Linux 线程实现机制分析

合集下载

linux基于线程通信技术聊天室的设计与实现 -回复

linux基于线程通信技术聊天室的设计与实现 -回复

linux基于线程通信技术聊天室的设计与实现-回复Linux基于线程通信技术聊天室的设计与实现聊天室是一种常见的在线交流工具,它允许用户在不同地点之间进行实时对话。

为了实现一个基于线程通信技术的Linux聊天室,我们可以选择使用已有的进程间通信(IPC)机制中的一种,例如共享内存或消息队列。

本文将一步一步回答有关该主题的问题,为您介绍如何设计并实现一个Linux聊天室。

第一步:确定需求和设计目标在开始设计之前,我们需要明确聊天室的需求和设计目标。

在这里,我们希望实现一个具有以下特点的聊天室:1. 实时通信:聊天室应该能够在用户之间进行实时的消息传递。

2. 多用户支持:聊天室应该允许多个用户同时登录和交谈。

3. 可扩展性:聊天室应该可以轻松地添加更多的用户和功能,以适应不同的需求。

4. 兼容性:聊天室应该支持Linux操作系统,并能够在不同的平台上运行。

第二步:选择合适的线程通信技术在设计线程通信聊天室时,我们可以选择使用多种IPC机制,如共享内存、消息队列、命名管道等。

根据聊天室的设计目标,我们可以选择使用共享内存和消息队列来实现聊天室的通信功能。

共享内存允许多个进程访问同一块内存区域,从而实现数据的共享。

通过在内存中创建一个共享缓冲区,我们可以在其中存储消息数据,并通过读写指针来实现消息的传递。

每个用户可以通过从共享内存中读取数据来接收其他用户发送的消息,并可以通过写入数据到共享内存来发送自己的消息。

消息队列是另一种常用的IPC机制,它可以实现进程之间的异步通信。

通过创建一个消息队列,每个用户可以将自己的消息发送到队列中,并从队列中接收其他用户发送的消息。

这种方式比共享内存更灵活,可以轻松地实现多用户的消息传递。

在这里,我们可以选择使用共享内存来存储聊天室的消息数据,并使用消息队列来处理消息的传递。

第三步:设计线程通信聊天室的架构在设计聊天室的架构时,我们需要考虑以下几个方面:1. 服务器:设计一个服务器线程,用于接收和处理用户的连接请求,并将消息分发给其他在线用户。

线程的三种实现方式

线程的三种实现方式

线程的三种实现方式线程是操作系统能够进行运算调度的最小单位,是进程中的一个实体,是被系统独立调度和执行的基本单位。

线程有三种实现方式,分别是用户级线程、内核级线程和轻量级进程。

下面将详细介绍这三种实现方式。

一、用户级线程(User-Level Threads,ULT)用户级线程是完全由用户程序实现和控制的线程。

用户级线程的创建、销毁和切换是通过用户程序的函数调用来完成的,与操作系统无关,不需要进行内核态和用户态之间的切换,由线程库在用户空间进行管理。

每当用户级线程调用了一个阻塞的系统调用,整个进程都会被阻塞住。

用户级线程的优点是实现上比较简单,可以根据具体应用的需要进行灵活的线程管理,而且切换线程的开销比较小。

缺点是由于用户级线程无法通过系统调用进行I/O操作,因此当一个线程阻塞时,整个进程都会被阻塞住,无法充分利用多核处理器的并行性能。

二、内核级线程(Kernel-Level Threads,KLT)内核级线程是由操作系统内核实现和管理的线程,调度、创建和销毁线程都在操作系统内核中完成,需要进行内核态和用户态之间的切换。

每个内核级线程都有自己的控制块,操作系统根据调度策略来调度线程的执行。

内核级线程的优点是能够充分利用多核处理器的并行性能,因为线程的调度都由操作系统内核完成。

缺点是创建和切换线程的开销比较大,会降低系统的整体性能。

三、轻量级进程(Lightweight Process,LWP)轻量级进程是一种中间形式的线程,在用户空间和内核空间的线程实现方式之间进行折中。

轻量级进程由用户程序创建和管理,但是它的创建、销毁和切换都是由操作系统内核来完成的,使用内核级线程实现线程的调度。

轻量级进程的优点是能够充分利用多核处理器的并行性能,同时由于线程的创建和切换都由操作系统内核完成,因此能够更好地支持I/O操作,不会出现用户级线程阻塞导致整个进程阻塞的情况。

缺点是由于需要进行内核态和用户态之间的切换,创建和切换线程的开销比用户级线程大,但是相比于内核级线程来说要小得多。

linux基于线程通信技术聊天室的设计与实现 -回复

linux基于线程通信技术聊天室的设计与实现 -回复

linux基于线程通信技术聊天室的设计与实现-回复Linux基于线程通信技术聊天室的设计与实现1. 引言(100字)在当今互联网时代,聊天室成为人们分享信息和交流思想的重要工具。

本文将介绍如何利用Linux中的线程通信技术实现一个基于线程通信的聊天室。

2. 设计与实现概述(200字)为了实现基于线程通信的聊天室,我们需要使用Linux中的线程库和进程间通信机制。

我们将设计一个多线程的服务器端和多线程的客户端,服务器端用于接收和处理客户端的请求,客户端用于向服务器发送消息和接收其他客户端的消息。

3. 服务器端设计与实现(500字)服务器端首先需要创建一个主线程,用于监听与接收客户端的连接请求。

一旦有客户端连接请求到达,主线程将创建一个新的工作线程,处理该客户端的请求。

在服务器端,我们可以使用线程锁和条件变量等线程同步机制,防止多个线程并发访问共享资源,实现线程间的安全通信。

我们可以创建一个线程池,用于管理工作线程,当有新的连接请求到达时,从线程池中获取一个空闲的线程进行处理。

我们使用线程锁来保护线程池中线程的访问,确保在某一时刻只有一个线程可以获取到线程资源。

为了实现服务器与客户端的实时通信,我们可以使用Linux中的socket 编程接口。

服务器将创建一个socket,绑定到特定的IP地址和端口上,然后开始监听来自客户端的连接请求。

一旦有连接请求到达,服务器将接受该连接并创建一个新的线程来处理客户端请求。

服务器通过socket接口读取客户端发来的消息,再将消息广播给其他连接到服务器的客户端。

4. 客户端设计与实现(500字)客户端需要创建一个连接到服务器端的socket,并提供用户界面用于发送和接收消息。

客户端主线程需要同时处理用户输入和服务器发来的消息。

客户端需要使用线程同步机制,确保在用户输入消息时,不会和服务器发来的消息产生竞争。

我们可以使用互斥锁来保护消息队列,当用户输入消息时,需要先获取互斥锁以确保消息队列的一致性。

跟我学Linux编程-12-多线程编程-同步

跟我学Linux编程-12-多线程编程-同步

多线程编程-同步在上一章节中,我们通过程序示例,见证了单线程世界中不可能发生的事件(一个数既是奇数又是偶数)在多线程环境中是怎样分分钟发生的,我通过细分程序执行步骤,分析了奇异事件发生的过程,并探明了其原因:一个线程在对全局变量gcnt进行两次判读的过程中,另一个线刚好改变了这个变量的值。

在多线程编程术语中,称这两个线程同时进入了临界区域。

所谓临界区域,是指多线程环境下两个及以上线程同时执行可能会导致冲突的一段代码。

在上一章节的示例中,这几行代码就是一个临界区域:gcnt++;if (gcnt % 2){if (!(gcnt % 2)) printf("[%d] : %d\n", id, gcnt);}冲突之所以会发生,是因为临界区域的代码,通常需要很多个CPU指令周期才能完成,其运行过程随时可能被打断(进行了线程调试),CPU去运行另外的线程,如果这个线程刚好也进入了临界区域,则异常的程序状态极可能会发生。

如果当某个线程进入临界区域,在其退出区域之前,其他的线程无论如何也不能进入该区域,那么冲突就不会发生。

Linux提供了这种保证多线程进入临界区域互斥的机制,这正是本章节所要介绍的内容:线程锁。

我们今天的示例程序还是在上一章节的示例上改进而来的,我们的任务就是使用线程锁,保证“一个数既是奇数又是偶数”的奇异事件在多线程环境下也不发生,代码如下:#include <pthread.h>#include <stdio.h>#include <unistd.h>int gcnt = 0;pthread_mutex_t g_mutex;void *thread_task(void *arg){int id = (int)arg;while (1){pthread_mutex_lock(&g_mutex);gcnt++;if (gcnt % 2)if (!(gcnt % 2)) printf("[%d] : %d\n", id, gcnt);}pthread_mutex_unlock(&g_mutex);usleep(1);}return NULL;}int main(int argc, char *argv[]){pthread_t thr;pthread_mutex_init(&g_mutex, NULL);pthread_create(&thr, NULL, thread_task, (void *)1);pthread_create(&thr, NULL, thread_task, (void *)2);thread_task((void *)0);return 0;}今天的程序相对于上章的代码,改动非常小,只添加了四行,已使用红色加粗标注。

Linux下的多线程机制的分析与实现

Linux下的多线程机制的分析与实现
De 2 8 c.0o
Lnx下 的多 线程 机 制 的分 析 与实现 iu
赵 东 ,周 卫 云2 ,赵 作人 3
103 ;. 3022 长春广顺 电子科技有 限公 司 , 长春 吉林 163) 104 102 ; 301 (. 1长春 师范学 院计算机科 学与技 术学 院 , 吉林长春
vi *a :调 用此 函数 可以创建一 个新 的线程 ,新 线程创建 后执行 sl一r te o d ) , ̄ o i 指定 的程序 。其 中参数 ar t a un t t 是 用户希望 创建线 程的属性 ,当为 N L U L时表示 以默认 的属性 创建 线程 。ag 向 sr r te传递 的参数 。 r是 tt o i a un
I tph e d n tra ph e d tr a


ji phed—th a ,vi * *s t ) o n(tr a rd o te d tu :这 个 函数 的作 用 是 等待 一 个 线 程 的结 束 。调用 as dt h(ted~t ted :参数 p r d 表的线 程一 旦终 止 ,立 即释放 调该线 程 占有 的所 ec p r a h a h a) pr te 代 ha
的指 针 。
2 2 线程控 制 函数 .
ph e d tra

sl vi) - e f(o :为了区 分线 程 ,在 线程 创 建 时 系统 为 其分 配 一个 唯一 的 I 号 ,由 p r d d I ) te ha

ce e r at
( )返 回给 调用者 ,也可 以通 过 p r d sl )获取 自己的线 程 I。 te — e ha f( D
究。

36 ・

Linux线程机制研究

Linux线程机制研究

中期 。现在 , 多线 程 技术 已经被 许多 操 作 系统 所支
持 , 括 Wid wsNT/ O 0和 Ln x 包 no 20 iu 。
在 Ln x 2 2内核 中, 程 是 通 过 系 统 调 用 iu . 进
fr o k创 建 的 , 的进 程是 原 来进 程 的 子进 程 。需要 新
Re e r h o nu r a e h ni m s a c n Li x Th e ds M c a s
LEIM i g— h ZHANG ng n z e, Yo
( rh Au o t n r lTe h i u sa c n t u e Ta y a 3 0 6 Ch n No t t ma i Co to c n q eRe e r h I si t , i u n 0 0 0 , i a) c t
L n x进 入企业级 市 场的一 大因素 。 iu L n x 2 4内核 消 除 了 这个 限 制 , 且 允 许 在 iu . 并 系统运 行 中动 态调整 进程数 上 限。 因此 , 进程数 现在
绪、 阻塞 和运行 三种基本 状态 。
说 明的是 , L n x 2 2 X中, 存在 真正 意义 上 的 在 iu . . 不
线 程 , iu Ln x中常 用 的线 程 P he d实 际 上 是 通 过 tra 进程 来模拟 的 。 就是说 , iu 也 L n x中的线 程也是 通过 fr ok创建 的 , 轻” 程 。L n x2 2缺 省 只允许 4 是“ 进 iu . 0 6个进 程/ 程 同时运行 , 高端 系统 同时要 服务 9 线 而 上千 的用户 , 以这显 然是一 个 问题 。 一度是 阻碍 所 它
略 。 单分 析 了一 般 线 程 机 制 , 细 分 析 了 l u 简 详 i x线 程思 想 及 在 内核 中 的 实 现 , 括 l u n 包 i x线 程 描 述 数 据 结构 , 理 线 程 机 制 和 n 管 策 略 , 程 栈 结 构 , 程 i 进 程 i 创 建 和 分 配 ,iu 线 线 d和 d的 Ln x线 程 实 现 方 法 。 关键词 : 程 , 线 内核 ,n x l u i 中 图 分 类号 : 3 6 TP 1 文献标识码 : A

linux中的同步机制

linux中的同步机制

linux中的同步机制Linux中的同步机制在Linux操作系统中,同步机制是一种重要的机制,用于控制并发访问共享资源的顺序和互斥。

它确保多个进程或线程能够有序地访问共享资源,避免数据竞争和不一致的结果。

本文将介绍Linux中常用的同步机制,包括互斥锁、条件变量、信号量和屏障等。

一、互斥锁(Mutex)互斥锁是一种最常见的同步机制,用于保护共享资源的访问。

在互斥锁的帮助下,只有一个进程或线程能够获得锁,其他进程或线程需要等待锁的释放。

Linux提供了多种互斥锁的实现,如pthread_mutex_t和std::mutex等。

使用互斥锁需要注意避免死锁和竞态条件等问题。

二、条件变量(Condition Variable)条件变量是一种用于线程间通信的同步机制,它允许线程在满足特定条件之前等待,从而避免了忙等待的问题。

在Linux中,条件变量通常与互斥锁一起使用。

当某个线程发现条件不满足时,它可以调用条件变量的等待函数将自己阻塞,直到其他线程满足条件并发出信号,唤醒等待的线程。

三、信号量(Semaphore)信号量是一种用于控制并发访问的同步机制,它可以实现对资源的计数和管理。

Linux提供了两种类型的信号量:二进制信号量和计数信号量。

二进制信号量只有两种状态(0和1),用于互斥访问共享资源;计数信号量可以有多个状态,用于限制并发访问的数量。

通过使用信号量,可以实现进程或线程之间的同步和互斥。

四、屏障(Barrier)屏障是一种用于线程同步的机制,它在多个线程到达指定点之前将它们阻塞,直到所有线程都到达后才继续执行。

屏障可以用于并行计算中的阶段同步,确保每个阶段的计算完成后再进行下一阶段的计算。

在Linux中,可以使用pthread_barrier_t来创建和操作屏障。

五、读写锁(ReadWrite Lock)读写锁是一种特殊的锁机制,用于在读操作和写操作之间提供更好的并发性。

读写锁允许多个线程同时读取共享资源,但只允许一个线程进行写操作。

linux线程id生成原理

linux线程id生成原理

linux线程id生成原理L i n u x线程I D生成原理简介L i n u x操作系统是一个非常受欢迎的开源操作系统,具有很强的稳定性和灵活性。

在L i n u x 中,线程是一种轻量级的进程,其创建和管理都是由操作系统完成的。

在线程创建过程中,会为每个线程分配一个唯一的线程I D(T h r e a d I D)。

本文将一步一步介绍L i n u x线程I D生成的原理,帮助读者更好地理解Li n u x线程的创建和管理。

一、什么是线程I D在线程I D生成原理之前,我们首先了解一下什么是线程ID。

每个线程在操作系统中都有一个唯一的标识符,这个标识符就是线程ID。

线程I D是一个整数,通常被用作线程的索引。

通过线程I D,操作系统可以识别和管理不同的线程。

二、线程I D的分配在L i n u x系统中,线程I D的分配是由操作系统内核完成的。

L i n u x内核维护了一个全局的线程I D计数器,用于生成唯一的线程I D。

1.线程I D生成过程当新的线程被创建时,内核会使用线程ID计数器为其分配一个唯一的线程I D。

线程ID的分配是按顺序进行的,即每次分配的线程ID比前一个分配的线程I D大1。

在L i n u x内核中,线程I D是通过原子操作实现的,确保线程ID的分配是原子的,避免了竞争条件的发生。

2.线程I D的范围在L i n u x系统中,线程I D的范围是从1到2^15-1(32767)。

这个范围的设计是为了保留线程I D0,它通常用于表示无效的或者未初始化的线程I D。

3.线程I D的重复由于线程I D是按顺序分配的,所以在一个线程退出后,其线程I D可能会被下一个新线程分配使用。

这意味着,在不同的时间点上,不同的线程可能会拥有相同的线程I D。

因此,在L i n u x 中,线程I D并不是一个全局唯一的标识符。

三、线程I D的使用在L i n u x系统中,线程I D在多个地方被使用,例如线程的创建、线程的等待、线程的取消等。

linux上应用程序的执行机制

linux上应用程序的执行机制

linux上应用程序的执行机制1.父进程的行为: 复制,等待执行应用程序的方式有很多,从shell中执行是一种常见的情况。

交互式shell是一个进程(所有的进程都由pid号为1的init进程fork得到,关于这个话题涉及到Linux启动和初始化,以及idle进程等,有空再说),当在用户在shell中敲入./test执行程序时,shell先fork()出一个子进程(这也是很多文章中说的子shell),并且wait()这个子进程结束,所以当test执行结束后,又回到了shell等待用户输入(如果创建的是所谓的后台进程,shell则不会等待子进程结束,而直接继续往下执行)。

所以shell进程的主要工作是复制一个新的进程,并等待它的结束。

2.子进程的行为: "执行"应用程序2.1 execve()另一方面,在子进程中会调用execve()加载test并开始执行。

这是test被执行的关键,下面我们详细分析一下。

execve()是操作系统提供的非常重要的一个系统调用,在很多文章中被称为exec()系统调用(注意和shell内部exec命令不一样),其实在Linux中并没有exec()这个系统调用,exec只是用来描述一组函数,它们都以exec开头,分别是:#includeintexecl(const char *path, const char *arg, ...);intexeclp(const char *file, const char *arg, ...);intexecle(const char *path, const char *arg, ..., char *constenvp[]);intexecv(const char *path, char *constargv[]);intexecvp(const char *file, char *constargv[]);intexecve(const char *path, char *constargv[], char *constenvp[]);这几个都是都是libc中经过包装的的库函数,最后通过系统调用execve()实现(#define__NR_evecve 11,编号11的系统调用)。

Linux实验总结分析报告

Linux实验总结分析报告

Linux实验总结分析报告Linux体系架构Linux操作系统主要涉及⽂件管理、内存管理、进程管理、系统中断等等。

进程管理Linux进程的存在两种运⾏模式,在Linux⾥,⼀个进程既可以运⾏⽤户程序,⼜可以运⾏操作系统程序。

当进程运⾏⽤户程序时,称其为处于“⽤户模式”;当进程运⾏时出现了系统调⽤或中断事件,转⽽去执⾏操作系统内核的程序时,称其为处于“核⼼模式”。

在Linux⾥处理机就具有两种运⾏状态:核⼼态和⽤户态。

Linux下进程概念及特征:(1)、在Linux⾥,把进程定义为“程序运⾏的⼀个实例”(2)、进程⼀⽅⾯竞争并占⽤系统资源(⽐如设备和内存),向系统提出各种请求服务;进程另⼀⽅⾯是基本的调度单位,任何时刻只有⼀个进程在CPU上运⾏。

Linux进程实体的组成:Linux中,每个进程就是⼀个任务(task),⼀般具有以下四个部分:(1)进程控制块(在Linux⾥,也称为进程描述符。

)。

(2)进程专⽤的系统堆栈空间;(3)供进程执⾏的程序段(在Linux⾥,称为正⽂段);(4)进程专⽤的数据段和⽤户堆栈空间Linux的进程控制块——进程描述符在Linux中,进程的进程描述符是⼀个结构类型的数据结构:task_struct。

进程描述符组成内容进程标识(pid);进程状态(state);进程调度信息,包括调度策略(policy)、优先级别(priority和rt_priority)、时间⽚(counter)等;接收的信号(*sig);进程家族关系;进程队列指针; CPU的现场保护区;与⽂件系统有关的信息。

Linux的进程状态 Linux的进程可以有五种不同的状态进程状态:可运⾏状态可中断状态不可中断状态暂停状态僵死状态进程的创建与撤销:Linux中的每个进程,都有⼀个创建、调度运⾏、撤销死亡的⽣命期。

Linux系统中的各个进程,相互之间构成了⼀个树型的进程族系。

Linux的进程调度类型:在Linux中,进程调度被分为实时进程调度和⾮实时进程调度两种。

linux线程间同步和互斥的方法

linux线程间同步和互斥的方法

linux线程间同步和互斥的方法随着计算机技术的飞速发展,多线程应用已经变得越来越普遍。

在Linux操作系统中,多线程是一种强大的工具,它允许程序同时执行多个任务,从而提高系统的并发性和效率。

然而,多线程应用也带来了一些挑战,如线程间的同步和互斥问题。

本文将介绍Linux线程间同步和互斥的方法。

一、互斥(Mutex)互斥是最基本的同步机制之一,用于保护共享资源,防止多个线程同时访问同一资源而造成数据混乱。

在Linux中,可以使用pthread_mutex_t类型来创建互斥锁。

使用pthread_mutex_lock()函数来锁定互斥锁,确保同一时刻只有一个线程可以访问被保护的资源;使用pthread_mutex_unlock()函数来解锁互斥锁,允许其他线程访问该资源。

二、条件变量(ConditionVariable)条件变量是一种更复杂的同步机制,它允许一个或多个线程在满足某个条件时被唤醒。

在Linux中,可以使用pthread_cond_t类型来创建条件变量。

线程可以通过pthread_cond_wait()函数进入等待状态,直到条件满足时被唤醒。

使用pthread_cond_signal()或pthread_cond_broadcast()函数来通知其他等待的线程。

三、读写锁(Read-WriteLock)读写锁是一种更高效的同步机制,它允许多个读线程同时访问共享资源,但在写操作时只允许一个写线程访问。

在Linux中,可以使用pthread_rwlock_t类型来创建读写锁。

读线程可以同时获取读锁,而写线程必须获取写锁。

当写线程释放写锁时,读线程可以再次获取读锁。

这种机制可以提高并发性能,降低资源争用的开销。

四、信号量(Semaphore)信号量是一种用于控制并发访问的计数器。

它通常用于计数有限的资源数量,如文件描述符或磁盘空间。

在Linux中,可以使用sem_t 类型来创建信号量。

使用sem_wait()函数来减少信号量的值,表示消耗了一个资源;使用sem_post()函数来增加信号量的值,表示释放了一个资源。

理发师问题

理发师问题

Linux系统分析实验报告用信号量解决理发师问题061261008 蒋炎岩(一班)1 实验要求理发师问题:理发店理有一位理发师、一把理发椅和5把供等候理发的顾客坐的椅子。

如果没有顾客,理发师便在理发椅上睡觉一个顾客到来时,它必须叫醒理发师,如果理发师正在理发时又有顾客来到,则如果有空椅子可坐,就坐下来等待,否则就离开。

用Linux线程机制和信号量机制解决这个问题,并且:(1)每个顾客进入理发室后,即时显示“Entered”及其线程标识,还同时显示理发室共有几名顾客及其所坐的位置(2)至少有10个顾客,每人理发至少3秒钟。

(3)多个顾客须共享操作函数代码。

2 背景知识2.1 POSIX线程在一个程序中的多个执行路线称之为线程。

Linux在1996年第一次获得线程支持,现在已经有一套完整的与线程有关的函数库调用,大多数以pthread_开头,编译时需要用-lpthread选项进行连接。

我们用函数pthread_create创建一个新线程:#include <pthread.h>int pthread_create(pthread_t *thread, pthread_attr_t *attr,void *(*start_routine)(void *), void *arg);thread参数表示新线程的标识符;attr用于设置线程属性,如不需要设置,可设置为NULL;start_routine标识了线程启动程序的入口,arg为传入的参数。

调用pthread_create 就可以立即创建一个新的执行路线,与原有线程共享所有的主存空间,但拥有独立的堆栈。

2.2 信号量信号量通过一个计数器控制对共享资源的访问。

如果计数器大于0,则访问被允许,如果为0,则访问被禁止。

计数器计算的结果是允许访问共享资源的通行证。

因此,为了访问共享资源,线程必须从信号量得到通行证(P操作),如果该信号量的计数大于0,则此线程获得一个通行证,这将导致信号量的计数递减,否则,此线程将阻塞直到获得一个通行证为止。

Linux模块实现机制分析

Linux模块实现机制分析
管理 、 内存管理 、 文件管理 、 设备管理以及 网络通信
模式下运行, 则称之为一体化组织, 图二所示。 见
等几 大模块 。为 了支持构建安全操作系统,现代 C U一般都提供 了至少两种运行模式: P 特权模式与 用户模式。 根据各个管理模块是否放在特权模式下, 操作系统有微内核和一体化 内核两种组织方式。如 果仅把必需的进程通信管理 、中断管理以及内存管 理放在特权模式下运行, 而把设备管理模块、 文件系
推。
新定位。同时在操作系统内核符号表 中加入此 内核
模块 中定义的函数符号及变量,以便 内核 中的其它
子系统能够获得这个刚链人其中的模块的服务。例
如 内核模 块 中 n 原 来 的相 对地 址 为 1 , 由于在 装 5
入地址是 30 故重定位地址应为 3 还有原来在 0, ; 1 5 内核模块 中不知道 f, 时由于装入 内存时知道 B 3这 的内核地址是 5, 2 所以也要做相应设置 , 同时在操
。号 { }
・恭 ・鱿 pI | ● 蛮
作系统全局符号表中增加 内核模块所定义的功能函 数及变量符号。整个插入 内核模块操作系统 内核映
象如 图五 所示 。 2 模 块 技术分 析
Lu i x中超级 用户可 以通过 i m d和 r mo n n o s m d 图三 初始系统 内核映象 类似地, 图四是一个 内核模块映象, 其中除了程 命令显式地将模块载人核心或从核心 中将它卸载 。
_
结构用来将模块动态链接进核心,这是一个重要的 数据结构,主要记录两方面的信息:模块提供的函
数 、 量和 引用信 息 。前者 用于 核心 同模 块 的通 信 , 变
后者记录本模块引用其它模块的情况。两个结构间 通过由 mou 指 向它对应 的 s b l al 指针来 dl e y ot e m _b

linux 互斥锁 信号量 自旋锁 实现原理

linux 互斥锁 信号量 自旋锁 实现原理

Linux中的互斥锁、信号量和自旋锁都是常用的同步机制,用于协调多个线程或进程对共享资源的访问。

1. 互斥锁(Mutex):也称为互斥量,是最基本的锁机制。

它提供了互斥访问共享资源的能力,当一个线程获得互斥锁后,其他线程将被阻塞,直到该线程释放锁为止。

在Linux内核中,mutex 的实现原理基于底层硬件的支持,通过使用汇编指令实现锁的获取和释放。

2. 信号量(Semaphore):信号量是一种计数器,用于控制对共享资源的访问次数。

在Linux内核中,信号量的实现原理基于系统调用和内核函数,通过维护一个计数器来记录可用资源数量。

当一个线程需要访问共享资源时,会尝试获取信号量,如果计数器为正数,则该线程可以访问共享资源,否则该线程将被阻塞。

3. 自旋锁(Spinlock):自旋锁是一种基于忙等待的同步机制。

当一个线程尝试获取自旋锁时,如果锁已经被其他线程持有,则该线程将自旋(忙等待)直到锁被释放。

自旋锁适用于保护临界区代码较短且短暂占用共享资源的情况。

在Linux内核中,自旋锁的实现原理基于底层硬件的支持,通过使用汇编指令实现锁的获取和释放。

需要注意的是,以上三种锁机制都是通过系统调用或特定的库函数在用户空间或内核空间实现的。

在使用锁的过程中,需要注意
避免死锁(Deadlock)和饥饿(Starvation)等并发编程中常见的问题。

linux多线程的实现方式

linux多线程的实现方式

linux多线程的实现方式Linux是一种支持多线程的操作系统,它提供了许多不同的方式来实现多线程。

本文将介绍Linux多线程的几种实现方式。

1. 线程库Linux提供了线程库,包括POSIX线程库(Pthreads)和LinuxThreads。

Pthreads是一种由IEEE组织制定的标准线程库,它提供了一组线程API,可以在不同的操作系统上实现。

LinuxThreads 是Linux内核提供的线程实现,不同于Pthreads,它不是标准线程库,但具有更好的性能。

使用线程库可以方便地创建和管理线程,线程库提供了许多API 函数,例如pthread_create(),pthread_join(),pthread_mutex_lock()等,可以在程序中使用这些API函数来实现多线程。

2. 多进程在Linux中,多进程也是一种实现多线程的方式。

每个进程都可以有自己的线程,进程之间也可以通过IPC机制进行通信。

多进程的优点是可以更好地利用多核CPU,因为每个进程都可以在不同的CPU核心上运行。

但是,多进程的开销比多线程大,因为每个进程都需要拥有自己的地址空间和运行环境。

3. 线程池线程池是一种常见的多线程实现方式。

线程池中有多个线程可以处理任务,任务可以通过任务队列来进行分发。

当任务到达时,线程池中的线程会从任务队列中取出任务并处理。

线程池的优点是可以重复利用线程,减少创建和销毁线程的开销。

线程池还可以控制线程的数量,避免过多线程导致的性能下降。

4. 协程协程是一种轻量级线程,它不需要操作系统的支持,可以在用户空间中实现。

协程基于线程,但是不需要线程上下文切换的开销,因为协程可以在同一个线程内进行切换。

协程的优点是可以更好地利用CPU,因为不需要线程上下文切换的开销。

协程还可以更好地控制并发性,因为协程的切换是由程序员控制的。

总结Linux提供了多种实现多线程的方式,每种方式都有其优点和缺点。

在选择多线程实现方式时,需要考虑到应用程序的特点和需求,选择最适合的实现方式。

一种Linux多线程应用下内存池的设计与实现

一种Linux多线程应用下内存池的设计与实现

一种Linux多线程应用下内存池的设计与实现一种Linux多线程应用下内存池的设计与实现摘要:对内存池中内存块获取、分配机制、内存块大小、内存释放,以及在多线程环境下的安全处理等细节进行了研究,保证了在多线程环境下能够快速同时采用一种基于数组的链表机制,改进内存池中内存块的查找算法,将其时间复杂度稳定在O(1),避免了传统内存池中请求的线程数目过多时,引发的获取内存块性能下降的问题。

同时在内部设置管理线程,动态增加或删除空闲的内存块。

实验结果表明,改进后的内存池与传统的内存分配方式相比消耗更小,效率更好。

关键词:内存池;内存块查找算法;Linux;多线程动态内存管理非常耗时,对效率影响很大,然而在实际的编程应用中,却不可避免地经常要用到堆中的内存。

但是通过Malloc函数或New等进行的内存分配存在先天缺陷:(1)利用默认的内存管理函数在堆上分配和释放内存需要花费很多时间;(2)随着时间的推移,堆上会形成许多内存碎片,在应用程序进行内存申请操作将受到更大的影响,导致应用程序的运行越来越慢[1-3]。

当应用程序需要对固定大小的对象经常性地申请内存时,常会采用内存池(Memory Pool)技术来提高内存管理效率。

经典的内存池做法是一次性分配大量大小相同的小块内存,通过该技术可以极大地加快内存分配/释放过程。

内存池技术通过批量申请内存,降低了内存申请次数,从而使操作节省了时间。

在减少了内存碎片产生的同时,对性能的提升有显著的帮助。

综上,内存池有其巨大的优势,但是原有的内存池也存在一定的缺陷。

在多线程场合下应用时,每个新产生的线程如何在O(1)时间内获取内存块,如何保证其安全有效性,以及如何管理内存块的数量方面存在一定的不足的,本文对此进行研究,并给出一种新的解决方案。

1内存池制作原理以及工作流程本内存池基于多线程环境,需要考虑到多线程下数据的安全,以及快速获取内存块等条件。

在获取内存块索引号时,采用加锁的方式,虽然会耗费一定的时间,但是运行安全得到了保障。

linux多线程编程实验心得

linux多线程编程实验心得

linux多线程编程实验心得在进行Linux多线程编程实验后,我得出了一些心得体会。

首先,多线程编程是一种高效利用计算机资源的方式,能够提高程序的并发性和响应性。

然而,它也带来了一些挑战和注意事项。

首先,线程同步是多线程编程中需要特别关注的问题。

由于多个线程同时访问共享资源,可能会引发竞态条件和数据不一致的问题。

为了避免这些问题,我学会了使用互斥锁、条件变量和信号量等同步机制来保护共享数据的访问。

其次,线程间通信也是一个重要的方面。

在实验中,我学会了使用线程间的消息队列、管道和共享内存等方式来实现线程间的数据传递和协作。

这些机制可以帮助不同线程之间进行有效的信息交换和协调工作。

此外,线程的创建和销毁也需要注意。

在实验中,我学会了使用pthread库提供的函数来创建和管理线程。

同时,我也了解到线程的创建和销毁是需要谨慎处理的,过多或过少的线程都可能导致系统资源的浪费或者性能下降。

在编写多线程程序时,我还学会了合理地划分任务和资源,以充分发挥多线程的优势。

通过将大任务拆分成多个小任务,并将其分配给不同的线程来并行执行,可以提高程序的效率和响应速度。

此外,我还学会了使用调试工具来分析和解决多线程程序中的问题。

通过使用gdb等调试器,我可以观察线程的执行情况,查找潜在的错误和死锁情况,并进行相应的修复和优化。

总结起来,通过实验我深刻认识到了多线程编程的重要性和挑战性。

合理地设计和管理线程,正确处理线程同步和通信,以及使用调试工具进行分析和修复问题,都是编写高效稳定的多线程程序的关键。

通过不断实践和学习,我相信我能够更好地应用多线程编程技术,提升程序的性能和可靠性。

内核支持线程的实现方法

内核支持线程的实现方法

内核支持线程的实现方法线程是指在一个进程中,执行不同的程序流,每个程序流有自己的执行上下文和堆栈。

在多线程环境中,多个线程共享进程的资源,可以具有独立的执行流程,提高了程序的效率和并发能力。

内核支持线程是操作系统中的一项重要功能,本文将介绍内核支持线程的实现方法。

线程实现内核支持用户级线程和内核级线程的实现方式。

例如,在现代的 Linux 操作系统中,使用 POSIX 线程库来实现用户级线程,使用内核线程实现内核级线程。

用户级线程是由应用程序实现的,独立于内核空间。

每个线程都有自己的堆栈和寄存器等状态信息,不需要内核支持。

在实现用户级线程时,需要考虑以下问题:1. 线程执行的上下文切换:线程在执行时需要保存当前的执行状态,例如 CPU 寄存器、堆栈等信息。

在切换到另一个线程时,需要保存上一个线程的状态并恢复新的线程的状态。

2. 线程调度:根据不同的调度算法,选择下一个要执行的线程。

例如,使用轮转法实现线程轮流执行,使用抢占式调度方法实现优先级调度。

3. 与线程同步和互斥:不同的线程在共享同一个资源时,需要进行同步和互斥,以防止冲突和竞争条件的出现。

例如,使用互斥锁和信号量等机制来保护共享资源。

4. 线程的创建和销毁:应该提供创建和销毁线程的接口,以便用户程序管理线程的生命周期。

内核级线程是由内核实现的,能够进行更为灵活的线程调度和同步方式。

在实现内核级线程时,需要考虑以下问题:1. 线程执行的上下文切换:与用户级线程类似,内核级线程在执行时需要保存当前的状态并进行上下文切换。

不同的是,内核级线程需要考虑更多的硬件及系统资源方面的问题,如页表切换以及进程间调度和通信等问题。

2. 线程调度:内核级线程可以使用更加高级的调度算法,例如实时调度或者针对多核心处理器的调度算法等。

此外,内核级线程可以利用更多的硬件资源进行线程调度,以实现更高效的操作。

3. 与线程同步和互斥:内核级线程可以使用硬件机制来进行同步和互斥,例如微处理器上的原子操作指令等。

Linux下的多线程编程实例解析

Linux下的多线程编程实例解析

Linux下的多线程编程实例解析1 引⾔ 线程(thread)技术早在60年代就被提出,但真正应⽤多线程到操作系统中去,是在80年代中期,solaris是这⽅⾯的佼佼者。

传统的Unix也⽀持线程的概念,但是在⼀个进程(process)中只允许有⼀个线程,这样多线程就意味着多进程。

现在,多线程技术已经被许多操作系统所⽀持,包括Windows/NT,当然,也包括Linux。

为什么有了进程的概念后,还要再引⼊线程呢?使⽤多线程到底有哪些好处?什么的系统应该选⽤多线程?我们⾸先必须回答这些问题。

使⽤多线程的理由之⼀是和进程相⽐,它是⼀种⾮常"节俭"的多任务操作⽅式。

我们知道,在Linux系统下,启动⼀个新的进程必须分配给它独⽴的地址空间,建⽴众多的数据表来维护它的代码段、堆栈段和数据段,这是⼀种"昂贵"的多任务⼯作⽅式。

⽽运⾏于⼀个进程中的多个线程,它们彼此之间使⽤相同的地址空间,共享⼤部分数据,启动⼀个线程所花费的空间远远⼩于启动⼀个进程所花费的空间,⽽且,线程间彼此切换所需的时间也远远⼩于进程间切换所需要的时间。

据统计,总的说来,⼀个进程的开销⼤约是⼀个线程开销的30倍左右,当然,在具体的系统上,这个数据可能会有较⼤的区别。

使⽤多线程的理由之⼆是线程间⽅便的通信机制。

对不同进程来说,它们具有独⽴的数据空间,要进⾏数据的传递只能通过通信的⽅式进⾏,这种⽅式不仅费时,⽽且很不⽅便。

线程则不然,由于同⼀进程下的线程之间共享数据空间,所以⼀个线程的数据可以直接为其它线程所⽤,这不仅快捷,⽽且⽅便。

当然,数据的共享也带来其他⼀些问题,有的变量不能同时被两个线程所修改,有的⼦程序中声明为static的数据更有可能给多线程程序带来灾难性的打击,这些正是编写多线程程序时最需要注意的地⽅。

除了以上所说的优点外,不和进程⽐较,多线程程序作为⼀种多任务、并发的⼯作⽅式,当然有以下的优点: 1) 提⾼应⽤程序响应。

linux多核运行原理

linux多核运行原理

linux多核运行原理Linux是一个开源的操作系统内核,它的设计理念之一就是支持多核处理器。

多核处理器是一种在一个芯片上集成多个处理核心的处理器,它能够在同一个时间周期内执行多个线程,从而提高系统的处理能力和性能。

Linux多核运行原理主要包括进程调度、多线程并发执行和内核同步等几个方面。

1.进程调度:在Linux中,进程是系统中资源分配和执行的基本单位。

当系统中有多个进程需要运行时,Linux内核通过进程调度器来选择下一个要运行的进程。

进程调度器负责决定将进程分配给哪个核心进行执行,以实现负载均衡和提高系统性能。

2.多线程并发执行:Linux支持多线程并发执行,这意味着多个线程可以在同一个进程中同时执行。

多线程可以提高程序的并发性和响应性能。

在多核系统中,每个处理核心可以同时执行一个或多个线程,从而实现并行计算。

Linux创建线程的原理是通过在进程中创建多个轻量级的执行单元,每个线程独立执行自己的代码段,并共享相同的数据段和进程资源。

线程之间通过同步机制(如互斥锁、条件变量等)来保证数据的一致性和正确性。

3.内核同步:多核系统中,多个核心可以同时访问共享内存,因此需要采取适当的同步机制来保证数据的一致性和正确性。

Linux采用了多种同步原语来实现内核同步。

其中,最常用的是自旋锁和互斥锁。

自旋锁是一种忙等待锁的机制,在一个核心获得锁的同时,其他核心将循环等待直到锁被释放。

互斥锁则是一种阻塞等待锁的机制,当一个核心尝试获取锁时,如果锁已经被其他核心占用,则该核心会被阻塞,直到锁被释放。

此外,Linux还提供了信号量、条件变量、读写锁等同步原语,以满足不同场景下的同步需求。

总的来说,Linux多核运行原理通过进程调度、多线程并发执行和内核同步等机制,充分利用多核处理器的计算能力和资源,提高系统的性能和响应性能。

这也是为什么Linux在服务器领域和高性能计算领域得到广泛应用的原因。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Linux 线程实现机制分析杨沙洲国防科技大学计算机学院2003 年5 月 19 日 自从多线程编程的概念出现在Linux 中以来,Linux 多线应用的发展总是与两个问题脱不开干系:兼容性、效率。

本文从线程模型入手,通过分析目前Linux 平台上最流行的 LinuxThreads 线程库的实现及其不足,描述了Linux 社区是如何看待和解决兼容性和效率这两个问题的。

一.基础知识:线程和进程按照教科书上的定义,进程是资源管理的最小单位,线程是程序执行的最小单位。

在操作系统设计上,从进程演化出线程,最主要的目的就是更好的支持SMP 以及减小(进程/线程)上下文切换开销。

无论按照怎样的分法,一个进程至少需要一个线程作为它的指令执行体,进程管理着资源(比如cpu 、内存、文件等等),而将线程分配到某个cpu 上执行。

一个进程当然可以拥有多个线程,此时,如果进程运行在SMP机器上,它就可以同时使用多个cpu来执行各个线程,达到最大程度的并行,以提高效率;同时,即使是在单cpu的机器上,采用多线程模型来设计程序,正如当年采用多进程模型代替单进程模型一样,使设计更简洁、功能更完备,程序的执行效率也更高,例如采用多个线程响应多个输入,而此时多线程模型所实现的功能实际上也可以用多进程模型来实现,而与后者相比,线程的上下文切换开销就比进程要小多了,从语义上来说,同时响应多个输入这样的功能,实际上就是共享了除cpu 以外的所有资源的。

针对线程模型的两大意义,分别开发出了核心级线程和用户级线程两种线程模型,分类的标准主要是线程的调度者在核内还是在核外。

前者更利于并发使用多处理器的资源,而后者则更多考虑的是上下文切换开销。

在目前的商用系统中,通常都将两者结合起来使用,既提供核心线程以满足smp 系统的需要,也支持用线程库的方式在用户态实现另一套线程机制,此时一个核心线程同时成为多个用户态线程的调度者。

正如很多技术一样,"混合"通常都能带来更高的效率,但同时也带来更大的实现难度,出于"简单"的设计思路,Linux 从一开始就没有实现混合模型的计划,但它在实现上采用了另一种思路的"混合"。

在线程机制的具体实现上,可以在操作系统内核上实现线程,也可以在核外实现,后者显然要求核内至少实现了进程,而前者则一般要求在核内同时也支持进程。

核心级线程模型显然要求前者的支持,而用户级线程模型则不一定基于后者实现。

这种差异,正如前所述,是两种分类方式的标准不同带来的。

当核内既支持进程也支持线程时,就可以实现线程-进程的"多对多"模型,即一个进程的某个线程由核内调度,而同时它也可以作为用户级线程池的调度者,选择合适的用户级线程在其空间中运行。

这就是前面提到的"混合"线程模型,既可满足多处理机系统的需要,也可以最大限度的减小调度开销。

绝大多数商业操作系统(如Digital Unix 、Solaris 、Irix )都采用的这种能够完全实现POSIX1003.1c 标准的线程模型。

在核外实现的线程又可以分为"一对一"、"多对一"两种模型,前者用一个核心进程(也许是轻量进程)对应一个线程,将线程调度等同于进程调度,交给核心完成,而后者则完全在核外实现多线程,调度也在用户态完成。

后者就是前面提到的单纯的用户级线程模型的实现方式,显然,这种核外的线程调度器实际上只需要完成线程运行栈的切换,调度开销非常小,但同时因为核心信号(无论是同步的还是异步的)都是以进程为单位的,因而无法定位到线程,所以这种实现方式不能用于多处理器系统,而这个需求正变得越来 内容:一.基础知识:线程和进程二.Linux 2.4内核中的轻量进程实现三.LinuxThread 的线程机制 四.其他的线程实现机制 参考资料关于作者 对本文的评价订阅:developerWorks 时事通讯越大,因此,在现实中,纯用户级线程的实现,除算法研究目的以外,几乎已经消失了。

Linux内核只提供了轻量进程的支持,限制了更高效的线程模型的实现,但Linux着重优化了进程的调度开销,一定程度上也弥补了这一缺陷。

目前最流行的线程机制LinuxThreads所采用的就是线程-进程"一对一"模型,调度交给核心,而在用户级实现一个包括信号处理在内的线程管理机制。

Linux-LinuxThreads 的运行机制正是本文的描述重点。

二.Linux 2.4内核中的轻量进程实现最初的进程定义都包含程序、资源及其执行三部分,其中程序通常指代码,资源在操作系统层面上通常包括内存资源、IO资源、信号处理等部分,而程序的执行通常理解为执行上下文,包括对cpu的占用,后来发展为线程。

在线程概念出现以前,为了减小进程切换的开销,操作系统设计者逐渐修正进程的概念,逐渐允许将进程所占有的资源从其主体剥离出来,允许某些进程共享一部分资源,例如文件、信号,数据内存,甚至代码,这就发展出轻量进程的概念。

Linux 内核在2.0.x版本就已经实现了轻量进程,应用程序可以通过一个统一的clone()系统调用接口,用不同的参数指定创建轻量进程还是普通进程。

在内核中,clone()调用经过参数传递和解释后会调用do_fork(),这个核内函数同时也是fork()、vfork()系统调用的最终实现:其中的clone_flags取自以下宏的"或"值:在do_fork()中,不同的clone_flags将导致不同的行为,对于LinuxThreads,它使用(CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND)参数来调用clone()创建"线程",表示共享内存、共享文件系统访问计数、共享文件描述符表,以及共享信号处理方式。

本节就针对这几个参数,看看Linux内核是如何实现这些资源的共享的。

1.CLONE_VMdo_fork()需要调用copy_mm()来设置task_struct中的mm和active_mm项,这两个mm_struct数据与进程所关联的内存空间相对应。

如果do_fork()时指定了CLONE_VM开关,copy_mm()将把新的task_struct中的mm和active_mm设置成与current的相同,同时提高该mm_struct的使用者数目(mm_struct::mm_users)。

也就是说,轻量级进程与父进程共享内存地址空间,由下图示意可以看出mm_struct在进程中的地位:2.CLONE_FStask_struct中利用fs(struct fs_struct *)记录了进程所在文件系统的根目录和当前目录信息,do_fork()时调用copy_fs()复制了这个结构;而对于轻量级进程则仅增加fs->count计数,与父进程共享相同的fs_struct。

也就是说,轻量级进程没有独立的文件系统相关的信息,进程中任何一个线程改变当前目录、根目录等信息都将直接影响到其他线程。

3.CLONE_FILES一个进程可能打开了一些文件,在进程结构task_struct中利用files(struct files_struct *)来保存进程打开的文件结构(struct file)信息,do_fork()中调用了copy_files()来处理这个进程属性;轻量级进程与父进程是共享该结构的,copy_files()时仅增加files->count计数。

这一共享使得任何线程都能访问进程所维护的打开文件,对它们的操作会直接反映到进程中的其他线程。

4.CLONE_SIGHAND每一个Linux进程都可以自行定义对信号的处理方式,在task_struct中的sig(struct signal_struct)中使用一个struct k_sigaction结构的数组来保存这个配置信息,do_fork()中的copy_sighand()负责复制该信息;轻量级进程不进行复制,而仅仅增加signal_struct::count计数,与父进程共享该结构。

也就是说,子进程与父进程的信号处理方式完全相同,而且可以相互更改。

do_fork()中所做的工作很多,在此不详细描述。

对于SMP系统,所有的进程fork出来后,都被分配到与父进程相同的cpu上,一直到该进程被调度时才会进行cpu选择。

尽管Linux支持轻量级进程,但并不能说它就支持核心级线程,因为Linux的"线程"和"进程"实际上处于一个调度层次,共享一个进程标识符空间,这种限制使得不可能在Linux上实现完全意义上的POSIX线程机制,因此众多的Linux线程库实现尝试都只能尽可能实现POSIX的绝大部分语义,并在功能上尽可能逼近。

三.LinuxThread的线程机制LinuxThreads是目前Linux平台上使用最为广泛的线程库,由Xavier Leroy (Xavier.Leroy@inria.fr)负责开发完成,并已绑定在GLIBC中发行。

它所实现的就是基于核心轻量级进程的"一对一"线程模型,一个线程实体对应一个核心轻量级进程,而线程之间的管理在核外函数库中实现。

1.线程描述数据结构及实现限制LinuxThreads定义了一个struct _pthread_descr_struct数据结构来描述线程,并使用全局数组变量__pthread_handles来描述和引用进程所辖线程。

在__pthread_handles中的前两项,LinuxThreads定义了两个全局的系统线程:__pthread_initial_thread和__pthread_manager_thread,并用__pthread_main_thread表征__pthread_manager_thread的父线程(初始为__pthread_initial_thread)。

struct _pthread_descr_struct是一个双环链表结构,__pthread_manager_thread所在的链表仅包括它一个元素,实际上,__pthread_manager_thread是一个特殊线程,LinuxThreads仅使用了其中的errno、p_pid、p_priority等三个域。

而__pthread_main_thread所在的链则将进程中所有用户线程串在了一起。

经过一系列pthread_create()之后形成的__pthread_handles数组将如下图所示:新创建的线程将首先在__pthread_handles数组中占据一项,然后通过数据结构中的链指针连入以__pthread_main_thread为首指针的链表中。

相关文档
最新文档