2.2.1对数与对数运算(第一课时)教学设计
2.2.1对数与对数运算(一)教案
3.2.1对数及其运算(一)
教学目标:理解对数的概念、常用对数的概念,通过阅读材料,了解对数的发展历史及其对简化运算的作用 教学重点:理解对数的概念、常用对数的概念.
教学过程:
1、对数的概念:
复习已经学习过的运算
指出:加法、减法,乘法、除法均为互逆运算,指数运算与对数运算也为互逆运算:
若
,则 叫做以 为底 的对数。
记作:b N a =log (1,0≠>a a )
2、对数的性质
(1) 零和负数没有对数,即
中N 必须大于零; (2) 1的对数为0,即01log =
(3) 底数的对数为1,即1log =a a
3、对数恒等式:N a N a =log
4、常用对数:以10为底的对数叫做常用对数,记为:N N lg log 10=
5、例子:
(1) 将下列指数式写成对数式
62554=
64
126=- 373=a
73.5)31
(=m
(2) 将下列对数式写成指数式
416log 2
1-=
=
7
log
128
2
log
27
a
=
3
=
lg-
2
01
.0
(3)用计算器求值
2004
lg
lg
0168
.0
lg
370
.
125
lg
.1
732
小结:本节课学习了对数的概念、常用对数的概念,通过阅读材料,了解对数的发展历史及其对简化运算的作用
课后作业:习题2.2A组第1、2题.。
教学:高中数学 2.2.1 对数与对数运算教案 新人教A版必修1
2.2.1 对数与对数运算第一课时 对数的概念 三维目标定向 〖知识与技能〗理解对数的概念,掌握对数恒等式及常用对数的概念,领会对数与指数的关系。
〖过程与方法〗 从指数函数入手,引出对数的概念及指数式与对数式的关系,得到对数的三条性质及对数恒等式。
〖情感、态度与价值观〗增强数学的理性思维能力及用普遍联系、变化发展的眼光看待问题的能力,体会对数的价值,形成正确的价值观。
教学重难点:指、对数式的互化。
教学过程设计 一、问题情境设疑引例1:已知2524,232==,如果226x =,则x = ? 引例2、改革开放以来,我国经济保持了持续调整的增长,假设2006年我国国内生产总值为a 亿元,如果每年平均增长8%,那么经过多少年国内生产总值比2006年翻两番?分析:设经过x 年国内生产总值比2006年翻两番,则有a a x4%)81(=+,即1.08 x = 4。
这是已知底数和幂的值,求指数的问题,即指数式ba N =中,求b 的问题。
能否且一个式子表示出来?可以,下面我们来学习一种新的函数,他可以把x 表示出来。
二、核心内容整合1、对数:如果)10(≠>=a a N a x且,那么数x 叫做以a 为底N 的对数,记作Nx a log =。
其中a 叫做对数的底数,N 叫做真数。
根据对数的定义,可以得到对数与指数间的关系:当 a > 0且1a ≠时,Nx N a a x log =⇔=(符号功能)——熟练转化如:1318log 131801.101.1=⇔=x x ,4 2 = 16 ⇔ 2 = log 4 162、常用对数:以10为底10log N写成lg N ;自然对数:以e 为底log e N写成ln N (e = 2.71828…)3、对数的性质:(1)在对数式中N = a x > 0(负数和零没有对数);(2)log a 1 = 0 , log a a = 1(1的对数等于0,底数的对数等于1);(3)如果把b a N =中b 的写成log a N ,则有N a N a =log (对数恒等式)。
对数与对数运算第一课时教师
2.2.1对数与对数运算(第一课时)2016-11-6教学目标: 理解对数的概念,了解对数与指数的关系;掌握对数式与指数式的互化;理解对数的性质。
教学重点: 对数的概念;对数式与指数式的相互转化。
教学难点: 对数概念的理解;对数性质的理解。
教学过程:一、复习回顾,新课引入:引例1:一尺之锤,日取其半,万世不竭。
(1)取5次,还有多长?(答:1/32)(2)取多少次,还有0.125x=?引例2:2002年我国GDP 为a 亿元,如果每年平均增长8%,那么经过多少年GDP 是2002年的2倍?略解:08.1x=2,则x=?象上面的式子,都是已知底数和幂的值,求指数,这就是我们这节课所要学习的对数(引出对数的概念). 二、师生互动,新课讲解: 1.对数定义一般地,如果N a x =(0>a ,且1≠a ),那么数x 叫做以a 为底N 的对数(logarithm ),记作N x a log =,其中a 叫做对数的底数,N 叫做真数.解答引例:引例1 125.0log 21=x 读作x 是以21为底,0.125的对数引例2 2log08.1=x 读作x 是以08.1为底,2的对数提问:你们还能找到哪些对数的例子举例: 如:1144-=,则 411log 4=- 读作-1-是以4为底,41的对数.1242=,则41log 22=, 读作12是以4为底 ,2的对数. 2.两个重要的对数(常用对数和自然对数)通常我们将以10为底的对数叫做常用对数(common logarithm ),并且把N 10log 记作N lg .如2lg 2log 10= ππlg log 10=在科学技术中常使用以无理数 597182818284.2=e 为底数的对数,以e 为底的对数称为自然对数(natural logarithm ),并且把N elog记作N ln .如2ln 2log=eππln log =e3.对数式与指数式的互化当0>a ,且1≠a 时,如果N a x =,那么N x a log =;如果N x a log =,那么N a x=.即N a x =⇔N x a log =,指数式⇔对数式 幂底数←a →对数底数 指 数←x →对数 幂 ←N →真数例1:将下列指数式化为对数式,对数式化为指数式(1)62554=;(2)()64126=--;(3)01.0102=-;(4)2=em(5(6)303.210ln =;(7)a =27log 3;(8)31000lg =解: (1)4625log 5=;()66412log2-=;()201.0lg 3-=;()m =2ln 4 ()165214=⎪⎭⎫⎝⎛- ()61003.2=e()2773=a()10008103=例2:求下列各式中x 的值。
对数与对数运算(第一课时)教学设计
教学内容分析
教学重点:对数式与指数式的互化以及对数运算性质
教学难点:推导对数运算性质
教学模式
“传递──接受式”与“探究式教学”相结合
教学主题
掌握对数的双基,即对数产生的意义、概念等基础知识,求对数及对数式与指数式间转化等基本技能的掌握
2.通过观察,探究,分析掌握指数式与对数式的互化。
(三)情感、态度和价值观
1.对数式与指数式的互化,从而培养学生的类比、分析、归纳能力;
2.通过对数的运算法则的学习,培养学生的严谨的思维品质;
3.在学习过程中培养学生探究的意识;
学情分析
高一学生已经学习了函数的概念、函数的表示方法与函数的一般性质,对函数有了初步的认识.学生已经完成了分数指数幂和指数函数的学习,了解了研究函数的一般方法,经历了从特殊到一般,具体到抽象的研究过程.
例题讲解(性质应用)
例2用 , , 表示下列各式:
(1) (2)
解:(1)
(2)
=
例3求下列各式的值:
(1) (2)
解:(1)
(2)
(七)评价与小结
1.对数定义(关键)
2.指数式与对数式互换(重点)
式子
名称
----幂的底数
----幂的指数
----幂值
----对数的底数
----以 为底 的对数
----真数
(停顿)这是因为 ,所以 。因此, 中真数N也要求大于零,所以在 , 的条件下,指数式与对数式是可以相互转化的。
由真数 ,得到负数与零一定没有对数。
改变教学方式注重主体参与——“2.2.1对数与对数运算(第一课时)”教学实录与评析
【 点评】教师 以问题 3为载体 ,引导学 生思考接下来应该研 生 :因为 Y=lg o ̄ x与 =a 等价 ,所以两个式子 中 n的取值 究解决 的问题是对数函数的图象 与性质. 此过程 中学生需要 思 y 在
一
样.
考 研 究 函 数 图 象 的 一般 方 法 ( 从特 殊 到 一般 ) 即 ,还 要 动 手 实 践
师 :说得 有道 理 !把 Y= ( a>0 ,且 a )化 为对 数式 象) 、Ⅱ ≠1 , 、Y的取值 范 围是什 么 ,Y=lg 的结构特征是 什 么. og
时 , 等于什么 ?
生 3 =lg : o #.
学生通过积极 的思考和 活动 ,从具体 到抽象 的过程 中主动地获
() 1 Y=l  ̄ o x的图象都过定点 g
般地 ,把 函数 Y=l  ̄ ( o x n>0 g ,且 。 ) 叫做对 数 函数 , ≠1
其 中 自变量 ∈( ,+。 . 0 o)
() 2 Y=lg oa x的图象都 在
一
一
轴的
—
—
一
侧 ,且 以
—
—
轴
师 :注意函数 Y l 与函数 = 都是一个整体 ,不能割 为渐近线. =o ( ) 0<a<1 ,Y=lg 3 当 时 oa X的图象 呈 裂开.继续思考有何特征? 趋势 ; >1 o x的图象呈 g 生。 :右边对数式 的系数与指数都为 1 的系数与指数也都 。 时 ,Y=l . ,
符合 我们 的认识规律.在下列坐标系 中,已经给 出了Y=lg o2 x与
Y = lg o
—
的图象 ,请用列表 、描点 、连线 的方法 ,在 此坐标 系
3
2
o x与 g o x的 图象 .( g 图略 . ) 生 :常数 。 应该 与指数 函数 中 a的取值 一样 ,自变量 与 中 画 出 Y=l 3 Y=l & ( 师 引领 学 生 完成 填 表 ,描 点 、连 线 由 学 生 完成 . 教 )
高中数学 2.2.1 对数与对数运算 第一课时教案精讲 必修1
2.2 对数函数2.2.1 对数与对数运算第一课时第一课时对数[读教材·填要点]1.对数的概念如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=log a N,其中a 叫做对数的底数,N叫做真数.2.两类特殊对数名称定义符号常用对数以10为底的对数lg N自然对数以e为底的对数ln N3.当a>0,a≠1时,a x=N⇔x=log a N.4.对数的基本性质性质1负数和零没有对数性质21的对数是0,即log a1=0(a>0,且a≠1)性质3底数的对数是1,即log a a=1(a>0,且a≠1)1.任何指数式都能转化为对数吗?提示:不能.如(-3)2=9就不能直接写成log(-3)9,只有符合a>0,a≠1时,才有a x =N⇔x=log a N2.式子a log a N=N(a>0,a≠1,N>0)成立吗?为什么?提示:此式称为对数恒等式.设a b=N,则b=log a N,∴a b=a log a N=N.3.指数式a x=N和对数式x=log a N有何区别和联系(其中a>0且a≠1)?提示:二者本质是一样的,都是a、x、N之间的关系式;但二者之间突出的重点不一样,指数式a x=N中突出的是指数幂N,而对数式x=log a N中突出的是对数x.对数概念的理解[例1](1)log(2x-1)(x+2);(2)log(x2+1)(-3x+8).[自主解答] (1)因为真数大于0,底数大于0且不等于1,所以⎩⎪⎨⎪⎧x +2>02x -1>02x -1≠1,解得x >12且x ≠1.即x 的取值范围是{x |x >12且x ≠1};(2)因为底数x 2+1>0,且x 2+1≠1,所以x ≠0;又因为-3x +8>0,所以x <83,综上可知x <83,且x ≠0.即x 的取值范围是{x |x <83且x ≠0}.在本例(2)中,若底数与真数中的式子互换,即log (-3x +8)(x 2+1),则x 的取值范围又如何?解:因为底数-3x +8>0且-3x +8≠1, 所以x <83且x ≠73.又因为x 2+1>0,所以x ∈R .综上可知:x 的取值范围是{x |x <83且x ≠73}.——————————————————解决对数式有意义的题时,只要注意满足底数大于0且不为1,真数大于0,然后解不等式即可.————————————————————————————————————————1.求使得对数log (x -3)(6-x )有意义的x 的取值范围. 解:依题意得⎩⎪⎨⎪⎧6-x >0x -3>0x -3≠1,解得3<x <6且x ≠4.即x 的取值范围为{x |3<x <6且x ≠4}.指数式与对数式的互化[例2] (1)log 327=3;(2)log 128=-3(3)log2x =5;(4)24=16;(5)(13)-2=9;(6)2-2=14.[自主解答] (1)33=27;(2)(12)-3=8;(3)(2)5=x ;(4)4=log 216; (5)log 139=-2;(6)log 214=-2.——————————————————(1)对数式log a N =b 是由指数式a b=N 变化得来的,两式底数相同,对数式中的真数N 就是指数式中的幂的值N ,而对数值b 是指数式中的幂指数,对数式与指数式的关系如图.(2)在指数式a b=N 中,若已知a ,N ,求幂指数b ,便是对数运算b =log a N . ————————————————————————————————————————2.将下列指数式化为对数式,对数式化为指数式: (1)43=64; (2)3-2=19; (3)(14)-3=64;(4)log 1327=-3; (5)log3x =6.解:(1)log 464=3. (2)log 319=-2.(3)log 1464=-3.(4)(13)-3=27.(5)(3)6=x .对数概念及性质应用[例3] (1)log 2(log 4x )=0; (2)log 3(lg x )=1; (3)log2-113+22=x .[自主解答] (1)∵log 2(log 4x )=0, ∴log 4x =1,∴x =4. (2)∵log 3(lg x )=1 ∴lg x =3,∴x =103. (3)∵log2-113+22=log2-1(3-22)=x ,∴(2-1)x =3-22=(2-1)2, ∴x =2. ——————————————————1解决这类求值问题时,注意几种对数方程的变形: log a f x =0a >0,且a ≠1⇒f x =1; log a f x =1a >0,且a ≠1⇒f x =a ;log fxm =n m >0,m ,n 为常数⇒[()]()0() 1.n f x m f x f x ⎧⎪>⎨⎪≠⎩=,,2有关“底数”和“1”的对数,可利用对数的性质求出其值为“1”和“0”,化为常数,有利于简化计算.————————————————————————————————————————3.求下列各式中x 的值. (1)log x 27=32;(2)log 8x =-23;(3)x =log 2719.解:(1)∵x 32=27, ∴x =(27) 32=32=9. (2)x =823-=2-2=14.(3)x =log 2719;27x=19.∴33x =3-2.∴x =-23.解题高手易错题审题要严,做题要细,一招不慎,满盘皆输,试试能否走出迷宫!x [错解] ∵log x 9=2,∴x 2=9,x =±3.[错因] 错解中,忽视了底数a >0.导致出现增根.[正解] ∵log x 9=2,∴x 2=9,x =±3. 又∵x >0,且x ≠1, ∴x =3.1.log 5b =2,化为指数式是( ) A .5b=2 B .b 5=2 C .52=b D .b 2=5答案:C2.在b =log (a -2)(5-a )中,实数a 的取值范围是( ) A .a >5或a <2 B .2<a <3或3<a <5 C .2<a <5D .3<a <4解析:要使式子b =log (a -2)(5-a )有意义则⎩⎪⎨⎪⎧a -2>0a -2≠15-a >0即2<a <3或3<a <5.答案:B3.下列结论正确的是( )①lg(lg10)=0 ②lg(lne)=0 ③若10=lg x 则x =10 ④若e =ln x ,则x =e 2A .①③B .②④C .①②D .③④解析:∵lg10=1,∴lg(lg10)=0,故①正确; ∵lne =1,∴lg(lne)=0,故②正确; ∵10=lg x ,∴x =1010,故③不正确; ∵e =ln x ,∴x =e e,故④也不正确; 答案:C4.若log 31-2x9=0,则x =________.解析:∵log 31-2x 9=0,∴1-2x9=1,1-2x =9.∴-2x =8.x =-4. 答案:-45.若a >0,a 2=49,则log 23a =________.解析:∵a >0,且a 2=49,∴a =23.∴log2323=1. 答案:16.将下列指数式化为对数式,对数式化为指数式: (1) πx=8;(2)log x 64=-6; (3)lg1 000=3.解:(1)由πx=8,得x =log π8; (2)由log x 64=-6,得x -6=64; (3)由lg1 000=3,得103=1 000. 一、选择题1.已知log x 8=3,则x 的值为( ) A.12 B .2 C .3D .4解析:由log x 8=3,得x 3=8,∴x =2. 答案:B2.方程2log 3x =14的解是( )A .9 B.33C. 3D.19解析:∵2log3x=14=2-2. ∴log 3x =-2. ∴x =3-2=19.答案:D3.若log x 7y =z 则( ) A .y 7=x zB .y =x 7zC .y =7xD .y =z 7x解析:由log x 7y =z 得:x z =7y ,y =x 7z. 答案:B4.log 5[log 3(log 2x )]=0,则x12等于( )A.36 B.39C.24D.23解析:∵log 5[log 3(log 2x )]=0, ∴log 3(log 2x )=1, ∴log 2x =3. ∴x =23=8. ∴x12-=812-=18=122=24. 答案:C 二、填空题5.log 6[log 4(log 381)]=________. 解析:设log 381=x ,则3x=81=34, ∴x =4,∴原式=log 6[log 44]=log 61=0. 答案:0 6.log 23278=________. 解析:设log 23278=x ,则(23)x =278=(23)-3, ∴x =-3.∴log 23278=-3. 答案:-37.已知函数f (x )=⎩⎪⎨⎪⎧3x,x ≤1-x ,x >1,若f (x )=2,则x =________.解析:由⎩⎪⎨⎪⎧x ≤13x=2⇒x =log 32,⎩⎪⎨⎪⎧x >1-x =2⇒x =-2无解.答案:log 328.若log a 2=m ,log a 3=n ,则a2m +n=________.解析:∵log a 2=m ,∴a m=2,∴a 2m=4,又∵log a 3=n , ∴a n=3,∴a 2m +n=a 2m ·a n=4×3=12.答案:12 三、解答题 9.求下列各式中x .(1)log 2x =-23;(2)log 5(log 2x )=0. 解:(1)x =223-=(12)23(2)log 2x =1,x =2.10.已知二次函数f (x )=(lg a )x 2+2x +4lg a 的最大值为3,求a 的值. 解:原函数式可化为f (x )=lg a (x +1lg a )2-1lg a+4lg a . ∵f (x )有最大值3,∴lg a <0,且-1lg a +4lg a =3,整理得4(lg a )2-3lg a -1=0, 解之得lg a =1或lg a =-14.又∵lg a <0,∴lg a =-14.∴a =1014-.。
2.2.1对数与对数运算(一)
2.2.1对数与对数运算(一)教学目标(一) 教学知识点1. 对数的概念;2.对数式与指数式的互化. (二) 能力训练要求1.理解对数的概念;2.能够进行对数式与指数式的互化;3.培养学生数学应用意识. (三)德育渗透目标1.认识事物之间的普遍联系与相互转化;2.用联系的观点看问题; 3.了解对数在生产、生活实际中的应用.教学重点对数的定义.教学难点对数概念的理解.教学过程一、复习引入:假设2002年我国国民生产总值为a 亿元,如果每年平均增长8%,那么经过多少年国民生产总值是2002年的2倍?()x %81+=2⇒x =?也是已知底数和幂的值,求指数.你能看得出来吗?怎样求呢? 二、新授内容:定义:一般地,如果 ()1,0≠>a a a 的b 次幂等于N ,就是N a b=,那么数 b 叫做以a 为底 N 的对数,记作 b N a =log ,a 叫做对数的底数,N 叫做真数.b N N a a b =⇔=log例如:1642= ⇔ 216log 4=; 100102=⇔2100log 10=;2421= ⇔212log 4=; 01.0102=-⇔201.0log 10-=. 探究:1。
是不是所有的实数都有对数?b N a =log 中的N 可以取哪些值?⑴ 负数与零没有对数(∵在指数式中 N > 0 )2.根据对数的定义以及对数与指数的关系,=1log a ? =a a log ? ⑵ 01log =a ,1log =a a ;∵对任意 0>a 且 1≠a , 都有 10=a ∴01log =a 同样易知: 1log =a a⑶对数恒等式如果把 N a b= 中的 b 写成 N a log , 则有 N aNa =log .⑷常用对数:我们通常将以10为底的对数叫做常用对数.为了简便,N 的常用对数N 10log 简记作lgN . 例如:5log 10简记作lg5; 5.3log 10简记作lg3.5.⑸自然对数:在科学技术中常常使用以无理数e=2.71828……为底的对数,以e 为底的对数叫自然对数,为了简便,N 的自然对数N e log 简记作lnN . 例如:3log e 简记作ln3; 10log e 简记作ln10.(6)底数的取值范围),1()1,0(+∞ ;真数的取值范围),0(+∞. 三、讲解范例:例1.将下列指数式写成对数式:(1)62554= (2)64126=- (3)273=a(4)73.531=m )( 解:(1)5log 625=4; (2)2log 641=-6; (3)3log 27=a ; (4)m =73.5log 31. 例2. 将下列对数式写成指数式:(1)416log 21-=; (2)7128log 2=; (3)201.0lg -=; (4)303.210ln =.解:(1)16)21(4=- (2)72=128; (3)210-=0.01; (4)303.2e =10.例3.求下列各式中的x 的值: (1)32log 64-=x ; (2)68log =x (3)x =100lg (4)x e =-2ln 例4.计算: ⑴27log 9,⑵81log 43,⑶()()32log 32-+,⑷625log 345.解法一:⑴设 =x 27log 9 则 ,279=x3233=x, ∴23=x ⑵设 =x 81log 43 则()8134=x, 4433=x , ∴16=x⑶令 =x ()()32log 32-+=()()13232log -++, ∴()()13232-+=+x, ∴1-=x⑷令 =x 625log 345, ∴()625534=x, 43455=x , ∴3=x解法二:⑴239log 3log 27log 239399===; ⑵16)3(log 81log 1643344== ⑶()()32log 32-+=()()132log 132-=+-+;⑷3)5(log 625log 334553434==四、练习:(书P64`)1.把下列指数式写成对数式(1) 32=8; (2)52=32 ; (3)12-=21; (4)312731=-.解:(1)2log 8=3 (2) 2log 32=5 (3) 2log 21=-1 (4) 27log 31=-312.把下列对数式写成指数式(1) 3log 9=2 ⑵5log 125=3 ⑶2log 41=-2 ⑷3log 811=-4 解:(1)23=9 (2)35=125 (3)22-=41 (4) 43-=811 3.求下列各式的值(1) 5log 25 ⑵2log 161⑶lg 100 ⑷lg 0.01 ⑸lg 10000 ⑹lg 0.0001 解:(1) 5log 25=5log 25=2 (2) 2log 161=-4 (3) lg 100=2 (4) lg 0.01=-2 (5) lg 10000=4 (6) lg 0.0001=-4 4.求下列各式的值(1) 15log 15 ⑵4.0log 1 ⑶9log 81 ⑷5..2log 6.25 ⑸7log 343 ⑹3log 243 解:(1) 15log 15=1 (2) 4.0log 1=0 (3) 9log 81=2 (4) 5..2log 6.25=2 (5) 7log 343=3 (6) 3log 243=5 五、课堂小结⑴对数的定义; ⑵指数式与对数式互换; ⑶求对数式的值.2.2.1对数与对数运算(二)教学目标(三) 教学知识点对数的运算性质. (四) 能力训练要求1.进一步熟悉对数定义与幂的运算性质; 2. 理解对数运算性质的推倒过程; 3.熟悉对数运算性质的内容; 4.熟练运用对数的运算性质进行化简求值; 5.明确对数运算性质与幂的运算性质的区别. (三)德育渗透目标1.认识事物之间的普遍联系与相互转化; 2.用联系的观点看问题.教学重点证明对数的运算性质.教学难点对数运算性质的证明方法与对数定义的联系.教学过程一、复习引入:1.对数的定义 b N a =l o g 其中 ),1()1,0(+∞∈ a 与 ,0(+∞∈N 2.指数式与对数式的互化)10( log ≠>=⇔=a a b N N a a b 且3.重要公式:⑴负数与零没有对数; ⑵01log =a ,log =a a⑶对数恒等式N aNa =log4.指数运算法则 )()(),()(),(R n b a ab R n m aa R n m a a a n n n mnnm n m n m ∈⋅=∈=∈=⋅+二、新授内容:1.积、商、幂的对数运算法则:如果 a > 0,a ≠ 1,M > 0, N > 0 有:)()()(3R)M(n nlog M log 2N log M log NM log 1N log M log (MN)log a n a a a a a a a ∈=-=+=证明:①设a log M =p , a log N =q . 由对数的定义可以得:M =pa ,N =qa . ∴MN = pa qa =qp a+ ∴a log MN =p +q , 即证得a log MN =a log M + a log N .②设a log M =p ,a log N =q . 由对数的定义可以得M =pa ,N =qa .∴q p q pa aa N M -== ∴p N M a -=log 即证得N M N M a a a log log log -=. ③设a log M =P 由对数定义可以得M =pa ,∴nM =npa ∴a log nM =np , 即证得a log nM =n a log M .说明:上述证明是运用转化的思想,先通过假设,将对数式化成指数式,并利用幂的运算性质进行恒等变形;然后再根据对数定义将指数式化成对数式. ①简易语言表达:“积的对数 = 对数的和”……②有时逆向运用公式:如110log 2log 5log 101010==+. ③真数的取值范围必须是),0(+∞:)5(log )3(log )5)(3(log 222-+-=-- 是不成立的. )10(log 2)10(log 10210-=-是不成立的. ④对公式容易错误记忆,要特别注意:N M MN a a a log log )(log ⋅≠,N M N M a a a log log )(log ±≠±.2.讲授范例:例1. 用x a log ,y a log ,z a log 表示下列各式:32log )2(;(1)log zyx zxya a . 解:(1)zxyalog =a log (xy )-a log z=a log x+a log y- a log z (2)32log zyx a=a log (2x3log )z y a -= a log 2x +a log 3log z y a -=2a log x+z y a a log 31log 21-.例2. 计算(1)25log 5, (2)1log 4.0, (3))24(log 572⨯, (4)5100lg 解:(1)5log 25= 5log 25=2 (2)4.0log 1=0.(3)2log (74×25)= 2log 74+ 2log 52= 2log 722⨯+ 2log 52 = 2×7+5=19.(4)lg 5100=52lg1052log10512==. 例3.计算:(1);50lg 2lg )5(lg 2⋅+ (2) ;25log 20lg 100+(3) .18lg 7lg 37lg214lg -+- 说明:此例题可讲练结合.解:(1) 50lg 2lg )5(lg 2⋅+=)15(lg 2lg )5(lg 2+⋅+=2lg 5lg 2lg )5(lg 2+⋅+=2lg )2lg 5(lg 5lg ++=2lg 5lg +=1;(2) 25log 20lg 100+=5lg 20lg +=100lg =2; (3)解法一:lg14-2lg37+lg7-lg18=lg(2×7)-2(lg7-lg3)+lg7-lg(23×2) =lg2+lg7-2lg7+2lg3+lg7-2lg3-lg2=0.解法二:lg14-2lg37+lg7-lg18=lg14-lg 2)37(+lg7-lg18=lg 01lg 18)37(7142==⨯⨯评述:此例题体现对数运算性质的综合运用,应注意掌握变形技巧,如(3)题各部分变形要化到最简形式,同时注意分子、分母的联系.(2)题要避免错用对数运算性质. 例4.已知3010.02lg =,4771.03lg =, 求45lg例5.课本P66面例5.20世纪30年代,里克特制订了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大.这就是我们常说的里氏震级M ,其计算公式为 M =lg A -lg A 0.其中,A 是被测地震的最大振幅,A 0是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际震中的距离造成的偏差).(1)假设在一次地震中,一个距离震中100千米的测震仪记录的地震最大振幅是20,此时标准地震的振幅是0.001,计算这次地震的震级(精确到0.1); (2)5级地震给人的震感已比较明显,计算7.6级地震的最大振幅是5级地震的最大振幅的多少倍(精确到1).3.课堂练习:教材第68页练习题1、2、3题. 4.课堂小结对数的运算法则,公式的逆向使用.=n a a log n2.2.1对数与对数运算(三)教学目标(五) 教学知识点1. 了解对数的换底公式及其推导;2.能应用对数换底公式进行化简、求值、证明; 3.运用对数的知识解决实际问题。
对数与对数的运算详细教案
课题2.2.1 对数与对数的运算 教学内容:对数与对数的运算 教学目标:1.知识目标:理解对数的概念,掌握指数式与对数式的互化以及认识特殊对数的意义和表示方式;2.能力目标:培养学生分析问题、解决问题的能力与思维灵活性的能力;3.情感目标:在知识的探索和发现过程中让学生认识事物之间的相互联系与相互转换;感受探索新知的乐趣和成功的喜悦.教学重点:对数的概念,对数与指数的关系. 教学难点:对数概念的理解. 课型:新授课. 教学方法:1 教法:讲解法,合作法.2 学法:类比学习法,合作学习法.3 教学用具:彩色粉笔;多媒体.教学过程:1.创设情境,引入新知(1)庄子:一尺之棰,日取其半,万世不竭.①取5次,还有多长? ②取多少次,还有0.125尺?(2)截止1999年底,我国人口约13亿,如果今后能将人口年平均增长率控制在1%,那么多少年后我国人口数可达18亿? 可抽象出:51,2a ⎛⎫= ⎪⎝⎭10.125?2xx ⎛⎫=⇒= ⎪⎝⎭()1311%18y⨯+=即181.01?13y y =⇒=师:上一节我们已经知道指数运算就是我们以前学的乘方运算,同样也知道乘方运算的逆运算开方运算.对512a⎛⎫=⎪⎝⎭,大家认为是什么运算呢?a的值为多少呢?对于1180.125 1.01213xy⎛⎫==⎪⎝⎭和,这两个式子有什么共同的地方没有?是什么?(已知底数和幂值,求指数).是我们熟悉的运算吗?和我们所熟知的指数也能算和开方运算有联系吗?其中的x y和的值怎么表示呢?带着这些问题进入我们今天的课堂:对数.2.探究新知⑴对数定义如果x a N=(a>0且a≠1),那么数x叫做以a为底N的对数,记作x =loga N(01a a>≠且)其中a叫对数的底数,N叫做真数.师:从上述定义要知道对数的记法为:logaN;读作:以a为底N的对数.师:得出logaN表示a的多少次幂为N.师:在上节我们学的指数函数中,我们知道a>0且a≠1才有意义,所以在考虑对数的时候我们也规定a>0且a≠1.师:知道了对数的定义,我们就根据定义来把刚刚的第三和四小题中的,x y表示出来了:因为10.1252x⎛⎫=⎪⎝⎭,所以12log0.125x=;因为181.0113y=,所以1.0118log13y=.师:我们根据对数定义,可以看出指数和对数存在密不可分的关系,那么究竟有怎样的关系呢?我们一起来看看.⑵指数式和对数式的关系师: 讨论两者之间的关系前要明确a的取值范围是a>0且a≠1,也要知道两个式子中相同字母代表的是同一个数,只是数的位置发生了变化,到底是怎样的变化呢?下面我们就一起来学习:师: 这便是指数式和对数式的关系,在此我还要强调一下,x a N =和x =log a N 其实表示的一种关系,它们是一种关系的不同表达式,x a N =是指数形式,x =log a N 是对数形式,本质上它们是一回事。
高中数学第二章对数函数2.2.1对数与对数运算第1课时对数学案(含解析)新人教版
§2.2对数函数2.2.1 对数与对数运算第1课时对数学习目标 1.理解对数的概念、掌握对数的性质(重、难点).2.掌握指数式与对数式的互化,能应用对数的定义和性质解方程(重点).知识点1 对数1.对数(1)指数式与对数式的互化及有关概念:(2)底数a的范围是a>0,且a≠1.2.常用对数与自然对数【预习评价】(正确的打“√”,错误的打“×”)(1)根据对数的定义,因为(-2)4=16,所以log(-2)16=4.( )(2)对数式log32与log23的意义一样.( )(3)对数的运算实质是求幂指数.( )提示(1)×因为对数的底数a应满足a>0且a≠1,所以(1)错;(2)×log32表示以3为底2的对数,log23表示以2为底3的对数,所以(2)错;(3)√由对数的定义可知(3)正确.知识点2 对数的基本性质 (1)负数和零没有对数. (2)log a 1=0(a >0,且a ≠1). (3)log a a =1(a >0,且a ≠1). 【预习评价】若log 32x -33=1,则x =________;若log 3(2x -1)=0,则x =________.解析 若log 32x -33=1,则2x -33=3,即2x -3=9,x =6;若log 3(2x -1)=0,则2x -1=1,即x =1. 答案 6 1题型一 对数的定义【例1】 (1)在对数式y =log (x -2)(4-x )中,实数x 的取值范围是________; (2)将下列指数式化为对数式,对数式化为指数式. ①54=625;②log 216=4;③10-2=0.01;④log5125=6.(1)解析 由题意可知⎩⎪⎨⎪⎧4-x >0,x -2>0,x -2≠1,解得2<x <4且x ≠3.答案 (2,3)∪(3,4)(2)解 ①由54=625,得log 5625=4. ②由log 216=4,得24=16. ③由10-2=0.01,得lg 0.01=-2. ④由log5125=6,得(5)6=125.规律方法 指数式与对数式互化的思路(1)指数式化为对数式:将指数式的幂作为真数,指数作为对数,底数不变,写出对数式. (2)对数式化为指数式:将对数式的真数作为幂,对数作为指数,底数不变,写出指数式. 【训练1】 将下列指数式化为对数式,对数式化为指数式:(1)43=64;(2)ln a =b ;(3)⎝ ⎛⎭⎪⎫12m=n ;(4)lg 1000=3.解 (1)因为43=64,所以log 464=3;(2)因为ln a =b ,所以e b=a ;(3)因为⎝ ⎛⎭⎪⎫12m=n ,所以log 12n =m ; (4)因为lg 1 000=3,所以103=1 000. 题型二 利用指数式与对数式的互化求变量的值 【例2】 (1)求下列各式的值.①log 981=________.②log 0.41=________.③ln e 2=________. (2)求下列各式中x 的值. ①log 64x =-23;②log x 8=6;③lg 100=x ;④-ln e 2=x .(1)解析 ①设log 981=x ,所以9x =81=92,故x =2,即log 981=2;②设log 0.41=x ,所以0.4x =1=0.40,故x =0,即log 0.41=0;③设ln e 2=x ,所以e x =e 2,故x =2,即ln e 2=2. 答案 ①2 ②0 ③2(2)解 ①由log 64x =-23得x =64-23=43×(-23)=4-2=116; ②由log x 8=6,得x 6=8,又x >0,即x =816=23×16=2;③由lg 100=x ,得10x=100=102,即x =2; ④由-ln e 2=x ,得ln e 2=-x ,所以e -x=e 2, 所以-x =2,即x =-2.规律方法 对数式中求值的基本思想和方法 (1)基本思想.在一定条件下求对数的值,或求对数式中参数字母的值,要注意利用方程思想求解. (2)基本方法.①将对数式化为指数式,构建方程转化为指数问题. ②利用幂的运算性质和指数的性质计算.【训练2】 利用指数式、对数式的互化求下列各式中x 的值. (1)log 2x =-12;(2)log x 25=2;(3)log 5x 2=2.解 (1)由log 2x =-12,得2-12=x ,∴x =22. (2)由log x 25=2,得x 2=25. ∵x >0,且x ≠1,∴x =5. (3)由log 5x 2=2,得x 2=52,∴x =±5.∵52=25>0,(-5)2=25>0, ∴x =5或x =-5.题型三 利用对数的性质及对数恒等式求值 【例3】 (1)71-log 75;(2)100⎝⎛⎭⎪⎪⎫12lg 9-lg 2; (3)alog ab ·log bc(a ,b 为不等于1的正数,c >0).解 (1)原式=7×7-log 75=77log 75=75. (2)原式=10012lg 9×100-lg 2=10lg 9×1100lg 2=9×1102lg 2 =9×110lg 4=94.(3)原式=(alog ab )log bc=blog bc=c .规律方法 对数恒等式a log a N =N 的应用 (1)能直接应用对数恒等式的直接应用即可.(2)对于不能直接应用对数恒等式的情况按以下步骤求解.【训练3】 (1)设3log 3(2x +1)=27,则x =________.(2)若log π(log 3(ln x ))=0,则x =________. 解析 (1)3log 3(2x +1)=2x +1=27,解得x =13.(2)由log π(log 3(ln x ))=0可知log 3(ln x )=1,所以ln x =3,解得x =e 3. 答案 (1)13 (2)e 3课堂达标1.有下列说法:(1)只有正数有对数;(2)任何一个指数式都可以化成对数式;(3)以5为底25的对数等于±2;(4)3log 3(-5)=-5成立.其中正确的个数为( )A.0B.1C.2D.3解析 (1)正确;(2),(3),(4)不正确. 答案 B2.使对数log a (-2a +1)有意义的a 的取值范围为( ) A.a >12且a ≠1B.0<a <12C.a >0且a ≠1D.a <12解析 由题意知⎩⎪⎨⎪⎧-2a +1>0,a >0,a ≠1,解得0<a <12.答案 B3.方程lg(2x -3)=1的解为________.解析 由lg(2x -3)=1知2x -3=10,解得x =132.答案1324.计算:2log 23+2log 31-3log 77+3ln 1=________.解析 原式=3+2×0-3×1+3×0=0. 答案 05.把下列指数式化为对数式,对数式化为指数式. (1)2-3=18;(2)⎝ ⎛⎭⎪⎫17a =b ;(3)lg 11 000=-3;(4)ln 10=x .解 (1)由2-3=18可得log 218=-3;(2)由⎝ ⎛⎭⎪⎫17a=b 得log 17b =a ;(3)由lg 11 000=-3可得10-3=11 000;(4)ln 10=x 可得e x=10.课堂小结1.对数概念与指数概念有关,指数式和对数式是互逆的,即a b=N ⇔log a N =b (a >0,且a ≠1,N >0),据此可得两个常用恒等式:(1)log a ab =b ;(2)a log a N =N .2.在关系式a x=N 中,已知a 和x 求N 的运算称为求幂运算,而如果已知a 和N 求x 的运算就是对数运算,两个式子实质相同而形式不同,互为逆运算. 3.指数式与对数式的互化基础过关1.有以下四个结论:①lg(lg 10)=0;②ln(ln e)=0;③若10=lg x ,则x =10;④若e =ln x ,则x =e 2.其中正确的是( ) A.①③ B.②④ C.①②D.③④解析 lg(lg 10)=lg 1=0,ln(ln e)=ln 1=0,故①②正确;若10=lg x ,则x =1010,故③错误;若e =ln x ,则x =e e,故④错误. 答案 C2.log a b =1成立的条件是( ) A.a =b B.a =b 且b >0 C.a >0,a ≠1D.a >0,a =b ≠1解析 由log a b =1得a >0,且a =b ≠1. 答案 D3.设a =log 310,b =log 37,则3a -b 的值为( )A.107B.710C.1049D.4910解析 3a -b=3a÷3b=3log 310÷3log 37=10÷7=107.答案 A4.若log (1-x )(1+x )2=1,则x =________. 解析 由题意知1-x =(1+x )2, 解得x =0或x =-3.验证知,当x =0时,log (1-x )(1+x )2无意义, 故x =0时不合题意,应舍去.所以x =-3. 答案 -35.若log 3(a +1)=1,则log a 2+log 2(a -1)=________.解析 由log 3(a +1)=1得a +1=3,即a =2,所以log a 2+log 2(a -1)=log 22+log 21=1+0=1. 答案 16.将下列指数式化成对数式,对数式化成指数式. (1)35=243;(2)2-5=132;(3)log 1381=-4;(4)log 2128=7.解 (1)log 3243=5;(2)log 2132=-5;(3)⎝ ⎛⎭⎪⎫13-4=81;(4)27=128.7.求下列各式中的x 的值. (1)log x 27=32;(2)log 2x =-23;(3)log x (3+22)=-2; (4)log 5(log 2x )=0; (5)x =log 2719.解 (1)由log x 27=32,得x 32=27,∴x =2723=32=9.(2)由log 2x =-23,得2-23=x ,∴x =1322=322.(3)由log x (3+22)=-2,得3+22=x -2, ∴x =(3+22)-12=2-1.(4)由log 5(log 2x )=0,得log 2x =1.∴x =21=2. (5)由x =log 2719,得27x=19,即33x=3-2, ∴x =-23.能力提升8.对于a >0且a ≠1,下列说法正确的是( )(1)若M =N ,则log a M =log a N ;(2)若log a M =log a N ,则M =N ;(3)若log a M 2=log a N 2,则M =N ;(4)若M =N ,则log a M 2=log a N 2.A.(1)(2)B.(2)(3)(4)C.(2)D.(2)(3)解析 (1)中若M ,N 小于或等于0时,log a M =log a N 不成立;(2)正确;(3)中M 与N 也可能互为相反数且不等于0;(4)中当M =N =0时不正确. 答案 C9.已知log 3(log 5a )=log 4(log 5b )=0,则a b的值为( ) A.1 B.-1 C.5D.15解析 由log 3(log 5a )=0得log 5a =1,即a =5,同理b =5,故a b=1. 答案 A 10.方程3log 2x =127的解是________. 解析 3log 2x =3-3,∴log 2x =-3,x =2-3=18.答案 1811.若正数a ,b 满足2+log 2a =3+log 3b =log 6(a +b ),则1a +1b=________.解析 设2+log 2a =3+log 3b =log 6(a +b )=k ,则a =2k -2,b =3k -3,a +b =6k ,即4a =2k,27b =3k ,所以108ab =6k,∴108ab =a +b ,∴108=1a +1b.答案 10812.(1)若f (10x)=x ,求f (3)的值; (2)计算23+log 23+35-log 39.解 (1)令t =10x,则x =lg t ,∴f (t )=lg t ,即f (x )=lg x ,∴f (3)=lg 3. (2)23+log 23+35-log 39=23·2log 23+353log 39 =23×3+359=24+27=51.13.(选做题)若log 2(log 12(log 2x ))=log 3(log 13(log 3y ))=log 5(log 15(log 5z ))=0,试确定x ,y ,z 的大小关系.解 由log 2(log 12(log 2x ))=0,得log 12(log 2x )=1,log 2x =12,x =212=(215)130.由log 3(log 13(log 3y ))=0,得log 13(log 3y )=1,log 3y =13,y =313=(310)130.由log 5(log 15(log 5z ))=0,得log 15(log 5z )=1,log 5z =15,z =515=(56)130.∵310>215>56,∴y >x >z .。
2.2.1对数与对数运算(第一课时)
2
lo g 1 5 .7 3 m 1 34 ( ) 16 2 2 10 0.01
e
2 .3 0 3
10
典例分析
例1 将下列指数式化为对数式,对数式化为指数式. 常用对数:以10为底的对数
lg 0.01
自然对数:以e为底的对数
其中无理数e=2.71828 ··· (5) lo g 1 0 0 .0 1 2
求a的取值范围
3、求等式 lg 1- 3x) = 1 ( 中的x的值
其中 a 叫做对数的底数,N叫做真数.
a N
x
x lo g a N
对数式
指数式
新课讲解
二、对数的性质 若 a 0, 且 a 1
a N
x
x lo g a N
2 lo g 4 1 6
1 2 x lo g 2 1 0 4 8 5 7 6 lo g 4 2
4 16
2
课本64页练习3,4
目标再现
1、理解对数的概念,了解对数与指数的关系;
2、理解和掌握对数的性质;
3、掌握对数式与指数式的关系 .
作业:课本74页A组1,2
课堂检测
1、已知 ln(lg x) = 0, 那么x等于( )
1 C、 10
(5- a D、e
2、已知对数式 b = log ( a-
典例分析
例1 将下列指数式化为对数式,对数式化为指数式. (1)54=645 (2)2
6
lo g 5 6 4 5 4
m
1 64
lo g 2
1 64
6
(3) ( ) 5 .7 3
3 (4) lo g 1 1 6 4
对数函数学案
2.2对数函数2.2.1对数与对数运算第一课时对数Q 情景引入ing jing yin ru“对数”(logarithm)一词是纳皮尔首先创造的,意思是“比数”.他最早用“人造的数”来表示对数.俄国著名诗人莱蒙托夫是一位数学爱好者,传说有一次他在解答一道数学题时,冥思苦想没法解决,睡觉时做了一个梦,梦中一位老人提示他解答的方法,醒后他真的把此题解出来了,莱蒙托夫把梦中老人的像画了出来,大家一看竟是数学家纳皮尔,这个传说告诉我们:纳皮尔在人们心目中的地位是多么地高!那么,“对数”到底是什么呢?学完本节内容就明白了!X 新知导学in zhi dao xue1.对数的概念若a x=N(a>0,且a≠1),则数x叫做以a为底N的对数,a叫做对数的__底数__,N 叫做__真数__,记作x=__log a N__.[知识点拨]对数式log a N可看作一种记号,表示关于x的方程a x=N(a>0,且a≠1)的解;也可以看作一种运算,即已知底为a(a>0,且a≠1),幂为N,求幂指数的运算,因此,对数式log a N又可看作幂运算的逆运算.2.常用对数和自然对数(1)常用对数:通常我们将以__10__为底的对数叫做常用对数,并把log10N记为__lg N__.(2)自然对数:在科学技术中常使用以无理数e=2.71828…为底数的对数,以e为底的对数称为自然对数,并把log e N记为__ln N__.3.对数与指数的关系当a>0,且a≠1时,a x=N⇔x=__log a N__.4.对数的基本性质(1)__零__和__负数__没有对数.(2)log a1=__0__(a>0,且a≠1).(3)log a a=__1__(a>0,且a≠1).Y 预习自测u xi zi ce1.将a b =N 化为对数式是( B ) A .log b a =N B .log a N =b C .log N b =aD .log N a =b[解析] 根据对数定义知a b =N ⇔b =log a N ,故选B. 2.若log 8x =-23,则x 的值为( A )A.14 B .4 C .2D .12[解析] ∵log 8x =-23,∴x =8-23 =2-2=14,故选A.3.对数式log a 8=3改写成指数式为( D ) A .a 8=3 B .3a =8 C .83=aD .a 3=8[解析] 根据指数式与对数式的互化可知,把log a 8=3化为指数式为a 3=8,故选D. 4.若log 2x -12=1,则x =__5__.[解析] ∵log 2x -12=1,∴x -12=2,∴x =5.H 互动探究解疑u dong tan jiu jie yi命题方向1 ⇨指数式与对数式的互化典例1 完成以下指数式、对数式的互化.(1)log 515=-1;(2)log 12 16=-4;(3)log 5125=6;(4)26=64;(5)10-3=0.001;(6)(12)-3=8.[思路分析] 先判断出是指数式还是对数式,再利用指对数的关系转化求解. [解析] (1)∵log 515=-1,∴5-1=15.(2)∵log 12 16=-4,∴(12)-4=16.(3)∵log 5125=6,∴(5)6=125. (4)∵26=64,∴log 264=6.(5)∵10-3=0.001,∴lg0.001=-3. (6)∵(12)-3=8,∴log 128=-3.『规律方法』 对数式log a N =b 是由指数式a b =N 变化得来的,两式底数相同,对数式中的真数N 就是指数式中的幂的值,而对数值b 是指数式中的幂指数,对数式与指数式的关系如图:并非所有指数式都可以直接化为对数式.如(-3)2=9就不能直接写成log (-3)9=2,只有a >0且a ≠1,N >0时,才有a x =N ⇔x =log a N .〔跟踪练习1〕将下列指数式化为对数式,对数式化为指数式: (1)42=16; (2)102=100;(3)412=2;(4)log 1232=-5. [解析] (1)log 416=2. (2)lg100=2. (3)log 42=12.(4)(12)-5=32. 命题方向2 ⇨对数定义与性质的应用典例2 求下列各式中的x :(1)log 3(log 2x )=0; (2)log 3(log 7x )=1; (3)lg(ln x )=1; (4)lg(ln x )=0.[思路分析] 利用指数式与对数式的互化进行解答. [解析] (1)由log 3(log 2x )=0得log 2x =1,∴x =2; (2)log 3(log 7x )=1,log 7x =31=3, ∴x =73=343; (3)lg(ln x )=1,ln x =10, ∴x =e 10;(4)lg(ln x )=0,ln x =1, ∴x =e.『规律方法』 对数性质在计算中的应用 (1)对数运算时的常用性质:log a a =1,log a 1=0.(2)使用对数的性质时,有时需要将底数或真数进行变形后才能运用;对于多重对数符号的,可以先把内层视为整体,逐层使用对数的性质.〔跟踪练习2〕 求下列各式中x 的值:(1)x =log 12 16; (2)log 8x =-13;(3)log 2(log 4x )=0; (4)log (2-1)13+22=x .[解析] (1)∵x =log 12 16,∴(12)x =16,即2-x =24.∴-x =4,即x =-4.(2)∵log 8x =-13,∴x =8-13 =1 38=12.(3)∵log 2(log 4x )=0,∴log 4x =1,∴x =4. (4)∵log (2-1)13+22=x ,∴(2-1)x =13+22=1(2+1)2=12+1=2-1,∴x =1.命题方向3 ⇨对数恒等式的应用典例3 计算:(1)71-log 75;(2)412 (log 29-log 25);(3)a log a b ·log b c (a 、b 均为不等于1的正数,c >0). [解析] (1)原式=77log 75=75.(2)原式=2(log 29-log 25)=2log 292log 25=95. (3)原式=(a log a b )log b c =b log b c =c .『规律方法』 运用对数恒等式时注意事项 (1)对于对数恒等式a log a N =N 要注意格式:①它们是同底的;②指数中含有对数形式;③其值为对数的真数.(2)对于指数中含有对数值的式子进行化简,应充分考虑对数恒等式的应用.〔跟踪练习3〕求31+log 36-24+log 23+103lg3+(19)log 34的值.[解析] 原式=3·3log 36-24·2log 23+(10lg3)3+(3log 34)-2 =3×6-16×3+33+4-2 =18-48+27+116=-4716.Y 易混易错警示i hun yi cuo jing shi因忽视对数式的底数和真数的取值范围致误典例4 对数式log (a -2)(5-a )=b 中,实数a 的取值范围是( )A .(-∞,5)B .(2,5)C .(2,+∞)D .(2,3)∪(3,5)[错解] A由题意,得5-a >0,∴a <5.[错因分析] 该解法忽视了对数的底数和真数都有范围限制,只考虑了真数而忽视了底数.[正解] 由题意,得⎩⎪⎨⎪⎧5-a >0,a -2>0,a -2≠1,∴2<a <3或3<a <5.故选D.[警示] 对数的真数与底数都有范围限制,不可顾此失彼. X 学科核心素养ue ke he xin su yang再谈等价转化指数式与对数式可以相互转化,利用这种转化关系可以求解指对方程与不等式及指数对数运算.将等式两端取同底的对数,是指数对数转化的另一种表现形式.典例5 若log 12 x =m ,log 14y =m +2,求x 2y 的值.[思路分析] 14=(12)2,两个对数式可以通过指数对数互化化为指数式,于是可以运用幂的运算法则求x 2y.[解析] ∵log 12x =m ,∴(12)m =x ,x 2=(12)2m .∵log 14 y =m +2,∴(14)m +2=y ,y =(12)2m +4.∴x 2y =(12)2m (12)2m +4=(12)2m -(2m +4)=(12)-4=16.K 课堂达标验收e tang da biao yan shou1.下列说法: ①零和负数没有对数;②任何一个指数式都可以化成为对数式; ③以10为底的对数叫做常用对数; ④以e 为底的对数叫做自然对数. 其中正确命题的个数为( C ) A .1 B .2 C .3D .4[解析] ①正确;②当底数小于0的指数式不可以化成对数式;③④叫法正确,故选C.2.若b =a 3(a >0且a ≠1),则有( B ) A .log a 3=b B .log a b =3 C .log b 3=aD .log b a =3[解析] ∵b =a 3,∴log a b =3,故选B.3.下列指数式与对数式互化不正确的一组是( B ) A .100=1与lg1=0 B .27-13=13与log 2713=-3 C .log 39=2与32=9 D .log 55=1与51=5 [解析] 对B 选项27-13=13化为对数式为log 2713=-13. 4.若对数log (x -1)(4x -5)有意义,则x 的取值范围是__(54,2)∪(2,+∞)__.[解析] 要使对数log (x -1)(4x -5)有意义,应满足⎩⎪⎨⎪⎧4x -5>0x -1>0x -1≠1,∴x >54且x ≠2.5.将下列指数式与对数式互化: (1)log 216=4; (2)log 1327=-3;(3)log 3x =6;(4)43=64; (5)3-2=19;(6)(14)-2=16. [解析] (1)∵log 216=4,∴24=16. (2)∵log 13 27=-3,∴(13)-3=27.(3)∵log3x =6,∴(3)6=x .(4)∵43=64,∴log 464=3. (5)∵3-2=19,∴log 319=-2.(6)∵(14)-2=16,∴log 1416=-2.A 级 基础巩固一、选择题1.(2015·盘锦高一检测)下列指数式与对数式互化不正确的一组是( B ) A .e 0=1与ln1=0 B .log 39=2与912=3C .8-13=12与log 812=-13D .log 77=1与71=7[解析] log 39=2化为指数式为32=9,故选B. 2.把对数式x =lg2化成指数式为( A ) A .10x =2 B .x 10=2 C .x 2=10D .2x =10[解析] 由指数、对数的互化可得x =lg2⇔10x =2,故选A. 3.log x 3y =4,则x 、y 之间的关系正确的是( A ) A .x 4=3y B .y =64x C .y =3x 4D .x =3y 2[解析] 将对数式log x 3y =4化为指数式为x 4=3y ,故选A. 4.(12)-1+log 0.54的值为( C )A .6B .72C .8D .37[解析] (12)-1+log 0.54=(12)·(12)log 0.54=(12)-1·(12)log 12 4=2×4=8.5.方程2log 3x =14的解是( A )A .x =19B .x =33C .x =3D .x =9[解析] ∵2log 3x =2-2,∴log 3x =-2,∴x =3-2=19.6.已知f (e x )=x ,则f (3)=( B ) A .log 3e B .ln3 C .e 3D .3e[解析] 令e x =3,∴x =ln3,∴f (3)=ln3,故选B. 二、填空题7.若log π[log 3(ln x )]=0,则x =__e 3__. [解析] 由题意,得log 3(ln x )=1, ∴ln x =3,∴x =e 3. 8.log2-1(2+1)+ln1-lg1100=__1__. [解析] 设log 2-1(2+1)=x ,则(2-1)x =2+1=12-1=(2-1)-1,∴x =-1;设lg 1100=y ,则10y =1100=10-2,∴y =-2;又ln1=0,∴原式=-1+0-(-2)=1. 三、解答题9.求下列各式的值:(1)log 464; (2)log 31; (3)log 927; (4)2log 2π. [解析] (1)设log 464=x ,则4x =64, ∵64=43,∴x =3,∴log 464=3. (2)设log 31=x ,则3x =1, ∵1=30,∴x =0,∴log 31=0. (3)设log 927=x ,则9x =27即32x =33, ∴2x =3即x =32,∴log 927=32.(4)设2log 2π=x ,则log 2π=log 2x =u , ∴π=2u ,x =2u ,∴x =π,即2log 2π=π.B 级 素养提升一、选择题1.在b =log (3a -1)(3-2a )中,实数a 的取值范围是( B ) A .a >32或a <13B.13<a <23或23<a <32 C.13<a <32D.23<a <32[解析] 要使式子b =log (3a -1)(3-2a )有意义,则 ⎩⎪⎨⎪⎧3a -1>0,3a -1≠1,3-2a >0即13<a <23或23<a <32,故选B. 2.log 5[log 3(log 2x )]=0,则x -12等于( C )A.66 B .39C.24D .23[解析] ∵log 5[log 3(log 2x )]=0,∴log 3(log 2x )=1, ∴log 2x =3,∴x =23=8, ∴x-12=8-12=18=122=24,故选C. 3.若log a 3=2log 230,则a 的值为( B ) A .2 B .3 C .8D .9[解析] ∵log a 3=2log 230=20=1,∴a =3,故选B. 4.已知lg a =2.31,lg b =1.31,则ba 等于( B )A.1100 B .110C .10D .100[解析] ∵lg a =2.31,lg b =1.31, ∴a =102.31,b =101.31, ∴b a =101.31102.31=10-1=110. 二、填空题5.若log a 2=m ,log a 3=n ,则a 2m +n =__12__. [解析] ∵log a 2=m ,∴a m =2,∴a 2m =4, 又∵log a 3=n ,∴a n =3,∴a 2m +n =a 2m ·a n =4×3=12.6.已知函数f (x )=⎩⎪⎨⎪⎧3x ,x ≤1,-x ,x >1,若f (x )=2,则x =__log 32__.[解析] 由⎩⎪⎨⎪⎧x ≤1,3x =2⇒x =log 32,或⎩⎪⎨⎪⎧x >1-x =2⇒x =-2无解. 三、解答题7.求下列各式中的x : (1)log x 27=32;(2)log 2x =-23;(3)log x (3+22)=-2; (4)log 5(log 2x )=0; (5)x =log 2719;(6)x =log 1216.[解析] (1)由log x 27=32,得x 32 =27, ∴x =2723=9.(2)由log 2x =-23,得x =2-23 =322.(3)由log x (3+22)=-2,得3+22=x -2, ∴x =(3+22)-12=2-1.(4)由log 5(log 2x )=0,得log 2x =1, ∴x =21=2.(5)由log 2719=x ,得27x =19,33x =3-2,∴3x =-2,∴x =-23.(6)由log 12 16=x ,得(12)x =16,即2-x =24,∴x =-4.C 级 能力拔高1.求下列各式中x 的值: (1)x =log 224;(2)x =log 93; (3)log x 8=-3;(4)log 12x =4.[解析] (1)由已知得(22)x=4, ∴2-x 2=22,-x2=2,x =-4.(2)由已知得9x =3,即32x =312.∴2x =12,x =14.(3)由已知得x -3=8, 即(1x )3=23,1x =2,x =12. (4)由已知得x =(12)4=116.2.设x =log 23,求23x -2-3x2x -2-x的值.[解析] 由x =log 23,得2-x =13,2x =3,∴23x -2-3x 2x -2-x =(2x )3-(2-x )32x -2-x=(2x )2+1+(2-x )2=32+1+(13)2=919. 第二课时 对数的运算性质Q 情景引入ing jing yin ru已知对数log 864,log 264,log 28,log 464,log 48.对数log 864的值与对数log 264和log 28的值有什么关系? 对数log 864的值与对数log 464和log 48的值有什么关系? 由上面的问题你能得出什么结论? X 新知导学in zhi dao xue1.对数的运算性质[知识点拨]a a M )(log a N ),log a (M +N )≠log a M +log a N ,log a M N ≠log a M log a N.2.换底公式log a b =__log c blog c a __(a >0,且a ≠1;c >0,且c ≠1;b >0).[知识拓展] (1)可用换底公式证明以下结论:①log a b =1log b a ;②log a b ·log b c ·log c a =1;③log an b n =log a b ;④log an b m =m n log a b ;⑤log 1a b=-log a b .(2)对换底公式的理解:换底公式真神奇,换成新底可任意, 原底加底变分母,真数加底变分子. Y 预习自测u xi zi ce1.若a >0,a ≠1,x >0,y >0,x >y ,下列式子中正确的个数是( A ) ①log a x ·log a y =log a (x +y ); ②log a x -log a y =log a (x -y ); ③log a xy =log a x ÷log a y ;④log a (xy )=log a x ·log a y . A .0 B .1 C .2D .3[解析] 由对数运算法则知,均不正确.故选A. 2.lg20+lg50的值为( C ) A .70 B .1 000 C .3D .52[解析] lg20+lg50=lg1 000=3.故选C. 3.log 62+log 63等于( A ) A .1 B .2 C .5D .6 [解析] log 62+log 63=log 62×3=log 66=1. 4.log 23·log 34=__2__.[解析] log 23·log 34=lg3lg2·lg4lg3=lg3lg2·2lg2lg3=2.5.计算下列各式的值: (1)2lg5+lg4+e ln2+log222;(2)(log 23+log 89)(log 34+log 98+log 32).[解析] (1)原式=2lg5+2lg2+2+3=2(lg5+lg2)+5=7. (2)原式=(log 23+log 29log 28)(log 322+log 38log 39+log 32)=(log 23+23log 23)(2log 32+32log 32+log 32)=(53log 23)(92log 32)=152.H 互动探究解疑 u dong tan jiu jie yi典例1 用log a x ,log a y ,log a z 表示:(1)log a(xy 2);(2)loga (x y );(3)log a3x yz 2. [解析] (1)log a (xy 2)=log a x +log a y 2=log a x +2log a y . (2)log a (x y )=log a x +log a y =log a x +12log a y .(3)log a3x yz 2=13log a x yz 2=13(log a x -log a (yz 2))=13(log a x -log a y -2log a z ). 『规律方法』 对对数式进行计算、化简时,一要注意准确应用对数的性质和运算性质.二要注意取值范围对符号的限制.〔跟踪练习1〕用log a x 、log a y 、log a z 表示下列各式: (1)log a (x 3y 5); (2)log axyz. [解析] (1)log a (x 3y 5)=log a x 3+log a y 5 =3log a x +5log a y . (2)log axyz=log a x -log a (yz ) =log a x 12-(log a y +log a z )=12log a x -log a y -log a z . 命题方向2 ⇨运用对数的运算性质化简求值典例2 计算下列各式的值:(1)lg 27+lg8-3lg 10lg1.2;(2)log 535-2log 573+log 57-log 51.8;(3)2(lg 2)2+lg 2·lg5+(lg 2)2-lg2+1. [思路分析] 利用对数的运算性质计算.[解析] (1)原式=lg (33)12 +lg23-3lg1012lg 3×2210=32(lg3+2lg2-1)lg3+2lg2-1=32.(2)原式=log 5(5×7)-2(log 57-log 53)+log 57-log 595=log 55+log 57-2log 57+2log 53+log 57-2log 53+log 55 =2log 55=2.(3)原式=lg 2(2lg 2+lg5)+(lg 2-1)2 =lg 2(lg2+lg5)+1-lg 2 =lg 2+1-lg 2 =1.『规律方法』 灵活运用对数运算法则进行对数运算,要注意法则的正用和逆用.在化简变形的过程中,要善于观察、比较和分析,从而选择快捷、有效的运算方案进行对数运算.〔跟踪练习2〕 求下列各式的值: (1)log 318-log 36; (2)log 1123+2log 1122;(3)lg 28+43+log 28-43; (4)lg3+2lg2-1lg1.2.[解析] (1)原式=log 3186=log 33=1.(2)原式=log 1123+log 1124=log 11212=-1.(3)原式=log 2[8+438-43]=log 282-(43)2=log 264-48)=log 24=2. (4)原式=lg3+lg4-1lg1.2=lg1.2lg1.2=1.命题方向3 ⇨换底公式的应用典例3 (1)计算log 2125·log 318·log 519;(2)若log 34·log 48·log 8m =log 42,求m 的值.[思路分析] (1)对数的底数不同,如何将其化为同底的对数?(2)等式左边前一个对数的真数是后面对数的底数,利用换底公式很容易进行约分求解m 的值.[解析] (1)原式=lg 125lg2·lg 18lg3·lg 19lg5=(-2lg5)·(-3lg2)·(-2lg3)lg2·lg3·lg5=-12.(2)由题意,得lg4lg3·lg8lg4·lg m lg8=lg m lg3=12,∴lg m =12lg3,即lg m =lg312 , ∴m = 3.『规律方法』 关于换底公式的用途和本质:(1)换底公式的主要用途在于将一般对数式化为常用对数或自然对数,然后查表求值,以此来解决对数求值的问题.(2)换底公式的本质是化异底为同底,这是解决对数问题的基本方法.(3)在运用换底公式时,若能结合底数间的关系恰当选用一些重要的结论,如log a b =1log b a ;log a a n =n ,log am b n =nmlog a b ;lg2+lg5=1等,将会达到事半功倍的效果.〔跟踪练习3〕 计算下列各式的值: (1)log 89·log 2732; (2)log 927; (3)log 21125·log 3132·log 513. [解析] (1)log 89·log 2732=lg9lg8·lg32lg27=lg32lg23·lg25lg33=2lg33lg2·5lg23lg3=109.(2)log 927=log 327log 39=log 333log 332=3log 332log 33=32.(3)log 21125·log 3132·log 513=log 25-3·log 32-5·log 53-1=-3log 25·(-5log 32)·(-log 53)=-15·lg5lg2·lg2lg3·lg3lg5=-15.Y 易混易错警示i hun yi cuo jing shi因忽视对数的真数大于零而致误典例4 解方程lg(x +1)+lg x =lg6.[错解] ∵lg(x +1)+lg x =lg[x (x +1)]=lg(x 2+x ), ∴lg(x 2+x )=lg6,∴x 2+x =6,解得x =2或x =-3.[错因分析] 错解中,去掉对数符号后方程x 2+x =6与原方程不等价,产生了增根,其原因是在x 2+x =6中x ∈R ,而在原方程中,应有⎩⎪⎨⎪⎧x +1>0,x >0.求解之后再验根即可.[正解] ∵lg(x +1)+lg x =lg[x (x +1)]=lg6,∴x (x +1)=6,解得x =2或x =-3,经检验x =-3不符合题意,∴x =2. X 学科核心素养ue ke he xin su yang转化与化归思想的应用与综合分析解决问题的能力典例5 (1)设3x =4y =36,求2x +1y的值;(2)已知log 23=a,3b =7,求log 1256.[思路分析] (1)欲求2x +1y 的值,已知3x =36,4y =36,由此两式怎样得到x ,y ,容易想到对数的定义——故可用等式两端取同底的对数(指对互化)来解决;(2)已知条件中有指数式,也有对数式,而待计算式为对数式,因此可将指数式3b =7化为对数式解决.观察所给数字特征、条件式中为2、3、7,又12=3×22,56=7×23,故还可以利用换底公式的推论log an b m =mnlog a b ,将条件中的对数式log 23=a 化为指数式解答.[解析] (1)由已知分别求出x 和y , ∵3x =36,4y =36, ∴x =log 336,y =log 436,由换底公式得:x =log 3636log 363=1log 363,y =log 3636log 364=1log 364,∴1x =log 363,1y =log 364,∴2x +1y =2log 363+log 364=log 36(32×4)=log 3636=1. (2)解法一:因为log 23=a ,所以2a =3.又3b =7,故7=(2a )b =2ab ,故56=23+ab,又12=3×4=2a ×4=2a +2,从而log 1256=log 2a +223+ab=3+aba +2. 解法二:因为log 23=a ,所以log 32=1a .又3b =7,所以log 37=b .从而log 1256=log 356log 312=log 37+log 38log 33+log 34=log 37+3log 321+2log 32=b +3·1a 1+2·1a =ab +3a +2.『规律方法』 1.应用换底公式应注意的事项 (1)注意换底公式的正用、逆用以及变形应用.(2)题目中有指数式和对数式时,要注意将指数式与对数式统一成一种形式,注意转化与化归思想的运用.2.对数式的条件求值问题要注意观察所给数字特征,分析找到实现转化的共同点进行转化.3.利用换底公式计算、化简、求值的一般思路:思路一:用对数的运算法则及性质进行部分运算→换成同一底数. 思路二:一次性统一换为常用对数(或自然对数)→化简、通分、求值. K 课堂达标验收e tang da biao yan shou1.若lg2=a ,lg3=b ,则lg12lg15等于( D )A.2a +b 1+a +b B .2a +2b 1+a +bC.2a +b 2-a +b D .2a +b1-a +b[解析]lg12lg15=lg3+2lg2lg3+(1-lg2)=2a +b 1-a +b. 2.计算log 89·log 932的结果为( B ) A .4 B .53C.14D .35[解析] log 89·log 932=lg9lg8·lg32lg9=5lg23lg2=53,故选B.3.已知a =log 32,那么log 38-2log 36用a 表示是( A ) A .a -2 B .5a -2 C .3a -(1+a )2D .3a -a 2-1[解析] log 38-2log 36=log 323-2(log 32+log 33) =3log 32-2(log 32+1) =3a -2(a +1)=a -2.故选A. 4.12log 612-log 62=__12__. [解析] 原式=12log 612-12log 62=12log 6122=12log 66=12. 5.计算:(1)lg14-2lg 73+lg7-lg18;(2)2lg2+lg32+lg0.36+2lg2; (3)lg 25+lg2·lg50.[解析] (1)解法一:原式=lg(2×7)-2(lg7-lg3)+lg7-lg(32×2)=lg2+lg7-2lg7+2lg3+lg7-2lg3-lg2 =0.解法二:原式=lg14-lg(73)2+lg7-lg18=lg 14×7(73)2×18=lg1=0.(2)原式=2lg2+lg32+lg36-2+2lg2=2lg2+lg34lg2+2lg3=12.(3)原式=lg 25+(1-lg5)(1+lg5)=lg 25+1-lg 25=1.A 级 基础巩固一、选择题1.设a ,b ,c 均为不等于1的正实数,则下列等式中恒成立的是( B ) A .log a b ·log c b =log c a B .log a b ·log c a =log c b C .log a (bc )=log a b ·log a c D .log a (b +c )=log a b +log a c2.如果lg x =lg a +2lg b -3lg c ,则x 等于( C ) A .a +2b -3c B .a +b 2-c 3 C.ab 2c3 D .2ab 3c[解析] lg x =lg a +2lg b -3lg c =lg ab 2c 3,∴x =ab 2c3,故选C.3.已知2x =3,log 483=y ,则x +2y 的值为( A )A .3B .8C .4D .log 48 [解析] x +2y =log 23+2log 483=log 49+log 4(83)2=log 4(9×649)=log 464=3,故选A.4.若log 34·log 8m =log 416,则m 等于( D ) A .3 B .9 C .18D .27[解析] 原式可化为:log 8m =2log 34,∴13log 2m =2log 43,∴m 13=3,m =27,故选D.5.已知log 7[log 3(log 2x )]=0,那么x -12等于( C )A.13 B .123C.122D .133[解析] log 7[log 3(log 2x )]=0,则log 3(log 2x )=1,log 2x =3,x =8,因此x -12=122.故选C.6.已知2a =5b =M ,且2a +1b =2,则M 的值是( B )A .20B .25C .±25D .400[解析] ∵2a =5b =M ,∴a =log 2M =lg Mlg2,b =log 5M =lg Mlg5,∴1a =lg2lg M, 1b =lg5lg M ,∴2a +1b =2lg2lg M +lg5lg M =lg4+lg5lg M =lg20lg M =2, ∴2lg M =lg20,∴lg M 2=lg20, ∴M 2=20, ∵M >0,∴M =2 5. 二、填空题7.2log 525+3log 264-8ln1=__22__.[解析] 原式=2×2+3log 226-8·ln1=4+3×6-0=22. 8.化简log 2(2+3)+log 2(2-3)=__0__. [解析] log 2(2+3)+log 2(2-3) =log 2(2+3)·(2-3)=log 21=0. 三、解答题9.计算:(1)(log 3312 )2+log 0.2514+9log 55-log 31;(2)lg25+23lg8+lg5·lg20+(lg2)2.[解析](1)(log 3312 )2+log 0.2514+9log 55-log 31=(12)2+1+9×12-0=14+1+92=234.(2)原式=lg25+lg823+lg102·lg(10×2)+(lg2)2=lg25+lg4+(1-lg2)(1+lg2)+(lg2)2=lg(25×4)+1-(lg2)2+(lg2)2=3.B 级 素养提升一、选择题1.若x log 34=1,则4x +4-x 的值为( B ) A.83 B .103C .2D .1[解析] 由x log 34=1得x =log 43,所以4x +4-x =3+13=103,故选B.2.lg8+3lg5的值为( D ) A .-3 B .-1 C .1D .3[解析] lg8+3lg5=3lg2+3lg5=3(lg2+lg5)=3lg10=3,故选D. 3.已知lg a =1.63,lg b =1.15,lg c =4.11,则a 2bc 的值为( D )A .-2B .2C .100D .1100[解析] ∵lg a 2bc =2lg a -lg b -lg c=2×1.63-1.15-4.11=-2. ∴a 2bc =10-2, ∴a 2bc =1100.故选D. 4.log 2716log 34=( D ) A .2 B .32C .1D .23[解析] 由公式log a n b m =mn log a b ,得原式=log 3342log 34=23log 34log 34=23.二、填空题5.lg 52+2lg2-(12)-1=__-1__.[解析] lg 52+2lg2-(12)-1=lg 52+lg4-2=-1.6.若log a x =2,log b x =3,log c x =6,则log (abc )x =__1__. [解析] ∵log a x =1log x a =2,∴log x a =12.同理log x c =16,log x b =13. ∴log abc x =1log x (abc )=1log x a +log x b +log x c =1.三、解答题7.已知log a 2=m ,log a 3=n . (1)求a 2m-n的值;(2)求log a 18.[解析] (1)因为log a 2=m ,log a 3=m , 所以a m =2,a n =3.所以a 2m -n =a 2m ÷a n =22÷3=43.(2)log a 18=log a (2×32)=log a 2+log a 32=log a 2+2log a 3=m +2n .C 级 能力拔高1.若a ,b 是方程2(lg x )2-lg x 4+1=0的两个实根,求lg(ab )·(log a b +log b a )的值. [解析] 原方程可化为2(lg x )2-4lg x +1=0,设t =lg x , 则原方程化为2t 2-4t +1=0. 所以t 1+t 2=2,t 1t 2=12.由已知a ,b 是原方程的两个实根,则t 1=lg a ,t 2=lg b ,所以lg a +lg b =2,lg a ·lg b =12.所以lg(ab )·(log a b +log b a ) =(lg a +lg b )(lg b lg a +lg alg b )=(lg a +lg b )[(lg b )2+(lg a )2]lg a lg b=(lg a +lg b )·(lg b +lg a )2-2lg a lg blg a lg b=2×22-2×1212=12.2.已知3x =4y =6z .(1)若z =1,求(x -1)(2y -1)的值; (2)若x ,y ,z 为正数,求证:2x +1y =2z.[解析] (1)由3x =4y =6得x =log 36,y =log 46, 所以(x -1)(2y -1)=(log 36-1)(2log 46-1) =log 32·log 49=lg2lg3·2lg32lg2=1.(2)证明:设3x =4y =6z =m (m >1), 则x =log 3m ,y =log 4m ,z =log 6m . 所以1x =log m 3,1y =log m 4,1z=log m 6.又因为2log m 3+log m 4=log m 36=2log m 6,所以2x +1y =2z.2.2.2 对数函数及其性质 第一课时 对数函数及其性质Q 情景引入ing jing yin ru我们所处的地球正当壮年,地壳运动还非常频繁,每年用地震仪可以测出的地震大约有500万次,平均每隔几秒钟就有一次,其中3级以上的大约只有5万次,仅占1%,7级以上的大震每年平均约有18次,8级以上的地震每年平均仅1次,那么地震的震级是怎么定义的呢?这里面就要用到对数函数.X 新知导学in zhi dao xue1.对数函数的定义一般地,我们把函数y =__log a x __(a >0,且a ≠1)叫做对数函数,其中__x __是自变量,函数的定义域是__(0,+∞)__.[知识点拨] (1)由于指数函数y =a x 中的底数a 满足a >0,且a ≠1,则对数函数y =log a x 中的底数a 也必须满足a >0,且a ≠1.(2)对数函数的解析式同时满足:①对数符号前面的系数是1;②对数的底数是不等于1的正实数(常数);③对数的真数仅有自变量x .2.对数函数的图象和性质一般地,对数函数y =log a x (a >0,且a ≠1)的图象和性质如下表所示:定义域:__(0,+∞)__对数函数y=log a x(a>0,且a≠1)和指数函数y=a x(a>0,且a≠1)互为反函数,它们的图象关于直线__y=x__对称.Y预习自测u xi zi ce1.下列函数是对数函数的是(D)A.y=2+log3xB.y=log a(2a)(a>0,且a≠1)C.y=log a x2(a>0,且a≠1)D.y=ln x[解析]判断一个函数是否为对数函数,其关键是看其是否具有“y=log a x”的形式,A,B,C全错,D正确.2.函数f(x)=log2(x+1)的定义域为(C)A.(-∞,-1)B.[-1,+∞)C.(-1,+∞)D.(1,+∞)[解析]要使函数有意义,应满足x+1>0,∴x>-1,故选C.3.函数y=log a x的图象如图所示,则实数a的可能取值为(A)A.5B.15C.1e D.12[解析]∵函数y=log a x的图象一直上升,∴函数y=log a x为单调增函数,∴a>1,故选A.4.对数函数的图象过点P(9,2),则此对数函数的解析式为__y=log3x__. [解析]设对数函数为y=log a x,∴2=log a9,∴a=3,∴解析式为y=log3x.H 互动探究解疑u dong tan jiu jie yi命题方向1⇨对数函数概念典例1 下列函数表达式中,是对数函数的有(B)①y=log x2;②y=log a x(a∈R);③y=log8x;④y=ln x;⑤y=log x(x+2);⑥y=2log4x;⑦y=log2(x+1).A.1个B.2个C.3个D.4个[思路分析](1)对数概念对底数、真数、系数的要求是什么?[解析]根据对数函数的定义进行判断.由于①中自变量出现在底数上,∴①不是对数函数;由于②中底数a∈R不能保证a>0且a≠1,∴②不是对数函数;由于⑤、⑦的真数分别为(x+2),(x+1),∴⑤、⑦也不是对数函数;由于⑥中log4x系数为2,∴⑥不是对数函数;只有③、④符合对数函数的定义.『规律方法』对于对数概念要注意以下两点:(1)在函数的定义中,a>0且a≠1.(2)在解析式y=log a x中,log a x的系数必须为1,真数必须为x,底数a必须是大于0且不等于1的常数.〔跟踪练习1〕指出下列函数中,哪些是对数函数?①y=5x;②y=-log3x;③y=log0.5x;④y=log32x;⑤y=log2(x+1).[解析]①是指数函数;②中log3x的系数为-1,∴②不是对数函数;③中的真数为x,∴③不是对数函数;⑤中的真数是(x+1),∴⑤不是对数函数;∴只有④是对数函数.命题方向2⇨对数函数的定义域典例2 求下列函数的定义域:(1)f (x )=log (2x -1)(2-x );(2)f (x )=2-ln (3-x );(3)f (x )=3log 0.5(x -1).[思路分析] 依据使函数有意义的条件列出不等式组→解不等式组→写出函数的定义域.[解析] (1)要使函数有意义,需⎩⎪⎨⎪⎧2x -1>0,且2x -1≠1,2-x >0,即⎩⎪⎨⎪⎧x >12,且x ≠1,x <2,∴12<x <2,且x ≠1,故函数的定义域为{x |12<x <2,且x ≠1}. (2)要使函数有意义,需使2-ln(3-x )≥0,即⎩⎪⎨⎪⎧3-x ≤e 2,3-x >0,解得3-e 2≤x <3,故函数的定义域为{x |3-e 2≤x <3}. (3)要使函数有意义,需使log 0.5(x -1)>0, 即log 12(x -1)>0,∴0<x -1<1,即1<x <2.故函数的定义域为{x |1<x <2}.『规律方法』 定义域是研究函数的基础,若已知函数解析式求定义域,常规为:①分母不能为零,②0的零次幂与负指数次幂无意义,③偶次方根的被开方式(数)非负,④求与对数函数有关的函数定义域时,除遵循前面求函数定义域的方法外,还要对这种函数自身有如下要求:一是要特别注意真数大于零;二是要注意底数;三是按底数的取值应用单调性.〔跟踪练习2〕 (1)函数f (x )=1log 2x -1的定义域为( C )A .(0,2)B .(0,2]C .(2,+∞)D .[2,+∞)(2)函数y =f (x )的定义域为(-1,1),则函数y =f (lg x )的定义域为__(110,10)__.[解析] (1)使函数有意义应满足log 2x -1>0, 即log 2x >1,∴x >2,故选C. (2)由y =f (x )定义域为(-1,1)知 -1<lg x <1 解得110<x <1,故y =f (lg x )定义域为(110,10).Y 易混易错警示i hun yi cuo jing shi忽略对数函数的定义域致错典例3 已知函数y =f (x ),x ,y 满足关系式lg(lg y )=lg(3x )+lg(3-x ),求函数y=f (x )的解析式、定义域及值域.[错解] 因为lg(lg y )=lg(3x )+lg(3-x )=lg[3x (3-x )],① 所以lg y =3x (3-x ),即y =103x (3-x ).所以定义域为R ,值域为(0,+∞).以上解题过程中都有哪些错误?出错的原因是什么?你如何改正?如何防范? [错因分析] 错解中没有注意到对数函数的定义域,即表达式①成立的前提为⎩⎪⎨⎪⎧3x >0,3-x >0. [正解] ∵lg(lg y )=lg(3x )+lg(3-x ),∴⎩⎪⎨⎪⎧3x >0,3-x >0,lg y >0,即⎩⎪⎨⎪⎧0<x <3,y >1. 又lg(lg y )=lg(3x )+lg(3-x )=lg[3x (3-x )],∴lg y =3x (3-x ),所以y =103x (3-x ).∵0<x <3,∴3x (3-x )=-3(x -32)2+274∈(0,274],∴y =103x (3-x )∈(1,10274],满足x >1.∴函数y =f (x )的解析式为y =103x (3-x ),定义域为(0,3),值域为(1,10274].X 学科核心素养ue ke he xin su yang观察下列对数函数图象,分析底数a 的变化对函数图象的影响,你发现了什么规律?(1)不管a >1还是0<a <1,底大图低;(2)在第一象限内,依图象的分布,逆时针方向a 逐渐变小,即a 的值越小,图象越靠近y 轴.典例4 已知图中曲线C 1,C 2,C 3,C 4分别是函数y =log a 1x ,y =log a 2x ,y =log a 3x ,y =log a 4x 的图象,则a 1,a 2,a 3,a 4的大小关系是( B )A .a 4<a 3<a 2<a 1B .a 3<a 4<a 1<a 2C .a 2<a 1<a 3<a 4D .a 3<a 4<a 2<a 1[思路分析] 由图象来判断参数的大小情况,需要抓住图象的本质特征和关键点.根据图中的四条曲线底数不同及图象的位置关系,利用log a a =1,结合图象判断.[解析] 在图中作一条直线y =1.由⎩⎪⎨⎪⎧y =1,y =log a 3x ,得log a 3x =1,所以x =a 3. 所以直线y =1与曲线C 3:y =log a 3x 的交点坐标为(a 3,1).同理可得直线y =1与曲线C 4,C 1,C 2的交点坐标分别为(a 4,1),(a 1,1),(a 2,1). 由图象可知a 3<a 4<a 1<a 2,故选B.『规律方法』 1.熟记函数图象的分布规律,就能在解答有关对数图象的选择、填空题时,灵活运用图象,数形结合解决.2.对数值log a x 的符号(x >0,a >0且a ≠1)规律:“同正异负”.(1)当0<x <1,0<a <1或x >1,a >1时,log a x >0,即当真数x 和底数a 同大于(或小于)1时,对数log a x >0,即对数值为正数,简称为“同正”;(2)当0<x <1,a >1或x >1,0<a <1时,log a x <0,即当真数x 和底数a 中一个大于1,而另一个小于1时,也就是说真数x 和底数a 的取值范围“相异”时,对数log a x <0,即对数值为负数,简称为“异负”.因此对数的符号简称为“同正异负”.3.指数型、对数型函数的图象与性质的讨论,常常要转化为相应指数函数,对数函数的图象与性质的问题.K 课堂达标验收e tang da biao yan shou1.已知对数函数的图象过点M (16,4),则此对数函数的解析式为( D ) A .y =log 4x B .y =log 14xC .y =log 12xD .y =log 2x[解析] 由于对数函数的图象过点M (16,4),所以4=log a 16,得a =2,所以对数函数的解析式为y =log 2x ,故选D.2.y =2x 与y =log 2x 的图象关于( B ) A .x 轴对称 B .直线y =x 对称 C .原点对称D .y 轴对称[解析] 函数y =2x 与函数y =log 2x 是互为反函数,故它们的图象关于直线y =x 对称. 3.如图是三个对数函数的图象,则a 、b 、c 的大小关系是( D )A .a >b >cB .c >b >aC .c >a >bD .a >c >b[解析] 由图可知a >1,而0<b <1,0<c <1,取y =1,则可知c >b .∴a >c >b ,故选D.4.设f (x )=⎩⎪⎨⎪⎧lg x ,x >0,10x ,x ≤0,则f [f (-2)]=__-2__.[解析] f (-2)=10-2,f [f (-2)]=lg10-2=-2. 5.已知对数函数f (x )=(m 2-m -1)log (m +1)x ,求f (27). [解析] ∵f (x )是对数函数,∴⎩⎪⎨⎪⎧m 2-m -1=1,m +1>0,m +1≠1,解得m =2.∴f (x )=log 3x ,∴f (27)=log 327=3.A 级 基础巩固一、选择题 1.已知函数f (x )=11-x的定义域为M ,g (x )=ln(1+x )的定义域为N ,则M ∩N 等于( C )A .{x |x >-1}B .{x |x <1}C .{x |-1<x <1}D .∅[解析] 由题意各M ={x |x <1},N ={x |x >-1},则M ∩N ={x |-1<x <1},故选C. 2.函数y =log 2x 在[1,2]上的值域是( D ) A .RB .[0,+∞)C.(-∞,1]D.[0,1][解析]∵1≤x≤2,∴log21≤log2x≤log22,即0≤y≤1,故选D.3.函数f(x)=log2(3x+3-x)是(B)A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数[解析]∵3x+3-x>0恒成立,∴f(x)的定义域为R.又∵f(-x)=log2(3-x+3x)=f(x),∴f(x)为偶函数,故选B.4.下列各组函数中,定义域相同的一组是(C)A.y=a x与y=log a x(a>0,且a≠1)B.y=2ln x与y=ln x2C.y=lg x与y=lg xD.y=x2与y=lg x2[解析]A项中,函数y=a x的定义域为R,y=log a x(a>0,且a≠1)的定义域为(0,+∞);B项中,y=2ln x的定义域是(0,+∞),y=ln x2的定义域是{x|x∈R,x≠0};C项中,两个函数的定义域均为(0,+∞);D项中y=x2的定义域为R,y=lg x2的定义域是{x|x∈R,x≠0},故选C.5.函数y=log a(x-3)+2(a>0,且a≠1)的图象恒过定点(C)A.(3,0)B.(3,2)C.(4,2)D.(4,0)[解析]令x-3=1,即x=4,此时y=log a1+2=2,故函数y=log a(x-3)+2(a>0,且a≠1)的图象恒过定点(4,2).6.已知a>0,且a≠1,函数y=a x与y=log a(-x)的图象只能是图中的(B)[解析]可以从图象所在的位置及单调性来判别.也可以利用函数的性质识别图象,特别注意底数a对图象的影响.注意到y=log a(-x)的图象关于y轴的对称图象为y=log a x,又y=log a x与y=a x互为反函数(图象关于直线y=x对称),则可直接确定选B.二、填空题7.已知f (x )=log 9x ,则f (3)=__12__.[解析]f (3)=log 93=log 9912=12. 8.函数y =log 12x -1的定义域为__(0,12]__.[解析] 要使函数有意义,须log 12x -1≥0, ∴log 12 x ≥1,∴0<x ≤12.∴定义域为⎝⎛⎦⎤0,12. 三、解答题9.求下列函数定义域: (1)f (x )=lg(x -2)+1x -3;(2)f (x )=log x +1(16-4x ).[解析] (1)由⎩⎪⎨⎪⎧x -2>0,x -3≠0,得x >2且x ≠3,∴定义域为(2,3)∪(3,+∞). (2)由⎩⎪⎨⎪⎧16-4x >0,x +1>0,x +1≠1,即⎩⎪⎨⎪⎧4x <16,x >-1,x ≠0,解得-1<x <0或0<x <4. ∴定义域为(-1,0)∪(0,4).10.已知f (x )=lg 1+x 1-x .x ∈(-1,1)若f (a )=12,求f (-a ).[解析] 解法一:∵f (-x )=lg 1+x1-x=lg(1-x 1+x )-1=-f (x ),∴f (-a )=-f (a )=-12.解法二:f (a )=lg 1+a1-a ,f (-a )=lg 1-a1+a=lg(1+a 1-a )-1=-lg 1+a 1-a=-12.B 级 素养提升一、选择题1.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,其图象经过点(a ,a ),则f (x )等于( A )A .log 12xB .log 2xC .12xD .x 2[解析] 由题意知f (x )=log a x ,又f (a )=a ,∴log a a =a ,∴a =12,∴f (x )=log 12 x ,故选A.2.已知函数f (x )=log a (x +2),若图象过点(6,3),则f (2)的值为( B ) A .-2 B .2 C.12D .-12[解析] 由条件知,f (6)=3,即log a 8=3,∴a =2,∴f (x )=log 2(x +2), ∴f (2)=log 2(2+2)=2.故选B.3.(2017·全国卷Ⅱ文,8)函数f (x )=ln(x 2-2x -8)的单调递增区间是( D ) A .(-∞,-2) B .(-∞,1) C .(1,+∞)D .(4,+∞)[解析] 由x 2-2x -8>0,得x <-2或x >4.令g (x )=x 2-2x -8,函数g (x )在(4,+∞)上单调递增,在(-∞,-2)上单调递减,∴函数f (x )的单调递增区间为(4,+∞).4.已知f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x ≤1,log a x ,x >1是(-∞,+∞)上的减函数,那么a 的取值范围是( C )A .(0,1)B .(0,13)C .[17,13)D .[17,1)[解析] 由题意得⎩⎪⎨⎪⎧3a -1<0,0<a <1,(3a -1)+4a ≥0,∴17≤a <13.二、填空题5.函数f (x )=3x 21-x+lg(3x +1)的定义域是__{x |-13<x <1}__.[解析] 依题意得⎩⎪⎨⎪⎧1-x >0,3x +1>0,解得-13<x <1,故函数的定义域为{x |-13<x <1}.6.函数y =log a 2x +1x -1的图象恒过定点P ,则P 点坐标为__(-2,0)__.[解析] 对一切a ∈(0,1)∪(1,+∞),当x =-2时,log a2(-2)+1(-2)-1=0,∴P 点坐标为(-2,0).三、解答题7.求下列函数的反函数.(1)y =10x ;(2)y =(45)x ;(3)y =log 13x ;(4)y =log 7x .[解析] (1)指数函数y =10x ,它的底数是10,它的反函数是对数函数y =lg x (x >0). (2)指数函数y =(45)x ,它的底数是45,它的反函数是对数函数y =log 45 x (x >0).(3)对函数y =log 13 x ,它底数是13,它的反函数是指数函数y =(13)x .(4)对函数y =log 7x ,它的底数是7,它的反函数是指数函数y =7x .C 级 能力拔高1.若函数f (x )是定义在R 上的奇函数,且x ∈(0,+∞)时,f (x )=lg(x +1),求f (x )的表达式,并画出大致图象.[解析] ∵f (x )为R 上的奇函数,∴f (0)=0. 又当x ∈(-∞,0)时,-x ∈(0,+∞), ∴f (-x )=lg(1-x ).又∵f (-x )=-f (x ),∴f (x )=-lg(1-x ),∴f (x )的解析式为 f (x )=⎩⎪⎨⎪⎧lg (x +1),x >0,0,x =0,-lg (1-x ),x <0.∴f (x )的大致图象如图所示: 2.已知函数f (x )=lg(x -1). (1)求函数f (x )的定义域和值域; (2)证明f (x )在定义域上是增函数.。
《对数与对数运算》教案(第1课时)
2.2 对数函数 2.2.1 对数与对数运算整体设计教学分析我们在前面的学习过程中,已了解了指数函数的概念和性质,它是后续学习的基础,从本节开始我们学习对数及其运算.使学生认识引进对数的必要性,理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用.教材注重从现实生活的事例中引出对数概念,所举例子比较全面,有利于培养学生的思想素质和激发学生学习数学的兴趣和欲望.教学中要充分发挥课本的这些材料的作用,并尽可能联系一些熟悉的事例,以丰富教学的情景创设.教师要尽量发挥电脑绘图的教学功能,教材安排了“阅读与思考”的内容,有利于加强数学文化的教育,应指导学生认真研读.根据本节内容的特点,教学中要注意发挥信息技术的力量,使学生进一步体会到信息技术在数学学习中的作用,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持. 三维目标1.理解对数的概念,了解对数与指数的关系;理解和掌握对数的性质;掌握对数式与指数式的关系;通过实例推导对数的运算性质,准确地运用对数运算性质进行运算,并掌握化简求值的技能;运用对数运算性质解决有关问题.培养学生分析、综合解决问题的能力;培养学生数学应用的意识和科学分析问题的精神和态度.2.通过与指数式的比较,引出对数的定义与性质;让学生经历并推理出对数的运算性质;让学生归纳整理本节所学的知识.3.学会对数式与指数式的互化,从而培养学生的类比、分析、归纳能力;通过对数的运算法则的学习,培养学生的严谨的思维品质;在学习过程中培养学生探究的意识;让学生感受对数运算性质的重要性,增加学生的成功感,增强学习的积极性. 重点难点教学重点:对数式与指数式的互化及对数的性质,对数运算的性质与对数知识的应用. 教学难点:对数概念的理解,对数运算性质的推导及应用. 课时安排 3课时教学过程第1课时 对数与对数运算(1)导入新课思路1.1.庄子:一尺之棰,日取其半,万世不竭.(1)取4次,还有多长?(2)取多少次,还有0.125尺?2.假设2002年我国国民生产总值为a 亿元,如果每年平均增长8%,那么经过多少年国民生产总值是2002年的2倍? 抽象出:1.(21)4=?(21)x =0.125⇒x=? 2.(1+8%)x =2⇒x=?都是已知底数和幂的值,求指数.你能看得出来吗?怎样求呢?像上面的式子,已知底数和幂的值,求指数,这就是我们这节课所要学习的对数〔引出对数的概念,教师板书课题:对数与对数运算(1)〕.思路2.我们前面学习了指数函数及其性质,同时也会利用性质解决问题,但仅仅有指数函数还不够,为了解决某些实际问题,还要学习对数函数,为此我们先学习对数〔引出对数的概念,教师板书课题:对数与对数运算(1)〕.新知探究 提出问题(对于课本P 572.1.2的例8) ①利用计算机作出函数y=13×1.01x 的图象.②从图象上看,哪一年的人口数要达到18亿、20亿、30亿…? ③如果不利用图象该如何解决,说出你的见解? 即1318=1.01x ,1320=1.01x ,1330=1.01x ,在这几个式子中,x 分别等于多少? ④你能否给出一个一般性的结论?活动:学生讨论并作图,教师适时提示、点拨.对问题①,回忆计算机作函数图象的方法,抓住关键点.对问题②,图象类似于人的照片,从照片上能看出人的特点,当然从函数图象上就能看出函数的某些点的坐标.对问题③,定义一种新的运算.对问题④,借助③,类比到一般的情形. 讨论结果:①如图2-2-1-1.图2-2-1-1②在所作的图象上,取点P,测出点P 的坐标,移动点P,使其纵坐标分别接近18,20,30,观察这时的横坐标,大约分别为32.72,43.29,84.04,这就是说,如果保持年增长率为1个百分点,那么大约经过33年,43年,84年,我国人口分别约为18亿,20亿,30亿.③1318=1.01x ,1320=1.01x ,1330=1.01x ,在这几个式子中,要求x 分别等于多少,目前我们没学这种运算,可以定义一种新运算,即若1318=1.01x ,则x 称作以1.01为底的1318的对数.其他的可类似得到,这种运算叫做对数运算.④一般性的结论就是对数的定义:一般地,如果a(a>0,a≠1)的x 次幂等于N,就是a x =N,那么数x 叫做以a 为底N 的对数(logarithm),记作x=log a N,其中a 叫做对数的底数,N 叫做真数. 有了对数的定义,前面问题的x 就可表示了: x=log 1.011318,x=log 1.011320,x=log 1.011330. 由此得到对数和指数幂之间的关系:例如:42=16⇔2=log 416;102=100⇔2=log 10100;421=2⇔21=log 42;10-2=0.01⇔-2=log 100.01①为什么在对数定义中规定a>0,a≠1?②根据对数定义求log a 1和log a a(a>0,a≠1)的值. ③负数与零有没有对数? ④Na alog =N 与log a a b =b(a>0,a≠1)是否成立?讨论结果:①这是因为若a <0,则N 为某些值时,b 不存在,如log (-2)21; 若a=0,N 不为0时,b 不存在,如log 03,N 为0时,b 可为任意正数,是不唯一的,即log 00有无数个值;若a=1,N 不为1时,b 不存在,如log 12,N 为1时,b 可为任意数,是不唯一的,即log 11有无数个值.综之,就规定了a >0且a≠1. ②log a 1=0,log a a=1.因为对任意a>0且a≠1,都有a 0=1,所以log a 1=0. 同样易知:log a a=1.即1的对数等于0,底的对数等于1.③因为底数a >0且a≠1,由指数函数的性质可知,对任意的b ∈R ,a b >0恒成立,即只有正数才有对数,零和负数没有对数. ④因为a b =N,所以b=log a N,a b =a Na alog =N,即a Na alog =N.因为a b =a b ,所以log a a b =b.故两个式子都成立.(a Na alog =N 叫对数恒等式)思考我们对对数的概念和一些特殊的式子已经有了一定的了解,但还有两类特殊的对数对科学研究和了解自然起了巨大的作用,你们知道是哪两类吗? 活动:同学们阅读课本P 68的内容,教师引导,板书. 解答:①常用对数:我们通常将以10为底的对数叫做常用对数.为了简便,N 的常用对数log 10N 简记作lgN.例如:log 105简记作lg5;log 103.5简记作lg3.5. ②自然对数:在科学技术中常常使用以无理数e=2.718 28……为底的对数,以e 为底的对数叫自然对数,为了简便,N 的自然对数log e N 简记作lnN. 例如:log e 3简记作ln3;log e 10简记作ln10. 应用示例思路1例1将下列指数式写成对数式,对数式写成指数式: (1)54=625;(2)2-6=641;(3)(31)m =5.73; (4)log 2116=-4;(5)lg0.01=-2;(6)ln10=2.303.活动:学生阅读题目,独立解题,把自己解题的过程展示在屏幕上,教师评价学生,强调注意的问题.对(1)根据指数式与对数式的关系,4在指数位置上,4是以5为底625的对数. 对(2)根据指数式与对数式的关系,-6在指数位置上,-6是以2为底641的对数.对(3)根据指数式与对数式的关系,m 在指数位置上,m 是以31为底5.73的对数. 对(4)根据指数式与对数式的关系,16在真数位置上,16是21的-4次幂. 对(5)根据指数式与对数式的关系,0.01在真数位置上,0.01是10的-2次幂. 对(6)根据指数式与对数式的关系,10在真数位置上,10是e 的2.303次幂. 解:(1)log 5625=4;(2)log 2641=-6;(3)log 315.73=m; (4)(21)-4=16;(5)10-2=0.01;(6)e 2.303=10. 思考指数式与对数式的互化应注意哪些问题?活动:学生考虑指数式与对数式互化的依据,回想对数概念的引出过程,理清对数与指数幂的关系,特别是位置的对照.解答:若是指数式化为对数式,关键要看清指数是几,再写成对数式.若是对数式化为指数式,则要看清真数是几,再写成幂的形式.最关键的是搞清N 与b 在指数式与对数式中的位置,千万不可大意,其中对数的定义是指数式与对数式互化的依据. 变式训练课本P 64练习 1、2.例2求下列各式中x 的值: (1)log 64x=32-;(2)log x 8=6; (3)lg100=x;(4)-lne 2=x. 活动:学生独立解题,教师同时展示学生的作题情况,要求学生说明解答的依据,利用指数式与对数式的关系,转化为指数式求解.解:(1)因为log 64x=-32,所以x=6432-=(2))32(6-⨯=2-4=161.(2)因为log x 8=6,所以x 6=8=23=(2)6.因为x>0,因此x=2. (3)因为lg100=x,所以10x =100=102.因此x=2.(4)因为-lne 2=x,所以lne 2=-x,e -x =e 2.因此x=-2.点评:本题要注意方根的运算,同时也可借助对数恒等式来解. 变式训练求下列各式中的x : ①log 4x=21;②log x 27=43;③log 5(log 10x )=1. 解:①由log 4x=21,得x=421=2;②由log x 27=43,得x 43=27,所以x=2734=81;③由log 5(log 10x )=1,得log 10x=5,即x=105.点评:在解决对数式的求值问题时,若不能一下子看出结果,根据指数式与对数式的关系,首先将其转化为指数式,进一步根据指数幂的运算性质算出结果.思路2例1以下四个命题中,属于真命题的是( ) (1)若log 5x=3,则x=15 (2)若log 25x=21,则x=5 (3)若log x 5=0,则x=5 (4)若log 5x=-3,则x=1251 A.(2)(3) B.(1)(3) C.(2)(4) D.(3)(4) 活动:学生观察,教师引导学生考虑对数的定义. 对数式化为指数式,根据指数幂的运算性质算出结果. 对于(1)因为log 5x=3,所以x=53=125,错误;对于(2)因为log 25x=21,所以x=2521=5,正确;对于(3)因为log x 5=0,所以x 0=5,无解,错误; 对于(4)因为log 5x=-3,所以x=5-3=1251,正确. 总之(2)(4)正确. 答案:C点评:对数的定义是对数形式和指数形式互化的依据. 例2对于a >0,a≠1,下列结论正确的是( )(1)若M=N,则log a M=log a N (2)若log a M=log a N,则M=N (3)若log a M 2=log a N 2,则M=N(4)若M=N,则log a M 2=log a N 2 A.(1)(3) B.(2)(4) C.(2) D.(1)(2)(4) 活动:学生思考,讨论,交流,回答,教师及时评价. 回想对数的有关规定.对(1)若M=N,当M 为0或负数时log a M≠log a N,因此错误; 对(2)根据对数的定义,若log a M=log a N,则M=N,正确; 对(3)若log a M 2=log a N 2,则M=±N,因此错误;对(4)若M=N=0时,则log a M 2与log a N 2都不存在,因此错误. 综上,(2)正确. 答案:C点评:0和负数没有对数,一个正数的平方根有两个. 例3计算:(1)log 927;(2)log 4381;(3)log )32((2-3);(4)log 345625.活动:教师引导,学生回忆,教师提问,学生回答,积极交流,学生展示自己的解题过程,教师及时评价学生.利用对数的定义或对数恒等式来解.求式子的值,首先设成对数式,再转化成指数式或指数方程求解.另外利用对数恒等式可直接求解,所以有两种解法.解法一:(1)设x=log 927,则9x =27,32x =33,所以x=23; (2)设x=log 4381,则(43)x =81,34x =34,所以x=16; (3)令x=log )32(+(2-3)=log )32(+(2+3)-1,所以(2+3)x =(2+3)-1,x=-1; (4)令x=log 345625,所以(345)x =625,534x=54,x=3.解法二:(1)log 927=log 933=log 9923=23; (2)log 4381=log 43(43)16=16; (3)log )32(+(2-3)=log )32(+(2+3)-1=-1;(4)log 345625=log 345(345)3=3.点评:首先将其转化为指数式,进一步根据指数幂的运算性质算出结果,对数的定义是转化和对数恒等式的依据. 变式训练课本P 64练习 3、4. 知能训练1.把下列各题的指数式写成对数式:(1)42=16;(2)30=1;(3)4x =2;(4)2x =0.5;(5)54=625;(6)3-2=91;(7)(41)-2=16. 解:(1)2=log 416;(2)0=log 31;(3)x=log 42;(4)x=log 20.5;(5)4=log 5625; (6)-2=log 391;(7)-2=log 4116. 2.把下列各题的对数式写成指数式:(1)x=log 527;(2)x=log 87;(3)x=log 43;(4)x=log 731; (5)log 216=4;(6)log 3127=-3;(7)logx3=6;(8)log x 64=-6;(9)log 2128=7;(10)log 327=a.解:(1)5x =27;(2)8x =7;(3)4x =3;(4)7x =31;(5)24=16;(6)(31)-3=27;(7)(3)6 =x;(8)x -6=64;(9)27=128;(10)3a =27. 3.求下列各式中x 的值: (1)log 8x=32-;(2)log x 27=43;(3)log 2(log 5x )=1;(4)log 3(lgx )=0.解:(1)因为log 8x=32-,所以x=832-=(23)32-=)32(32-⨯=2-2=41;(2)因为log x 27=43,所以x 43=27=33,即x=(33)34=34=81;(3)因为log 2(log 5x )=1,所以log 5x=2,x=52=25; (4)因为log 3(lgx )=0,所以lgx=1,即x=101=10. 4.(1)求log 84的值;(2)已知log a 2=m,log a 3=n,求a 2m +n 的值.解:(1)设log 84=x,根据对数的定义有8x =4,即23x =22,所以x=32,即log 84=32; (2)因为log a 2=m,log a 3=n,根据对数的定义有a m =2,a n =3,所以a 2m +n =(a m )2·a n =(2)2·3=4×3=12.点评:此题不仅是简单的指数与对数的互化,还涉及到常见的幂的运算法则的应用. 拓展提升请你阅读课本75页的有关阅读部分的内容,搜集有关对数发展的材料,以及有关数学家关于对数的材料,通过网络查寻关于对数换底公式的材料,为下一步学习打下基础. 课堂小结(1)对数引入的必要性;(2)对数的定义;(3)几种特殊数的对数;(4)负数与零没有对数;(5)对数恒等式;(6)两种特殊的对数. 作业课本P 74习题2.2A 组 1、2. 【补充作业】1.将下列指数式与对数式互化,有x 的求出x 的值. (1)521-=51;(2)log 24=x;(3)3x =271; (4)(41)x=64;(5)lg0.000 1=x;(6)lne 5=x. 解:(1)521-=51化为对数式是log 551=21-; (2)x=log 24化为指数式是(2)x=4,即22x=22,2x=2,x=4; (3)3x =271化为对数式是x=log 3271,因为3x =(31)3=3-3,所以x=-3; (4)(41)x =64化为对数式是x=log 4164,因为(41)x =64=43,所以x=-3; (5)lg0.0001=x 化为指数式是10x =0.0001,因为10x =0.000 1=10-4,所以x=-4;(6)lne 5=x 化为指数式是e x =e 5,因为e x =e 5,所以x=5.2.计算51log 53log333+的值.解:设x=log 351,则3x =51,(321)x =(51)21,所以x=log513.所以351log 5log 3333+=513log 35+=515+=556. 3.计算Nc b c b a a log log log ∙∙(a>0,b>0,c>0,N>0).解:Nc b c b a alog log log ∙∙=Nc c b b log log ∙=Nc clog =N.设计感想本节课在前面研究了指数函数及其性质的基础上,为了运算的方便,引进了对数的概念,使学生感受到对数的现实背景,它有着丰富的内涵,和我们的实际生活联系密切,也是以后学习对数函数的基础,鉴于这种情况,安排教学时,无论是导入还是概念得出的过程,都比较详细,通俗易懂,要反复练习,要紧紧抓住它与指数概念之间的联系与区别,结合指数式理解对数式,强化对数是一种运算,并注意对数运算符号的理解和记忆,多运用信息化的教学手段,顺利完成本堂课的任务,为下一节课作准备. (设计者:路致芳)。
2.2.1-对数与对数运算优秀公开课教案
求下列各式的值:
(1) ;(2) ;
思考:你发现了什么?
对数恒等式:
探究活动4
求下列各式的值:
(1) ;(2) ;(3)
思考:你发现了什么?
对数恒等式:
本练习让学生独立阅读课本例1和
例2后思考完成,从而熟悉对数式与指数式的相互转化。
探究活动由学生独立完成,通过思考,然后小组讨论自己得出结论,培养学生类比、分类、归纳的能力。
教学过程
设计意图
2.2.1 对数与对数运算
1定义 例题 导入
板
书
设 2运算 例题 练习
计
解:1(1) ; (2)
2.(1) ; (2)
3.(1)6; (2)3
四.能力提升
(四)对数的性质
探究活动1
求下列各式的值:
(1) ;(2) ;(3)
思考:你发现了什么?
“1”的对数等于“0”,即 ,类比
探究活动2
求下列各式的值:
(1) ;(2) ;(3) ;
思考:你发现了什么?
底数的对数等于“1”,即
3.情感、态度与价值观
(1)通过本节的学习体验数学的严谨性,培养细心观察、认真分析分析、严谨认真的良好思维习惯和不断探求新知识的精神;
(2)感知从具体到抽象、从特殊到一般、从感性到理性认知过程;
(3)体验数学的科学功能、符号功能和工具功能,培养直觉观察、探索发现、科学论证的良好的数学思维品质.
教学重难点
教学过程
设计意图
师:由于对数是由指数反推过来的,所以由前面的知识得到 且 .
(三)两个重要对数
(1)常用对数:以10为底的对数 ,简记为 ;
(2)自然对数:以e为底的对数 ,简记为
高中数学 2.2.1 对数与对数运算第一课时教案 新人教版必修1-新人教版高一必修1数学教案
教师:大胆猜测,由 ,可以发现什么结果?
呢?
(停顿,让学生思考) 为什么?
(停顿,让学生思考)
教师:对数 的底a有何限制?(停顿)
,我们得到对数 。称 为常用对数。通常写成 .
当 时,得到对数 ,称 为自然对数。通常写成
我们可以发现,求对数的值可以将式子化为指数式,求指数时将指数式化为对数,在转化中解决问题
(做一做)练习:
把下列对(指)数式写成指(对)数式:
(1) (2)
(六)(讲一讲,练一练)求值
例3 求下列各式中x的值:
当堂练习:
1.求下列各式的值:
2.求下列各式的值
(七)评价与小结
1.对数定义(关键)
2.指数式与对数式互换(重点)
3.求值(重点)
(八)作业:
P86题1,2;课外阅读:P79对数的发明
(对数的导入)
教师:为了研究对数,我们先来研究下面这个问题:
(二)、对数概念
教师:在书这三个式子中,都是已知(底数和幂,求指数x。如何求指数x?这是本节课要解决的问题。这一问题也就是:
一般地,若 ,那么数 叫做以a为底N的对数,记作 , 叫做对数的底数,N叫做真数.
称 为指数式,称 为对数式
我们可以由指数式得到对数式,也可以由对数式得到指数式:
3.掌握对数式与指数式的关系。
(二)过程与方法
通过与指数式的比较,引出对数定义与性质
(三)情感、态度和价值观
1.对数式与指数式的互化,从而培养学生的类比、分析、归纳能力;
2.通过对数的运算法则的学习,培养学生的严谨的思维品质;
3.在学习过程中培养学生探究的意识;
教学设计2.2.1对数与对数运算
2.2.1对数与对数运算(1)教学设计一、课前准备(一)教学课题:人教版必修一 2.2.1对数与对数运算(1)(二)课程类型:新授课;课时:一课时。
(三)教材分析:本节课是必修一第二章“基本初等函数”的第二节“对数函数”第一课时“对数与对数运算”。
教材安排在学习了指数与指数运算、指数函数等知识后,既要注意指数式和对数式的互逆关系,又要为后面对数运算的性质和对数函数的学习做好铺垫,本节内容起到承前启后的作用。
《普通高中课程标准(2020年修订版)》对对数定义教学作了明确规定:“理解对数定义及运算性质,了解对数定义产生和发展的历史背景,了解对数简化运算的作用”。
对数定义的教学不同于指数定义的教学,学生在生活学习中已经对指数有了一定的了解,属于有基本经验的教学,但对于对数式而言是新的符号,新的定义,并且在之前并没有接触,受工作记忆容量的影响,自然而然产生畏难情绪,导致对数的教学困难。
在教材68页,有对数的发现和历史介绍,教材中的例题有对数的实际应用,由于引入有具体的情境案例,这些内容的学习可以安排学生自学。
(四)学情分析:1.本次上公开课的班级是一个中等层次的班级,进入高一时间不到两个月,很多同学都还在适应高中数学学习,学习习惯和学习能力都在不断的培养当中。
2.学生已经学习了指数与指数运算、指数函数的相关知识,但是对数式是新的符号语言,是高度抽象的概念,生活学习中缺少接触,受学生工作记忆容量的影响,会在对数的学习中遇到障碍。
(五)教学重点:1.理解对数的概念,掌握对数的基本性质;2.掌握指数式与对数式的互换,能应用对数的定义和性质解方程;3.通过具体的案例,理解对数的应用,树立正确的财商价值观和学习观。
(六)教学难点:对数概念的理解,应用对数的定义和性质解方程。
(七)教法分析:1.从指数和指数函数的实际案例出发引入新课,为概念生成创设情境,让学生体会到生活中处处有数学知识,激发学生学习兴趣。
2.通过指数式与对数式的转化,引导学生将不会的对数问题转化为指数问题进行解决。
高中数学必修一:2.2.1对数与对数运算 “三四五”高效课堂教学设计
重点:(1)换底公式及其应用.(2)对数的应用问题.
难点:换底公式的灵活应用.
课型
□讲授□习题□复习□讨论□其它
教学内容设计
师生活动设计
教学过程:
二、合作探究
你能根据对数的定义推导出下面的换底公式吗?
logaN= (a>0,且a≠1;c>0,且c≠1;N>0).
当a>0,且a≠1时,若ab=N,①则logaN=b.②
以后解题时,在没有指出对数的底的情况下,都是指常用对数,如100的对数等于2,即 .
三.典型例题
例1将下列指数式化为对数式,对数式化为指数式:
(1)54=625;(2)2-6= ;(3)( )m=5.73;
(4)log 16=-4;(5)lg0.01=-2;(6)ln10=2.303.
例1分析:进行指数式和对数式的相互转化,关键是要抓住对数与指数幂之间的关系,以及每个量在对应式子中扮演的角色.
(2)在第(3)小题的计算过程中,用到了性质log Mn= logaM及换底公式logaN= .利用换底公式可以证明:logab= ,
即logablogba=1.
例2:已知log189 =a,18b= 5,求log3645.
.
四、总结提升
1、本节课你主要学习了
五、问题过关
1.已知 , ,求下列格式的值
让学生讨论、研究,教师引导
师组织,生交流探讨得出如下结论:
底数a>0,且a≠1,真数M>0,N>0;只有所得结果中对数和所给出的数的对数都存在时,等式才能成立.
学生思考,口答,教师板演、点评.
学生先做,老师再评讲
板书设计:
教学反思:
“三四五”高效课堂教学设计:
(授课日期:年月日星期班级)
2.2.1对数与对数运算 优秀教案
【教学难点】:对数概念的理解.
【课前准备】:课件
【教学过程设计】:
教学 教学活动
设计意图
环节
一、设 置情
思考:(2.1.2 例 8)中 y
= 13 ×1.01x ,哪一年的人口数要达到 18 亿、
激发学生 学习对数
境
20 亿、30 亿……,该如何解决?
的兴趣,培
18
即:在
20 = 1.01,
= 1.01x , 30
三、例 例 1 (P69 例 1 )
题 讲 (让学生自己完成,教师巡视指导)
解
巩固练习:P70 练习 1、2
例 2 (P69 例 2 ) 巩固练习:P70 练习 3、4
熟练对数 式与指数 式的相互 转化,加深 理解对数 概念
四、归 ⑴对数的定义
纳 小 ⑵指数式与对数式互换
结
⑶求对数式的值
五、课 后作 业
a1 = a(a > 0, a ≠1) 呢?
** ⑴若 a<0 时, 则 N 为某些值时,b 值不存在。如:b=log-28 不存在
⑵若 a=0 时, ①N 不为 0 时,b 不存在。如:log02 不存在(可解释为 0 的多
少次方是 2 呢?) ②N 为 0 时,b 可以是任何正数,是不唯一的。如:log10 有无
P82 习题 2.2 P83 习题 2.2
A 组 1、2 B组 1
2
体会引入 对数的必 要性、体会 等价转化 思想 反馈学生 对对数概 念的掌握 情况
3
得出结论:① 负数和零没有对数 ② log a 1 = 0(a > 0, a ≠1)
3. 两个重要对数: 对数 logaN(a>0 且 a≠1)在底数 a=10 时,叫做常用对数(common logarithm) , 简 记 lgN ; 底 数 a=e 时 , 叫 做 自 然 对 数 (natural logarithm),记作 lnN,其中 e 是个无理数,即 e≈2.718 28…….
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2.1对数与对数运算(第一课时)教学设计
教学目标:
1.知识技能:
(1)通过对数产生的历史,引入对数的定义,了解对数产生的意义;
(2)掌握对数式与指数式的互化;
(3)掌握对数的运算公式.
2. 过程与方法:
通过与指数式的比较,引出对数定义与性质.
3.情感、态度、价值观:
(1)学会对数式与指数式的互化,从而培养学生的类比、分析、归纳能力;
(2)通过对数的运算法则的学习,培养学生的严谨的思维品质;
(3)在学习过程中培养学生探究的意识.
教学重点:对数式与指数式的互化及对数运算公式的探索.
教学难点:对数运算公式的探索.
教学用具:投影仪.
教学方法:讲授法、讨论法、类比分析与发现.
教学过程:
一、对数的定义
问题1.没有计算器或计算机怎样简化计算123456789×987654321=? 16世纪中叶,由航海和天文的发展而引起的大数计算日益激增,类似的九位数及以上的乘法需要做数十次的乘法运算,于是人们就提出能不能把乘除法运算转换为加减运算?数学家们通过一系列努力,最终形成了一个新的运算规则,大大简化了大规模乘除法运算.
这个规则就是定义一个新运算,在合理化的情况下使乘除运算变为加减运算成为可能.我们就来一起体验这个新规则的制定.
问题2.完成下列问题:
(1)若53M =,则M =? (243)
(2)若33N -=,则N =? (127
)
(3)若381x =,则x =? (4)
(4)若415x =,则x =?
现有工具无法求出x ,则用符号4log 15表示,以此类推,381x =中的x 用这种方式表示是怎样的?
问题3.抽象为一般情况,若x a N =,则x =? (log a x N =). 在此给出对数的定义:
一般地,若(0,1)x a N a a =>≠且,那么数x 叫做以a 为底N 的对数,记作log a x N = ,a 叫做对数的底数,N 叫做真数. 练习:式子181.0113
x =,481x =中的x 怎么表示? 二、指数、对数互化
根据对数的定义,可以得到指数与对数的关系.
log x a a N N x =⇔=
指数式⇔对数式
幂底数←a →对数底数
指 数←x →对数
幂 ←N →真数
练习:完成课本64页练习
三、探索运算法则
对数是用来表示一个指数幂中的指数,而指数运算有m n m n a a a +⋅=,不妨设m M a =,n a N =,则有m n MN a +=.又由对数定义可得:log a M m =,log a N n =,log ()a MN m n =+,所以log ()log log a a a MN M N =+.
问题4.有了上面这个运算法则,那么123456789×987654321=?
我们可以先对乘积取对数得10log (123456789987654321)⨯
1010log 123456789log 987654321=+
由对数表可以知道:10log 1234567898.91514977=,
10log 9876543218.99464968=.
于是10log (123456789987654321)⨯=17.90975474.
再查一次反对数表得到:17123456789987654321 1.21932631110⨯=⨯. 问题5.类似地,大规模计算
M N ,n M 又怎么解决呢? 这个作为课后思考.
四、课堂小结:
1、对数产生的意义;
2、对数式与指数式的互化的方法;
3、如何合理化制定计算规则.
五、布置作业:
习题2.2 A 组1,2两题.
1、此片段的设计意图:本节课对数概念的引入与一般做法不一样,从问题开始,引出对数产生的背景,引起学生探索的兴趣。
本课时很多教师进行对数概念教学往往喜欢从现实中例子出发,逐步引入概念,忽略了概念产生的科学背景,只是传授对数的相关知识而学生根本不知道为什么要学习对数,学习对数有什么用。
所以教师要从学生的认知角度考虑,这样才能最大限度地激发学生的学习兴趣,从而更好地学好数学。
2、上完此课后,达到了的预期目标,教学效果很好。
3、此片段的优点能最大限度地调动学生的学习积极性,激发学生的学习兴趣,从而使学生牢固地掌握本节课内容。
不足是本节课主要以问题为主,需要学生积极主动地参与。
对于参与度不高的学生或后进生而言,还需要教师在课堂上有针对地辅导,必要时课后还要单独辅导。