的综合.【专题】转化思想;综合法;函数的性质及应用.【分析】对于偶函数,有f(x)=f(|x|),在[0,+∞)上是减函数,所以,只需比较自变量的绝对值的大小即可,即比较3个正数|log23|、|log47|、|0.20.6|的大小,这3个正数中越大的,对应的函数值越小.【解答】解:f(x)是定义在(﹣∞,+∞)上的偶函数,且在(﹣∞,0]上是增函数,故f(x)在[0,+∞)上是减函数,∵a=f(log47),b=f(),c=f(0.20.6),∵log47=log2>1,∵=﹣log23=﹣log49<﹣1,0<0.20.6<1,∴|log23|>|log47|>|0.20.6|>0,∴f(0.20.6)>f(log47)>f(),即c>a>b,故答案为:c>a>b.【点评】本题考查偶函数的性质,函数单调性的应用,属于中档题.13.(2015春•淮安期末)已知函数y=lg(﹣1)的定义域为A,若对任意x∈A都有不等式﹣m2x﹣2mx>﹣2恒成立,则正实数m的取值范围是(0,).【考点】函数恒成立问题.【专题】函数的性质及应用;不等式的解法及应用.【分析】运用对数的真数大于0,可得A=(0,1),对已知不等式两边除以x,运用参数分离和乘1法,结合基本不等式可得不等式右边+的最小值,再解m的不等式即可得到m的范围.【解答】解:由函数y=lg(﹣1)可得,﹣1>0,解得0<x<1,即有A=(0,1),对任意x∈A都有不等式﹣m2x﹣2mx>﹣2恒成立,即有﹣m2﹣2m>﹣,整理可得m2+2m<+在(0,1)恒成立,由+=(+)(1﹣x+x)=+2++≥+2=.即有m2+2m<,由于m>0,解得0<m<,故答案为:(0,).【点评】本题考查不等式恒成立问题的解法,注意运用参数分离和基本不等式,考查运算求解能力,属于中档题.14.(2016•湖南校级模拟)已知函数,关于x的方程f2(x)+a|f(x)|+b=0(a,b∈R)恰有6个不同实数解,则a的取值范围是(﹣4,﹣2).【考点】根的存在性及根的个数判断.【专题】函数的性质及应用.【分析】题中原方程f2(x)+a|f(x)|+b=0恰有6个不同实数解,故先根据题意作出f(x)的简图,由图可知,只有当f(x)=2时,它有二个根,且当f(x)=k(0<k<2),关于x的方程f2(x)+a|f(x)|+b=0(a,b∈R)恰有6个不同实数解,据此即可求得实数a的取值范围.【解答】解:先根据题意作出f(x)的简图:得f(x)>0.∵题中原方程f2(x)+a|f(x)|+b=0(a,b∈R)恰有6个不同实数解,即方程f2(x)+af (x)+b=0(a,b∈R)恰有6个不同实数解,∴故由图可知,只有当f(x)=2时,它有二个根.故关于x的方程f2(x)+af(x)+b=0中,有:4+2a+b=0,b=﹣4﹣2a,且当f(x)=k,0<k<2时,关于x的方程f2(x)+af(x)+b=0有4个不同实数解,∴k2+ak﹣4﹣2a=0,a=﹣2﹣k,∵0<k<2,∴a∈(﹣4,﹣2).故答案为:(﹣4,﹣2).【点评】数形结合是数学解题中常用的思想方法,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷.二、解答题:(14+14+14+16+16+16)15.(14分)(2016秋•广陵区校级期中)已知全集为R,集合A={x|y=lgx+},B={x|<2x﹣a ≤8}.(I)当a=0时,求(∁R A)∩B;(2)若A∪B=B,求实数a的取值范围.【考点】交、并、补集的混合运算;集合的包含关系判断及应用.【专题】计算题;转化思想;综合法;集合.【分析】(1)利用函数有意义求得A,解指数不等式求得B,再根据补集的定义求得∁R A,再利用两个集合的交集的定义求得(∁R A)∩B;(2)若A∪B=B,A⊆B,即可求实数a的取值范围.【解答】解:(1)A={x|y=lgx+}=(0,2],∴∁R A=(﹣∞,0]∪(2,+∞)当a=0时,<2x≤8,∴﹣2<x≤3,∴B=(﹣2,3],则(∁R A)∩B=(﹣2,0]∪(2,3];(2)B={x|<2x﹣a≤8}=(a﹣2,a+3].∵A∪B=B,∴A⊆B,∴,∴﹣1≤a≤2.【点评】本题主要考查不等式的解法,集合的补集、两个集合的交集的定义和求法,属于基础题.16.(14分)(2013秋•滑县期末)已知二次函数y=f(x)满足f(﹣2)=f(4)=﹣16,且f (x)最大值为2.(1)求函数y=f(x)的解析式;(2)求函数y=f(x)在[t,t+1](t>0)上的最大值.【考点】二次函数在闭区间上的最值;函数解析式的求解及常用方法.【专题】函数的性质及应用.【分析】(1)由条件可得二次函数的图象的对称轴为x=1,可设函数f(x)=a(x﹣1)2+2,a<0.根据f(﹣2)=﹣16,求得a的值,可得f(x)的解析式.(2)分当t≥1时和当0<t<1时两种情况,分别利用函数f(x)的单调性,求得函数的最大值.【解答】解:(1)∵已知二次函数y=f(x)满足f(﹣2)=f(4)=﹣16,且f(x)最大值为2,故函数的图象的对称轴为x=1,可设函数f(x)=a(x﹣1)2+2,a<0.根据f(﹣2)=9a+2=﹣16,求得a=﹣2,故f(x)=﹣2(x﹣1)2+2=﹣2x2+4x.(2)当t≥1时,函数f(x)在[t,t+1]上是减函数,故最大值为f(t)=﹣2t2+4t,当0<t<1时,函数f(x)在[t,1]上是增函数,在[1,t+1]上是减函数,故函数的最大值为f(1)=2.综上,f max(x)=.【点评】本题主要考查二次函数的性质,求二次函数在闭区间上的最值,体现了分类讨论的数学思想,属于中档题.17.(14分)(2016秋•广陵区校级期中)已知函数f(x)=log a(ax2﹣x+1),其中a>0且a ≠1.(1)当a=时,求函数f(x)的值域;(2)当f(x)在区间上为增函数时,求实数a的取值范围.【考点】复合函数的单调性;函数的值域.【专题】综合题;分类讨论;转化思想;综合法;函数的性质及应用.【分析】(1)把代入函数解析式,可得定义域为R,利用配方法求出真数的范围,结合复合函数单调性求得函数f(x)的值域;(2)对a>1和0<a<1分类讨论,由ax2﹣x+1在上得单调性及ax2﹣x+1>0对恒成立列不等式组求解a的取值范围,最后取并集得答案.【解答】解:(1)当时,恒成立,故定义域为R,又∵,且函数在(0,+∞)单调递减,∴,即函数f(x)的值域为(﹣∞,1];(2)依题意可知,i)当a>1时,由复合函数的单调性可知,必须ax2﹣x+1在上递增,且ax2﹣x+1>0对恒成立.故有,解得:a≥2;ii)当0<a<1时,同理必须ax2﹣x+1在上递减,且ax2﹣x+1>0对恒成立.故有,解得:.综上,实数a的取值范围为.【点评】本题考查复合函数的单调性,考查了复合函数值域的求法,体现了分类讨论的数学思想方法及数学转化思想方法,属中档题.18.(16分)(2016秋•广陵区校级期中)设f(x)是(﹣∞,+∞)上的奇函数,且f(x+2)=﹣f(x),当0≤x≤1时,f(x)=x.(1)求f(π)的值;(2)求﹣1≤x≤3时,f(x)的解析式;(3)当﹣4≤x≤4时,求f(x)=m(m<0)的所有实根之和.【考点】函数奇偶性的性质;函数解析式的求解及常用方法.【专题】数形结合;转化法;函数的性质及应用.【分析】(1)根据函数奇偶性的性质即可求f(π)的值;(2)结合函数奇偶性和周期性的性质即可求﹣1≤x≤3时,f(x)的解析式;(3)当﹣4≤x≤4时,作出函数f(x)的图象,利用数形结合即可求f(x)=m(m<0)的所有实根之和.【解答】解:(1)∵f(x+2)=﹣f(x),∴f(x+4)=﹣f(x+2)=f(x),即函数f(x)是周期为4的周期函数,则f(π)=f(π﹣4)=﹣f(4﹣π)=﹣(4﹣π)=π﹣4;(2)若﹣1≤x≤0,则0≤﹣x≤1,则f(﹣x)=﹣x,∵f(x)是奇函数,∴f(﹣x)=﹣x=﹣f(x),即f(x)=x,﹣1≤x≤0,即当﹣1≤x≤1时,f(x)=x,若1≤x≤3,则﹣1≤x﹣2≤1,∵f(x+2)=﹣f(x),∴f(x)=﹣f(x﹣2)=﹣(x﹣2)=﹣x+2,即当﹣1≤x≤3时,f(x)的解析式为f(x)=;(3)作出函数f(x)在﹣4≤x≤4时的图象如图,则函数的最小值为﹣1,若m<﹣1,则方程f(x)=m(m<0)无解,若m=﹣1,则函数在﹣4≤x≤4上的零点为x=﹣1,x=3,则﹣1+3=2,若﹣1<m<0,则函数在﹣4≤x≤4上共有4个零点,则它们分别关于x=﹣1和x=3对称,设分别为a,b,c,d,则a+b=﹣2,b+d=6,即a+b+c+d=﹣2+6=4.【点评】本题主要考查函数解析式的求解,函数奇偶性的性质,以及函数与方程的应用,利用数形结合是解决本题的关键.19.(16分)(2016秋•广陵区校级期中)设a为实数,函数f(x)=x|x﹣a|.(1)讨论f(x)的奇偶性;(2)当0≤x≤1时,求f(x)的最大值.【考点】函数的最值及其几何意义.【专题】函数的性质及应用.【分析】(1)讨论a=0时与a≠0时的奇偶性,然后定义定义进行证明即可;(2)讨论当a≤0和a>0时,求出函数f(x)=x|x﹣a|的表达式,即可求出在区间[0,1]上的最大值.【解答】解:(1)由题意可知函数f(x)的定义域为R.当a=0时f(x)=x|x﹣a|=x|x|,为奇函数.当a≠0时,f(x)=x|x﹣a|,f(1)=|1﹣a|,f(﹣1)=﹣|1+a|,f(﹣x)≠f(x)且f(﹣x)≠﹣f(x),∴此时函数f(x)为非奇非偶函数.(2)若a≤0,则函数f(x)=x|x﹣a|在0≤x≤1上为增函数,∴函数f(x)的最大值为f(1)=|1﹣a|=1﹣a,若a>0,由题意可得f(x)=,由于a>0且0≤x≤1,结合函数f(x)的图象可知,由,当,即a≥2时,f(x)在[0,1]上单调递增,∴f(x)的最大值为f(1)=a﹣1;当,即时,f(x)在[0,]上递增,在[,a]上递减,∴f(x)的最大值为f()=;当,即时,f(x)在[0,]上递增,在[,a]上递减,在[a,1]上递增,∴f(x)的最大值为f(1)=1﹣a.【点评】本题主要考查函数奇偶性的判断,以及分段函数的最值的求法,考查学生的运算能力.20.(16分)(2014秋•扬中市校级期末)设函数f(x)=ka x﹣a﹣x(a>0且a≠1)是奇函数.(1)求常数k的值;(2)若a>1,试判断函数f(x)的单调性,并加以证明;(3)若已知f(1)=,且函数g(x)=a2x+a﹣2x﹣2mf(x)在区间[1,+∞)上的最小值为﹣2,求实数m的值.【考点】函数奇偶性的性质;函数单调性的判断与证明.【专题】计算题;函数的性质及应用.【分析】(1)根据函数的奇偶性的性质,建立方程即可求常数k的值;(2)当a>1时,f(x)在R上递增.运用单调性的定义证明,注意作差、变形和定符号、下结论几个步骤;(3)根据f(1)=,求出a,然后利用函数的最小值建立方程求解m.【解答】解:(1)∵f(x)=ka x﹣a﹣x(a>0且a≠1)是奇函数.∴f(0)=0,即k﹣1=0,解得k=1.(2)∵f(x)=a x﹣a﹣x(a>0且a≠1),当a>1时,f(x)在R上递增.理由如下:设m<n,则f(m)﹣f(n)=a m﹣a﹣m﹣(a n﹣a﹣n)=(a m﹣a n)+(a﹣n﹣a﹣m)=(a m﹣a n)(1+),由于m<n,则0<a m<a n,即a m﹣a n<0,f(m)﹣f(n)<0,即f(m)<f(n),则当a>1时,f(x)在R上递增.(3)∵f(1)=,∴a﹣=,即3a2﹣8a﹣3=0,解得a=3或a=﹣(舍去).∴g(x)=32x+3﹣2x﹣2m(3x﹣3﹣x)=(3x﹣3﹣x)2﹣2m(3x﹣3﹣x)+2,令t=3x﹣3﹣x,∵x≥1,∴t≥f(1)=,∴(3x﹣3﹣x)2﹣2m(3x﹣3﹣x)+2=(t﹣m)2+2﹣m2,当m时,2﹣m2=﹣2,解得m=2,不成立舍去.当m时,()2﹣2m×+2=﹣2,解得m=,满足条件,∴m=.【点评】本题主要考查函数奇偶性的应用,以及指数函数的性质和运算,考查学生的运算能力,综合性较强.。
江苏省扬州中学2015-2016学年高一数学上学期期中试题
江苏省扬州中学2015-2016学年第一学期期中考试高一数学试卷2015.11一、填空题:本大题共14小题,每小题5分,共70分.1.若{}224,x x x ∈++,则x = ▲2.函数2log (3)y x =-的定义域为 ▲ 3. 已知1249a =(a >0) ,则23log a = ▲ 4.二次函数y =3x 2+2(m -1)x +n 在区间(),1-∞上是减函数,在区间[)1,+∞上是增函数,则实数m = ▲5. 在平面直角坐标系xOy 中,将函数1x y e+=的图像沿着x 轴的正方向平移1个单位长度,再作关于y 轴的对称变换,得到函数f (x )的图像,则函数f (x )的解析式为f (x )= ▲ 6.三个数3.0222,3.0log ,3.0===c b a 之间的大小关系是 ▲ (用a ,b ,c 表示)7. 已知函数()()3,10,5,10.n n f n f f n n -≥⎧⎪=⎨+<⎡⎤⎪⎣⎦⎩则()8f = ▲8. 已知函数()f x 是偶函数,且当0x >时,3()1f x x x =++,则当0x <时,()f x 的解析式为 ▲9.若方程062ln =-+x x 在Z n n n ∈+),1,(内有一解,则n = ▲10.化简:1022292(lg8lg125)316--⎛⎫⎛⎫+⨯++⎪ ⎪⎝⎭⎝⎭= ▲11.由等式3232123123(1)(1)(1)x x x x x x λλλμμμ+++=++++++定义 映射123123:(,,)(,,)f λλλμμμ=,则=)3,2,1(f ▲12.若关于x 的方程0122=++x mx 至少有一个负根,则实数m 的取值范围是 ▲13.如图,在平面直角坐标系xOy 中,过原点O 的直线与函数3x y =的图象交于A ,B 两点,过B 作y 轴的垂线交函数9x y =的图象于点C ,若AC 平行于y 轴,则点A 的坐标是 ▲14. 已知函数()(),11+=+x f x f 当[]1,0∈x 时,().113--=x x f 若对任意实数x , 都有()()f x t f x +<成立,则实数t 的取值范围 ▲二、解答题:本大题共6小题,共90分.解答应写出文字说明,证明过程或演算步骤. 15.(本题14分)设,{|13},{|24},{|1}U R A x x B x x C x a x a ==≤≤=<<=≤≤+,a 为实数, (1)分别求,()U A B A C B ; (2)若B C C = ,求a 的取值范围.16.(本题14分)已知函数()12()51m h x m m x +=-+为幂函数,且为奇函数.(1)求m 的值;(2)求函数()()g x h x =10,2x ∈⎡⎤⎢⎥⎣⎦的值域.17.(本题14分)已知函数f (x )=2ax +1x(a ∈R ).(1)当12a =时,试判断f (x )在]1,0(上的单调性并用定义证明你的结论; (2)对于任意的(0,1]x ∈,使得f (x )≥6恒成立,求实数a 的取值范围.18.(本题16分)如图,在长为10千米的河流OC 的一侧有一条观光带,观光带的前一部分为曲线段OAB ,设曲线段OAB 为函数2(0)y ax bx c a =++≠,[0,6]x ∈(单位:千米)的图象,且图象的最高点为(4,4)A ;观光带的后一部分为线段BC . (1)求函数为曲线段OABC 的函数(),[0,10]y f x x =∈的解析式;(2)若计划在河流OC 和观光带OABC 之间新建一个如图所示的矩形绿化带MNPQ ,绿化带由线段MQ ,QP ,PN 构成,其中点P 在线段BC 上.当OM 长为多少时,绿化带的总长度最长?19.(本题16分)已知函数)1,0(11log )(≠>--=a a x mxx f a 是奇函数. (1)求实数m 的值;(2)是否存在实数a p ,,当)2,(-∈a p x 时,函数()f x 的值域是(1,)+∞.若存在,求出实数a p ,;若不存在,说明理由; (3)令函数2()()6(1)5f x g x ax x a =-+--,当]5,4[∈x 时,求函数()g x 的最大值.20.(本题16分)已知函数()c bx x x f ++=22为偶函数, 关于x 的方程()()21+=x a x f 的构成集合{}1,(1)求,a c b ,的值; (2)若[]2,2-∈x ,求证:()1215+-≤x x f ; (3)设()g x =[]2,0,21∈x x 使得()()m x g x g ≥-21,求实数m 的取值范围.高一期中数学试卷答案 2015.11一、填空题1.1 2.(3,)+∞ 3.4 4.-2 5.xe -6.c a b << 7.7 8.31x x --+ 9.2 10.133 11.(2,3,1)- 12. ]1,(-∞ 13.3722123389;103sin(2);111293352132,2)y x π=-、; 、-、、; 、;、-15; 14、(log 14.442(,)(,)333-∞---二、解答题15. (1) A ∩B={x |2<x ≤3}, …………………………………………3分UB={x |x ≤2或x ≥4} …………………………………………5分A ∪(U B)= {x |x ≤3或x ≥4} …………………………………………8分 (2)∵B ∩C=C ∴C ⊆B …………………………………………10分 ∴2<a <a +1<4 ∴2<a <3 …………………………………………14分16. 解 (1) ∵函数()12()51m h x m m x+=-+为幂函数∴2511m m -+= 解得05m =或 …………………………………3分 又 ∵奇函数 ∴0m = …………………………………6分(2) 由(1)可知()g x x =10,2x ∈⎡⎤⎢⎥⎣⎦令t ,则[0,1]t ∈ …………………………………9分211()22g t t t ⇒=-++ 得值域为1,12⎡⎤⎢⎥⎣⎦…………………………………14分17. 解:(1)∵12a =∴1()f x x x=+ ()f x 在]1,0(上的单调递减 …………………………………2分 证明:取任意的21,x x ,且1021≤<<x x(*))1()(11)()(212121211221221121x x x x x x x x xx x x x x x x x f x f --=-+-=--+=-∵1021≤<<x x ∴021<-x x ,1021<<x x 得 (*)式大于0 ,即0)()(21>-x f x f所以()f x 在]1,0(上的单调递减 …………………………………8分 (2)由f (x )≥6在]1,0(上恒成立,得2ax +1x≥6 恒成立即2)1()1(62xx a -≥ ),1[)1(+∞∈x9))1()1(6(max 2=-⇒xx 2992≥≥⇒a a 即 …………………………………14分 注:本题若含参二次函数讨论求解,自行酌情给分。
江苏扬州中学2015届高三上学期期中考试
江苏扬州中学2015届高三上学期期中考试高三2009-12-17 11:37扬州中学2015届高三上学期期中考试高三语文试题2009.11(本卷满分160分,考试用时150分钟)一、语言文字运用(15分)1.下列词语中加点的字,每对读音都不相同的一组是(3分)A.门槛/栏槛衡量/车载斗量宿敌/住了一宿B.薄弱/单薄供应/献愁供恨新鲜/屡见不鲜C.露天/露脸中间/挑拨离间强迫/差强人意D.中流/中肯当时/独当一面便利/便宜行事2.下列各句中,没有语病的一句是(3分)A.最近关于投资方面的书籍非常畅销,这种现象说明人类对于金钱似乎总是不满足或者是对目前生活感到不安全所致。
B.为了实现居民消费增长率比国内生产总值增长率高出2个百分点,国家必须实行切实的鼓励政策。
C.很显然,汉武帝对重要国策抉择的正确与否,直接关系着西汉王朝国运的盛衰。
D.2008年CCTV中国经济年度人物评选在北京揭晓,当选人覆盖了证券、IT、新能源等行业和领域,解读名单,我们可以清晰地看出2008年中国经济的热点和脉搏。
3.根据提供的信息,概括说明什么是“创业板”。
(不超过50个字)(4分)创业板是地位次于主板市场的二板证券市场。
在上市门槛、监管制度、信息披露、交易者条件、投资风险等方面和主板市场有较大区别。
其目的主要是扶持中小企业,为风险投资和创投企业建立正常的退出机制。
创业板又称二板市场,是指主板之外的专为暂时无法上市的中小企业和新兴公司提供融资途径和成长空间的证券交易市场,是对主板市场的有效补充,在资本市场中占据着重要的位置。
在创业板市场上市的公司大多从事高科技业务,具有较高的成长性,但往往成立时间较短规模较小,业绩也不突出,但有很大的成长空间。
对投资者来说,创业板市场的风险要比主板市场高得多。
当然,回报可能也会大得多。
创业板是______________________________________________________________________________________________________________________4.2009年8月31日上午10时,罗凤琴老太和孙子外出,大约10分钟后在司徒庙小区外中心路晕倒,20分钟后一位外地人开车经过时,看见孩子趴在老人身上哭泣,觉得非常可怜,就拨打了110,20分钟后120救护车将老太送到医院。
江苏省扬州中学2015-2016学年高二数学上册期中试题
江苏省扬州中学2015—2016学年第一学期期中考试高二数学试卷 2015.11一、填空题(本大题共14小题,每小题5分,共70分.)1.已知命题"0,:"<∈∀x e R x p ,则p ⌝是 . 2.命题 “若am 2<bm 2,则a <b ”的逆命题为 命题.(填“真”、“假”)3.若椭圆1522=+my x 的一个焦点坐标为(1,0),则实数m 的值等于______________. 4.“12<x ”是“10<<x ”成立的 条件.(从“充要”、“充分不必要”、“必要不充分”中选择一个正确的填写)5.在正方体1111D C B A ABCD -中,过B C A 11的平面与底面ABCD 的交线为l ,则直线l 与11C A 的位置关系为 .(填“平行”或“相交”或“异面”)6.与双曲线2214y x -=有共同的渐近线,且过点(2,2)的双曲线方程为______________. 7.设l ,m 是不同的直线,α,β,γ是不同的平面,则下列命题正确的是______________. ①.若l ⊥m ,m ⊥α,则l ⊥α或 l ∥α ②.若l ⊥γ,α⊥γ,则l ∥α或 l ⊂α ③.若l ∥α,m ∥α,则l ∥m 或 l 与m 相交 ④.若l ∥α,α⊥β,则l ⊥β或 l ⊂β 8.若一个圆锥的侧面展开图是面积为π2的半圆面,则该圆锥的高为______________.9.已知点A 是椭圆()012222>>=+b a by a x 上一点,F 为椭圆的一个焦点,且x AF ⊥ 轴,=AF c (c 为椭圆的半焦距),则椭圆的离心率是__________.10.若1F ,2F 是双曲线116922=-y x 的两个焦点,P 是双曲线上的一点,且6421=⋅PF PF ,则21PF F ∠=______________. 11.点),(y x P 为椭圆x 29+y 2=1上的任意一点,则y x 3+的最大值为______________.12.如图所示,一种医用输液瓶可以视为两个圆柱的组合体.开始输液时,滴管内匀速滴下球状液体,其中球状液体的半径310=r 毫米,滴管内液体忽略不计. 如果瓶内的药液恰好156分钟滴完,则每分钟应滴下 滴.13.在正三棱锥S -ABC 中,M ,N 分别是棱SC 、BC 的中点,且MN ⊥AM ,若侧棱SA =3,则正三棱锥S -ABC 外接球的表面积是______________.A B C D E14.如图所示,,,A B C 是双曲线22221(0,0)x y a b a b-=>>上的三个点,AB经过原点O ,AC 经过右焦点F ,若BF AC ⊥且||||BF CF =,则该双曲线的离心率是______________.二、解答题(本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.) 15.(本小题满分14分)设命题:{|}p a y y x R ∈=∈,命题:q 关于x 的方程20x x a +-=有实根. (1)若p 为真命题,求a 的取值范围;(2)若“p ∧q ”为假命题,且“p ∨q ”为真命题,求a 的取值范围.16.(本小题满分14分)如图:已知正方形ABCD 的边长为2,且AE ⊥平面CDE ,A D 与平面CDE 所成角为︒30。
江苏省扬州中学高一数学上学期12月月考试题
江苏省扬州中学2015-2016学年第一学期月考考试高一数学试卷2015.12一、填空题:本大题共14小题,每小题5分,共70分. 1.函数cos 2y x =的最小正周期为__ __.2.若{U n n =是小于9的正整数},{A n U n =∈是奇数},={U B n n ∈是3的倍数},则(A B)U C ⋃= ____ .3. 计算=︒-)330sin( .4.不等式1tan >x 的解集为 .5.圆心角为3π弧度,半径为6的扇形的面积为 __. 6.已知角α的终边上一点P (1,-2),则sin 2cos sin cos αααα+=-___________.7.设0sin 33a =,0cos55b =,0tan 35c =,5log 3=d ,则,,a b c ,d 按从大到小的顺序是 . 8.计算:43310.25()log 18log 22-⨯-+-= .9. 设函数)0(sin >=ωωx y 在区间⎥⎦⎤⎢⎣⎡-4,5ππ上是增函数,则ω的取值范围为 ____ . 10. 函数()()πϕπϕ<≤-+=,2cos x y 的图像向右平移2π个单位后,与函数)32sin(π+=x y 的图像重合,则ϕ= .11.设),2(ππα∈,函数322)(sin )(+-=x xx f α的最大值为43,则α=_________. 12. 给出下列命题:①小于090的角是第一象限角; ②将3sin()5y x π=+的图象上所有点向左平移25π个单位长度可得到3sin()5y x π=-的图象;③若α、β是第一象限角,且αβ>,则sin sin αβ>; ④若α为第二象限角,则2α是第一或第三象限的角;⑤函数tan y x =在整个定义域内是增函数. 其中正确的命题的序号是_______.(注:把你认为正确的命题的序号都填上)13. 若关于x 的函数2222sin ()(0)tx x t xf x t x t+++=>+的最大值为M ,最小值为N ,且4M N +=,则实数t 的值为 .14. 对于函数()f x ,等式 4)1()1(=-⋅+x f x f 对定义域中的每一个x 都成立,已知当[0,1]x ∈ 时,2)(x x f =(1)1m x --+(0)m >,若当[0,2]x ∈时,都有4)(1≤≤x f ,则m 的取值范围是___________.二、解答题:本大题共6小题,共90分.解答应写出文字说明,证明过程或演算步骤. 15. (本题14分) 已知角α的终边经过点P (4-,3), (1)求()()απααπ+-+-tan cos )sin(的值;(2)求1sin cos cos sin 22+-+αααα的值.16. (本题14分)已知函数21)(-+=x x x f 的定义域为集合A ,函数a a x a x x g +++-=22)12()(的定义域为集合B .(1)求集合A 、B ; (2)若A B A =I ,求实数a 的取值范围.17. (本题14分)已知直线6x π=是函数)2sin()(ϕ+=x x f )20(πϕ<<图象的一条对称轴.(1)求函数)(x f 的解析式; (2)求函数)(x f -的单调增区间; (3)作出函数()f x 在[]0,x π∈上的图象简图(列表,画图).18. (本题16分)已知函数(32)1xf x -=- ([0,2])x ∈,函数3)2()(+-=x f xg . (1)求函数()y f x =与()y g x =的解析式,并求出()f x ,()g x 的定义域; (2)设22()[()]()h x g x g x =+,试求函数()y h x =的最值.19. (本题16分)设二次函数()f x 在[-1,4]上的最大值为12,且关于x 的不等式()0f x <的解集为(0,5). (1)求()f x 的解析式; (2) 若],2,0[),62sin(3)(ππ∈+=x x x g 求函数))(()(x g f x h =的值域;(3)若对任意的实数x 都有(22cos )(1cos )f x f x m -<--恒成立,求实数m 的取值范围.20. (本题16分)设()f x 是定义在D 上的函数,若对任何实数(0,1)α∈以及D 中的任意两数1x 、2x ,恒有()1212(1)()(1)()fx x f x f x αααα+-≤+-,则称()f x 为定义在D 上的C 函数.(1)证明:函数21()f x x =是定义域上的C 函数;(2)判断函数21()(0)f x x x=<是否为定义域上的C 函数,请说明理由; (3)若()f x 是定义域为R 的函数,且最小正周期为T ,试证明()f x 不是R 上的C 函数.江苏省扬州中学2015-2016学年第一学期月考考试高一数学试卷(答案)2015.12一、填空题1.π 2.}8,4,2{ 3. 21 4.},24|{Z k k x k x ∈+<<+ππππ 5.π6 6.0 7. a b c d >>> 8. 6 9. ]2,0( 10. 65π 11. 32π12.④ 13. 2 14. ]3,0(二、解答题 15.解:(1);154(2)5416.解:(1)10212x x x x +≥⇒>≤--或,22(21)01x a x a a x a x a -+++≥⇒≥+≤或 ),1[],(),,2(]1,(+∞+-∞=+∞--∞=a a B A Y Y(2)11211≤≤-⇒⎩⎨⎧≤+-≥⇒⊆⇔=a a a B A A B A I 17. 解:(1))62sin()(π+=x x f ;(2)函数()x f 的增区间为Z k k k ∈++],65,3[ππππ x6π 512π23π 1112ππ26x π+6π 2π π32π 2π136π()f x1211-12()x f 在],0[π∈x 上的图象简图如下图所示:18.解:(1)设32xt =-∈(t [-1,7],则3log (t 2)x =+,于是有3()log (t 2)1f t =+-,[1,7]t ∈-,∴3()log (2)1f x x =+-()[1,7]x ∈-, 根据题意得3()(2)3log 2g x f x x =-+=+,又由721≤-≤-x 得91≤≤x , ∴2log )(3+=x x g ()[1,9]x ∈(2)∵3()log 2,[1,9]g x x x =+∈∴要使函数22()[()]()h x g x g x =+有意义,必须21919x x ⎧≤≤⎨≤≤⎩∴13x ≤≤,∴222223333()[()]()(log 2)2log (log )6log 6h x g x g x x x x x =+=+++=++ (13x ≤≤)设x t 3log =,则66)(2++=t t x h ()332-+=t )10(≤≤t 是()1,0上增函数,∴0=t 时min )(x h =6,1=t 时13)(max =x h ∴函数()y h x =的最大值为13,最小值为6. 19. 解:(1)()x x x f 1022-=;(2)225)25(2)(2--=x x f ,]3,23[)(-∈x g;239))((max =x g f ,225))((min -=x g f ∴值域为]239,225[-(3)设t=1-x cos ,则0≤t≤2,∴f(2-2cosx )<f (1-x cos -m ),2·2t·(2t-5)<2·(t-m )·(t-m-5)则(3t-m-5)(t+m )<0,(5)0(1)(2)0m m m m --<⎧∴⎨-+<⎩,∴实数m 的取值范围为{}51|-<>m m m 或. 20.(1)证明如下:对任意实数12,x x 及()0,1α∈,有()()()()()121211f x x f x f x αααα+----()()()222121211x x x x αααα=+----()()()2212121121x x x x αααααα=----+-()()21210x x αα=---≤,即()()()()()121211fx x f x f x αααα+-≤+-,∴()21f x x =是C 函数; 6分(2)()()210f x x x=<不是C 函数, 说明如下(举反例):取13x =-,21x =-,12α=,则()()()()()121211fx x f x f x αααα+----()()()11111231022262f f f =-----=-++>, 即()()()()()121211fx x f x f x αααα+->+-,∴()()210f x x x=<不是C 函数; 10分 (3)假设()f x 是R 上的C 函数, 若存在m n <且[),0,m n T ∈,使得()()f m f n ≠. (i )若()()f m f n <, 记1x m =,2x m T =+,1n mTα-=-,则01α<<,且()121n x x αα=+-, 那么()()()()()()121211f n fx x f x f x αααα=+-≤+-()()()()1f m f m T f m αα=+-+=,这与()()f m f n <矛盾;(ii )若()()f m f n >,记1x n =,2x n T =-,1n mTα-=-,同理也可得到矛盾; ∴()f x 在[)0,T 上是常数函数, 又因为()f x 是周期为T 的函数,所以()f x 在R 上是常数函数,这与()f x 的最小正周期为T 矛盾. 所以()f x 不是R 上的C 函数. 16分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省扬州中学2015-2016学年第一学期期中考试高一数学试卷2015.11一、填空题:本大题共14小题,每小题5分,共70分. 1.若{}224,x x x ∈++,则x = ▲ 2.函数2log (3)y x =-的定义域为 ▲ 3. 已知1249a =(a >0) ,则23log a = ▲ 4.二次函数y =3x 2+2(m -1)x +n 在区间(),1-∞上是减函数,在区间[)1,+∞上是增函数,则实数m = ▲5. 在平面直角坐标系xOy 中,将函数1x y e+=的图像沿着x 轴的正方向平移1个单位长度,再作关于y 轴的对称变换,得到函数f (x )的图像,则函数f (x )的解析式为f (x )= ▲ 6.三个数3.0222,3.0log ,3.0===c b a 之间的大小关系是 ▲ (用a ,b ,c 表示)7. 已知函数()()3,10,5,10.n n f n f f n n -≥⎧⎪=⎨+<⎡⎤⎪⎣⎦⎩则()8f = ▲8. 已知函数()f x 是偶函数,且当0x >时,3()1f x x x =++,则当0x <时,()f x 的解析式为 ▲9.若方程062ln =-+x x 在Z n n n ∈+),1,(内有一解,则n = ▲10.化简:1022292(lg8lg125)316--⎛⎫⎛⎫+⨯++⎪⎪⎝⎭⎝⎭= ▲11.由等式3232123123(1)(1)(1)x x x x x x λλλμμμ+++=++++++定义映射123123:(,,)(,,)f λλλμμμ=,则=)3,2,1(f ▲12.若关于x 的方程0122=++x mx 至少有一个负根,则实数m 的取值范围是 ▲13.如图,在平面直角坐标系xOy 中,过原点O 的直线与函数3x y =的图象交于A ,B 两点,过B 作y 轴的垂线交函数9x y =的图象于点C ,若AC 平行于y 轴,则点A 的坐标是 ▲14. 已知函数()(),11+=+x f x f 当[]1,0∈x 时,().113--=x x f 若对任意实数x , 都有()()f x t f x +<成立,则实数t 的取值范围 ▲二、解答题:本大题共6小题,共90分.解答应写出文字说明,证明过程或演算步骤. 15.(本题14分)设,{|13},{|24},{|1}U R A x x B x x C x a x a ==≤≤=<<=≤≤+,a 为实数, (1)分别求,()U A B A C B ;(2)若B C C =,求a 的取值范围.16.(本题14分)已知函数()12()51m h x m m x +=-+为幂函数,且为奇函数.(1)求m 的值;(2)求函数()()g x h x =在10,2x ∈⎡⎤⎢⎥⎣⎦的值域.17.(本题14分)已知函数f (x )=2ax +1x (a ∈R ).(1)当12a =时,试判断f (x )在]1,0(上的单调性并用定义证明你的结论; (2)对于任意的(0,1]x ∈,使得f (x )≥6恒成立,求实数a 的取值范围.18.(本题16分)如图,在长为10千米的河流OC 的一侧有一条观光带,观光带的前一部分为曲线段OAB ,设曲线段OAB 为函数2(0)y ax bx c a =++≠,[0,6]x ∈(单位:千米)的图象,且图象的最高点为(4,4)A ;观光带的后一部分为线段BC . (1)求函数为曲线段OABC 的函数(),[0,10]y f x x =∈的解析式;(2)若计划在河流OC 和观光带OABC 之间新建一个如图所示的矩形绿化带MNPQ ,绿化带由线段MQ ,QP ,PN 构成,其中点P 在线段BC 上.当OM 长为多少时,绿化带的总长度最长?19.(本题16分)已知函数)1,0(11log )(≠>--=a a x mxx f a 是奇函数. (1)求实数m 的值;(2)是否存在实数a p ,,当)2,(-∈a p x 时,函数()f x 的值域是(1,)+∞.若存在,求出实数a p ,;若不存在,说明理由; (3)令函数2()()6(1)5f x g x ax x a =-+--,当]5,4[∈x 时,求函数()g x 的最大值.20.(本题16分)已知函数()c bx x x f ++=22为偶函数,关于x 的方程()()21+=x a x f 的构成集合{}1, (1)求,a c b ,的值; (2)若[]2,2-∈x ,求证:()1215+-≤x x f ;(3)设()g x =[]2,0,21∈x x 使得()()m x g x g ≥-21,求实数m 的取值范围.命题、校对、审核:高二数学备课组高一期中数学试卷答案 2015.11一、填空题1.1 2.(3,)+∞ 3.4 4.-2 5.xe -6.c a b << 7.7 8.31x x --+ 9.2 10.133 11.(2,3,1)- 12. ]1,(-∞ 13.3722123389;103sin(2);111293352132,2)y x π=-、; 、-、、; 、; 、-15; 14、(log 14.442(,)(,)333-∞--- 二、解答题15. (1) A ∩B={x |2<x ≤3}, …………………………………………3分U B={x |x ≤2或x ≥4} …………………………………………5分A ∪(U B)= {x |x ≤3或x ≥4} …………………………………………8分(2)∵B ∩C=C ∴C ⊆B …………………………………………10分 ∴2<a <a +1<4 ∴2<a <3 …………………………………………14分16. 解 (1) ∵函数()12()51m h x m m x+=-+为幂函数∴2511m m -+= 解得05m =或 …………………………………3分 又 ∵奇函数 ∴0m =…………………………………6分 (2) 由(1)可知 ()g x x =10,2x ∈⎡⎤⎢⎥⎣⎦令t ,则[0,1]t ∈ …………………………………9分211()22g t t t ⇒=-++ 得值域为1,12⎡⎤⎢⎥⎣⎦…………………………………14分17. 解:(1)∵12a =∴1()f x x x=+ ()f x 在]1,0(上的单调递减 …………………………………2分 证明:取任意的21,x x ,且1021≤<<x x(*))1()(11)()(212121211221221121x x x x x x x x xx x x x x x x x f x f --=-+-=--+=-∵1021≤<<x x ∴021<-x x ,1021<<x x 得 (*)式大于0 ,即0)()(21>-x f x f所以()f x 在]1,0(上的单调递减 …………………………………8分 (2)由f (x )≥6在]1,0(上恒成立,得2ax +1x ≥6 恒成立即2)1()1(62xx a -≥ ),1[)1(+∞∈x9))1()1(6(m a x2=-⇒xx2992≥≥⇒a a 即 …………………………………14分 注:本题若含参二次函数讨论求解,自行酌情给分。
18. 解:(1)因为曲线段OAB 过点O ,且最高点为(4,4)A0164442c a b c b a ⎧⎪=⎪++=⎨⎪⎪-=⎩ ,解得1420a b c ⎧=-⎪⎪=⎨⎪=⎪⎩(也可以设成顶点式) 所以,当[0,6]x ∈时,2124y x x =-+ ……………………………3分 因为后一部分为线段BC ,(6,3),(10,0)B C ,当[6,10]x ∈时,31542y x =-+ ……6分综上,212,[0,6]4()315,(6,10]42x x x f x x x ⎧-+∈⎪⎪=⎨⎪-+∈⎪⎩ ……………………………8分(2)设(02)OM t t =<≤,则22112,244MQ t t PN t t =-+=-+由213152442PN t t x =-+=-+, 得2181033x t t =-+,所以点218(10,0)33N t t -+ ……………………………11分所以,绿化带的总长度PN QP MQ y ++= 103161)1031131()241(2222++-=+-++-=t t t t t t ……13分当1=t 时,661max =y 所以,当OM 长为1千米时,绿化带的总长度最长 ……………………………16分19. 解:(1)∵函数)1,0(11log )(≠>--=a a x mxx f a是奇函数. ∴10)()(±==+-m x f x f 解得又 1=m 时,表达式无意义,所以1-=m ……………………………2分 (2)由题设知: 函数f (x )的定义域为)1,(),1(--∞+∞ ,①当12-≤-<a p 时,有10<<a . 此时f (x )为增函数,其值域为⎪⎩⎪⎨⎧-=-=-++∞12111log),1(a n n知 (与题设矛盾,无解);……………………5分 ②当21-≤≤a p 时,有a >3. 此时f (x )为减函数,其值域为),(∞+1知⎪⎩⎪⎨⎧=+==--=.1,32131log 1p a a a p a 得…………………8分符合题意综上①②:存在这样的实数a p ,满足条件,32,1+==a p …………………9分 (3)∵2()()6(1)5f x g x ax x a=-+--,11log )(-+=x xx f a∴16)(2++-=x ax x g ]5,4[∈x 且1,0≠>a a ①当1,4343≠≥⇒≤a a a 时,函数)(x g 在]5,4[上单调递减 所以2516)4()(max +-==a g x g …………………11分 ②当53053≤<⇒≥a a 时,函数)(x g 在]5,4[上单调递增 所以3125)5()(max +-==a g x g …………………13分③当5343<<a 时,函数)(x g 在]3,4[a 上单调递增,在]5,3[a上单调递减 所以19)3()(max +==aa g x g …………………15分综上①②③,⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+-<<+≠≥+-=53031254353191,432516)(max a a a a a a a x g …………………16分20. 解:(1)由f (x )为偶函数可知,b =0方程2)1()(+=x a x f 即02)1(2=-++-c a ax x a所以⎩⎨⎧=---=-++-0))(1(4402)1(2c a a a c a a a 解得⎪⎩⎪⎨⎧==121c a所以1,0,21===c b a …………………3分 (2)证明:由(1)得 1)(2+=x x f ,当[]2,2-∈x 时, 0)2|(|||215||)15(215)1||215()1(222≤--=---=+--+x x x x x x 所以()1215+-≤x x f 对任意的[]2,2-∈x 恒成立 …………………6分 (3)由题意知,max 21|)()(|x g x g m -≤,即min max )()(x g x g m -≤………8分 由(2)知,当[]2,0∈x 时,151)2(2151215)(+=+--++-≤x x x g 所以当20或=x 时,)(x g 有最大值15+ …………………11分 考虑0)1(212121)1(21)1(2222≥-=+-=+-+x x x x x 所以)1(22)(+≥x x f 则22)12(22)1(22)(=+-++≥x x x g …………………14分故2215-+≤m …………………16分。