北师大版高中数学3(必修)第三章概率第二节

合集下载

高中数学北师大版必修3 3.2 教学设计 《互斥事件》(数学北师大必修3)

高中数学北师大版必修3 3.2 教学设计 《互斥事件》(数学北师大必修3)

《互斥事件》互斥事件与对立事件是北师大版数学必修3第三章第2节的内容,新课标的要求是:理解互斥事件概念,掌握互斥事件和对立事件的区别和联系,为以后学习相互独立事件和次独立重复试验做好铺垫,因此这节课有着深化知识层面,拓展能力范围的作用,是本章的重要内容。

之 【知识与能力目标】理解互斥事件和对立事件的概念,并根据概率计算公式的应用范围和具体运算法则解决简单的概率问题。

【过程与方法目标】通过引导学生判断互斥事件和互为对立事件两个概念的对比学习,提高学生的类比、归纳、探寻事物的能力。

通过不同形式的自主学习和探究活动,体验数学发现和创造的历程,提高学生的合作能力和创造的历程,提高学生的合作解题能力和利用数学知识解决实际应用问题的能力。

【情感与态度目标】通过课堂上学生独立思考、合作讨论,有意识、有目的的培养学生自主学习的学习习惯与协作共进的团队精神;让学生体验成功,激发其求知欲,树立求真知的信心;培养学生的辩证唯物主义观点。

◆ 教材分析◆教学目标【教学重点】:互斥事件和对立事件的概念以及互斥事件的概率计算公式。

【教学难点】:互斥事件与对立事件的区别与联系。

多媒体课件一、互斥事件1.互斥事件的定义:不能同时发生的两个事件称为互斥事件例如,在一个盒子里放有大小相同的10个小球,其中有7个红球,2个绿球,1个黄球.从盒中摸出1个小球得到的结果可能是红球,也可能是绿球或黄球,并且只能是其中一种情况.我们把“从盒中摸出1个小球,得到红球”叫做事件A ,“从盒中摸出1个小球,得到绿球”叫做事件B ,“从盒中摸出1个小球,得到黄球”叫做事件C ,那么这里的事件A 、事件B 、事件C 中的任何两个是不可能同时发生的.事件A 与事件B 、事件B 与事件C 都是互斥事件.从集合的角度来看,事件A 与事件B 是互斥事件,则事件A 所包含的基本事件构成的集合与事件B 所包含的基本事件构成的集合的交集是空集.2.互斥事件有一个发生的概率设A 、B 为互斥事件,当事件A 、B 有一个发生时,我们把这个事件记作A+B .事件A+B 发生的概率等于事件A 、B 分别发生的概率的和,即P (A+B )=P (A )+P (B ),此公式也称概率和公式.例如上例中“从盒中摸出1个小球,得到红球”叫做事件A ,则P (A )=0.7;“从盒中摸出1个小球,得到绿球”叫做事件B ,则P (B )=0.2.若记“从盒中摸出1个小球,得到红球或绿球”为事件D ,则D=A+B ,此时P (D )=P (A )+P (B )=0.7+0.2=0.9.3.一般地,如果事件A1,A2,…,An 中的任何两个都是互斥事件,就说事件A1,A2,…,An 彼此互斥.从集合的角度看,几个事件彼此互斥是指由各个事件所含的结果组成的集合彼此没有公共元素,即两两交集都是空集.一般地,如果事件A 1,A 2,…,A n 两两互斥,则P (A 1+A 2+…+A n )=P (A 1)+P (A 2)◆ 教学重难点 ◆ ◆ 课前准备◆◆ 教学过程。

高一数学北师大版必修3第三章3.2.2建立概率模型

高一数学北师大版必修3第三章3.2.2建立概率模型

安边中学高一年级下学期数学学科导学稿执笔人:邹英总第课时备课组长签字:包级领导签字:学生:上课时间:7周集体备课个人空间一、课题:3.2.2.建立概率模型二、学习目标1.理解从不同的角度考虑可以建立不同的概率模型;2.能够建立概率模型来解决简单的实际问题。

三、教学过程【自主预习】阅读教材134-137页一般地,在解决实际问题中的古典概型时,对同一个古典概型,把什么看作一个________(即一次试验的结果)是人为规定的,也就是从不同的______去考虑,只要满足以下两点:①试验中所有可能出现的基本事件只有______个,每次试验只出现其中的一个结果;②每个试验结果出现的可能性______.就可以将问题转化为不同的________来解决,所得可能结果越____,那么问题的解决就变得越______.【合作探究】合作探究、概率模型的构建例1、任取一个正整数,求该数的平方的末位数字是1的概率。

合作探究、构建不同的概率模型解决问题例2、袋中装有除颜色外其他均相同的6个球,其中4个白球、2个红球,从袋中任意取出两球,求下列事件的概率:(1)A:取出的两球都是白球;(2)B:取出的两球一个是白球,另一个是红球.- 1 -【检测训练】1、一个口袋中有形状、大小都相同的6个小球,其中有2个白球、2个红球和2个黄球。

从中一次随机摸出2个球,试求:(1)2个球都是红球的概率;(2)2个球同色的概率;(3)“恰有1个球是白球的概率”是“2个球都是白球的概率”的多少倍?2、在分别写有1,2,…,9的9张卡片中任意抽取一张,则抽得卡片上的数字能被3整除的概率是( ).A.19B.16C.23D.133、有红心1,2,3和黑桃4,5这5张扑克,将牌点向下置于桌上,现从中任意抽取一张,那么抽到的牌为红心的概率为( ).A.35B.25C.15D.454、甲、乙两人各写一张贺年卡随意送给丙、丁两人中的一人,则甲、乙将贺年卡送给同一人的概率是( ).A.12B.13C.14D.155、20名高一学生,25名高二学生和30名高三学生在一起座谈,如果任意抽其中一名学生讲话,抽到高一学生的概率是______,抽到高二学生的概率是______,抽到高三学生的概率是______.6、100个人依次抓阄,决定1件奖品的归属,求最后一个人中奖的概率.反思栏- 2 -- 3 -。

北师大版高中数学课本目录标准版

北师大版高中数学课本目录标准版

必修1第一章集合§1 集合的含义与表示§2 集合的基本关系§3 集合的基本运算交集与并集全集与补集第二章函数§1 生活中的变量关系§2 对函数的进一步认识函数概念函数的表示法映射§3 函数的单调性§4 二次函数性质的再研究二次函数的图像二次函数的性质§5 简单的幂函数课题学习个人所得税的计算第三章指数函数和对数函数§1 正整数指数函数§2 指数扩充及其运算性质指数概念的扩充指数运算的性质§3指数函数指数函数的概念指数函数和的图像和性质指数函数的图像和性质§4 对数对数及其运算换底公式§5 对数函数对数函数的概念y=log2x的图像和性质对数函数的图像和性质§6 指数函数、幂函数、对数函数增长的比较第四章函数应用§1 函数与方程利用函数性质判定方程解的存在利用二分法求方程的近似解§2 实际问题的函数建模实际问题的函数刻画用函数模型解决实际问题函数建模案例必修2第一章立体几何初步§1 简单几何体简单旋转体简单多面体§2 直观图§3 三视图简单组合体的三视图由三视图还原成实物图§4 空间图形的基本关系与公理空间图形基本关系的认识空间图形的公理§5 平行关系平型关系的判定平行关系的性质§6 垂直关系垂直关系的判定垂直关系的性质§7 简单几何体的面积和体积简单几何体的侧面积棱柱、棱锥、棱台和圆柱、圆锥、圆台的体积课题学习正方体截面的形状第二章解析几何初步§1 直线与直线的方程直线的倾斜角和斜率直线的方程两条直线的位置关系两条直线的交点平面直角坐标系中的距离公式§2 圆与圆的方程圆的标准方程圆的一般方程直线与圆、圆与圆的位置关系§3 空间直角坐标系空间直角坐标系的建立空间直角坐标系中点的坐标空间两点间的距离公式必修3第一章统计§1 从普查到抽样§2 抽样方法简单随机抽样分层抽样与系统抽样§3 统计图表§4 数据的数字特征平均数、中位数、众数、极差、方差标准差§5 用样本估计总体估计总体的分布估计总体的数字特征§6 统计活动:结婚年龄的变化§7 相关性§8 最小二乘估计第二章算法初步§1 算法的基本思想算法案例分析排序问题与算法的多样性§2 算法框图的基本结构及设计顺序结构与选择结构变量与赋值循环结构§3 几种基本语句条件语句循环语句第三章概率§1 随机事件的概率频率与概率生活中的概率§2 古典概型古典概型的特征和概率计算公式建立概率模型互斥事件§3 模拟方法—概率的应用必修4第一章三角函数§1 周期现象§2 角的概念的推广§3 弧度制§4 正弦函数和余弦函数的定义与诱导公式任意角的正弦函数、余弦函数的定义单位圆与周期性单位圆与诱导公式§5 正弦函数的性质与图像从单位圆看正弦函数的性质正弦函数的图像正弦函数的性质§6 余弦函数的性质与图像正弦函数的图像正弦函数的性质§7 正切函数正切函数的定义正切函数的图像与性质正切函数的诱导公式§8 函数y=Asin 的图像§9 三角函数的简单应用第二章平面向量§1 从位移、速度、力到向量位移、速度、和力向量的概念§2 从位移的合成到向量的加法向量的加法向量的减法§3 从速度的倍数到数乘向量数乘向量平面向量基本定理§4 平面向量的坐标平面向量的坐标表示平面向量线性运算的坐标表示向量平行的坐标表示§5 从力做的功到向量的数量积§6 平面向量数量积的坐标表示§7 向量应用举例点到直线的距离公式向量的应用举例第三章三角恒等变形§1 同角三角函数的基本关系§2 两角和与差的三角函数两角差的余弦函数两角和与差的正弦、余弦函数两角和与差的正切函数§3 二倍角的三角函数必修5第一章数列§1 数列数列的概念数列的函数特征§2 等差数列等差数列等差数列的前n项和§3 等比数列等比数列等比数列的前n项和§4 数列在日常经济生活中的应用第二章解三角形§1 正弦定理与余弦定理正弦定理余弦定理§2 三角形中的几何计算§3 解三角形的实际应用举例第三章不等式§1 不等关系不等关系比较大小§2 一元二次不等式一元二次不等式的解法一元二次不等式的应用§3 基本不等式基本不等式基本不等式与最大(小)值§4 简单线性规划二元一次不等式(组)与平面区域简单线性规划简单线性规划的应用选修1-1第一章常用逻辑用语§1 命题§2 充分条件与必要条件充分条件必要条件充要条件§3 全称量词与存在量词全称量词与全称命题存在量词与特称命题全称命题与特称命题的否定§4 逻辑联结词“且”或“非” 逻辑联结词“且” 逻辑联结词“或” 逻辑联结词“非”第二章圆锥曲线与方程§1 椭圆椭圆及其标准方程椭圆的简单性质§2 抛物线抛物线及其标准方程抛物线的简单性质§3 双曲线双曲线及其标准方程双曲线的简单性质第三章变化率与导数§1 变化的快慢与变化率§2 导数的概念及其几何意义导数的概念导数的几何意义§3 计算导数§4 导数的四则运算法则导数的加法与减法法则导数的乘法与除法法则第四章导数应用§1 函数的单调性与极值导数与函数的单调性函数的极值§2 导数在实际问题中的应用实际问题中的导数的意义最大值、最小值问题选修1-2第一章统计案例§1 回归分析回归分析相关系数可线性化的回归分析§2 独立性检验条件概率与独立事件独立性检验独立性检验的基本思想独立性检验的应用第二章框图§1 流程图§2 结构图第三章推理与证明§1 归纳与类比归纳推理类比推理§2 数学证明§3 综合法与分析法综合法分析法§4 反证法第四章数系的扩充与复数的引入§1 数系的扩充与复数的引入数的概念的扩展复数的有关概念§2 复数的四则运算复数的加法与减法复数的乘法与除法选修2-1第一章常用逻辑用语§1 命题§2 充分条件与必要条件充分条件必要条件充要条件§3 全称量词与存在量词全称量词与全称命题存在量词与特称命题全称命题与特称命题的否定§4 逻辑联结词“且”“或”“非” 逻辑联结词“且” 逻辑联结词“或” 逻辑联结词“非”第二章空间向量与立体几何§1 从平面向量到空间向量§2 空间向量的运算§3 向量的坐标表示和空间向量基本定理空间向量的标准正交分解与坐标表示空间向量基本定理空间向量运算的坐标表示§4 用向量讨论垂直与平行§5 夹角的计算直线间的夹角平面间的夹角直线与平面的夹角§6 距离的计算第三章圆锥曲线与方程§1 椭圆椭圆及其标准方程椭圆的简单性质§2 抛物线抛物线及其标准方程抛物线的简单性质§3 双曲线双曲线及其标准方程双曲线的简单性质§4 曲线与方程曲线与方程圆锥曲线的共同性质直线与圆锥曲线的交点选修2-2第一章推理与证明§1 归纳与类比归纳推理类比推理§2综合法与分析法综合法分析法§3 反证法§4 数学归纳法第二章变化率与导数§1 变化的快慢与变化率§2 导数的概念及其几何意义导数的概念导数的几何意义§3 计算导数§4 导数的四则运算法则导数的加法与减法法则导数的乘法与除法法则§5 简单复合函数的求导法则第三章导数应用§1 函数的单调性与极值导数与函数的单调性函数的极值§2 导数在实际问题中的应用实际问题中的导数的意义最大值、最小值问题第四章定积分§1 定积分的概念定积分的背景—面积和路程问题定积分§2 微积分基本定理§3 定积分的简单应用平面图形的面积简单几何体的体积第五章数系的扩充与复数的引入§1 数系的扩充与复数的引入数的概念的扩展复数的有关概念§2 复数的四则运算复数的加法与减法复数的乘法与除法选修2-3第一章计数原理§1 分类加法计数原理与分步乘法计数原理分类加法计数原理分步乘法计数原理§2 排列§3 组合§4 简单计数问题§5 二项式定理二项式定理二项式系数的性质第二章概率§1 离散型随机变量及其分布列§2 超几何分布§3 条件概率与独立事件§4 二项分布§5 离散型随机变量的均值与方差§6 正态分布连续型随机变量正态分布第三章统计案例§1 回归分析回归分析相关系数可线性化的回归分析§2 独立性检验独立性检验独立性检验的基本思想独立性检验的应用选修3-1数学史选讲第一章数学发展概述§1 从数学的起源、早期发展到初等数学形成§2 从变量数学到现代数学第二章数与符号§1 数的表示与十进制§2 数的扩充§3 数学符号第三章几何学发展史§1 从经验几何到演绎几何§2 投影画与射影几何§3 解析几何第四章数学史上的丰碑——微积分§1 积分思想的渊源§2 圆周率§3 微积分第五章无限§1 初识无限§2 实数集的基数第六章明题赏析§1 费马大定理§2 哥尼斯堡七桥问题§3 高次方程§4 中国剩余定理§5 哥德巴赫猜想选修3-3 球面上的几何2007年5月第2版2009年5月第5次印刷第一章球面的基本性质§1 直线、平面与球面的位置关系§2 球面直线与球面距离第二章球面上的三角形§1 球面三角形球面上两直线的交角球面上的对称性球面三角形球面三角形的基本性质球面极三角形§2 球面三角形的全等§3 球面三角形的边角关系平面三角形的余弦定理和正弦定理球面三角形边的余弦定理球面三角形角的余弦定理和正弦定理§4 球面三角形的面积球面二角形球面三角形的面积第三章欧拉公式与非欧几何§1 球面上的欧拉公式球面三角部分球面上的欧拉公式球面上欧拉公式证明§2 简单多面体的欧拉公式凸多面体和简单多面体简单多面体的欧拉公式的证明§3 欧氏几何与球面几何的比较欧氏几何与球面几何的区别与联系另一种非欧几何选修4-1几何证明选讲2008年5月第3版2009年5月第3次印刷第一章直线、多边形、圆§1 全等与相似图形变化的不变形平移、旋转、反射相似与位似平行线分线段成比例定理直角三角形的射影定理§2 圆与直线圆周角定理圆的切线的判定和性质弦切角定理切割线定理相交弦定理§3 圆与四边形圆内接四边形托勒密定理第二章圆锥曲线§1 截面欣赏§2 直线与球、平面与球的位置关系直线与球的位置关系平面与球的关系§3 柱面与平面的截面柱面、旋转面垂直截面一般截面§4 平面截圆锥面圆锥面垂直截面一般截面§5 圆锥曲线的几何性质选修4-22008年6月第3版2009年5月第3次印刷第一章平面向量与二阶方阵§1 平面向量及向量的运算§2 向量的坐标表示及直线的向量方程§3 二阶方阵与平面向量的乘法第二章几何变换与矩阵§1 几种特殊的矩阵变换§2 矩阵变换的性质第三章变换的合成与矩阵乘法§1变换的合成与矩阵乘法§2 矩阵乘法的性质第四章逆变换与逆矩阵§1 逆变换与逆矩阵§2 初等变换与逆矩阵§3 二阶行列式与逆矩阵§4 可逆矩阵与线性方程组第五章矩阵的特征值与特征向量§1 矩阵变换的特征值与特征向量§2 特征向量在生态模型中的简单应用选修4-4坐标系与参数方程2007年5月第2版2009年5月第5次印刷第一章坐标系§1 平面直角坐标系平面直角坐标系与曲线方程平面直角坐标轴中的伸缩变换§2 极坐标系极坐标系的概念点的极坐标与直角坐标的互化直线与圆的极坐标方程曲线的极坐标方程与直角坐标方程的互化圆锥曲线统一的极坐标方程§3 柱坐标系和球坐标系第二章参数方程§1 参数方程的概念§2 直线和圆锥曲线的参数方程直线的参数方程圆的参数方程椭圆的参数方程双曲线的参数方程§3 参数方程化成普通方程§4 平摆线和渐开线平摆线渐开线选修4-5【不等式选讲】2007年5月第2版2009年5月第5次印刷第一章不等关系与基本不等式§1 不等式的性质§2 含有绝对值的等式§3 平均值不等式§4 不等式的证明§5 不等式的应用第二章几个重要的不等式§1 柯西不等式§2 排序不等式§3 数学归纳法与贝努利等式。

高中数学第3章概率321古典概型的特征和概率计算公式课件北师大版必修3

高中数学第3章概率321古典概型的特征和概率计算公式课件北师大版必修3
由上可知 A 至少获得一个合格对应的可能结果为 7 种, 所以 A 至少获得一个合格的概率为 P=78.
(2)所有受到表彰奖励可能的结果为 {A,B},{A,C},{A,D},{A,E},{A,F},{B,C}, {B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D, E},{D,F},{E,F},共 15 种, A 与 B 只有一个受到表彰奖励的结果为 {A,C},{A,D},{A,E},{A,F},{B,C},{B,D}, {B,E},{B,F},共 8 种, 则 A 与 B 只有一个受到表彰奖励的概率为 P=185.
甲、乙两人做出拳游戏(锤子、剪子、布),求: (1)平局的概率;(2)甲赢的概率;(3)乙赢的概率. 【思路启迪】 (1)求基本事件个数的方法有几种? (2)本题用哪种较为合适?
【解】 甲有 3 种不同的出拳方法,每一种出法是等可能 的,乙同样有等可能的 3 种不同出法.一次出拳游戏共有 3×3 =9 种不同的结果,可以认为这 9 种结果是等可能的,所以一 次游戏(试验)是古典概型,总的基本事件个数为 9.
连续掷三枚硬币,观察落地后这三枚硬币出现正面还是反 面.
(1)写出这个试验的基本事件. (2)求这个试验的基本事件总数. (3)“恰有两枚正面向上”这一事件包含了哪几个基本事 件?
解:(1)这个试验的基本事件为(正,正,正),(正,正, 反),(正,反,正),(正,反,反),(反,正,正),(反,正, 反),(反,反,正),(反,反,反).
解析:用古典概型的两个特征去判断即可.
选项 分析
结果
A 发芽与不发芽的概率不同
不是
B
摸到白球与黑球的概率都是12

C 基本事件有无限个
不是

高一数学北师大版必修3第三章3.2.1古典概率

高一数学北师大版必修3第三章3.2.1古典概率

安边中学高一年级下学期数学学科导学稿执笔人:邹英总第课时备课组长签字:包级领导签字:学生:上课时间:6周集体备课个人空间课题:3.2.1. 古典概型的特征和概率计算公式一、学习目标1.理解古典概型的两个基本特征,掌握古典概型的概率计算公式;2.会用列举法计算一些随机事件所含的基本事件数及其发生的概率。

三、教学过程【自主预习】阅读教材130-133页1.定义:如果一个概率模型满足:(1)试验的所有可能结果只有________个,每次试验只出现其中的________个结果;(2)每一个结果出现的可能性________。

我们把具有这样两个特征的随机试验的数学模型称为古典概型(古典的概率模型)。

2.基本事件:3.等可能事件:4.古典概型的概率计算公式:【合作探究】合作探究、基本事件个数的求法例1、将一枚均匀的硬币先后抛掷两次,计算:(1)一共有多少种不同的结果?(2)正面向上的结果有多少种?问题1、至少有一个正面向上的结果有多少种?问题2、将一颗均匀的骰子先后抛掷两次,计算(1)一共有多少种不同的结果?(2)其中向上的点数之和是质数的结果有多少种?合作探究、古典概率计算公式的应用例2、见教材132页例1。

问题3、同时掷两个均匀的骰子,计算:(1)一共有多少种不同结果?(2)其中向上的点数之和是5的概率是多少?(3)求出现的点数之和为奇数的概率是多少?【检测训练】1、袋中装有除颜色外其他均相同的红、黑球各一个,现依次有放回地随机摸取3次,每次摸取一个球。

(1)试问:一共有多少种不同的结果?请列出所有可能的结果;(2)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概率。

2、抛掷一枚均匀的正方体骰子,向上的点数是5或6的概率是( ).A.16 B.13 C.12 D.13、在5张卡片上分别写上数字1,2,3,4,5,然后将它们混合后,再任意排成一行,则得到的五位数能被2或5整除的概率是( ).A.0.2 B.0.4 C.0.6 D.0.84、掷一枚骰子,骰子落地时向上的点数是3的倍数的概率是_________5、见教材134页练习反思栏。

高中数学第三章概率3.2古典概型3.2.1古典概型的特征和概率计算公式学案北师大版3剖析

高中数学第三章概率3.2古典概型3.2.1古典概型的特征和概率计算公式学案北师大版3剖析
P(“出现偶数点”)=“出现偶数点”所包含的基本领件的个数÷基本领件的总数;
P(“出现不小于2点”)=“出现不小于2点”所包含的基本领件的个数÷基本领件的总数.
思索6:一般地,对于古典概型,事务A在一次试验中发生的概率如何计算?
P(A)=事务A所包含的基本领件的个数÷基本领件的总数
典型例题
例2单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案.假如考生驾驭了考查的内容,他可以选择唯一正确的答案,假设考生不会做,他随机地选择一个答案,问他答对的概率是多少?
P(“含有不合格产品”)=18/30=0.6
点评:本题的关键是对依次不放回抽取总共列多少基本领件的考查。
变式训练:
一个盒子里装有标号为1,2,3,4,5的5张标签,依据下列条件求两张标签上的数字为相邻整数的概率:
(1)标签的选取是无放回的:
(2)标签的选取是有放回的:
归纳小结
1.基本领件是一次试验中全部可能出现的最小事务,且这些事务彼此互斥.试验中的事务A可以是基本领件,也可以是有几个基本领件组合而成的.
(2)掷一枚质地匀称的骰子的试验。
有哪几种可能结果?
在试验(1)中结果只有两个,即“正面朝上”或“反面朝上”它们都是随机的;在试验(2)中全部可能的试验结果只有6个,即出现“1点”“2点”“3点”“4点”“5点”“6点”它们也都是随机事务。我们把这类随机事务称为基本领件
综上分析,基本领件有哪两个特征?
例4假设储蓄卡的密码由4个数字组成,每个数字可以是0,1,2,…,9十个数字中的随意一个.假设一个人完全遗忘了自己的储蓄卡密码,问他到自动取款机上随机试一次密码就能取到钱的概率是多少?
解:一个密码相当于一个基本领件,总共有10000个基本领件,它们分别是0000,0001,0002,…

北师大版高中数学必修3课件3.2互斥事件课件(数学北师大必修3)

北师大版高中数学必修3课件3.2互斥事件课件(数学北师大必修3)
北京师范大学出版社 高二 | 必修3
第三章 · 概率
§2.3 互斥事件
北京师范大学出版社 高二 | 必修3
学目标
1.理解互斥事件、对立事件的含义,会判断所给事件的类型; 2.掌握互斥事件的概率加法公式并会应用; 3.正确理解互斥、对立事件的关系并能正确区分、判断.
北京师范大学出版社 高二 | 必修3
理由是:从40张扑克牌中,任意抽取1张,“抽出红色牌”与“抽出黑色牌
”,两个事件不可能同时发生,且其中必有一个发生,所以它们既是互斥事 件,又是对立事件.
北京师范大学出版社 高二 | 必修3
(3)不是互斥事件,当然不可能是对立事件.
理由是:从40张扑克牌中任意抽取 1张,“抽出的牌的点数为 5的倍数”与 “抽出的牌的点数大于9”这两个事件可能同时发生,如抽得点数为10,因 此,二者不是互斥事件,当然不可能是对立事件.
P(A1)+P(A2)+… +P(An)
北京师范大学出版社 高二 | 必修3
3.对立事件 (1)两个互斥事件必有一个发生,则称这两个事件为对立事件,事件A的对立 事件记为. (2)对立事件A与必有一个发生,故A+是必然事件,从而,我们可以得到一 个重要公式:P()=1-P(A).
北京师范大学出版社 高二 | 必修3
m = ,几何概型的概率计算公式为P 2.古典概型的概率计算公式为P=P _______ n
d的测度 P= D的测度 =____________.
北京师范大学出版社 高二 | 必修3
知新益能
1.互斥事件
不能同时发生 的两个事件称为互斥事件. (1)_______________ (2) 如 果 事 件 A1 , A2 , … , An 中 的 任何两个都是 _____________ 互斥事件 ,就说事件A1,A2,…,An彼此互斥. __________ (3) 设 A , B为互斥事件,若事件 A , B__________ 至少有一个 发生,我们把这个事件记 作A+B.

高中数学 第3章 概率 2 第1课时 古典概型的特征和概率计算公式教学案 北师大版必修3-北师大版高

高中数学 第3章 概率 2 第1课时 古典概型的特征和概率计算公式教学案 北师大版必修3-北师大版高

第1课时 古典概型的特征和概率计算公式[核心必知]1.古典概型具有以下两个特征的随机试验的数学模型称为古典概型(古典的概率模型).(1)有限性:即试验的所有可能结果只有有限个,每次试验只出现其中的一个结果;(2)等可能性:即每一个试验结果出现的可能性相同.2.古典概型概率公式对于古典概型,通常试验中的某一事件A 是由几个基本事件组成的.如果试验的所有可能结果(基本事件)数为n ,随机事件A 包含的基本事件数为m ,那么事件A 的概率规定为P (A )=事件A 包含的可能结果数试验的所有可能结果数=m n. [问题思考]1.掷一枚骰子共有多少种不同的结果?提示:6种.2.以下试验中,是古典概型的有( )A .放飞一只信鸽观察其能否飞回B .从规格直径为(250±0.6)mm 的一批合格产品中任意取一件,测量其直径C .抛掷一枚硬币,观察其出现正面或反面D .某人射击中靶或不中靶提示:只有选项C 具有:(1)有限性:试验中所有可能出现的基本事件只有有限个;(2)等可能性:每个基本事件出现的可能性相等.讲一讲1.以下试验中是古典概型的是( )A.在适宜的条件下,种下一粒种子,观察它是否发芽B.口袋里有2个白球和2个黑球,这4个球除颜色外完全相同,从中任取一球C.向正方形ABCD内随机抛掷一点,该点落在正方形内任意一点都是等可能的D.在区间[0,6]上任取一点,求此点小于2的概率[尝试解答][答案] B判断一个试验是否为古典概型,关键是看该试验是否具有有限性和等可能性两个特征.练一练1.以下概率模型:①在平面直角坐标系内,从横坐标和纵坐标都是整数的所有点中任取一点;②某射手射击一次,可能命中0环,1环,2环,…,10环;③某小组有男生5人,女生3人,从中任选1人作演讲;④一只使用中的灯泡寿命长短;⑤中秋节前夕,某市工商部门调查辖区内某品牌的月饼质量,给该品牌月饼评“优〞或“差〞.其中属于古典概型的有________.解析:①不属于,原因:所有横坐标和纵坐标都是整数的点有无限多个,不满足有限性;②不属于,原因:命中0环,1环,…,10环的概率不一定相同,不满足等可能性;③属于,原因:显然满足有限性,且任选1人与学生的性别无关,是等可能的;④不属于,原因:灯泡的寿命是任何一个非负实数,有无限多种可能,不满足有限性;⑤不属于,原因:该品牌月饼评为“优〞与评为“差〞的概率不一定相同,不满足等可能性.答案:③讲一讲2.先后抛掷两枚大小相同的骰子,求点数之和能被3整除的概率.[尝试解答] 先后抛掷两枚大小相同的骰子,结果如下:(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)共有36种不同的结果.记“点数之和能被3整除〞为事件A ,那么事件A 包含的基本事件共12个:(1,2),(2,1),(1,5),(5,1),(2,4),(4,2),(3,3),(3,6),(6,3),(4,5),(5,4),(6,6).故P (A )=1236=13.求解古典概型问题的一般步骤:(1)计算所有可能的基本事件数n ;(2)计算事件A 包含的基本事件数m ;(3)计算事件A 的概率P (A )=事件A 包含的基本事件数试验的所有可能的基本事件数=m n. 运用公式的关键在于求出m 、n .在求n 时,必须确定所有可能的基本事件是等可能发生的. 练一练2.袋中装有除颜色外其他均相同的6个球,其中4个白球、2个红球,从袋中任取两球,求以下事件的概率:(1)A :取出的两球都是白球;(2)B :取出的两球一个是白球,另一个是红球.解:设4个白球的编号为1,2,3,4,2个红球的编号为5、6.从袋中的6个球中任取两球的取法有:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15种取法,且每种取法都是等可能发生的.(1)从袋中的6个球中任取两球,所取的两球全是白球的取法总数,即为从4个白球中任取两球的方法总数,共有6种,即为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).所以P (A )=615=25; (2)从袋中的6个球中任取两球,其中一个是白球,另一个是红球的取法有(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),共8种.所以P (B )=815. [解题高手][易错题]有1号、2号、3号3个信箱和A 、B 、C 、D 4封信,假设4封信可以任意投入信箱,投完为止,其中A 恰好投入1号或2号信箱的概率是多少?[错解] 每封信投入1号信箱的机会均等,而且所有结果数为4,故A 投入1号或2号信箱的概率为24=12. [错因] 应该考虑A 投入各个信箱的概率,而不能考虑成四封信投入某一信箱的概率.[正解] 由于每封信可以任意投入信箱,对于A 投入各个信箱的可能性是相等的,一共有3种不同的结果,投入1号信箱或2号信箱有2种结果,所以所求概率为23.1.抛掷一枚均匀的正方体骰子,向上的点数是5或6的概率是( )A.16B.13C.12D .1 解析:选B 掷一枚骰子出现向上的点数为1,2,3,4,5,6,共6种情况.P =m n =26=13. 2.有100X 卡片(从1号到100号),从中任取一X 卡片,那么取得的卡片是7的倍数的概率是( )A.320B.750C.13100D.325解析:选B ∵n =100,m =14,∴P =m n =14100=750. 3.一枚硬币连掷2次,恰好出现一次正面的概率是( )A.12B.14C.34D .0 解析:选 A 列举出所有基本事件,找出“只有一次正面〞包含的结果.一枚硬币连掷2次,基本事件有(正,正),(正,反),(反,正),(反,反)共4个,而只有一次出现正面的包括(正,反),(反,正)2个,故其概率为24=12. 4.以下试验是古典概型的为________.①从6名同学中选出4人参加数学竞赛,每人被选中的可能性大小②同时掷两颗骰子,点数和为7的概率③近三天中有一天降雨的概率④10人站成一排,其中甲、乙相邻的概率解析:①②④是古典概型,因为符合古典概型的定义和特点.③不是古典概型,因为不符合等可能性,受多方面因素影响.答案:①②④5.(某某高考)假设甲、乙、丙三人随机地站成一排,那么甲、乙两人相邻而站的概率为________.解析:三人站成一排有:甲乙丙、甲丙乙、乙甲丙、乙丙甲、丙甲乙、丙乙甲,共6种排法,其中甲、乙相邻有4种排法,所以甲、乙两人相邻而站的概率为46=23. 答案:236.设有关于x 的一元二次方程x 2+2ax +b 2=0,假设a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.解:设事件A 为“方程x 2+2ax +b 2=0有实根〞.当a ≥0,b ≥0时,方程x 2+2ax +b 2=0有实根意味着Δ=(2a )2-4b 2≥0,即a ≥b .基本事件有(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),共12个,其中第1个数表示a 的取值,第2个数表示b 的取值.而事件A 包含9个基本事件,故事件A 发生的概率为P (A )=912=34.一、选择题1.下面是古典概型的是( )A .任意抛掷两粒骰子,所得的点数之和作为基本事件B .为求任取一个正整数,该正整数平方值的个位数字是1的概率,将取出的正整数作为基本事件C .从甲地到乙地共有n 条路线,求某人正好选中最短路线的概率D .抛掷一枚均匀硬币至首次出现正面为止解析:选C 对于A ,所得点数之和为基本事件,个数虽有限但不是等可能发生的;对于B ,D ,基本事件的个数都是无限的;只有C 是古典概型.2.以下对古典概型的说法中正确的选项是( )①试验中所有可能出现的基本事件只有有限个;②每个事件出现的可能性相等;③每个基本事件出现的可能性相等;④基本事件总数为n ,随机事件A 假设包含k 个基本事件,那么P (A )=k n.A .②④B .①③④C .①④D .③④解析:选B ②中所说的事件不一定是基本事件,所以②不正确;根据古典概型的特点及计算公式可知①③④正确.3.在5X 卡片上分别写上数字1,2,3,4,5,然后将它们混合后,再任意排成一行,那么得到的五位数能被2或5整除的概率是( )A .0.2B .0.4C .0.6D .0.8解析:选C 一个五位数能否被5整除关键看其个位数字,而由1,2,3,4,5组成的五位数中,1,2,3,4,5出现在个位是等可能的.所以个位数字的基本事件有1,2,3,4,5,“能被2或5整除〞这一事件中含有基本事件2,4,5,概率为35=0.6. 4.从1,2,3,4这四个数字中,任取两个不同的数字构成一个两位数,那么这个两位数大于30的概率为( )A.12B.13C.14D.15解析:选 A 从1,2,3,4这四个数字中,任取两个不同的数字,可构成12个两位数:12,13,14,21,23,24,31,32,34,41,42,43,其中大于30的有:31,32,34,41,42,43共6个,所以所得两位数大于30的概率为P =612=12. 5.4X 卡片上分别写有数字1,2,3,4,从这4X 卡片中随机抽取2X ,那么取出的2X 卡片上的数字之和为奇数的概率为( )A.13B.12C.23D.34解析:选C 从4X 卡片中随机抽取2X ,对应的基本事件有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),故基本事件总数n =6.且每个基本事件发生的可能性相等.设事件A =“取出的2X 卡片上的数字之和为奇数〞,那么A 中所含的基本事件为:(1,2),(1,4),(2,3),(3,4),故m =4,综上可知所求事件的概率P (A )=m n =23. 二、填空题6.三X 卡片上分别写上字母E ,E ,B ,将三X 卡片随机地排成一行,恰好排成英文单词BEE 的概率为________.解析:三X 卡片的排列方法有EEB ,EBE ,BEE ,共3种.且等可能出现,那么恰好排成英文单词BEE 的概率为13. 答案:137.(某某高考)从1,2,3,4这四个数中一次随机地取两个数,那么其中一个数是另一个数的两倍的概率是________.解析:采用枚举法:从1,2,3,4这四个数中一次随机取两个数,基本事件为:{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6个,符合“一个数是另一个数的两倍〞的基本事件有{1,2},{2,4},共2个,所以所求的概率为13. 答案:138.将一枚质地均匀的硬币先后抛掷三次,恰好出现一次正面向上的概率是________.解析:所有的基本事件为(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反),共8组.设“恰好出现1次正面向上〞为事件A ,那么A 包含(正,反,反),(反,正,反),(反,反,正),共3个基本事件,所以P (A )=38.答案:38三、解答题9.设b 和c 分别是先后抛掷一枚骰子得到的点数,求方程x 2+bx +c =0有实根的概率. 解:设事件A 为“方程x 2+bx +c =0有实根〞,那么 A ={(b ,c )|b 2-4c ≥0,b ,c =1,2,…,6}.而(b ,c )共有(1,1)(1,2)(1,3)(1,4)(1,5)(1,6),(2,1)(2,2)(2,3)(2,4)(2,5)(2,6),(3,1)(3,2)(3,3)(3,4)(3,5)(3,6),(4,1)(4,2)(4,3)(4,4)(4,5)(4,6),(5,1)(5,2)(5,3)(5,4)(5,5)(5,6),(6,1)(6,2)(6,3)(6,4)(6,5)(6,6),共36组.其中,可使事件A 成立的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(4,4),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共19组.故事件A 的概率为P (A )=1936. 10.(某某高考)袋中有五X 卡片,其中红色卡片三X ,标号分别为1,2,3;蓝色卡片两X ,标号分别为1,2.(1)从以上五X 卡片中任取两X ,求这两X 卡片颜色不同且标号之和小于4的概率;(2)向袋中再放入一X 标号为0的绿色卡片,从这六X 卡片中任取两X ,求这两X 卡片颜色不同且标号之和小于4的概率.解:(1)标号为1,2,3的三X 红色卡片分别记为A ,B ,C ,标号为1,2的两X 蓝色卡片分别记为D ,E ,从五X 卡片中任取两X 的所有可能的结果为:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E ),共10种.由于每一X 卡片被取到的机会均等,因此这些基本事件的出现是等可能的.从五X 卡片中任取两X ,这两X 卡片颜色不同且它们的标号之和小于4的结果为:(A ,D ),(A ,E ),(B ,D ),共3种.所以这两X 卡片颜色不同且它们的标号之和小于4的概率为310. (2)记F 为标号为0的绿色卡片,从六X 卡片中任取两X 的所有可能的结果为:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15种.由于每一X卡片被取到的机会均等,因此这些基本事件的出现是等可能的.从六X卡片中任取两X,这两X卡片颜色不同且它们的标号之和小于4的结果为:(A,D),(A,E),(B,D),(A,F),(B,F),(C,F),(D,F),(E,F),共8种.所以这两X卡片颜色不同且它们的标号之和小于4的概率为815.。

高中数学 第三章 概率 2.2 建立概率模型教案 北师大版必修3-北师大版高一必修3数学教案

高中数学 第三章 概率 2.2 建立概率模型教案 北师大版必修3-北师大版高一必修3数学教案

2.2 建立概率模型整体设计教学分析本节教材通过例2的四种模型的所有可能结果数越来越少,调动起学生思考探究的兴趣;教师在教学中要注意通过引导学生体会不同模型的特点以及对各种方法进行比较,提高学生分析和解决问题的能力.三维目标1.使学生能建立概率模型来解决简单的实际问题,提高学生分析问题和解决问题的能力.2.通过学习建立概率模型,培养学生的应用能力.重点难点教学重点:建立古典概型.教学难点:建立古典概型.课时安排1课时教学过程导入新课思路1.计算事件发生概率的大小时,要建立概率模型,把什么看成一个基本事件是人为规定的.今天我们学习如何建立概率模型,教师点出课题.思路2.解决实际应用问题时,要转化为数学问题来解决,即建立数学模型,这是高中数学的重点内容之一,也是高考的必考内容,同样解决概率问题也要建立概率模型,教师点出课题.推进新课新知探究提出问题1.回顾解应用题的步骤?2.什么样的概率属于古典概型?讨论结果:1.解应用题的一般程序:①读:阅读理解文字表达的题意,分清条件和结论,理顺数量关系,这一关是基础.②建:将文字语言转化为数学语言,利用数学知识,建立相应的数学模型.熟悉基本数学模型,正确进行建“模”是关键的一关.③解:求解数学模型,得到数学结论.一要充分注意数学模型中元素的实际意义,更要注意巧思妙作,优化过程.④答:将数学结论还原给实际问题的结果.2.同时满足以下两个条件的概率属于古典概型:①试验的所有基本事件只有有限个,每次试验只出现其中一个基本事件;②每一次试验中,每个基本事件出现的可能性相等.应用示例思路1例1 口袋里装有2个白球和2个黑球,这4个球除颜色外完全相同,4个人按顺序依次从中摸出一球.试计算第二个人摸到白球的概率.分析:我们只需找出4个人按顺序依次摸球的所有可能结果数和第二个人摸到白球的可能结果数.为此考虑用列举法列出所有可能结果.解法一:用A 表示事件“第二个人摸到白球”.把2个白球编上序号1,2;2个黑球也编上序号1,2.于是,4个人按顺序依次从袋中摸出一球的所有可能结果,可用树状图直观地表示出来(如图1).图1树状图是进行列举的一种常用方法.从上面的树状图可以看出,试验的所有可能结果数为24.由于口袋内的4个球除颜色外完全相同,因此,这24种结果的出现是等可能的,试验属于古典概型.在这24种结果中,第二个人摸到白球的结果有12种,因此“第二个人摸到白球”的概率P(A)=2412=21, 这与第一节的模拟结果是一致的.还可以建立另外的模型来计算“第二个人摸到白球”的概率.如果建立的模型能使得试验的所有可能结果数变少,那么我们计算起来就更简便.解法二:因为是计算“第二个人摸到白球”的概率,所以我们可以只考虑前两人摸球的情况.前两人依次从袋中摸出一球的所有可能结果可用树状图列举出来(如图2).图2从上面的树状图可以看出,这个模型的所有可能结果数为12,因为口袋里的4个球除颜色外完全相同,因此,这12种结果的出现是等可能的,这个模型也是古典概型.在上面12种结果中,第二个人摸到白球的结果有6种,因此“第二个人摸到白球”的概率P(A)=126=21. 这里,我们是根据事件“第二个人摸到白球”的特点,利用试验结果的对称性,只考虑前两人摸球的情况,从而简化了模型.还可以从另外一个角度来考虑这个问题.因为口袋里的4个球除颜色外完全相同,因此,可以对2个白球不加区别,对2个黑球也不加区别,这样建立的模型的所有可能结果数就会更少,由此得到例2的另一种解法.解法三:只考虑球的颜色,4个人按顺序依次从袋中摸出一球的所有可能结果可用树状图列举出来(如图3).图3试验的所有可能结果数为6,并且这6种结果的出现是等可能的,这个模型是古典概型.在这6种结果中,第二个人摸到白球的结果有3种,因此“第二个人摸到白球”的概率P(A)=63=21. 下面再给出一种更为简单的解法.解法四:只考虑第二个人摸出的球的情况,他可能摸到这4个球中的任何一个,这4种结果出现的可能性是相同的.第二个人摸到白球的结果有2种,因此“第二个人摸到白球”的概率P(A)=42=21. 点评:画树状图进行列举是计算结果个数的基本方法之一.解法一利用树状图列出了4个人依次从袋中摸出一球的所有可能结果,共有24种,其中第二个人摸到白球的结果有12种,因此算得“第二个人摸到白球”的概率为21. 解法二利用试验结果的对称性,只考虑前两人摸球的情况,所有可能结果减少为12种,简化了模型.解法三只考虑球的颜色,对2个白球不加区别,对2个黑球也不加区别,所有可能结果只有6种.解法四只考虑第二个人摸出的球的情况,所有可能结果变为4种,这个模型最简单.尽管解法二,三,四建立的模型在解决该问题时比解法一简便,但解法一也有它的优势,利用解法一可以计算出4个人顺次摸球的任何一个事件的概率,而解法二,三,四却不能做到.教师要提醒学生,本章古典概率的计算,解法一是最基本的方法.对于一个实际问题,有时从不同的角度考虑,可以建立不同的古典概型来解决.变式训练小明和小刚正在做掷骰子游戏,两人各掷一枚骰子,当两枚骰子点数之和为奇数时,小刚得1分,否则小明得1分.这个游戏公平吗?分析:计算双方获胜的概率,来判断游戏是否公平.解:设(x,y)表示小明抛掷骰子点数是x ,小刚抛掷骰子点数是y ,则该概率属于古典概型.所有的基本事件是:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3), (4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3), (6,4),(6,5),(6,6),即有36种基本事件.其中点数之和为奇数的基本事件有:(1,2),(1,4),(1,6),(2,1),(2,3),(2,5),(3,2),(3,4),(3,6),(4,1),(4,3),(4,5),(5,2),(5,4),(5,6),(6,1),(6,3),(6,5).即有18种.所以小刚得1分的概率是3618=21. 则小明得1分的概率是1-21=21. 则小明获胜的概率与小刚获胜的概率相同,游戏公平.思路2例1 (2007广东高考,文8)在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是( ) A.103 B.51 C.101 D.121 分析:用(x,y)(x≠y)表示从这5个球中随机取出2个小球上数字的结果,其结果有: (1,2)、(1,3)、(1,4)、(1,5)、(2,3)、(2,4)、(2,5)、(3,4)、(3,5)、(4,5),即共有10种,取出的小球标注的数字之和为3或6的结果有:(1,2)、(1,5)、(2,4),共有3种,所以取出的小球标注的数字之和为3或6的概率为P(A)= 103. 答案:A点评:求古典概型的概率的步骤:①利用枚举法计算基本事件的总数;②利用枚举法计算所求事件所含基本事件的个数;③代入古典概型的概率计算公式求得.变式训练1.(2007全国高考卷Ⅰ,文13)从某自动包装机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):该自动包装机包装的食盐质量在497.5 g —501.5 g 之间的概率约为___________.分析:观察表格可得在497.5 g —501.5 g 之间的食盐有:498,501,500,501,499共5袋,则食盐质量在497.5 g —501.5 g 之间的概率P(A)=205=0.25. 答案:0.252.某校要从高一、高二、高三共2 007名学生中选取50名组成访问团,若采用下面的方法选取:先用分层抽样的方法从2 007人中剔除7人,剩下的2 000人再按简单随机抽样的方法进行,则每人入选的概率( ) A.不全相等 B.均不相等C.都相等且为200750D.都相等且为401 分析:按分层抽样抽取样本时,每个个体被抽到的概率是相等的,都等于200750. 答案:C知能训练1.袋中有4个红球,5个白球,2个黑球,从里面任意摸2个小球,不是基本事件.( )A.{正好2个红球}B.{正好2个黑球}C.{正好2个白球}D.{至少一个红球}分析:至少一个红球包含:一红一白或一红一黑或2个红球,所以{至少一个红球}不是基本事件,其他事件都是基本事件.答案:D2.抛掷一枚质地均匀的硬币,如果连续抛掷10 000次,那么第9 999次出现正面朝上的概率是( )A.99991B.100001C.100009999D.21 答案:D3.有4条线段,长度分别为1、3、5、7,从这四条线段中任取三条,则所取三条线段能够成一个三角形的概率是( )A.41B.31C.21D.52 答案:A4.(2007全国高考卷Ⅱ,文13)一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为____________.分析:按简单随机抽样抽取样本时,每个个体被抽到的概率是相等的,都等于1005,即201. 答案:201 5.某小组有5名女生,3名男生,现从这个小组中任意选出一名组长,则其中一名女生小丽当选为组长的概率是__________.答案:81 6.袋中有6个球,其中4个白球,2个红球,从袋中任意取出两球,求下列事件的概率:(1)事件A :取出的两球都是白球;(2)事件B :取出1个是白球,另1个是红球.分析:首先应求出任取两球的基本事件的总数,然后需分别求出事件A 的个数和事件B 的个数,运用公式求解即可.解:设4个白球的编号为1,2,3,4,两个红球的编号为5,6.从袋中的6个小球中任取两个的基本事件有:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)共15个.(1)取出的全是白球的基本事件,共有6个,即为(1,2),(1,3),(1,4), (2,3),(2,4),(3,4),∴取出的两个球都是白球的概率为P(A)=156. (2)取出一个红球,而另一个为白球的基本事件,共有8个,即为(1,5),(1,6), (2,5),(2,6), (3,5),(3,6), (4,5),(4,6),∴取出的两个球一个是白球,另一个是红球的概率为P(B)=158. 拓展提升1.连续掷两次骰子,以先后得到的点数m,n 为点P(m,n)的坐标,设圆Q 的方程为x 2+y 2=17.(1)求点P 在圆Q 上的概率;(2)求点P 在圆Q 外部的概率.解:m 的值的所有可能是1,2,3,4,5,6,n 的值的所有可能是1,2,3,4,5,6,所以,点P(m ,n)的所有可能情况有6×6=36种,且每一种可能出现的可能性相等,本问题属古典概型问题.(1)点P 在圆Q 上只有P(1,4),P(4,1)两种情况,根据古典概型公式,点P 在圆Q 上的概率为181362=. (2)点P 在圆Q 内的坐标是:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),共有8点,所以点P 在圆Q 外部的概率为1-18133682=+. 2.将一枚质地均匀的硬币连续投掷3次,求以下事件的概率:(1)3次正面向上;(2)2次正面向上,1次反面向上.解:(1)将一枚质地均匀的硬币连续投掷3次的基本事件总数为8,又事件“3次正面向上”共有基本事件数为1,设事件“3次正面向上”为A, ∴P(A)=81. ∴事件“3次正面向上”发生的概率为81. (2)又事件“2次正面向上,1次反面向上”共有基本事件数为3,设事件“2次正面向上,1次反面向上”为B,∴P(B)=83. ∴事件“2次正面向上,一次反面向上”发生的概率为83. 课堂小结本节课学习了同一个古典概型的概率计算问题,可以建立不同的概率模型来解决. 作业习题3-2 A 组 7、8.设计感想本节教学设计过程中,注重培养学生的应用能力,以及古典概型的计算方法.在实际教学过程中,教师要根据学生的实际,重点指导学生如何建立古典概型.。

频率与概率(北师大版必修三)

频率与概率(北师大版必修三)
m 生的频率 总是接近于某个常数,在它附近 n
摆动,这时就把这个常数叫做事件 A 的概 率. 3.概率的性质: 0 P A 1
21
小结 : 1.随机事件、必然事件、不可 能事件的概念;2.概率的定义和性质 课后作业:1.课本上P131A组1,3。 2.上抛一个刻着1,2,3,4,5,6字 样的正六面体方块; (1)出现字样为“5”的事件的概率是 多少?(2)出现字样为“0”的事件的 概率是多少? 教后反思:
8
频率的定义与性质
1. 定义
在相同的条件下, 进行了 n 次试验 , 在这 n 次试验中, 事件 A 发生的次数 nA 称为事件 A 发 nA 生的频数.比值 称为事件 A 发生的频率, 并记 n 成 f n ( A).
9
实例 将一枚硬币抛掷 5 次、50 次、500 次, 各做 7 遍, 观察正面出现的次数及频率. n5 n 50 试验 序号 nH f f nH
2 3 1 5 1 2 4 123 4 5 6 7 0.4 0.6 0.2
2
n 500 f nH
0.502 0.498 0.512
0.44 251 22 1 在 处波动较大 249 25 0.50 21 0.42 256
1 在 处波动较小 20.2 24 0.48
随n的增大, 频率 f 呈现出稳定性 1.0 247 0.494 25 0.50
(5)“掷一枚硬币,出现正面”
(6)“在标准大气压下且温度低于0℃时,雪融化” 不可能发生
4
思考:
1、通过观察上述事件,分析各事件有什么特点? 2、按事件发生的结果,事件可以如何来分类?
1、“结果”是否发生与“一定条件”有直接关系
2、有些事件的“结果”一定发生;有些事件 的“结果” 一定不发生;有些事件的“结果” 可能发生也可能不发生。 3、按事件结果发生与否来进行分类

高中数学 第三章 概率 3.2 古典概型 3.2.1 古典概型的特征和概率计算公式课件 北师大版必修3

高中数学 第三章 概率 3.2 古典概型 3.2.1 古典概型的特征和概率计算公式课件 北师大版必修3

对于选项A,因为发芽与不发芽的概率不同,所以不是古典概型;
对于选项
B,因为摸到白球与黑球的概率都是
1 2
,
所以是古典概
型;
对于选项C,因为基本事件有无限个,所以不是古典概型;
对于选项D,因为命中10环,命中9环,……,命中0环的概率不相同,
所以不是古典概型.
答案:B
题型一
题型二
题型三
题型四
古典概型的概率计算 【例3】 某商场举行购物抽奖促销活动,规定每位顾客从装有编 号为0,1,2,3四个相同小球的抽奖箱中,每次取出一个球记下编号后 放回,连续取两次.若取出的两个小球号码相加之和等于6,则中一等 奖;若等于5,则中二等奖;若等于4或3,则中三等奖. (1)求中三等奖的概率; (2)求中奖的概率. 分析:分别写出所有基本事件,利用古典概型的概率计算公式求 出概率.
【做一做2-1】 袋中有2个红球,2个白球,2个黑球,从里面任意摸 出2个小球,下列事件不是基本事件的是( )
A.{正好2个红球} B.{正好2个黑球} C.{正好2个白球} D.{至少1个红球} 解析:至少1个红球包含:一红一白或一红一黑或2个红球,所以{至 少1个红球}不是基本事件,其他事件都是基本事件. 答案:D
【做一做2-2】 已知一个家庭有两个小孩,则所有的基本事件是
() A.(男,女),(男,男),(女,女) B.(男,女),(女,男) C.(男,男),(男,女),(女,男),(女,女) D.(男,男),(女,女) 解析:用坐标法表示:将第一个小孩的性别放在横坐标位置,第二
个小孩的性别放在纵坐标位置,可得4个基本事件(男,男),(男,女),(女, 男),(女,女).
【做一做1】 下列试验中,是古典概型的有( ) A.抛掷一枚图钉,发现钉尖朝上 B.某人到达路口看到绿灯 C.抛掷一粒均匀的正方体骰子,观察向上的点数 D.从10 cm3水中任取1滴,检查有无细菌 答案:C

北师大版高中数学必修三第三章 概率.docx

北师大版高中数学必修三第三章  概率.docx

第三章概率§1随机事件的概率1.1频率与概率双基达标(限时20分钟)1.下列事件:①物体在重力作用下会自由下落;②方程x2-2x+3=0有两个不相等的实数根;③下周日会下雨;④某寻呼台每天某一时段内收到传呼的次数少于10次.其中随机事件的个数为().A.1 B.2 C.3 D.4解析结合必然事件、不可能事件、随机事件的定义作出判断.由定义可知,①是必然事件;②是不可能事件;③④是随机事件,故应选B.答案 B2.下列说法中,正确的是().A.随机事件没有结果B.随机事件的频率与概率一定不相等C.在条件不变的情况下,随机事件的概率不变D.在一次试验结束后,随机事件的频率是变化的解析A选项错误.虽然随机事件的结果事先不确定,但不等于没有结果;B 选项错误,随机事件的频率与概率有时会相等;D选项错误,试验已结束,频率便可算出,不会再变化.答案 C3.某人将一枚硬币连掷了10次,正面朝上的情形出现了6次,若用A表示“正面朝上”这一事件,则A的().A.概率为35B.频率为35C.频率为6 D.概率接近0.6解析在相同条件下,做n次试验,事件A出现的次数为m,则事件A出现的频率为m n.答案 B4.给出下列事件:①明天进行的某场足球赛的比分是2∶1;②下周一某地的最高气温和最低气温相差10 ℃;③同时掷两枚骰子,向上一面的点数之和不小于2;④射击1次,命中靶心;⑤当x为实数时,x2+4x+4<0.其中,必然事件有________,不可能事件有______,随机事件有______.解析要判定事件是何种事件,首先要看清条件,因为三种事件都是相对于一定条件而言的.第二步再看是一定发生,还是不一定发生,或是一定不发生,据此作出判断.答案③⑤①②④5.掷一颗骰子,掷了100次,“向上的点数是2”的情况出现了19次,在这次试验中,“向上的点数是2”的频率是______.解析事件发生的频率:事件发生的次数除以试验的次数.答案0.196.指出下列事件哪些是必然事件?哪些是不可能事件?哪些是随机事件?(1)某体操运动员将在运动会上获得全能冠军;(2)一个三角形的大边所对的角小,小边所对的角大;(3)如果a>b,那么b<a;(4)某人购买福利彩票中奖;(5)某人的手机一天接到20个电话.解(1)(4)(5)是随机事件,(2)是不可能事件,(3)是必然事件.综合提高(限时25分钟)7.给出下列三个命题,其中正确命题的个数是().①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②作7次抛硬币的试验,结果3次出现正面,因此,出现正面的概率是3 7;③随机事件发生的频率就是这个随机事件发生的概率.A.0个B.1个C.2个D.3个解析概率只是说的可能性的大小,故①不正确,②中的37是频率而不是概率,③频率不等同于概率.答案 A8.在1,2,3,…,10这10个数字中,任取3个数字,那么“这三个数字的和大于6”这一事件是().A.必然事件B.不可能事件C.随机事件D.以上选项均不正确解析因为从1~10中任取3个数字,其和大于或等于6,所以“三个数字的和大于6”可能发生也可能不发生,故是随机事件.答案 C9.(1)某地6月1日下雨是________事件;(2)若x、y是实数,则x+y=y+x是________事件;(3)连掷两次骰子,两次掷得的点数和是13是________事件.解析由随机事件、必然事件以及不可能事件的定义可以判断.答案(1)随机(2)必然(3)不可能10.在掷一枚硬币的试验中,共掷了100次,“正面朝上”的频率为0.49,则“正面朝下”的次数为______.解析由100×0.49=49,知有49次“正面朝上”,故有100-49=51(次)“正面朝下”.答案5111.某公司在过去几年内使用某种型号的灯管1 000支,该公司对这些灯管的使用寿命(单位:小时)进行了统计,统计结果如下表所示:分组[500,900)[900,1 100)[1 100,1 300)[1 300,1 500)[1 500,1 700)[1 700,1 900)[1 900,+∞)频数4812120822319316542 频率(1)将各组的频率填入表中;(2)根据上述统计结果,估计灯管使用寿命不足1 500小时的概率.解(1)频率依次是:0.048,0.121,0.208,0.223,0.193,0.165,0.042.(2)样本中寿命不足1 500小时的频数是48+121+208+223=600,所以样本中灯管使用寿命不足1 500小时的频率是6001 000=0.6,所以灯管使用寿命不足1 500小时的概率约为0.6.12.(创新拓展)除了电视节目中的游戏外,我们平时也会遇到很多和概率有关的游戏问题,再看下面的游戏:如图所示,从“开始”处出发,每次掷出两颗骰子,两颗骰子点数之和即为要走的格数.(1)在第一轮到达“车站”的概率是多少?(2)假设你想要在第一轮到电信大楼、杭州日报或体育馆,则概率是多少?解(1)第一轮要到“车站”,则必须掷出的点数之和为5,而用2颗骰子掷出5会有4种结果,假定一颗骰子为红色,另一颗骰子为蓝色,则有(1,4),(2,),(3,2),(4,1)4种组合,而抛掷两颗骰子共有36种可能结果,所以第一轮到达“车站”的概率为436=19.(2)需要掷出的点数之和为6或8或9,而要得出这3种结果共有下列14种组合:(5,1),(4,2),(3,3),(2,4),(1,5),(6,2),(5,3),(4,4),(3,5),(2,6),(6,3),(5,4),(4,5),(3,6),所以到达这一区域的概率为14 36=7 18.。

高中数学 第三章 概率 天气预报中的降水概率知识素材 北师大版必修3

高中数学 第三章 概率 天气预报中的降水概率知识素材 北师大版必修3

天气预报中的降水概率为了研究现实生活中的大量偶然(随机)现象,人们往往借助于概率统计的思想方法.但在具体的运用过程中,却存在着如何正确使用结果和深入理解方法的问题.本文就结合降水概率中所包含的概率统计思想来作一介绍.平时总听人抱怨说天气预报不准,实际上这种现象在一定程度上确实存在.这一方面是由于天气系统复杂多变,另一方面则是因为现在的许多肯定性预报往往是针对一个较大的地区,在24小时或48小时的时段内做出的,相对某个地点或某段时间当然就会变得不太准确.对上述问题的一个很好的处理办法就是进行概率预报,即改以往的肯定性预报为选择性预报,并提供相应的可能性大小的信息,这就更加科学合理.但面临的一个新问题就是,人们如何去理解和应用这些预报结果呢?有关调查表明,人们的看法差别很大.例如在回答“有多大的降水概率,你出门才会携带雨具?”时,答案可能是50%、60%、70%或80%.还比如有人曾经这样说:“天气预报说明天的降水概率为50%,这不等于是说明天下不下雨说不清,请你扔硬币──岂不是相当于什么也没说吗?!”.其实,概率预报是对天气系统变化规律的一种较准确的概率统计刻画,同时指出了天气变化的不确定性以及相应的可能性大小,为人们提供了决策的依据.换句话说,其概率统计的思想是:我将具体变化规律的信息提供给你,你应用结合实际情况分析利弊,然后自己做出决策.统计学中描述利弊得失通常使用损失函数或风险函数,并依据这样的函数来进行决策.仍以上述的问题为例,假设明天的预报是降水概率为50%.甲、乙两人面临着两种决策:d1={携带雨具},d2={不带雨具}.若对于甲而言,其认为d1、d2的损失函数分别为:则易知决策d1与d2的风险函数分别为:E(d1)=0.5,E(d2)=1.两者相权取其轻,故采取决策d1.若对于乙而言,其认为d1、d2的损失函数分别为:则d1与d2的风险函数又分别为:E(d1)=1,E(d2)=0.5.故采取决策d2.。

高中数学必修3第三章:概率3.2古典概型

高中数学必修3第三章:概率3.2古典概型

验,如果这2个元素没有顺序,那么这次试验共有
nn-1 2

基本事件;如果这2个元素有顺序,那么这次试验有n(n-1)
个基本事件.可以作为结论记住(不要求证明),在选择题或
填空题中可以直接应用.
计算基本事件个数的常用法
1.列举法 列举法也称枚举法.对于一些情境比较简单,基本事件 个数不是很多的概率问题,计算时只需一一列举即可得出随 机事件所含的基本事件数.但列举时必须按一定顺序,做到 不重不漏.
球,d,e为黑球.
列表如下:
a
b
c
d
e
a
(a,b) (a,c) (a,d) (a,e)
b (b,a)
(b,c) (b,d) (b,e)
c (c,a) (c,b)
(c,d) (c,e)
d (d,a) (d,b) (d,c)
(d,e)
e (e,a) (e,b) (e,c) (e,d)
由于每次取两个球,每次所取两个球不相同,而摸(b,a) 与(a,b)是相同的事件,故共有10个基本事件.
新课引入 “三门问题”是美国一个经典的电视游戏节目,内容如 下:现有三扇门,其中一扇后面有一辆汽车,另外两扇门后 各有一只羊,参赛者选中车门就得车,选中羊门就得羊,首 先参赛者选一扇门,然.后主持人故意打开剩下两门中的一 扇羊门(主持人知道车在何处),接着主持人给参赛者选择机 会,是坚持原门还是换另一扇门?
[解析] 第1个概率模型不是古典概型,因为从区间[1,10] 内任意取出一个数,有无数个对象可取,所以不满足“有限 性”.
第2个概率模型是古典概型,因为试验结果只有10个, 而且每个数被抽到的可能性相等,即满足有限性和等可能 性;
第3个概率模型不是古典概型,而是以后将学的几何概 型;
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

总数所包
含的基本事件数
专家点评(师大附中张文俊)
本课例教学目标定位较准确,教学方法选择较为合理。

课例力求以新课标基本理念为依据进行设计:针对学生目前所掌握的知识背景,教学过程设计以“问题串”的方式呈现,在教师的有效引导下,构建利于学生学习的有效教学情境,让学生通过讨论、归纳、探究等方式自主获取知识,较好地拓展师生的活动空间,丰富教学手段,符合新课程的理念,也达到了教学目标。

学生通过运用观察、比较方法得出古典概型的概率计算公式,体验数学知识形成的发生与发展的过程,体现具体到抽象、从特殊到一般的数学思想,同时让学生感受转化与化归的思想数学。

这样,既激发学生的学习热情,把学习的主动权交给学生,又为为他们提供自主探究、合作交流的机会,以求改变学生的学习方式。

相关文档
最新文档