概率论与数理统计课件--一元回归分析共37页文档
合集下载
概率论与数理统计ppt课件
04
理解基本概念和原理
做大量练习题,培养解题能力
05
06
阅读相关书籍和论文,拓宽知识面
02
概率论基础
概率的基本概念
试验
一个具有有限个或无限个 可能结果的随机试验。
事件
试验中的某些结果的总称 。
概率
衡量事件发生可能性的数 值,通常表示为0到1之间 的实数。
必然事件
概率等于1的事件。
不可能事件
概率等于0的事件。
01 点估计
用样本统计量估计总体参数,如用样本均值估计 总体均值。
02 区间估计
给出总体参数的估计区间,如95%置信区间。
03 估计量的性质
无偏性、有效性和一致性。
假设检验
假设检验的基本思想
先假设总体参数具有某种 特性,然后通过样本信息 来判断这个假设是否合理 。
双侧检验
当需要判断两个假设是否 相等时,如总体均值是否 等于某个值。
连续型随机变量
取值无限的随机变 量。
方差
衡量随机变量取值 分散程度的数值。
03
数理统计基础
总体与样本
总体
研究对象的全体。
抽样方法
简单随机抽样、分层抽样、系统抽样等。
样本
从总体中随机抽取的一部分个体,用于估 计和推断总体的特性。
样本大小
样本中包含的个体数量,需要根据研究目 的和资源来确定。
参数估计
单因素方差分析
单因素方差分析的定义
单因素方差分析是方差分析的一种形式,它只涉及一个实验因素。通过对不同组的均值进行比 较,可以确定这个因素对实验结果的影响是否显著。
单因素方差分析的步骤
单因素方差分析通常包括以下步骤:首先,对实验数据进行分组;其次,计算每组的均值;接 着,计算总的均值和总的变异性;然后,计算组间变异性和组内变异性;最后,通过比较这两 种变异,得出因素的显著性。
概率论与数理统计完整ppt课件
化学
在化学领域,概率论与数理统计被用于研究化学反应的速率和化 学物质的分布,如化学反应动力学、量子化学计算等。
生物
在生物学中,概率论与数理统计用于研究生物现象的变异和分布, 如遗传学、生态学、流行病学等。
在工程中的应用
通信工程
01
概率论与数理统计在通信工程中用于信道容量、误码率、调制
解调等方面的研究。
边缘分布
对于n维随机变量(X_1,...,X_n),在概 率论中,分别定义了X_1的边缘分布 、...、X_n的边缘分布。
04
数理统计基础
样本与抽样分布
01
02
03
总体与样本
总体是包含所有可能数据 的数据集合,样本是总体 的一个随机子集。
抽样方法
包括简单随机抽样、分层 抽样、系统抽样等。
样本分布
描述样本数据的分布情况 ,如均值、中位数、标准 差等。
参数估计与置信区间
参数估计
利用样本数据估计总体的 未知参数,如均值、方差 等。
点估计
用样本统计量作为总体参 数的估计值。
置信区间
给出总体参数的一个估计 区间,表示对总体的参数 有一个可信的估计范围。
假设检验与方差分析
假设检验
通过样本数据对总体参数提出 假设,然后根据假设进行检验
01
定义
设E是一个随机试验,X,Y是定义在E上,取值分别为实数的随机变量
。称有序实数对(X,Y)为一个二维随机变量。
02
分布函数
设(X,Y)是一个二维随机变量,对于任意实数x,y,二元函数
F(x,y)=P({X<=x,Y<=y})称为二维随机变量(X,Y)的分布函数。
03
边缘分布
对于二维随机变量(X,Y),在概率论中,分别定义了X的边缘分布和Y的
在化学领域,概率论与数理统计被用于研究化学反应的速率和化 学物质的分布,如化学反应动力学、量子化学计算等。
生物
在生物学中,概率论与数理统计用于研究生物现象的变异和分布, 如遗传学、生态学、流行病学等。
在工程中的应用
通信工程
01
概率论与数理统计在通信工程中用于信道容量、误码率、调制
解调等方面的研究。
边缘分布
对于n维随机变量(X_1,...,X_n),在概 率论中,分别定义了X_1的边缘分布 、...、X_n的边缘分布。
04
数理统计基础
样本与抽样分布
01
02
03
总体与样本
总体是包含所有可能数据 的数据集合,样本是总体 的一个随机子集。
抽样方法
包括简单随机抽样、分层 抽样、系统抽样等。
样本分布
描述样本数据的分布情况 ,如均值、中位数、标准 差等。
参数估计与置信区间
参数估计
利用样本数据估计总体的 未知参数,如均值、方差 等。
点估计
用样本统计量作为总体参 数的估计值。
置信区间
给出总体参数的一个估计 区间,表示对总体的参数 有一个可信的估计范围。
假设检验与方差分析
假设检验
通过样本数据对总体参数提出 假设,然后根据假设进行检验
01
定义
设E是一个随机试验,X,Y是定义在E上,取值分别为实数的随机变量
。称有序实数对(X,Y)为一个二维随机变量。
02
分布函数
设(X,Y)是一个二维随机变量,对于任意实数x,y,二元函数
F(x,y)=P({X<=x,Y<=y})称为二维随机变量(X,Y)的分布函数。
03
边缘分布
对于二维随机变量(X,Y),在概率论中,分别定义了X的边缘分布和Y的
一元线性回归分析PPT课件
第18页/共40页
拟合程度评价
拟合程度是指样本观测值聚集在样本回归线周围的紧
密程度. ( Y t Y ) ( Y ˆ t Y ) ( Y t Y ˆ t)
n
n
n
(Y t Y )2 (Y ˆt Y )2 (Y t Y ˆ)2
t 1
t 1
t 1
n
(Yt Y)2 :总离差平方和,记为SST;
t1
n
第8页/共40页
例
食品序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
求和
脂肪Xt 4 6 6 8 19 11 12 12 26 21 11 16 14 9 9 5
热量Yt 110 120 120 164 430 192 175 236 429 318 249 281 160 147 210 120
第1页/共40页
回归分析的分类
一个自变量
一元回归
回归分析
两个及以上自变量
多元回归
线性 回归
非线性 回归
线性 回归
非线性 回归
第2页/共40页
一元线性回归模型
(一)总体回归函数
Yt=0+1Xt+ut
ut是随机误差项,又称随机干扰项,它是一个特殊的 随机变量,反映未列入方程式的其他各种因素对Y的 影响。
(ˆ1t(n2)Sˆ1)
2
第15页/共40页
回归分析的Excel实现
“工具”->“数据分析”->“回归”
第16页/共40页
ˆ 0
S ˆ 0
ˆ 1
S ˆ 1
(ˆ0t(n2)Sˆ0)
2
(ˆ1t(n2)Sˆ1)
2
第17页/共40页
拟合程度评价
拟合程度是指样本观测值聚集在样本回归线周围的紧
密程度. ( Y t Y ) ( Y ˆ t Y ) ( Y t Y ˆ t)
n
n
n
(Y t Y )2 (Y ˆt Y )2 (Y t Y ˆ)2
t 1
t 1
t 1
n
(Yt Y)2 :总离差平方和,记为SST;
t1
n
第8页/共40页
例
食品序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
求和
脂肪Xt 4 6 6 8 19 11 12 12 26 21 11 16 14 9 9 5
热量Yt 110 120 120 164 430 192 175 236 429 318 249 281 160 147 210 120
第1页/共40页
回归分析的分类
一个自变量
一元回归
回归分析
两个及以上自变量
多元回归
线性 回归
非线性 回归
线性 回归
非线性 回归
第2页/共40页
一元线性回归模型
(一)总体回归函数
Yt=0+1Xt+ut
ut是随机误差项,又称随机干扰项,它是一个特殊的 随机变量,反映未列入方程式的其他各种因素对Y的 影响。
(ˆ1t(n2)Sˆ1)
2
第15页/共40页
回归分析的Excel实现
“工具”->“数据分析”->“回归”
第16页/共40页
ˆ 0
S ˆ 0
ˆ 1
S ˆ 1
(ˆ0t(n2)Sˆ0)
2
(ˆ1t(n2)Sˆ1)
2
第17页/共40页
[课件]概率论与数理统计(相关分析)PPT
9.1.1 散点图
通过散点图可以判断两个变量之间有无相关关系, 并对变量间的关系形态做出大致的描述 但散点图不能准确反映变量之间的关系密切程 度.
因此,为准确度量两个变量之间的关系密切程度, 需要计算相关系数.
9.1
相关分析
9.1.2 相关系数
相关系数是对两个随机变量之间线性关系密切程 度的度量.若相关系数是根据两个变量全部数据计 算的,称为总体相关系数. 设 X , Y 为 两 个 随 机 变 量 , 由 定 义 4.5 知 , 当 D(X)D(Y)0时,总体相关系数的计算公式为:
概率论与数 理统计(相关 分析)
第9章 相关分析与一元回归分析
变量之间的关系可以分为函数关系和相关关系两 类,函数关系表示变量间确定的对应关系,而相关 关系则是变量间的某种非确定的依赖关系.
相关分析主要是研究随机变量间相关关系的形式 和程度,在相关关系的讨论中,两个变量的地位是 同等的,所使用的测度工具是相关系数;
回归分析的思想早已渗透到数理统计学科的其他分 支,随着计算机的发展和各种统计软件的出现,回归 分析的应用越来越广泛.
第9章 相关分析与一元回归分析
9.1 相 关 分 析
在大量的实际问题中, 随机变量之间虽有某种关系, 但这种关系很难找到一种精确的表示方法来描述. 例如,人的身高与体重之间有一定的关系,知道 一个人的身高可以大致估计出他的体重,但并不能 算出体重的精确值. 其原因在于人有较大的个体差异,因而身高和体 重的关系,是既密切但又不能完全确定的关系. 随机变量间类似的这种关系在大自然和社会中屡 见不鲜.
ˆ y 0 . 516 x 33 . 73
(英寸)
【回归名称的来历】
ˆ y 0 . 516 x 33 . 73
《一元线回归》课件
总结
本课程的收获和反思
总结本课程学习过程中的收获和个人反思。
后续学习与建议
提供后续学习一元线性回归模型的建议和推 荐资源。
参考文献
相关论文籍。
等式约束最小二乘法
探讨等式约束最小二乘法 在解决线性回归问题中的 优化效果。
经典案例分析
典型案例介绍
介绍一些经典的使用一元 线性回归模型解决的案例。
项目案例分析
详细分析一个实际项目中 运用一元线性回归模型解 决的问题和效果。
成果总结与展望
总结一元线性回归模型在 实际应用中的成果和展望 未来的发展方向。
本课程的目标和内容
明确本课程的学习目标,以及将覆盖的内容。
线性回归基础
线性回归的定义和公式
详细解释线性回归模型的定义和数学公式。
最小二乘法求解线性回归
介绍使用最小二乘法计算线性回归模型的参数。
回归系数和截距的意义和计算方法
解释回归系数和截距在线性回归中的意义和计算方法。
模型评估
模型拟合优度的评价 指标
讲解数据预处理的重要性以及常用的数据清 洗方法。
加载数据集
介绍如何加载数据集,为一元线性回归模型 训练做准备。
训练模型并预测结果
演示如何使用加载的数据集训练一元线性回 归模型,并进行预测。
优化算法
梯度下降算法
介绍梯度下降算法在优化 线性回归模型中的应用。
正规方程法
解释使用正规方程法求解 线性回归模型的计算过程。
《一元线回归》PPT课件
一元线性回归PPT课件大纲,旨在介绍一元线性回归的基本概念、模型评估、 优化算法,以及经典案例分析。从理论到实践,帮助大家掌握这一重要数据 分析方法。
课程简介
概率论与数理统计1完整(完整版)ppt课件
.
19
定义 当随机试验的样本空间是某个区域,并且任 意一点落在度量 (长度, 面积, 体积) 相同的子区域 是等可能的,则事件 A 的概率可定义为
P(A) m(A)
m()
(其中 m()是样本空间,m 的 (A)度 是量 构成事 A 件 的子区域的 )这度样量借助于几量 何来 上合 的理 度 规定的概率 几称 何为 概 . 率
对偶律: A B A B;
A B AB.
证明 对偶律.
.
13
例.事件 A、B、C两两互不相 则容 有,
ABC 反之 不成 立
例. 甲、乙、丙三人各射击一次,事件A1,A2,A3分别表示 甲、乙、丙射中,试说明下列事件所表示的结果:
A 2,A 2 A 3, A 1A 2, A 1 A 2, A 1A 2A 3, A 1A 2 A 2A 3 A 1A 3.
.
16
例1. 袋中装有4只白球和2只红球. 从袋中摸球两次,每次任取一球.有两种式: (a)放回抽样; (b)不放回抽样.
求: (1)两球颜色相同的概率; (2)两球中至少有一只白球的概率.
例2. 设一袋中有编号为1,2,…,9的球共9只, 现从中任取3 只, 试求: (1)取到1号球的概率,(事件A) (2)最小号码为5的概率.(事件B)
A-BAAB
显然: A-A=, A- =A, A-S=
s
A B
(4)AB
.
10
5.事件的互不相容(互斥):
若 AB,则A 称 与 B 是 互 不 ,或 相 互 容 ,即 斥
A 与 B 不能同 . 时发生
B
A B
A
.
11
6. 对立事件(逆事件): 若ABS且A B,则A称 与B互为逆事件
概率论与数理统计ppt课件
注:P( A) 0不能 A ; P( B) 1不能 B S .
2。 A1 , A2 ,...,An , Ai Aj , i j, P( P(
n n i 1
Ai ) P( Ai )
i 1
n
证:令 Ank (k 1, 2,...), Ai Aj , i j, i, j 1, 2,....
•
5.1 大数定律 5.2 中心极限定理
•
第六章 数理统计的基本概念
• • 6.1 总体和样本 6.2 常用的分布
4
第七章 参数估计
• • • 7.1 参数的点估计 7.2 估计量的评选标准 7.3 区间估计
第八章 假设检验
• • • • • • • 8.1 8.2 8.3 8.4 8.5 8.6 8.7 假设检验 正态总体均值的假设检验 正态总体方差的假设检验 置信区间与假设检验之间的关系 样本容量的选取 分布拟合检验 秩和检验
A B 2 A=B B A
B A
S
例: 记A={明天天晴},B={明天无雨} B A
记A={至少有10人候车},B={至少有5人候车} B
A
一枚硬币抛两次,A={第一次是正面},B={至少有一次正面}
BA
13
事件的运算
A与B的和事件,记为 A B
8
§1 随机试验
确定性现象
自然界与社会Βιβλιοθήκη 活中的两类现象不确定性现象
确定性现象:结果确定 不确定性现象:结果不确定
例:
向上抛出的物体会掉落到地上 ——确定 ——不确定 明天天气状况 ——不确定 买了彩票会中奖
数理统计第六章第一节 一元线性回归分析
4
后代的身高有向身高平均值靠拢的趋向. 离开均值 越远,所受到回归的压力也越大。“回归”这个词 就由此而来。
5
输入
X1
输出
X2 …
系统
y
xp
理论模型 Y f (x1, x2 ,..., xp )
观测模型 Y f (x1, x2 ,..., xp )
6
** *
*
* **
* *
* *
*
* ** *
i 1
i 1
n
(bˆ)2 (xi x )2
i 1
S yy 2bˆSxy (bˆ)2 Sxx
由于 Sxy bˆSxx 所以 Qe Syy (bˆ)2 Sxx
18
1.3 线性假设的显著性检验
1) T检验法
对线性假设y=a+bx+进行检验,线性系数
b不应当为0 原假设 H0:b=0 备择假设 H1:b0
Qe的简单计算公式
n
Qe
yi yˆi 2 Syy (bˆ)2 Sxx
i 1
17
证明 n
n
Qe yi yˆi 2 ( yi y) ( yˆi y)2
i 1
i 1
n
(
yi
y
)
bˆ( xi
x
2
)
i 1
n
n
( yi y)2 2bˆ ( yi y)(xi x )
15
2) 2的点估计
对每一个xi,由回归方程有 yˆi aˆ bˆxi
xi处的残差为 yi yˆi
残差平方和
n
n
Qe yi yˆi 2
yi aˆ bˆxi 2
i 1
i 1
后代的身高有向身高平均值靠拢的趋向. 离开均值 越远,所受到回归的压力也越大。“回归”这个词 就由此而来。
5
输入
X1
输出
X2 …
系统
y
xp
理论模型 Y f (x1, x2 ,..., xp )
观测模型 Y f (x1, x2 ,..., xp )
6
** *
*
* **
* *
* *
*
* ** *
i 1
i 1
n
(bˆ)2 (xi x )2
i 1
S yy 2bˆSxy (bˆ)2 Sxx
由于 Sxy bˆSxx 所以 Qe Syy (bˆ)2 Sxx
18
1.3 线性假设的显著性检验
1) T检验法
对线性假设y=a+bx+进行检验,线性系数
b不应当为0 原假设 H0:b=0 备择假设 H1:b0
Qe的简单计算公式
n
Qe
yi yˆi 2 Syy (bˆ)2 Sxx
i 1
17
证明 n
n
Qe yi yˆi 2 ( yi y) ( yˆi y)2
i 1
i 1
n
(
yi
y
)
bˆ( xi
x
2
)
i 1
n
n
( yi y)2 2bˆ ( yi y)(xi x )
15
2) 2的点估计
对每一个xi,由回归方程有 yˆi aˆ bˆxi
xi处的残差为 yi yˆi
残差平方和
n
n
Qe yi yˆi 2
yi aˆ bˆxi 2
i 1
i 1
[课件]概率统计 回归分析PPT
2 2 ˆ 所 以 , 的 无 偏 估 计 Q n 2 )0 . 1 8 6 . e(
(四)线性假设的显著性检验
采用最小二乘法估计参数a和b,并不需要事先知道Y与x之间 一定具有相关关系,即使是平面图上一堆完全杂乱无章的散 点,也可以用公式求出回归方程。因此μ(x)是否为x的线性函 数,一要根据专业知识和实践来判断,二要根据实际观察得 到的数据用假设检验方法来判断。
n
n
( xi )a ( xi 2 )b xi yi .
i 1 i 1 i 1
2 1 1 记 号 : y y x x x , i,x i,S x x i ni ni i
n
n
n
S x x y ,S y y y . x y i i y y i
ˆ ˆ ˆ 性 质 : a , ba 分 别 是 , b 的 无 偏 估 计 , 从 而 E ( Y ) a b x 。
1 ˆ 证 明 : 因 为 b S / SS x x Y , x y x x x x i i i 1 x x i
1 ˆ E ( b ) S x x E ( Y ) S x x ( a b x ) x x i i i i i
即 要 检 验 假 设 H : bH 0 ,1 : b 0 , 0
若原假设被拒绝,说明回归效果是显著的,否则, 若接受原假设,说明Y与x不是线性关系,回归方程 无意义。回归效果不显著的原因可能有以下几种:
(1)影响Y取值的,除了x,还有其他不可忽略的因素; (2)E(Y)与x的关系不是线性关系,而是其他关系; (3)Y与x不存在关系。
( 5 ) 回 归 函 数 ( x ) a b x 的 点 估 计 和 置 信 区 间 ;
(四)线性假设的显著性检验
采用最小二乘法估计参数a和b,并不需要事先知道Y与x之间 一定具有相关关系,即使是平面图上一堆完全杂乱无章的散 点,也可以用公式求出回归方程。因此μ(x)是否为x的线性函 数,一要根据专业知识和实践来判断,二要根据实际观察得 到的数据用假设检验方法来判断。
n
n
( xi )a ( xi 2 )b xi yi .
i 1 i 1 i 1
2 1 1 记 号 : y y x x x , i,x i,S x x i ni ni i
n
n
n
S x x y ,S y y y . x y i i y y i
ˆ ˆ ˆ 性 质 : a , ba 分 别 是 , b 的 无 偏 估 计 , 从 而 E ( Y ) a b x 。
1 ˆ 证 明 : 因 为 b S / SS x x Y , x y x x x x i i i 1 x x i
1 ˆ E ( b ) S x x E ( Y ) S x x ( a b x ) x x i i i i i
即 要 检 验 假 设 H : bH 0 ,1 : b 0 , 0
若原假设被拒绝,说明回归效果是显著的,否则, 若接受原假设,说明Y与x不是线性关系,回归方程 无意义。回归效果不显著的原因可能有以下几种:
(1)影响Y取值的,除了x,还有其他不可忽略的因素; (2)E(Y)与x的关系不是线性关系,而是其他关系; (3)Y与x不存在关系。
( 5 ) 回 归 函 数 ( x ) a b x 的 点 估 计 和 置 信 区 间 ;
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论与数理统计课件--一元回归分析
•
6、黄金时代是在我们的前面,而不在 我们的 后面。
•
7、心急吃不了热汤圆。
•
8、你可以很有个性,但某些时候请收 敛。
•
9、只为成功找方法,不为失败找借口 (蹩脚 的工人 定决心克服恐惧,便几乎 能克服 任何恐 惧。因 为,请 记住, 除了在 脑海中 ,恐惧 无处藏 身。-- 戴尔. 卡耐基 。
55、 为 中 华 之 崛起而 读书。 ——周 恩来
谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特
•
6、黄金时代是在我们的前面,而不在 我们的 后面。
•
7、心急吃不了热汤圆。
•
8、你可以很有个性,但某些时候请收 敛。
•
9、只为成功找方法,不为失败找借口 (蹩脚 的工人 定决心克服恐惧,便几乎 能克服 任何恐 惧。因 为,请 记住, 除了在 脑海中 ,恐惧 无处藏 身。-- 戴尔. 卡耐基 。
55、 为 中 华 之 崛起而 读书。 ——周 恩来
谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特