A Ras1-Cdc24 signal transduction pathway mediates

合集下载

紫外光NLOS通信的机群间通路快速恢复算法

紫外光NLOS通信的机群间通路快速恢复算法

紫外光NLOS通信的机群间通路快速恢复算法赵太飞;冷昱欣;王玉【摘要】为了研究直升机编队飞行在链路中断或节点中断情况下的路径恢复,基于紫外光非直视通信的路径损耗,采用Dijkstra算法寻找网络连通性的前提下直升机编队飞行通信网络的最优路径,通过节点移动来实现链路中断或节点中断时的路径恢复.通过理论以及仿真分析,得到了最优路径在不同链路断开时的路径恢复情况.结果表明,采用所提出的算法虽然在节点移动时需要花费2s~3s的时间,但是与路径重寻方法相比,3跳和4跳节点的链路收敛时间能够有效减小0.2ms和0.4ms,路径权值同样能够减小20dB和45dB,因此该算法具有可行性.这一结果对机群间路径快速恢复的研究有一定的应用价值.%In order to study the path recovery of helicopter formation flying in the two cases of link expiration or node outage, based on the analysis of the path loss in ultraviolet (UV) non-line-of-sight (NLOS) communication.Dijkstra algorithm was adopted to find the optimal path of helicopters flying in formation communications network under network connectivity.Path recovery was achieved by node moving at link expiration or node outage.After theoretical simulation and analysis, the path recovery of the optimal path in different links expiration was obtained.The results show that although the algorithm spends 2s~3s time to move the nodes, compared with the paths re-search method, the convergence time of three-hop and four-hop node can effectively reduce 0.2ms and 0.4ms.The path weight also can reduce 20dB and 45dB.The algorithm is feasible and has applicable value for studying path fast recovery of inter clusters.【期刊名称】《激光技术》【年(卷),期】2017(041)005【总页数】6页(P728-733)【关键词】光通信;紫外光;路径恢复;编队飞行;最优路径【作者】赵太飞;冷昱欣;王玉【作者单位】西安理工大学自动化与信息工程学院,西安 710048;西安理工大学自动化与信息工程学院,西安 710048;陕西电子科技职业学院通信工程学院,西安710048【正文语种】中文【中图分类】TN929.1近年来,直升机应用领域不断扩大。

Si24R1

Si24R1
流的同时能够快速启动。设置 CONFIG 寄存器下的 PWR_UP 位的值为 ,芯片 待时钟稳定后进入 Standby 模式。芯片的时钟稳定时间一般为 1.5~2ms,与晶振 的性能有关。当引脚 CE=1 时,芯片将由 Standby 模式进入到 Idle-TX 或 RX 模 式,当 CE=0 时,芯片将由 Idle-TX、TX 或 RX 模式返回到 Standby 模式。
DI
芯片开启信号,激活 RX 或 TX 模式
DI
SPI 片选信号
DI
SPI 时钟信号
DI
SPI 输入信号
DO
SPI 输出信号
DO
可屏蔽中断信号,低电平有效
Power 电源(+1.9 ~ +3.6V,DC)
Power 地(0V)
AO AI Power RF RF AI PO Power
晶体振荡器输出引脚 晶体振荡器输入引脚 给内置 PA 供电的电源输出引脚(+1.8V) 天线接口 1 天线接口 2 基准电流 内部数字电路电源,须接去耦电容 地(0V),推荐与 PCB 大面积地相连
2、引脚信息
Si24R1
VCC VSS RFN RFP VDD_PA
15
14
XI
VSS 17
9 XO
VCC 18 VDD_D 19
QFN20 4×4
8 VSS 7 VCC
VSS 20
6 IRQ
1
2
3
4
5
CE CSN SCK MOSI MISO
图 2-1 Si24R1 引脚信息图(QFN20 4×4 封装)
Preliminary
Si24R1
超低功耗高性能 2.4GHz GFSK 无线收发芯片

NuMicro N9H30系列开发板用户手册说明书

NuMicro N9H30系列开发板用户手册说明书

NuMicro®FamilyArm® ARM926EJ-S BasedNuMaker-HMI-N9H30User ManualEvaluation Board for NuMicro® N9H30 SeriesNUMAKER-HMI-N9H30 USER MANUALThe information described in this document is the exclusive intellectual property ofNuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.Nuvoton is providing this document only for reference purposes of NuMicro microcontroller andmicroprocessor based system design. Nuvoton assumes no responsibility for errors or omissions.All data and specifications are subject to change without notice.For additional information or questions, please contact: Nuvoton Technology Corporation.Table of Contents1OVERVIEW (5)1.1Features (7)1.1.1NuMaker-N9H30 Main Board Features (7)1.1.2NuDesign-TFT-LCD7 Extension Board Features (7)1.2Supporting Resources (8)2NUMAKER-HMI-N9H30 HARDWARE CONFIGURATION (9)2.1NuMaker-N9H30 Board - Front View (9)2.2NuMaker-N9H30 Board - Rear View (14)2.3NuDesign-TFT-LCD7 - Front View (20)2.4NuDesign-TFT-LCD7 - Rear View (21)2.5NuMaker-N9H30 and NuDesign-TFT-LCD7 PCB Placement (22)3NUMAKER-N9H30 AND NUDESIGN-TFT-LCD7 SCHEMATICS (24)3.1NuMaker-N9H30 - GPIO List Circuit (24)3.2NuMaker-N9H30 - System Block Circuit (25)3.3NuMaker-N9H30 - Power Circuit (26)3.4NuMaker-N9H30 - N9H30F61IEC Circuit (27)3.5NuMaker-N9H30 - Setting, ICE, RS-232_0, Key Circuit (28)NUMAKER-HMI-N9H30 USER MANUAL3.6NuMaker-N9H30 - Memory Circuit (29)3.7NuMaker-N9H30 - I2S, I2C_0, RS-485_6 Circuit (30)3.8NuMaker-N9H30 - RS-232_2 Circuit (31)3.9NuMaker-N9H30 - LCD Circuit (32)3.10NuMaker-N9H30 - CMOS Sensor, I2C_1, CAN_0 Circuit (33)3.11NuMaker-N9H30 - RMII_0_PF Circuit (34)3.12NuMaker-N9H30 - RMII_1_PE Circuit (35)3.13NuMaker-N9H30 - USB Circuit (36)3.14NuDesign-TFT-LCD7 - TFT-LCD7 Circuit (37)4REVISION HISTORY (38)List of FiguresFigure 1-1 Front View of NuMaker-HMI-N9H30 Evaluation Board (5)Figure 1-2 Rear View of NuMaker-HMI-N9H30 Evaluation Board (6)Figure 2-1 Front View of NuMaker-N9H30 Board (9)Figure 2-2 Rear View of NuMaker-N9H30 Board (14)Figure 2-3 Front View of NuDesign-TFT-LCD7 Board (20)Figure 2-4 Rear View of NuDesign-TFT-LCD7 Board (21)Figure 2-5 Front View of NuMaker-N9H30 PCB Placement (22)Figure 2-6 Rear View of NuMaker-N9H30 PCB Placement (22)Figure 2-7 Front View of NuDesign-TFT-LCD7 PCB Placement (23)Figure 2-8 Rear View of NuDesign-TFT-LCD7 PCB Placement (23)Figure 3-1 GPIO List Circuit (24)Figure 3-2 System Block Circuit (25)Figure 3-3 Power Circuit (26)Figure 3-4 N9H30F61IEC Circuit (27)Figure 3-5 Setting, ICE, RS-232_0, Key Circuit (28)Figure 3-6 Memory Circuit (29)Figure 3-7 I2S, I2C_0, RS-486_6 Circuit (30)Figure 3-8 RS-232_2 Circuit (31)Figure 3-9 LCD Circuit (32)NUMAKER-HMI-N9H30 USER MANUAL Figure 3-10 CMOS Sensor, I2C_1, CAN_0 Circuit (33)Figure 3-11 RMII_0_PF Circuit (34)Figure 3-12 RMII_1_PE Circuit (35)Figure 3-13 USB Circuit (36)Figure 3-14 TFT-LCD7 Circuit (37)List of TablesTable 2-1 LCD Panel Combination Connector (CON8) Pin Function (11)Table 2-2 Three Sets of Indication LED Functions (12)Table 2-3 Six Sets of User SW, Key Matrix Functions (12)Table 2-4 CMOS Sensor Connector (CON10) Function (13)Table 2-5 JTAG ICE Interface (J2) Function (14)Table 2-6 Expand Port (CON7) Function (16)Table 2-7 UART0 (J3) Function (16)Table 2-8 UART2 (J6) Function (16)Table 2-9 RS-485_6 (SW6~8) Function (17)Table 2-10 Power on Setting (SW4) Function (17)Table 2-11 Power on Setting (S2) Function (17)Table 2-12 Power on Setting (S3) Function (17)Table 2-13 Power on Setting (S4) Function (17)Table 2-14 Power on Setting (S5) Function (17)Table 2-15 Power on Setting (S7/S6) Function (18)Table 2-16 Power on Setting (S9/S8) Function (18)Table 2-17 CMOS Sensor Connector (CON9) Function (19)Table 2-18 CAN_0 (SW9~10) Function (19)NUMAKER-HMI-N9H30 USER MANUAL1 OVERVIEWThe NuMaker-HMI-N9H30 is an evaluation board for GUI application development. The NuMaker-HMI-N9H30 consists of two parts: a NuMaker-N9H30 main board and a NuDesign-TFT-LCD7 extensionboard. The NuMaker-HMI-N9H30 is designed for project evaluation, prototype development andvalidation with HMI (Human Machine Interface) function.The NuMaker-HMI-N9H30 integrates touchscreen display, voice input/output, rich serial port serviceand I/O interface, providing multiple external storage methods.The NuDesign-TFT-LCD7 can be plugged into the main board via the DIN_32x2 extension connector.The NuDesign-TFT-LCD7 includes one 7” LCD which the resolution is 800x480 with RGB-24bits andembedded the 4-wires resistive type touch panel.Figure 1-1 Front View of NuMaker-HMI-N9H30 Evaluation BoardNUMAKER-HMI-N9H30 USER MANUAL Figure 1-2 Rear View of NuMaker-HMI-N9H30 Evaluation Board1.1 Features1.1.1 NuMaker-N9H30 Main Board Features●N9H30F61IEC chip: LQFP216 pin MCP package with DDR (64 MB)●SPI Flash using W25Q256JVEQ (32 MB) booting with quad mode or storage memory●NAND Flash using W29N01HVSINA (128 MB) booting or storage memory●One Micro-SD/TF card slot served either as a SD memory card for data storage or SDIO(Wi-Fi) device●Two sets of COM ports:–One DB9 RS-232 port with UART_0 used 75C3232E transceiver chip can be servedfor function debug and system development.–One DB9 RS-232 port with UART_2 used 75C3232E transceiver chip for userapplication●22 GPIO expansion ports, including seven sets of UART functions●JTAG interface provided for software development●Microphone input and Earphone/Speaker output with 24-bit stereo audio codec(NAU88C22) for I2S interfaces●Six sets of user-configurable push button keys●Three sets of LEDs for status indication●Provides SN65HVD230 transceiver chip for CAN bus communication●Provides MAX3485 transceiver chip for RS-485 device connection●One buzzer device for program applicationNUMAKER-HMI-N9H30 USER MANUAL●Two sets of RJ45 ports with Ethernet 10/100 Mbps MAC used IP101GR PHY chip●USB_0 that can be used as Device/HOST and USB_1 that can be used as HOSTsupports pen drives, keyboards, mouse and printers●Provides over-voltage and over current protection used APL3211A chip●Retain RTC battery socket for CR2032 type and ADC0 detect battery voltage●System power could be supplied by DC-5V adaptor or USB VBUS1.1.2 NuDesign-TFT-LCD7 Extension Board Features●7” resolution 800x480 4-wire resistive touch panel for 24-bits RGB888 interface●DIN_32x2 extension connector1.2 Supporting ResourcesFor sample codes and introduction about NuMaker-N9H30, please refer to N9H30 BSP:https:///products/gui-solution/gui-platform/numaker-hmi-n9h30/?group=Software&tab=2Visit NuForum for further discussion about the NuMaker-HMI-N9H30:/viewforum.php?f=31 NUMAKER-HMI-N9H30 USER MANUALNUMAKER-HMI-N9H30 USER MANUAL2 NUMAKER-HMI-N9H30 HARDWARE CONFIGURATION2.1 NuMaker-N9H30 Board - Front View Combination Connector (CON8)6 set User SWs (K1~6)3set Indication LEDs (LED1~3)Power Supply Switch (SW_POWER1)Audio Codec(U10)Microphone(M1)NAND Flash(U9)RS-232 Transceiver(U6, U12)RS-485 Transceiver(U11)CAN Transceiver (U13)Figure 2-1 Front View of NuMaker-N9H30 BoardFigure 2-1 shows the main components and connectors from the front side of NuMaker-N9H30 board. The following lists components and connectors from the front view:NuMaker-N9H30 board and NuDesign-TFT-LCD7 board combination connector (CON8). This panel connector supports 4-/5-wire resistive touch or capacitance touch panel for 24-bits RGB888 interface.Connector GPIO pin of N9H30 FunctionCON8.1 - Power 3.3VCON8.2 - Power 3.3VCON8.3 GPD7 LCD_CSCON8.4 GPH3 LCD_BLENCON8.5 GPG9 LCD_DENCON8.7 GPG7 LCD_HSYNCCON8.8 GPG6 LCD_CLKCON8.9 GPD15 LCD_D23(R7)CON8.10 GPD14 LCD_D22(R6)CON8.11 GPD13 LCD_D21(R5)CON8.12 GPD12 LCD_D20(R4)CON8.13 GPD11 LCD_D19(R3)CON8.14 GPD10 LCD_D18(R2)CON8.15 GPD9 LCD_D17(R1)CON8.16 GPD8 LCD_D16(R0)CON8.17 GPA15 LCD_D15(G7)CON8.18 GPA14 LCD_D14(G6)CON8.19 GPA13 LCD_D13(G5)CON8.20 GPA12 LCD_D12(G4)CON8.21 GPA11 LCD_D11(G3)CON8.22 GPA10 LCD_D10(G2)CON8.23 GPA9 LCD_D9(G1) NUMAKER-HMI-N9H30 USER MANUALCON8.24 GPA8 LCD_D8(G0)CON8.25 GPA7 LCD_D7(B7)CON8.26 GPA6 LCD_D6(B6)CON8.27 GPA5 LCD_D5(B5)CON8.28 GPA4 LCD_D4(B4)CON8.29 GPA3 LCD_D3(B3)CON8.30 GPA2 LCD_D2(B2)CON8.31 GPA1 LCD_D1(B1)CON8.32 GPA0 LCD_D0(B0)CON8.33 - -CON8.34 - -CON8.35 - -CON8.36 - -CON8.37 GPB2 LCD_PWMCON8.39 - VSSCON8.40 - VSSCON8.41 ADC7 XPCON8.42 ADC3 VsenCON8.43 ADC6 XMCON8.44 ADC4 YMCON8.45 - -CON8.46 ADC5 YPCON8.47 - VSSCON8.48 - VSSCON8.49 GPG0 I2C0_CCON8.50 GPG1 I2C0_DCON8.51 GPG5 TOUCH_INTCON8.52 - -CON8.53 - -CON8.54 - -CON8.55 - -NUMAKER-HMI-N9H30 USER MANUAL CON8.56 - -CON8.57 - -CON8.58 - -CON8.59 - VSSCON8.60 - VSSCON8.61 - -CON8.62 - -CON8.63 - Power 5VCON8.64 - Power 5VTable 2-1 LCD Panel Combination Connector (CON8) Pin Function●Power supply switch (SW_POWER1): System will be powered on if the SW_POWER1button is pressed●Three sets of indication LEDs:LED Color DescriptionsLED1 Red The system power will beterminated and LED1 lightingwhen the input voltage exceeds5.7V or the current exceeds 2A.LED2 Green Power normal state.LED3 Green Controlled by GPH2 pin Table 2-2 Three Sets of Indication LED Functions●Six sets of user SW, Key Matrix for user definitionKey GPIO pin of N9H30 FunctionK1 GPF10 Row0 GPB4 Col0K2 GPF10 Row0 GPB5 Col1K3 GPE15 Row1 GPB4 Col0K4 GPE15 Row1 GPB5 Col1K5 GPE14 Row2 GPB4 Col0K6GPE14 Row2GPB5 Col1 Table 2-3 Six Sets of User SW, Key Matrix Functions●NAND Flash (128 MB) with Winbond W29N01HVS1NA (U9)●Microphone (M1): Through Nuvoton NAU88C22 chip sound input●Audio CODEC chip (U10): Nuvoton NAU88C22 chip connected to N9H30 using I2Sinterface–SW6/SW7/SW8: 1-2 short for RS-485_6 function and connected to 2P terminal (CON5and J5)–SW6/SW7/SW8: 2-3 short for I2S function and connected to NAU88C22 (U10).●CMOS Sensor connector (CON10, SW9~10)–SW9~10: 1-2 short for CAN_0 function and connected to 2P terminal (CON11)–SW9~10: 2-3 short for CMOS sensor function and connected to CMOS sensorconnector (CON10)Connector GPIO pin of N9H30 FunctionCON10.1 - VSSCON10.2 - VSSNUMAKER-HMI-N9H30 USER MANUALCON10.3 - Power 3.3VCON10.4 - Power 3.3VCON10.5 - -CON10.6 - -CON10.7 GPI4 S_PCLKCON10.8 GPI3 S_CLKCON10.9 GPI8 S_D0CON10.10 GPI9 S_D1CON10.11 GPI10 S_D2CON10.12 GPI11 S_D3CON10.13 GPI12 S_D4CON10.14 GPI13 S_D5CON10.15 GPI14 S_D6CON10.16 GPI15 S_D7CON10.17 GPI6 S_VSYNCCON10.18 GPI5 S_HSYNCCON10.19 GPI0 S_PWDNNUMAKER-HMI-N9H30 USER MANUAL CON10.20 GPI7 S_nRSTCON10.21 GPG2 I2C1_CCON10.22 GPG3 I2C1_DCON10.23 - VSSCON10.24 - VSSTable 2-4 CMOS Sensor Connector (CON10) FunctionNUMAKER-HMI-N9H30 USER MANUAL2.2NuMaker-N9H30 Board - Rear View5V In (CON1)RS-232 DB9 (CON2,CON6)Expand Port (CON7)Speaker Output (J4)Earphone Output (CON4)Buzzer (BZ1)System ResetSW (SW5)SPI Flash (U7,U8)JTAG ICE (J2)Power ProtectionIC (U1)N9H30F61IEC (U5)Micro SD Slot (CON3)RJ45 (CON12, CON13)USB1 HOST (CON15)USB0 Device/Host (CON14)CAN_0 Terminal (CON11)CMOS Sensor Connector (CON9)Power On Setting(SW4, S2~S9)RS-485_6 Terminal (CON5)RTC Battery(BT1)RMII PHY (U14,U16)Figure 2-2 Rear View of NuMaker-N9H30 BoardFigure 2-2 shows the main components and connectors from the rear side of NuMaker-N9H30 board. The following lists components and connectors from the rear view:● +5V In (CON1): Power adaptor 5V input ●JTAG ICE interface (J2) ConnectorGPIO pin of N9H30Function J2.1 - Power 3.3V J2.2 GPJ4 nTRST J2.3 GPJ2 TDI J2.4 GPJ1 TMS J2.5 GPJ0 TCK J2.6 - VSS J2.7 GPJ3 TD0 J2.8-RESETTable 2-5 JTAG ICE Interface (J2) Function●SPI Flash (32 MB) with Winbond W25Q256JVEQ (U7); only one (U7 or U8) SPI Flashcan be used●System Reset (SW5): System will be reset if the SW5 button is pressed●Buzzer (BZ1): Control by GPB3 pin of N9H30●Speaker output (J4): Through the NAU88C22 chip sound output●Earphone output (CON4): Through the NAU88C22 chip sound output●Expand port for user use (CON7):Connector GPIO pin of N9H30 FunctionCON7.1 - Power 3.3VCON7.2 - Power 3.3VCON7.3 GPE12 UART3_TXDCON7.4 GPH4 UART1_TXDCON7.5 GPE13 UART3_RXDCON7.6 GPH5 UART1_RXDCON7.7 GPB0 UART5_TXDCON7.8 GPH6 UART1_RTSCON7.9 GPB1 UART5_RXDCON7.10 GPH7 UART1_CTSCON7.11 GPI1 UART7_TXDNUMAKER-HMI-N9H30 USER MANUAL CON7.12 GPH8 UART4_TXDCON7.13 GPI2 UART7_RXDCON7.14 GPH9 UART4_RXDCON7.15 - -CON7.16 GPH10 UART4_RTSCON7.17 - -CON7.18 GPH11 UART4_CTSCON7.19 - VSSCON7.20 - VSSCON7.21 GPB12 UART10_TXDCON7.22 GPH12 UART8_TXDCON7.23 GPB13 UART10_RXDCON7.24 GPH13 UART8_RXDCON7.25 GPB14 UART10_RTSCON7.26 GPH14 UART8_RTSCON7.27 GPB15 UART10_CTSCON7.28 GPH15 UART8_CTSCON7.29 - Power 5VCON7.30 - Power 5VTable 2-6 Expand Port (CON7) Function●UART0 selection (CON2, J3):–RS-232_0 function and connected to DB9 female (CON2) for debug message output.–GPE0/GPE1 connected to 2P terminal (J3).Connector GPIO pin of N9H30 Function J3.1 GPE1 UART0_RXDJ3.2 GPE0 UART0_TXDTable 2-7 UART0 (J3) Function●UART2 selection (CON6, J6):–RS-232_2 function and connected to DB9 female (CON6) for debug message output –GPF11~14 connected to 4P terminal (J6)Connector GPIO pin of N9H30 Function J6.1 GPF11 UART2_TXDJ6.2 GPF12 UART2_RXDJ6.3 GPF13 UART2_RTSJ6.4 GPF14 UART2_CTSTable 2-8 UART2 (J6) Function●RS-485_6 selection (CON5, J5, SW6~8):–SW6~8: 1-2 short for RS-485_6 function and connected to 2P terminal (CON5 and J5) –SW6~8: 2-3 short for I2S function and connected to NAU88C22 (U10)Connector GPIO pin of N9H30 FunctionSW6:1-2 shortGPG11 RS-485_6_DISW6:2-3 short I2S_DOSW7:1-2 shortGPG12 RS-485_6_ROSW7:2-3 short I2S_DISW8:1-2 shortGPG13 RS-485_6_ENBSW8:2-3 short I2S_BCLKNUMAKER-HMI-N9H30 USER MANUALTable 2-9 RS-485_6 (SW6~8) FunctionPower on setting (SW4, S2~9).SW State FunctionSW4.2/SW4.1 ON/ON Boot from USB SW4.2/SW4.1 ON/OFF Boot from eMMC SW4.2/SW4.1 OFF/ON Boot from NAND Flash SW4.2/SW4.1 OFF/OFF Boot from SPI Flash Table 2-10 Power on Setting (SW4) FunctionSW State FunctionS2 Short System clock from 12MHzcrystalS2 Open System clock from UPLL output Table 2-11 Power on Setting (S2) FunctionSW State FunctionS3 Short Watchdog Timer OFFS3 Open Watchdog Timer ON Table 2-12 Power on Setting (S3) FunctionSW State FunctionS4 Short GPJ[4:0] used as GPIO pinS4Open GPJ[4:0] used as JTAG ICEinterfaceTable 2-13 Power on Setting (S4) FunctionSW State FunctionS5 Short UART0 debug message ONS5 Open UART0 debug message OFFTable 2-14 Power on Setting (S5) FunctionSW State FunctionS7/S6 Short/Short NAND Flash page size 2KBS7/S6 Short/Open NAND Flash page size 4KBS7/S6 Open/Short NAND Flash page size 8KBNUMAKER-HMI-N9H30 USER MANUALS7/S6 Open/Open IgnoreTable 2-15 Power on Setting (S7/S6) FunctionSW State FunctionS9/S8 Short/Short NAND Flash ECC type BCH T12S9/S8 Short/Open NAND Flash ECC type BCH T15S9/S8 Open/Short NAND Flash ECC type BCH T24S9/S8 Open/Open IgnoreTable 2-16 Power on Setting (S9/S8) FunctionCMOS Sensor connector (CON9, SW9~10)–SW9~10: 1-2 short for CAN_0 function and connected to 2P terminal (CON11).–SW9~10: 2-3 short for CMOS sensor function and connected to CMOS sensorconnector (CON9).Connector GPIO pin of N9H30 FunctionCON9.1 - VSSCON9.2 - VSSCON9.3 - Power 3.3VCON9.4 - Power 3.3V NUMAKER-HMI-N9H30 USER MANUALCON9.5 - -CON9.6 - -CON9.7 GPI4 S_PCLKCON9.8 GPI3 S_CLKCON9.9 GPI8 S_D0CON9.10 GPI9 S_D1CON9.11 GPI10 S_D2CON9.12 GPI11 S_D3CON9.13 GPI12 S_D4CON9.14 GPI13 S_D5CON9.15 GPI14 S_D6CON9.16 GPI15 S_D7CON9.17 GPI6 S_VSYNCCON9.18 GPI5 S_HSYNCCON9.19 GPI0 S_PWDNCON9.20 GPI7 S_nRSTCON9.21 GPG2 I2C1_CCON9.22 GPG3 I2C1_DCON9.23 - VSSCON9.24 - VSSTable 2-17 CMOS Sensor Connector (CON9) Function●CAN_0 Selection (CON11, SW9~10):–SW9~10: 1-2 short for CAN_0 function and connected to 2P terminal (CON11) –SW9~10: 2-3 short for CMOS sensor function and connected to CMOS sensor connector (CON9, CON10)SW GPIO pin of N9H30 FunctionSW9:1-2 shortGPI3 CAN_0_RXDSW9:2-3 short S_CLKSW10:1-2 shortGPI4 CAN_0_TXDSW10:2-3 short S_PCLKTable 2-18 CAN_0 (SW9~10) Function●USB0 Device/HOST Micro-AB connector (CON14), where CON14 pin4 ID=1 is Device,ID=0 is HOST●USB1 for USB HOST with Type-A connector (CON15)●RJ45_0 connector with LED indicator (CON12), RMII PHY with IP101GR (U14)●RJ45_1 connector with LED indicator (CON13), RMII PHY with IP101GR (U16)●Micro-SD/TF card slot (CON3)●SOC CPU: Nuvoton N9H30F61IEC (U5)●Battery power for RTC 3.3V powered (BT1, J1), can detect voltage by ADC0●RTC power has 3 sources:–Share with 3.3V I/O power–Battery socket for CR2032 (BT1)–External connector (J1)●Board version 2.1NUMAKER-HMI-N9H30 USER MANUAL2.3 NuDesign-TFT-LCD7 -Front ViewFigure 2-3 Front View of NuDesign-TFT-LCD7 BoardFigure 2-3 shows the main components and connectors from the Front side of NuDesign-TFT-LCD7board.7” resolution 800x480 4-W resistive touch panel for 24-bits RGB888 interface2.4 NuDesign-TFT-LCD7 -Rear ViewFigure 2-4 Rear View of NuDesign-TFT-LCD7 BoardFigure 2-4 shows the main components and connectors from the rear side of NuDesign-TFT-LCD7board.NuMaker-N9H30 and NuDesign-TFT-LCD7 combination connector (CON1).NUMAKER-HMI-N9H30 USER MANUAL 2.5 NuMaker-N9H30 and NuDesign-TFT-LCD7 PCB PlacementFigure 2-5 Front View of NuMaker-N9H30 PCB PlacementFigure 2-6 Rear View of NuMaker-N9H30 PCB PlacementNUMAKER-HMI-N9H30 USER MANUALFigure 2-7 Front View of NuDesign-TFT-LCD7 PCB PlacementFigure 2-8 Rear View of NuDesign-TFT-LCD7 PCB Placement3 NUMAKER-N9H30 AND NUDESIGN-TFT-LCD7 SCHEMATICS3.1 NuMaker-N9H30 - GPIO List CircuitFigure 3-1 shows the N9H30F61IEC GPIO list circuit.Figure 3-1 GPIO List Circuit NUMAKER-HMI-N9H30 USER MANUAL3.2 NuMaker-N9H30 - System Block CircuitFigure 3-2 shows the System Block Circuit.NUMAKER-HMI-N9H30 USER MANUALFigure 3-2 System Block Circuit3.3 NuMaker-N9H30 - Power CircuitFigure 3-3 shows the Power Circuit.NUMAKER-HMI-N9H30 USER MANUALFigure 3-3 Power Circuit3.4 NuMaker-N9H30 - N9H30F61IEC CircuitFigure 3-4 shows the N9H30F61IEC Circuit.Figure 3-4 N9H30F61IEC CircuitNUMAKER-HMI-N9H30 USER MANUAL3.5 NuMaker-N9H30 - Setting, ICE, RS-232_0, Key CircuitFigure 3-5 shows the Setting, ICE, RS-232_0, Key Circuit.NUMAKER-HMI-N9H30 USER MANUALFigure 3-5 Setting, ICE, RS-232_0, Key Circuit3.6 NuMaker-N9H30 - Memory CircuitFigure 3-6 shows the Memory Circuit.NUMAKER-HMI-N9H30 USER MANUALFigure 3-6 Memory Circuit3.7 NuMaker-N9H30 - I2S, I2C_0, RS-485_6 CircuitFigure 3-7 shows the I2S, I2C_0, RS-486_6 Circuit.NUMAKER-HMI-N9H30 USER MANUALFigure 3-7 I2S, I2C_0, RS-486_6 Circuit3.8 NuMaker-N9H30 - RS-232_2 CircuitFigure 3-8 shows the RS-232_2 Circuit.NUMAKER-HMI-N9H30 USER MANUALFigure 3-8 RS-232_2 Circuit3.9 NuMaker-N9H30 - LCD CircuitFigure 3-9 shows the LCD Circuit.NUMAKER-HMI-N9H30 USER MANUALFigure 3-9 LCD Circuit3.10 NuMaker-N9H30 - CMOS Sensor, I2C_1, CAN_0 CircuitFigure 3-10 shows the CMOS Sensor,I2C_1, CAN_0 Circuit.NUMAKER-HMI-N9H30 USER MANUALFigure 3-10 CMOS Sensor, I2C_1, CAN_0 Circuit3.11 NuMaker-N9H30 - RMII_0_PF CircuitFigure 3-11 shows the RMII_0_RF Circuit.NUMAKER-HMI-N9H30 USER MANUALFigure 3-11 RMII_0_PF Circuit3.12 NuMaker-N9H30 - RMII_1_PE CircuitFigure 3-12 shows the RMII_1_PE Circuit.NUMAKER-HMI-N9H30 USER MANUALFigure 3-12 RMII_1_PE Circuit3.13 NuMaker-N9H30 - USB CircuitFigure 3-13 shows the USB Circuit.NUMAKER-HMI-N9H30 USER MANUALFigure 3-13 USB Circuit3.14 NuDesign-TFT-LCD7 - TFT-LCD7 CircuitFigure 3-14 shows the TFT-LCD7 Circuit.Figure 3-14 TFT-LCD7 CircuitNUMAKER-HMI-N9H30 USER MANUAL4 REVISION HISTORYDate Revision Description2022.03.24 1.00 Initial version NUMAKER-HMI-N9H30 USER MANUALNUMAKER-HMI-N9H30 USER MANUALImportant NoticeNuvoton Products are neither intended nor warranted for usage in systems or equipment, anymalfunction or failure of which may cause loss of human life, bodily injury or severe propertydamage. Such applications are deemed, “Insecure Usage”.Insecure usage includes, but is not limited to: equipment for surgical implementation, atomicenergy control instruments, airplane or spaceship instruments, the control or operation ofdynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all typesof safety devices, and other applications intended to support or sustain life.All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay claimsto Nuvoton as a result of customer’s Insecure Usage, custome r shall indemnify the damagesand liabilities thus incurred by Nuvoton.。

硬件模块单元测试报告-模板

硬件模块单元测试报告-模板

硬件模块单元测试报告编制: 日期:审核: 日期: 批准: 日期:目录目录 (1)第一章概述 (3)1.1目的和范围 (3)1.2测试概述 (3)第二章测试资源及环境 (4)2.1 硬件配置 (4)2.2 测试设备清单 (4)2.3 测试环境 (4)2.4 测试方式 (4)第三章测试数据 (6)3.1 主控板测试 (6)3.1.1短路测试 (6)3.1.2直流电压、纹波测试 (6)3.1.3接口通讯信号测试 (8)3.1.3.1主控板与按键板打印部分 (8)3.1.3.2主控板与核心板 (8)3.1.3.3主控板与液晶屏 (8)3.1.3.4主控板与触摸屏 (9)3.1.3.5主控板与感光板 (10)3.1.3.6主控板对按键板指示灯部分检测信号 (10)3.1.3.8主控板与WIFI板 (10)3.1.4充电测试 (11)3.1.5电源转换效率测试 (11)3.1.5.1 5V电源转换效率测试 (11)2.1.5.2 +8V电源转换效率测试 (13)3.1.6 DC_DC带负载测试 (14)3.2 按键板测试 (15)3.2.1短路测试 (15)3.2.2直流电压、纹波测试 (15)3.2.3接口通讯信号测试 (15)3.2.3.1 按键板与打印机 (15)第一章概述1.1目的和范围本文描述H3硬件模块的测试方法和步骤, 本方案的来源是《H3硬件总体需求》和《H3硬件总体方案》适用范围是:1.2测试概述在硬件模块测试阶段, 测试人员根据细化后的方案进行集成测试, 测试的重点是接口, 主要包括以下几个方面:1.各个板卡接口和测试点电压纹波测试2.控制/检测信号逻辑状态分析第二章测试资源及环境2.1 硬件配置2.3 测试环境环境温度: 0-55℃;大气压力: 700hPa~1060hPa;相对湿度:15% ~ 95%, 非凝2.4 测试方式内部测试第三章测试数据3.1 主控板测试3.1.1短路测试3.1.3接口通讯信号测试3.1.3.1主控板与按键板打印部分3.1.3.2主控板与核心板3.1.3.3主控板与液晶屏3.1.3.4主控板与触摸屏3.1.3.5主控板与感光板3.1.3.8主控板与WIFI板3.1.4充电测试使用电源交流100~240Vac 50Hz/60Hz 使用内置锂电池 12.6V/2600mA3.1.6 DC_DC带负载测试3.2 按键板测试3.2.1短路测试3.2.3接口通讯信号测试3.2.3.1 按键板与打印机。

高精度模数转换器在压力信号采集系统中的应用

高精度模数转换器在压力信号采集系统中的应用
● ● . ●
acqUl l l S t On ys em s t
Ch nL a g e i ,G oGu wa g ,M a n i ,Lu ig h o n a o n q Re i n c a 。,Z a gXia g J h n ln 2 i
( XinS io i rt, e aoaoyo p oo l tco g gadd t t g f ia dgsMiir f 1 ’ hy uUnv sy K yLb r r f h te c i lgi n e c n oln a, ns o a ei t e r n ei o t y
★基 金项 目 : 陕西省 自然科学基础研究 计划重 点项 目 ( 目编号 :0 0Z0 ) 项 2 1J 05资助
2o1 . '4
De i & Re e r h s gn s ac
2 1年 4 A 01 繁 4期
电 子 测 试
EL E
高精度模数转换器在压力信号采集系统中的应用★
陈亮 高 国旺 , ,马认琦。,刘景超 ,张玺亮。 ( 西安石油大学 光 电油气测井与检测教育部重 点实验 室 陕西 西安 706 ; 1 105 2 中海油能 源发展有 限公 司 河北 天津305 ) 040 摘 要 :本文设 计的压力信号采 集系统采 用了高精度2 位的模数转换器A S25 4 D 15 。如 何使用这种高 性能的模数 转换 器 ,本文给 出 了硬 件和软 件设 计方法 并作 了详细 的说 明。本文 使用 的模 数转换 器硬 件精度 高 ,接 口简 单 ,通 用性强 。使 用这 种高精度模数转 换器 的压 力信号采集系 统稳 定可靠 ,已通过 了井 下试验的测试 ,满足
Kewod y rs:A 15 ;hg — rc ina a g t— i t o v ̄ r P ; s aaq it nss m DS2 5 ih peio l — O d a cn e e, s no i gl ;S I i l cusi t n g io y e

AD4111低功耗24位Σ-Δ型ADC数据手册说明书

AD4111低功耗24位Σ-Δ型ADC数据手册说明书

Rev. 0Document FeedbackInformation furnished by Analog Devices is believed to be accurate and reliable.However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks andregistered trademarks are the property of their respective owners.One Technology Way, P .O. Box 9106, Norwood, MA 02062-9106, U.S.A.Tel: 781.329.4700 ©2018 Analog Devices, Inc. All rights reserved. Technical Support /cnADI 中文版数据手册是英文版数据手册的译文,敬请谅解翻译中可能存在的语言组织或翻译错误,ADI 不对翻译中存在的差异或由此产生的错误负责。

如需确认任何词语的准确性,请参考ADI 提供的最低功耗24位Σ-Δ型ADC ,±10 V 和0 mA 至20 mA 输入,具有开路检测功能数据手册AD4111特性集成模拟前端的24位ADC每通道最高6.2 kSPS (每通道161μs ) 1 kSPS 时每通道16位无噪声分辨率50 Hz 和60 Hz 抑制:85 dB (20 SPS ,每通道) ±10 V 输入,4个差分或8个单端 超量程高达±20 V ≥1 MΩ阻抗25°C 时精度为±0.06% 开路检测0 mA 至20 mA 输入,4个单端 超量程从−0.5 mA 至+24 mA 60Ω阻抗25°C 时精度为±0.08% 片内2.5 V 基准电压源25°C 时精度为±0.12%,温漂为±5 ppm/°C (典型值) 内部或外部时钟 电源AVDD = 3.0 V 至5.5V IOVDD = 2 V 至5.5 V 总I DD = 3.9 mA温度范围:−40°C 至+105°C3线或4线串行数字接口(SCLK 上为施密特触发器) SPI 、QSPI 、MICROWIRE 和DSP 兼容应用过程控制 PLC 和DCS 模块概述AD4111是一款低功耗、低噪声、24位Σ-Δ型模数转换器(ADC),集成了模拟前端(AFE),支持全差分或单端、高阻抗(≥1MΩ)双极性±10 V 电压输入和0 mA 至20 mA 电流输入。

NORMA 4000 5000 Power Analyzer 用户说明手册说明书

NORMA 4000 5000 Power Analyzer 用户说明手册说明书

Since some countries or states do not allow limitation of the term of an implied warranty, or exclusion or limitation of incidental or consequential damages, the limitations and exclusions of this warranty may not apply to every buyer. If any provision of this Warranty is held invalid or unenforceable by a court or other decision-maker of competent jurisdiction, such holding will not affect the validity or enforceability of any other provision.
BEGRENZTE GEWÄHRLEISTUNG UND HAFTUNGSBESCHRÄNKUNG
Fluke gewährleistet, daß jedes Fluke-Produkt unter normalem Gebrauch und Service frei von Material- und Fertigungsdefekten ist. Die Garantiedauer beträgt 2 Jahre ab Versanddatum. Die Garantiedauer für Teile, Produktreparaturen und Service beträgt 90 Tage. Diese Garantie wird ausschließlich dem Erster

电动汽车DCDC变换器的设计【毕业作品】

电动汽车DCDC变换器的设计【毕业作品】

BI YE SHE JI(20 届)电动汽车DC/DC变换器的设计所在学院专业班级自动化学生姓名学号指导教师职称完成日期年月摘要电动汽车DC/ DC变换器是现代电力电子设备不可或缺的组成部分,其质量的优劣直接影响子设备性能,其体积的大小也直接影响到电子设备整体的体积。

本设计根据设计任务进行了方案设计,设计了相应的硬件电路,研制了半桥开关电源。

整个系统包括主电路、控制电路和反馈电路三部分内容。

系统主电路包括单相输入整流、半桥式逆变、高频交流输出、输出整流、输出滤波几部分。

控制电路包括主电路开关管控制脉冲的产生和保护电路。

论文具体地介绍了主电路、控制电路、驱动电路等各部分的设计及实验过程,包括元器件的选取以及参数计算。

本设计中采用的芯片主要是PWM控制芯片SG3525A。

设计过程中程充分利用了SG3525A的控制性能,具有宽的可调工作频率,死区时间可调,具有输入欠电压锁定功能和双路输出电流。

关键词:直流变换器;SG3525;高频变压器;MOSFETIAbstractElectric vehicle DC/ DC converter is a modern power electronic equipment indispensable component, its quality has a direct influence on equipment performance, its size will directly affect the whole volume of electronic equipment. According to the design of design tasks for the design, designs the corresponding hardware circuit, a half-bridge switching power supply development. The whole system consists of main circuit, control circuit and feedback circuit three parts. System main circuit comprises a single-phase input rectifier, half-bridge inverter, high frequency AC output, output rectifier, output filter sections. The control circuit comprises a main circuit switch tube to control the pulse generation and protection circuit. This paper introduces the main circuit, control circuit, driving circuit and other parts of the design and the experimental process, including the selection of components and parameters calculation. The design of the chip is mainly PWM control chip SG3525A. The design process of medium-range makes full use of SG3525A control performance, wide adjustable frequency, adjustable dead time, with input under-voltage locking function and dual output current.Key words: DC / DC converter; SG3525; high-frequency transformer; MOSFETII目录摘要 (I)ABSTRACT (II)目录 (III)第一章绪论 (1)1.1课题选择的背景及意义 (1)1.2电动汽车DC/DC变换器的发展概况 (2)1.3本文所研究的课题内容 (3)第二章电动汽车DC/DC变换器的原理 (4)2.1电动汽车DC/DC变换器控制系统概述 (4)2.2电动汽车DC/DC变换器的基本结构 (4)2.3 MOSFET基本原理 (5)2.4 PWM调制技术 (6)2.5高频变压器的原理介绍 (7)第三章电动汽车DC/DC变换器主电路的设计 (9)3.1 半桥电路的结构与工作过程 (9)3.2 主要功率器件的选型 (12)3.2.1 MOSFET参数的确定 (12)3.2.2 自举电容的选取 (13)3.3高频变压器设计 (14)3.4 输出整流回路的设计 (16)3.4.1 输出整流回路的结构 (16)3.4.2 快恢复二极管的选择 (16)3.4.3 滤波电感的选择 (18)3.4.4 滤波电容的选择 (18)第四章.DC-DC变换器控制电路的设计 (20)III4.1 PWM控制芯片SG3525功能简介 (20)4.1.1 SG3525引脚功能及特点简介 (20)4.1.2 SG3525的工作原理 (23)4.2电动汽车DC/DC变换器反馈电路的设计 (27)4.2.1 输出电压反馈电路 (27)4.2.2 过压保护电路的设计 (28)4.2.3 输出限流电路 (29)总结 (31)参考文献 (33)致谢 (34)IV第一章绪论1.1课题选择的背景及意义DC/DC变换器是燃料电池电动汽车的重要组成部分,它的研制直接关系到燃料电池电动汽车的稳定与性能。

德州仪器ADS1231 24 位模数转换器 (ADC) 数据手册说明书

德州仪器ADS1231 24 位模数转换器 (ADC) 数据手册说明书

VREFP VREFN CAPDVDDGND AINP AINNAVDDSWCAPCLKINADS1231ZHCS312D –JULY 2009–REVISED OCTOBER 2013用于桥式传感器的24位模数转换器查询样片:ADS1231特性说明•针对桥式传感器的完整前端ADS1231是一款精密24位模数转换器(ADC)。

借助于板载低噪声放大器和振荡器,精密型三阶24位ΔΣ•内部放大器,128增益调制器以及桥式电源开关,ADS1231为包括衡器、应•内部振荡器力计和测压元件在内的桥式传感器应用提供一个完整的•针对桥式传感器的低侧电源开关前端解决方案。

•低噪声:35nVrms•可选数据速率:10SPS 或80SPS 此噪声放大器具有128的增益,从而支持±19.5mV 的•10SPS 时,同时50Hz 和60Hz 抑制满量程差分输入。

此ΔΣADC 具有24位分辨率,并•输入电磁干扰(EMI)滤波器且包含一个三阶调制器和四阶数字滤波器。

支持两个•针对比例式测量的高达5V 的外部电压基准数据速率:10SPS (具有50Hz 和60Hz 抑制)以及•简单、引脚驱动控制80SPS 。

ADS1231可被置于低功耗待机模式,或者在•两线制串行数字接口断电模式中完全关闭。

•电源范围:3V 至5.3VADS1231由专用引脚控制;没有编程用的数字寄存•封装:小外形尺寸集成电路(SOIC)-16器。

数据通过直接接至MSP430或其它微控制器的一•温度范围:-40°C 至+85°C个易于隔离的串行接口输出。

应用范围ADS1231采用小外形尺寸(SO)-16封装,额定温度范•衡器围-40°C 至+85°C 。

•应力计•测压元件•工业过程控制Please be aware that an important notice concerning availability,standard warranty,and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.All trademarks are the property of their respective owners.ADS1231ZHCS312D–JULY2009–REVISED This integrated circuit can be damaged by ESD.Texas Instruments recommends that all integrated circuits be handled withappropriate precautions.Failure to observe proper handling and installation procedures can cause damage.ESD damage can range from subtle performance degradation to complete device failure.Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.ORDERING INFORMATIONFor the most current package and ordering information,see the Package Option Addendum at the end of this document,or visit the device product folder at .ABSOLUTE MAXIMUM RATINGS(1)Over operating free-air temperature range,unless otherwise noted.ADS1231UNIT AVDD to GND–0.3to+6VDVDD to GND–0.3to+6V100,momentary mAInput current10,continuous mA Analog input voltage to GND–0.3to AVDD+0.3VDigital input voltage to GND–0.3to DVDD+0.3VHuman body model(HBM)±2000V JEDEC standard22,test method A114-C.01,all pinsESD(2)Charged device model(CDM)±500V JEDEC standard22,test method C101,all pinsMaximum junction temperature+150°C Operating temperature range–40to+85°C Storage temperature range–60to+150°C(1)Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.These are stress ratingsonly,and functional operation of the device at these or any other conditions beyond those indicated is not implied.Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.(2)CAUTION:ESD sensitive device.Precaution should be used when handling the device in order to prevent permanent damage. THERMAL INFORMATIONADS1231THERMAL METRIC(1)SOIC(D)UNITS16PINSθJA Junction-to-ambient thermal resistance79.5θJCtop Junction-to-case(top)thermal resistance37.5θJB Junction-to-board thermal resistance37.1°C/WψJT Junction-to-top characterization parameter 5.6ψJB Junction-to-board characterization parameter36.7θJCbot Junction-to-case(bottom)thermal resistance n/a(1)有关传统和全新热度量的更多信息,请参阅IC封装热度量应用报告(文献号:ZHCA543)。

24位AD转换器CS5381及其在高速高精度数据采集系统中的应用

24位AD转换器CS5381及其在高速高精度数据采集系统中的应用

24 位 AD 转换器 CS5381 及其在高速高精度数据采集系统中的应用 摘要 5381 中公司生产的 120、 192 高性能立体声 24 位∑-△ /变换器, 文中介绍了 5381 的性能特点及其在高速高精度采集系统中的应用,给出 了由两片 5381 和、-及存储器构成的四通道并行数据采集系统的设计方法 和测试结果,该系统在混场源电磁法接收机中已经得到了很好的应用。

关键词 5381;;;并行数据采集系统1 引言在弱信号检测仪器开发过程中,选用高精度的A/D转换芯片往 往可以给设计带来方便。

一般情况下,在对宽频带弱信号进行检测时,范文先生网收集整理不 仅要求ADC具有大动态范围,同时对ADC的采样速率也提出了更高的 要求。

CS5381是目前市场上动态范围和采样速率两项指标都很突出 的一款24位ADC,它的推出为设计高速高精度采集系统提供了一个较 好的解决方案。

2 CS5381的主要性能特点CS5381是CirrusLog ic公司推出的120dB、192kHz高性能立体声模数转换芯片。

该芯片采用24引脚TSSOP或SOIC封装,其引脚排列如图1 所示。

该芯片采用5V工作电源。

它的内部集成了一个可直接与5~2.5V逻辑电平接口的电平转换 器、一个可消除直流偏移量的高通滤波器、一个线性相位数字抗混叠滤波 器和溢流监测器。

CS5381所具有的这些特性使其在高品质音频处理和精密测控 等领域都得到了很好的应用。

CS5381的主要性能特点如下●具有24位转换精度; ●采样速率 可以达到192kHz;●具有120dB动态范围;●可工作于5V模拟 电压和3~5V逻辑电压;●兼容2.5~5V逻辑电平;●带有线性相位 抗混叠滤波器; ●采用差动模拟信号输入方式; ●具有主、 从两种工作模式; ●内置数字高通滤波器。

图 2CS5381使用起来非常方便,可工作在主、从两种模式下。

模式选择可通过管脚2M/S来进行。

基于时变白化滤波器的DSSS系统干扰盲检测

基于时变白化滤波器的DSSS系统干扰盲检测
文第章24编032号1卷:1年 0071第5月076X期(2021)07198108 Systems系En统gi工ne程eri与ng电a子nd技El术ectronics网址V:wolJw.uw4l3y.s y2s0Ne2lo1e..7com
基于时变白化滤波器的 犇犛犛犛系统干扰盲检测
陈晓威1,2, ,杨文革1
犃犫狊狋狉犪犮狋:Thispaperappliescyclicwienerfiltertojammingdetectionfordirectsequencespreadspectrum (DSSS)systemsandproposesablindjammingdetector,namedtimevariantwhitenerbaseddetector.Duetothe distinctcyclostationarityfeaturesofthe DSSSsignalandjammingsignal,thefilteringcoefficientsoftime varyingwhitener(TVW)detectorcanbeadjustedtomaketheoutputofthedetectorcontainjammingsignaland backgroundnoise,soastorealizeblindjammingdetecting.ThesimulationresultsshowthattheDSSSreceiving structuresusingtheproposedcyclostationarybasedjammingdetectioncandecidethepresenceofjammingsignal atawiderangeofjammingtosignalratio,andoutperformsthetimeinvariantwhitenerbaseddetector.

基于FPGA的非制冷红外焦平面读出电路

基于FPGA的非制冷红外焦平面读出电路

华中科技大学硕士学位论文1 绪论1.1引言任何物体都会产生与其温度和物质特性相关的热辐射,而当物体在环境温度时,产生的辐射基本上处于红外线波段。

而通过这些红外辐射可以反应这些物质的很多信息,红外成像技术就是要将这些无法直接观测到的信息,转换成便于人们所测量的信号,进而可以掌握到这些物质所提供的信息,为人类所利用[1]。

红外线,也称红外辐射,最早是在1800年由英国天文学家赫谢尔在研究太阳光谱时发现的。

在之后的二十年内,先后研制出了“温差电堆探测器”和“测辐射热计探测器”,探测材料均是基于红外辐射的热效应的金属材料,但探测效率不高,效果并不理想。

到二十世纪中期,红外探测得到了一个比较大的发展,以光电效应为基础的光子探测器相继出现。

而在同一时期,各种热探测器也得到了巨大的发展,性能得到很大的提高,已经达到了实用的价值[2]。

红外探测技术无论是在军事还是在民事领域的应用中,都拥有非常重要的作用。

虽然自二十世纪末以来,世界的主旋律是和平与发展,但不可否认的是,军备竞赛却从来没有停止过,一个国家的军事实力在很大程度上反应了该国的综合实力。

而红外探测这项先进的技术,更是各发达国争相发展的关键技术,该技术已经被运用在导弹精确制导,火力控制,侦察,搜索和预警等方面,尤其是在夜间和恶劣天气作战中,更是不可或缺的辅助装备。

因此,先进的红外探测技术是现代战争的必然需求。

而红外探测技术,在民用领域,也受到越来越高重视了,现在已经成功的运用于安全监控系统、自然灾害的的预防、汽车辅助驾驶系统以及疾病监控等。

例如在2003年,当全球爆发大规模的非典型肺炎时,红外焦平面被用于各种人流密集区域,可以方便的测量人体温度,在防止非典的进一步传染中,起到了十分重要的作用。

非制冷焦平面阵列由于其众多的优点,在当代红外成像领域是重点研究的对象,受到非常高的重视,必定会成为这个领域的主流技术。

非制冷红外成像系统的优点华中科技大学硕士学位论文包括:具有全天候(不受环境、气候等因素的影响)工作能力,隐蔽性好,识别伪装目标能力较强,可靠性高;并且和制冷型红外成像系统相比,拥有体积小,重量轻,功耗低、生产成本低等优点。

ADS1241英文资料——24位ADC

ADS1241英文资料——24位ADC

ELECTROSTATIC DISCHARGE SENSITIVITY
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.
APPLICATIONS
q q q q q q INDUSTRIAL PROCESS CONTROL WEIGH SCALES LIQUID /GAS CHROMATOGRAPHY BLOOD ANALYSIS SMART TRANSMITTERS PORTABLE INSTRUMENTATION
AIN0/D0 AIN1/D1 AIN2/D2 AIN3/D3 AIN4/D4 AIN5/D5 AIN6/D6 AIN7/D7 AINCOM MUX
DESCRIPTION
The ADS1240 and ADS1241 are precision, wide dynamic range, delta-sigma, Analog-to-Digital (A/D) converters with 24-bit resolution operating from 2.7V to 5.25V power supplies. The delta-sigma A/D converter provides up to 24 bits of no missing code performance and effective resolution of 21 bits. The input channels are multiplexed. Internal buffering can be selected to provide very high input impedance for direct connection to transducers or low-level voltage signals. Burnout current sources are provided that allow for detection of an open or shorted sensor. An 8-bit Digital-to-Analog (D/A) converter provides an offset correction with a range of 50% of the Full-Scale Range (FSR). The Programmable Gain Amplifier (PGA) provides selectable gains of 1 to 128, with an effective resolution of 19 bits at a gain of 128. The A/D conversion is accomplished with a 2nd-order delta-sigma modulator and programmable Finite-Impulse Response (FIR) filter that provides a simultaneous 50Hz and 60Hz notch. The reference input is differential and can be used for ratiometric conversion. The serial interface is SPI compatible. Up to eight bits of data I/O are also provided that can be used for input or output. The ADS1240 and ADS1241 are designed for high-resolution measurement applications in smart transmitters, industrial process control, weigh scales, chromatography, and portable instrumentation.

信号转导2-生化课08

信号转导2-生化课08
11
病原侵袭和吞噬对巨噬细胞凋亡的影响及其机制
病原侵袭
死亡信号
SopE
Rac, CDC42
调理后吞噬
R
PTK PI-3K
PKB/Akt 生存信号
细胞凋亡和粘膜屏障损坏
细胞存活
细胞凋亡是由: ➢ 细胞内“死亡/生存”信号之间的精密平衡来决定 ➢ 干扰该平衡就可改变病原对细胞凋亡的最终影响
12
The balance between pro- and anti-apoptotic genes/signals determine the cell fate 细胞存活
Signal transduction
cGMP cAMP Insulin Ca2+ kinase
Altered kinase activity
➢ There are 120 kinases in yeast – i.e. 2% of their entire genome
➢ Some kinases are localized to discrete subcellular regions that are in close proximity to the specific target protein;
Ptdlns(3,4)P2
YXXM
PtdlnsP2
Ras SH2
p110 SH2
调节亚基p85 催化亚基p110
PtdlnsP3 SHP
PtdlnsP2
PH
含PH结构域的受体蛋白
PI3K的活化机制及PIP3磷酸酶 (PI3K is a downstream target of Ras)
24
Receptor
p110 p85 PDK1

细胞骨架与力学信号传导

细胞骨架与力学信号传导

细胞骨架与力学信号传导姚依村;梁伟国;叶冬平【摘要】背景:细胞在感受力学刺激后,通过一定的信号转导机制,将力学信号转换成化学信号,进而实现其生物功能。

在这一系列的信号转导过程中,横贯细胞的细胞骨架作为枢纽,发挥着重要作用。

<br> 目的:通过系统的分析和总结细胞骨架在力学信号转导通路中的作用机制,为细胞骨架相关疾病的临床治疗提供潜在的治疗靶点。

<br> 方法:以英文检索词为“cytoskeleton,microtubules,microfilaments,intermediate filaments,mechanical stimulation,signal transduction ”及中文检索词为“细胞骨架、微管、微丝、中间纤维丝、机械刺激、信号传导”,由第一作者检索1990至2012年PubMed 数据库及中国知网中文科技数据库,查阅近年机械刺激对细胞骨架影响的相关文献,最终保留48篇文献。

<br> 结果与结论:机械刺激是细胞增殖、生长发育以及凋亡的重要因素。

随着对细胞骨架认识的逐渐深入,人们发现细胞骨架在细胞对力学刺激的感受和信息传导的过程中起重要作用。

机械刺激作用于细胞后,通过Rho家族蛋白、蛋白激酶C、整合素以及丝裂原激活蛋白激酶等多条信号通路,且各种信号传导通路中存在交联,从而影响细胞骨架的重组,并将力学刺激进一步转换成化学信号,最终完成其生物效应。

%BACKGROUND:cells under mechanical stimulation can achieve their biological functions by converting mechanical signals into chemical signals through certain signal transduction mechanism. As the fibrous framework throughout a cell, cytoskeleton is one of the critical components in this process. <br> OBJECTIVE:Through systemical y analyzing the role of the cytoskeleton in mechanical signal transduction, to provide a potential therapeutic targetfor the clinical treatment of cytoskeleton related diseases. <br> METHODS:In order to search relevant articles about the mechanics mechanism of signal transduction of cytoskeleton from PubMed and CNKI databases (from 1990 to 2012), a computer-based search was performed, using the key words of“cytoskeleton, microtubules, microfilaments, intermediate filaments, mechanical stimulation, signal transduction”in English and Chinese, respectively. After eliminating literatures which were irrelevant to research purpose or containing a similar content, 48 articles were chosen for further analysis. <br> RESULTS AND CONCLUSION:Mechanical stimulation plays an important role in cellproliferation, development and apoptosis. With the gradual understanding of the biological function of cytoskeleton, people have found that&nbsp;cytoskeleton is one of the critical components in the process of the mechanical signal transduction. After getting mechanical stimulation, cytoskeleton can be reorganized through Rho, protein kinase C, integrin and mitogen-activated protein kinase signaling pathways, then converting the mechanical stimulation to chemical signals and finishing its biological functions final y.【期刊名称】《中国组织工程研究》【年(卷),期】2014(000)007【总页数】6页(P1109-1114)【关键词】组织构建;组织工程;细胞骨架;力学信号;Rho家族蛋白;蛋白激酶C;整合素;丝裂原激活蛋白激酶;信号通路;生物功能;广东省自然科学基金【作者】姚依村;梁伟国;叶冬平【作者单位】暨南大学医学院第四附属医院,广州市红十字会医院骨科,广东省广州市 510220;暨南大学医学院第四附属医院,广州市红十字会医院骨科,广东省广州市 510220;暨南大学医学院第四附属医院,广州市红十字会医院骨科,广东省广州市 510220【正文语种】中文【中图分类】R3180 引言 Introduction细胞是生物体进行生命活动的结构和功能的基本单位,它每时每刻都在感受着来自生物体内外环境的各种物理和化学刺激信息,并根据这些信息对自身的行为作出相应的调整,从而适应这种刺激环境,这一过程称为细胞的信号转导。

基于SOA-MZI-DI单臂调制的全光时钟提取方案

基于SOA-MZI-DI单臂调制的全光时钟提取方案

基于SOA-MZI-DI单臂调制的全光时钟提取方案陈春燕;白晓棠【摘要】提出一种基于半导体光放大器(SOA)-马赫曾德尔干涉仪(MZI)-延迟干涉仪(DI)单臂调制的全光自同步时钟提取方案.该方案利用SOA的交叉增益调制(XGM)和交叉相位调制(XPM)调制原理结合SOA-MZI单臂调制和DI干涉仪实现同步时钟的提取.给出了数学模型和数值理论仿真,仿真结果表明,当输入的光分组速率为100Gb/s时,提取出的同步时钟脉冲的对比度高于19dB,在仿真结果基础上,分析了SOA不同内部参数和输入光脉冲参数对系统对比度的影响,得出一组系统优化参数.【期刊名称】《光通信技术》【年(卷),期】2010(034)007【总页数】4页(P42-45)【关键词】光分组交换;全光自同步时钟提取;半导体光放大器-马赫曾德尔干涉仪-延迟干涉仪;交叉增益调制;交叉相位调制【作者】陈春燕;白晓棠【作者单位】重庆邮电大学,光纤通信重点实验室,重庆,400065;重庆邮电大学,光纤通信重点实验室,重庆,400065【正文语种】中文【中图分类】TN9190 引言光分组交换以其能支持多粒度和突发性的特点,成为未来高速光网络最有可能采用的交换形式之一[1]。

随着传输速率的不断增加和电子瓶颈的限制,在下一代光分组交换(OPS)网络中,对传输的光分组信号的全光处理技术必不可少,而对作为OPS网络中重要功能之一的全光自同步时钟提取技术提出了新的要求。

到目前为止,人们提出了不同的方案来实现时钟提取。

主要技术有光锁相环技术[2]、基于SOA各种结构的时钟提取技术[3-6]等。

虽然光锁相环能够实现精确的时钟同步,但由于相位识别和锁定时间较长,因而不适用于光分组网。

相反由于SOA超强的非线性特性使得基于SOA的全光自同步时钟提取技术具有功耗低,易集成等优点,因此这类时钟提取技术备受关注。

下面我们提出一种基于SOA-MZI-DI单臂调制的全光自同步时钟提取方案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A Ras1-Cdc24signal transduction pathway mediates thermotolerance in the fungal pathogen Cryptococcus neoformansConnie B.Nichols,1Zahra H.Perfect 1and J.Andrew Alspaugh 1,2*Departments of 1Medicine and 2Molecular Genetics and Molecular,Microbiology,Duke University Medical CenterDurham,NC 27710,USA.SummaryPathogenic microorganisms must precisely regulate morphogenesis to survive and proliferate within an infected host.This regulation is often controlled by conserved signal transduction pathways that direct morphological changes in varied species.One such pathway,whose components include Ras proteins and the PAK kinase Ste20,allows the human fungal pathogen Cryptococcus neoformans to grow at high temperature.Previously,we found that Ras1signal-ling is required for differentiation,thermotolerance and pathogenesis in C.neoformans .We show here that the guanine nucleotide exchange factor Cdc24is a Ras1effector in C.neoformans to mediate the ability of this fungus to grow at high temperature and to cause disease.In addition,we provide evidence that the Ras1-Cdc24signalling cascade functions specifically through one of the three Cdc42/Rac1homologues in C.neoformans .In conclusion,our studies illustrate how components of conserved sig-nalling cascades can be specialized for different downstream functions,such as pathogenesis.IntroductionAs microbial pathogens enter an infected host,they encounter many external stresses,including elevated temperatures,nutrient deprivation and the host immune system.In order to respond to such changes in their environment,microorganisms often alter their cell shape,size,or volume.These morphogenic changes in fungi may be as dramatic as the transition from a round,yeast-like cell to an elongated hyphal form.Subtler morphogenic processes include establishing polarity,or subcellularasymmetry,to allow proper and efficient budding in the face of cell stress.A precise regulation of morphogenesis can therefore be an important adaptive response to the host environment.Guanine nucleotide-binding proteins from the Ras superfamily play major roles to regulate morphogenesis in small eukaryotes.For example,the Rho-like GTPase Cdc42establishes and maintains cellular polarity both in the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe (Johnson,1999).Similarly,Ras and Ras-like proteins also help to direct cell polarity and differentiation in these yeasts (Fukui et al .,1986;Nadin-Davis et al .,1986;Chang et al .,1994;Mosch et al .,1996;Mosch et al .,1999;Ho and Bretscher,2001).Recent studies in the human patho-genic yeast Candida albicans have also demonstrated that homologues of Ras and Cdc42are required for the yeast-to-hyphal transition,and therefore for pathogenesis (Feng et al .,1999;Leberer et al .,2001;Ushinsky et al .,2002;Bassilana et al .,2003;VandenBerg et al .,2004).In addition to their roles in yeasts,Cdc42and Ras homologues also help to control morphogenesis in fila-mentous fungi.For example,homologues of Ras and Cdc42both control hyphal formation in Neurospora crassa (Kana-uchi et al .,1997;Seiler and Plamann,2003).Additionally,Cdc42proteins regulate various aspects of hyphal growth in Schizophyllum commune ,Ashbya gossypii ,Wangiella dermatitidis and Claviceps purpurea (Ye and Szaniszlo,2000;Wendland and Phil-ippsen,2001;Scheffer et al .,2005;Weber et al .,2005).Ras proteins are required for proper hyphal growth in plant and animal fungal pathogens such as Ustilago maydis and Aspergillus fumigatus (Lee and Kronstad,2002;Fortwendel et al .,2005).Ras and Cdc42proteins have been demonstrated to function together to mediate morphogenesis in two patho-genic fungi.In the filamentous plant pathogen Colletotri-chum trifolii and the dimorphic human pathogen Penicillium marneffei,Cdc42functions downstream of Ras to mediate hyphal growth and spore germination (Boyce et al .,2005;Chen et al .,2006).The P .marneffei Ras and Cdc42proteins also direct polarized growth of the yeast stage of this fungus (Boyce et al .,2001;Boyce et al .,2005).Accepted 7December,2006.*For correspondence.E-mail alspa001@;Tel.(+1)9196840045;Fax(+1)9196848902.Molecular Microbiology (2007)63(4),1118–1130doi:10.1111/j.1365-2958.2006.05566.x First published online 18January 2007©2007The AuthorsJournal compilation ©2007Blackwell Publishing LtdRas and Cdc42proteins are activated by guanine nucleotide exchange factors(GEFs)that facilitate the exchange of GDP for GTP.S.cerevisiae Cdc24,the GEF for Cdc42,is essential for cell viability,helping to establish cell polarity required for budding(Johnson,1999).In con-trast,the Cdc24homologue in S.pombe,Scd1,is not essential,but scd1mutants are not able to maintain normal polarity.Instead,S.pombe scd1mutants grow as round cells,in contrast to the rod-shaped morphology of wild-type cells.The striking morphogenesis phenotype exhibited by S.pombe scd1mutant strains is identical to that of the ras1mutant strains.In fact,S.pombe Scd1has been demonstrated to be a target of Ras1,providing a mechanistic link between Ras and Cdc42proteins(Chang et al.,1994).Guanine nucleotide exchange factors for Ras and Cdc42also regulate cell polarity infilamentous fungi such as A.gossypii,U.maydis and N.crassa(Wendland and Philippsen,2001;Weinzierl et al.,2002;Muller et al., 2003;Seiler and Plamann,2003).Both Cdc25and Cdc24,GEFs for Ras1and Cdc42,respectively,are also required for the transition from yeast cell to hyphae in C.albicans(Enloe et al.,2000;Bassilana et al.,2003). Previously,we demonstrated that the Ras1protein is required for morphogenesis and virulence in the human fungal pathogen C.neoformans(Alspaugh et al.,2000; Waugh et al.,2003). C.neoformans is the causative agent of cryptococcosis,a life-threatening fungal menin-gitis that primarily infects immunocompromised individu-als(Mitchell and Perfect,1995).Ras1regulates two distinct signalling pathways in C.neoformans,a mating pathway and a morphogenesis pathway.The Ras1 protein mediates its effect on mating through transcrip-tional control of the pheromone response pathway (Waugh et al.,2003).Strains with a ras1mutation are therefore unable to undergo fusion andfilamentation during sexual differentiation,resulting in sterility.Through a separate signalling pathway,Ras1controls cell morpho-genesis and thermotolerance(Alspaugh et al.,2000; Waugh et al.,2002). C.neoformans ras1mutant cells exhibit a temperature-dependent defect in actin polariza-tion,arresting as large unbudded cells at37°C.Accord-ingly,ras1mutants are avirulent in animal models of cryptococcal disease.To further define the mechanisms by which Ras1con-trols cell morphology and high temperature growth,we have identified a Cdc24homologue as a downstream effector of C.neoformans Ras1.Strains deleted for the CDC24gene have temperature-sensitive growth and morphology defects similar to ras1mutant strains.The cdc24mutant is avirulent in a murine model of cryptococcosis.Our genetic and two-hybrid data also suggest that C.neoformans Cdc24functions in a con-served signalling cascade comprised of Ras1,Cdc24,Cdc42and the PAK kinase Ste20to mediate thermotol-erance,polarized growth and pathogenicity.ResultsIdentification of Ras1downstream signalling componentsRas,or Ras-like proteins,activate Cdc42in the model yeasts S.pombe and S.cerevisiae through Cdc24 (also known as Scd1in S.pombe).Using comparative genomics we identified a Cdc24homologue in the C.neoformans genome database(C.neoformans var. grubii).BLAST searches revealed a gene predicted to encode a Cdc24homologue of S.pombe Scd1and other fungal Cdc24proteins(Miyamoto et al.,1987;Chang et al.,1994;Wendland and Philippsen,2001;Bassilana et al.,2003).Protein domain analysis using Pfam soft-ware revealed that the putative C.neoformans Cdc24 protein contained conserved Cdc24domains including those for Rho-GEF activity[DH(Dbl homology)and PH (pleckstrin homology)domains,a PB1(Pbox and Bem1) protein binding domain and a CH(calponin homology) domain(Gulli and Peter,2001;Bateman et al.,2004)]. To determine if Cdc24functions downstream of Ras1in C.neoformans,we overexpressed CDC24in the ras1 mutant strain.Previously,we demonstrated that overex-pression of the gene encoding the PAK kinase Ste20 suppressed the temperature-sensitive growth defect of the Cryptococcus neoformans var.neoformans(serotype D)ras1mutant strain(Vallim et al.,2005).Overexpression of STE20also suppresses the high temperature growth defect of a ras1mutant strain(LCC70)generated in the highly pathogenic C.neoformans var.grubii(serotype A) (Fig.1).Similar to our Ste20overexpression studies, CDC24overexpression suppresses the high temperature growth phenotype of the LCC70ras1mutant strain (Fig.1).Together,these results suggest that C.neoformans Cdc24and Ste20function as downstream effectors of Ras1to mediate high temperature growth.Growth of a C.neoformans cdc24mutant is inhibitedby high temperatureTo further define the role of Cdc24in C.neoformans,we generated a cdc24mutant in which the entire CDC24 coding region was replaced with a neomycin-resistance cassette(Fraser et al.,2003).Several viable cdc24 mutants were obtained,indicating that CDC24is not essential in C.neoformans.Southern analysis confirmed the deletion of the CDC24gene,and reverse transcription polymerase chain reaction(RT-PCR)demonstrated that there was no CDC24transcript produced in these cdc24 mutant strains(data not shown).All strains had identicalC.neoformans Cdc241119©2007The AuthorsJournal compilation©2007Blackwell Publishing Ltd,Molecular Microbiology,63,1118–1130morphogenic phenotypes,and one strain,CBN16,was designated for subsequent experiments.The cdc24 mutant strain did not have an apparent growth defect at 30°C but exhibited reduced growth at37°C and no growth at39°C(Fig.2A).This is a similar but less severe temperature-sensitive phenotype compared with the ras1 mutant strain.Reintroduction of the CDC24gene into the cdc24mutant strain restored growth to wild-type level at 37°C and39°C(Fig.2A).Microscopic examination of cdc24mutant cells revealed striking alterations in cell morphology.cdc24mutant cells incubated in YPD medium at30°C were larger than wild-type cells,a phenotype shared by ras1mutant cells (Fig.2B and data not shown).The severity of the cdc24 mutant strain morphogenic defect correlated directly with increased temperature.When cdc24mutant cells were incubated to mid-log phase at30°C in YPD medium and shifted to either37°C or39°C for6h,these mutant cells were markedly larger than either cdc24mutant cells incu-bated at30°C or wild-type cells grown at37°C and39°C (Fig.2B).In addition,the cdc24mutant cells ceased mul-tiplying at39°C and arrested as large unbudded cells, similar to the terminal phenotype of the ras1mutant incu-bated at elevated temperatures(Waugh et al.,2002).To ensure that the large cell size of the cdc24mutant cells did not influence our interpretation of growth,we carefully examined the growth characteristics of the cdc24 mutant strain compared with wild type.Equal numbers (106ml-1)of wild type and cdc24mutant cells were inocu-lated in YPD medium at30°C.At various time points during exponential growth,samples were collected,fixed and counted to determine the doubling time of each strain. Samples were counted using a haemocytometer rather than measuring optical density to account for the size difference between the wild type and the cdc24mutant strain.We found no significant difference in the doubling time for the cdc24mutant strain compared with wild type; the average doubling time for both strains was108min. Thus,the altered cell morphology and cell size of the cdc24mutant strain is not associated with an altered growth rate at30°C.ras1and cdc24mutant cells exhibit an actin polarization defectIn S.cerevisiae,some mutant strains that arrest with a large unbudded phenotype,including cdc24and cdc42 mutants,accumulate two or more nuclei(Hartwell et al., 1973;1974;Adams et al.,1990).To determine if the C.neoformans cdc24mutant strain exhibited a similar defect,we DAPI-stained the nuclei of wild type and cdc24 mutant cells shifted from30°C to39°C(data not shown). We found that wild type and cdc24mutant cells contained a single nucleus at each temperature.In S.cerevisiae,ras2mutant cells are much larger than wild type at35°C due to a temperature-sensitiveFig.1.Overexpression of downstreamsignalling components suppresses thetemperature-sensitive growth defect of theC.neoformans var.grubii(Serotype A)ras1mutant strain.The ras1ura5mutant strainLCC70was transformed with plasmidsexpressing STE20,CDC24,CDC42,DCH2,RAC1and a control vector.Transformantswere incubated on YPD medium at30°C and37°C for48h.Wild type(H99)and the ras1prototrophic strain LCC1were included ascontrols.1120 C.B.Nichols,Z.H.Perfect and J.A.Alspaugh©2007The AuthorsJournal compilation©2007Blackwell Publishing Ltd,Molecular Microbiology,63,1118–1130actin polarization defect(Ho and Bretscher,2001).C.neoformans ras1mutants also exhibit a temperature-sensitive actin polarization defect(Waugh et al.,2002).To determine if the cdc24mutant strain has an actin polar-ization defect similar to the ras1mutant strain,we com-pared actin localization in wild type,ras1and cdc24 mutant cells.Strains were initially incubated at30°C in YPD then shifted to37°C.At various time points,samples werefixed and stained with rhodamine-conjugated phal-loidin to visualize actin localization.For each sample,100 cells containing small to medium sized buds were scored for the ability to polarize actin to the bud.Individual cells were considered polarized if50%or more of the actin localized to the bud(Ho and Bretscher,2001).At30°C,we observed that actin was properly polarized in100%of the wild-type cells but was depolarized in a small proportion of the ras1(10%)and cdc24(3%)mutant cells.When shifted to37°C for2h,actin was depolarized in6%of the wild-type cells.In contrast,depolarization of actin in the ras1and cdc24mutant cells increased to36%and24%, respectively,when incubated under identical conditions (Fig.3).These results indicate the ras1and cdc24mutant cells have a defect maintaining actin polarization in the bud.Ras1and Cdc24function in a common signalling pathwayThe morphology of the ras1and cdc24mutant strains is quite similar,suggesting that Ras1and Cdc24may func-tion in the same pathway.To further define the relationship between the RAS1and CDC24gene products,we deleted the CDC24gene in a ras1mutant strain.The resulting ras1cdc24double mutant strain wasFig.2.The cdc24mutant strain has atemperature-sensitive morphology defect.Wildtype(H99),cdc24and cdc24+CDC24mutantstrains were incubated on YPD medium for48h at30°C,37°C and39°C(A)or grown tomid-log in YPD medium at30°C then shiftedto37°C and39°C for6h(B).Cells wereimaged(¥40)with DIC optics.Bar,10mm.C.neoformans Cdc241121©2007The AuthorsJournal compilation©2007Blackwell Publishing Ltd,Molecular Microbiology,63,1118–1130temperature-sensitive for growth at 37°C (Fig.4A).Phe-notypically,the ras1cdc24mutant strain was similar to both the cdc24and ras1mutant strains;cells from all three mutant strains were larger than wild type at 30°C and arrested as large unbudded cells at the higher restric-tive temperatures (Fig.4B).There was no phenotypic dif-ference among these three mutant strains and therefore no apparent additive effects of the double mutation over the single ras1mutation.This result is consistent with Ras1and Cdc24acting in the same signalling pathway,as opposed to parallel pathways.To more precisely determine where Cdc24functions with respect to Ras1and Ste20,we overexpressed the RAS1and STE20genes in the cdc24mutant strain.Over-expression of RAS1did not suppress the temperature sensitivity of the cdc24mutant strain (Fig.4C and data not shown).However,overexpression of the STE20gene par-tially suppressed the temperature-sensitivity of the cdc24mutant;the cdc24+STE20mutant strain was able to grow at 39°C but was not able to grow as vigorously as the wild type or CDC24reconstituted strains (Fig.4C).We also examined if overexpression of STE20suppressed the morphology defect of the cdc24mutant.cdc24mutant cells overexpressing STE20were of an intermediate size at 30°C and 37°C;larger than wild type but not as large as the cdc24mutant (Fig.4D).Together with the observation that CDC24overexpression suppresses the ras1mutant growth defect at 37°C,these results suggest that Cdc24functions downstream of Ras1but upstream of Ste20in a signal transduction pathway mediating cell morphology and growth.However,overexpression of STE20does not completely restore the morphology of the cdc24mutant strain,suggesting that there may be other downstream effectors of Cdc24in addition to Ste20regulating morphology.The PAK kinase Pak1does not appear to be this effector because overexpression of PAK1does not suppress the growth or morphology defects of the cdc24mutant strain (data not shown).Cdc24and Ras1interactIn S.pombe ,Ras1physically interacts with Scd1,the Cdc24homologue.To determine if Ras1interacts with Cdc24in C.neoformans ,we utilized the yeast two-hybrid interaction system.The cDNA of the C.neoformans RAS1gene was modified to alter the C-terminal CAAX motif to prevent membrane localization (ras1C207A ).This gene was fused in frame to the GAL4DNA binding domain of vector pGBKT7.Similarly the CDC24cDNA was fused in frame to the GAL4DNA activation domain of vector pGADT7.Coexpression of GAL4BD-Ras1and GAL4AD-Cdc24transgenes restored adenine (Fig.5,middle panel)and histidine prototrophy (Fig.5,bottom panel)in the S.cerevisiae strain AH109.This result supports a model in which C.neoformans interacts with the Ras1protein.In addition,Cdc24interacted with a GTP-lockedRas1Fig.3.Actin is depolarized in ras1and cdc24mutant cells.Wild type (H99),cdc24and ras1mutant cells were incubated to mid-log phase in YPD medium at 30°C.Cells were shifted to 37°C for either 0or 120min,fixed,and stained for actin with rhodamine-conjugated phalloidin.One hundred budded cells were observed using fluorescent microscopy (¥100)and scored for actin polarization at each time point.The percentage of polarized cells for each time point is included in each panel.Arrowheads and asterisks refer to examples of cells scored as having either polarized actin or unpolarized actin respectively.Bar,10m m.1122 C.B.Nichols,Z.H.Perfect and J.A.Alspaugh©2007The AuthorsJournal compilation ©2007Blackwell Publishing Ltd,Molecular Microbiology ,63,1118–1130C.neoformans Cdc241123Fig.4.A and B.Epistasis analysis of CDC24.The ras1cdc24double mutant has a temperature-sensitive morphology defect at37°C.Wild type(H99),cdc24,ras1and ras1cdc24mutant strains were(A)incubated on YPD medium at30°C and37°C for48h or(B)grown to mid-log in YPD medium at30°C then shifted to37°C or39°C for6h.C and D.Overexpression analysis of the cdc24mutant.The cdc24ura5mutant strain CBN30was transformed with plasmids expressingCDC24,STE20,CDC42,DCH2,RAC1or a control plasmid.Transformants were(C)incubated on YPD medium at30°C and39°C for48h or (D)grown to mid-log in YPD medium at30°C then shifted to39°C for6h.Wild type(H99)and the cdc24prototrophic strain CBN16were included as controls.Cells were imaged(¥40)with DIC optics.Bar,10m m.©2007The AuthorsJournal compilation©2007Blackwell Publishing Ltd,Molecular Microbiology,63,1118–1130mutant (Ras1G12V,C207A )but did not interact with a dominant negative GDP-locked Ras1mutant (Ras1S23N,C207A ),sug-gesting that Cdc24preferentially interacts with the GTP-bound form of Ras1,further supporting our hypothesis that Cdc24acts downstream of Ras1.Cdc42functions in the Ras-Cdc24signalling pathway As previously reported,the genome of C.neoformans includes two Cdc42homologues;Cdc42and Dch2(Dual Cdc42homologue)(Vallim et al .,2005),differing primarily in the Rho insert region.In addition,C.neoformans also contains a Rac1homologue.Cdc42and Rac1proteins belong to the same family of Rho GTPases.Both Cdc42and an activated form of Rac1are able to bind the CRIB (Cdc42/Rac interaction binding)domain of Ste20in the two-hybrid interaction system (Wang et al .,2002;Vallim et al .,2005).Similarly,we found that Dch2is also able to bind to the CRIB domain of Ste20in the two-hybrid inter-action system (data not shown).Thus,all three of the C.neoformans Cdc42/Rac1homologues have potential Ste20binding ability.In an attempt to determine specificity for Cdc24inter-action among these three related proteins,we overex-pressed Cdc42,Dch2and Rac1in the cdc24mutantstrain.Overexpression of Cdc42,but not Dch2or Rac1,was able to restore the ability of the cdc24mutant strain to grow at 39°C (Fig.4C and D).Similarly,overexpression of Cdc42suppressed the growth defect of the ras1mutant strain.However,overexpression of Dch2weakly sup-pressed the growth defect of the ras1mutant strain (Fig.1).Overexpression of Rac1also suppresses the growth defects of the ras1mutant strain (Fig.1;Vallim et al .,2005).Taken together,these results suggest that Cdc42is the primary target of Ras1-Cdc24signalling mediating high temperature growth in C.neoformans .In addition,these results also indicate that Ras1may also have Cdc24-independent roles mediating high tempera-ture growth.Cdc24is required for C.neoformans pathogenicity The ability to grow at 37°C is important for the pathoge-nicity of C.neoformans,and the ras1mutant strain is attenuated for virulence in animal models of cryptococco-sis (Alspaugh et al .,2000).cdc24mutants are able to grow at 37°C but not at 39°C.However,cdc24mutant cells display significant defects in actin polarization even at 37°C.We therefore tested the role of cdc24in C.neoformans pathogenicity using a murine inhalation model of cryptococcosis (Cox et al .,2000).A/Jcr mice (8per strain)were inoculated by nasal inhalation (5¥106cells/mouse)with the wild type,cdc24mutant,or the reconstituted cdc24+CDC24mutant strain.By 29days after infection,all mice infected with the wild type or the reconstituted strain had succumbed to the infection (Fig.6).However,seven out of eight mice infected with the cdc24mutant strain survived to the completion of the experiment (57days).Interestingly,lung and spleen tissue harvested from the animals inoculated with the cdc24mutant still contained viable cryptococcal cells at the end of the experiment,although the mice were clini-cally well-appearing and gaining weight throughout the experiment.Phenotypic and genetic analysis of the recov-ered cryptococcal cells confirmed that they were cdc24mutant cells.These results confirm the importance of the Cdc24signalling pathway in C.neoformans virulence.DiscussionRas proteins control several distinct cellular processes in C.neoformans .However,one of the main functions of Ras in this pathogenic fungus is to maintain cytoskeletal integrity,allowing this organism to respond to changing environments and to external stress.To better understand the mechanisms by which Ras1controls cellular growth under stressful conditions such as elevated temperatures,we identified a Cdc24homologue in C.neoformans ,hypothesizing that it might act as a downstream effectorofFig.5.Ras1interacts with Cdc24.The cDNA sequences of the CDC24,RAS1,ras1G17V and ras1S23N genes were cloned into the two-hybrid vectors pGADT7and pGBKT7and cotransformed in pairwise combinations into the yeast strain AH109.One isolate transformed with the empty vectors was also tested as a control.Transformants were selected on synthetic medium agar plates lacking tryptophan and leucine (SD-Trp-Leu).These strains were assessed for growth on synthetic medium lacking tryptophan,leucine and adenine (SD-Trp-Leu-Ade)and synthetic medium lacking tryptophan,leucine and histidine and including 5mM 3-aminotriazole (SD-Trp-Leu-His).1124 C.B.Nichols,Z.H.Perfect and J.A.Alspaugh©2007The AuthorsJournal compilation ©2007Blackwell Publishing Ltd,Molecular Microbiology ,63,1118–1130Ras1.We show that Cdc24functions in a Ras1signalling cascade that mediates morphogenesis and the ability to grow at high temperature,and that these processes are important for the pathogenicity of C.neoformans.In addi-tion,our results indicate that this signalling cascade func-tions specifically through Cdc42,one of three highly related proteins in C.neoformans.Ras activation of Cdc24and Cdc42proteins–a conserved signalling motifIn thefission yeast S.pombe,Ras1activates two distinct pathways:a pheromone response pathway and an actin polarization(morphogenesis)pathway.Specificity between the pathways is mediated by the Ras1GEFs Ste6and Efc25and also by spatial compartmentalization of the Ras1protein(Onken et al.,2006).Components of the morphogenesis pathway consist of Efc25,Ras1, Scd1,Cdc42and Shk1(Papadaki et al.,2002).Activated Ras1directly interacts with the Scd1protein,a GEF that controls the activity of the highly conserved GTPase Cdc42.In turn,activated Cdc42binds to and activates the PAK kinase Shk1.Mutation of any of these genes pro-duces cells that are round instead of rod shaped due to the loss of actin polarity(Fukui et al.,1986;Fukui and Yamamoto,1988;Chang et al.,1994;Miller and Johnson, 1994;Marcus et al.,1995;Ottilie et al.,1995;Tratner et al.,1997).Similar to S.pombe,C.neoformans Ras1regulates the mating process as well as mating-independent morpho-logical events.Our two observations that cdc24mutant strains have a ras1-like temperature-sensitive morpho-genesis defect and that these two proteins physically interact suggest that Cdc24is acting as an effector of Ras1signalling.In addition,our epistasis data also suggest that Ras1,Cdc24,Cdc42and Ste20function in a linear pathway that mediates morphogenesis and thermotolerance.Also,similar to S.pombe,overexpres-sion of Cdc24does not suppress the mating defect of the ras1mutant strain(data not shown)suggesting that the Cdc24-dependent branch of Ras1signalling does not mediate mating.Thus,the core components of morpho-genic signalling appear to be conserved between these two organisms.Our data also place C.neoformans Ras1upstream of Cdc42.The relationship between Ras and Cdc42is an emerging theme in fungal biology.In the dimorphic fungal pathogen P.marneffei,the Ras homologue RasA acts upstream of CflA(Cdc42)to regulate polarized growth of hyphal and yeast cells,septation,branch emergence and spore germination(Boyce et al.,2005).In the plant patho-gen C.trifolii,CtCdc42functions downstream of CtRas1 to mediate spore germination and proper hyphal growth (Chen et al.,2006).To date Cdc24homologues have not been characterized for either organism,although the sequence for a P.marneffei Cdc24homologue has been recently deposited into the NCBI database(Woo et al., 2006).Cdc24has therefore only been conclusively demonstrated as a Ras effector in C.neoformans and S.pombe.A different signalling paradigm exists in S.cerevisiae. The yeast cell polarity is regulated by morphogenesis proteins such as Cdc24,Cdc42and the PAK kinases Ste20and Cla4(Johnson,1999).However,Cdc24is recruited to the membrane and activated by the Ras-like GTPase Rsr1p/Bud1p(Gulli and Peter,2001;Park et al., 2002).The S.cerevisiae Ras protein Ras2is involved in Cdc42signalling,but this interaction role appears to beFig.6.Cdc24is required for pathogenesis ina murine model of cryptococcosis.The wildtype(H99),cdc24mutant and cdc24+CDC24reconstituted strains were intranasallyinoculated into A/Jcr mice.Animal survivalwas monitored for58days.C.neoformans Cdc241125©2007The AuthorsJournal compilation©2007Blackwell Publishing Ltd,Molecular Microbiology,63,1118–1130。

相关文档
最新文档