线性表实验报告
线性表的基本操作实验报告
实验一:线性表的基本操作【实验目的】学习掌握线性表的顺序存储结构、链式存储结构的设计与操作。
对顺序表建立、插入、删除的基本操作,对单链表建立、插入、删除的基本操作算法.【实验内容】1.顺序表的实践1)建立4个元素的顺序表s=sqlist[]={1,2,3,4,5},实现顺序表建立的基本操作。
2)在sqlist []={1,2,3,4,5}的元素4和5之间插入一个元素9,实现顺序表插入的基本操作。
3)在sqlist []={1,2,3,4,9,5}中删除指定位置(i=5)上的元素9,实现顺序表的删除的基本操作.2.单链表的实践3.1)建立一个包括头结点和4个结点的(5,4,2,1)的单链表,实现单链表建立的基本操作。
2)将该单链表的所有元素显示出来.3)在已建好的单链表中的指定位置(i=3)插入一个结点3,实现单链表插入的基本操作。
4)在一个包括头结点和5个结点的(5,4,3,2,1)的单链表的指定位置(如i=2)删除一个结点,实现单链表删除的基本操作。
5)实现单链表的求表长操作。
【实验步骤】1。
打开VC++。
2.建立工程:点File—〉New,选Project标签,在列表中选Win32 Console Application,再在右边的框里为工程起好名字,选好路径,点OK—>finish.至此工程建立完毕。
3。
创建源文件或头文件:点File-〉New,选File标签,在列表里选C++ Source File。
给文件起好名字,选好路径,点OK.至此一个源文件就被添加到了刚创建的工程之中。
4.写好代码5.编译->链接->调试1、#include "stdio。
h”#include ”malloc.h"#define OK 1#define OVERFLOW -2#define ERROR 0#define LIST_INIT_SIZE 100#define LISTINCREMENT 10typedef int ElemType;typedef int Status;typedef struct {ElemType *elem;int length;int listsize;} SqList;Status InitList( SqList &L ) {int i,n;L.elem = (ElemType*) malloc (LIST_INIT_SIZE*sizeof (ElemType)); if (!L.elem) return(OVERFLOW);printf(”输入元素的个数:”);scanf(”%d”,&n);printf(”输入各元素的值:”);for(i=0;i〈n;i++)scanf("%d",&L.elem[i]);L.length = n;L。
数据结构线性表试验报告(最终定稿)
数据结构线性表试验报告(最终定稿)第一篇:数据结构线性表试验报告线性表上机实习1、实验目的(1)熟悉将算法转换为程序代码的过程。
(2)了解顺序表的逻辑结构特性,熟练掌握顺序表存储结构的C 语言描述方法。
(3)熟练掌握顺序表的基本运算:查找、插入、删除等,掌握顺序表的随机存取特性。
(4)了解线性表的链式存储结构,熟练掌握线性表的链式存储结构的C语言描述方法。
(5)熟练掌握线性链表(单链表)的基本运算:查找、插入、删除等,能在实际应用中灵活选择适当的链表结构。
2、实验要求(1)熟悉顺序表的插入、删除和查找。
(2)熟悉单链表的插入、删除和查找。
3、实验内容: ① 顺序表(1)抽象数据类型定义typedef struct {TypeData data[maxsize];//容量为maxsize的静态顺手表int n;//顺序表中的实际元素个数}SeqList;//静态顺序表的定义在本次实验中,首先建立一个空的静态顺序表,然后键盘输入数据存入表中,然后进入菜单选择界面,通过不同的数字输入,实现对顺序表,删除,插入,查找,显示等操作。
(2)存储结构定义及算法思想在顺序表结构体的定义中,typedef int TypeData 为整型,存储结构如下:for(n=0;ncout<<“请输入线性表数据”<cin>>L.data[n];//顺序将数据存入顺序表}//其他存储与此类似,都是直接赋值与数组的某一位插入版块子函数:void insert(SeqList &L)//插入数据 {int a,b,c,k;cout<<“请输入插入的数及其插入的位置”<cin>>a>>b;if(b<=0||b>(L.n+1)){cout<<“不能在该位置插入”<k=L.data[b-1];L.data[b-1]=a;c=L.n;L.n=L.n+1;while(c>b){L.data[c]=L.data[c-1];c--;//通过循环,实现插入位置后的数据挨个往后移动一位}L.data[b]=k;} 顺序表的插入与删除操作类似,在插入与删除后,都要循环调整后面数组的每一位元素,同时记录数据元素的长度的标示符也要跟着改变。
数据结构实验报告1线性表的顺序存储结构
数据结构实验报告1线性表的顺序存储结构数据结构实验报告1线性表的顺序存储结构第一章引言线性表是计算机中最常见的数据结构之一,它是一种有序的数据元素集合,其中的数据元素之间具有一对一的关系。
线性表的存储结构有多种方式,其中顺序存储结构是最简单的一种,它使用一段连续的存储单元来存储线性表中的元素。
第二章顺序存储结构的定义顺序存储结构是将线性表中的元素按照其逻辑顺序依次存储在一块连续的存储空间中。
顺序存储结构的特点是可以快速地访问任意位置的元素,但插入和删除操作需要移动大量的元素。
第三章顺序存储结构的实现1.存储空间的分配顺序存储结构通常使用数组来实现,数组的长度应该大于等于线性表的长度,以防止溢出。
存储空间的分配可以使用静态分配或动态分配两种方式来实现。
2.线性表的初始化初始化线性表时,需要设置线性表的长度和当前元素的个数。
3.线性表的增删改查操作●插入操作:________在指定位置插入一个元素时,需要将插入位置之后的元素依次后移,给待插入的元素腾出位置。
●删除操作:________删除指定位置的元素时,需要将删除位置之后的元素依次前移,覆盖删除位置上的元素。
●修改操作:________修改指定位置的元素时,直接对该位置上的元素进行修改即可。
●查找操作:________根据指定的元素值,查找其在顺序存储结构中的位置。
4.线性表的遍历操作遍历操作可以按照顺序访问线性表中的每个元素,可以使用循环结构实现遍历操作。
第四章顺序存储结构的优缺点分析1.优点:________可以快速地访问任意位置的元素,节省存储空间。
2.缺点:________插入和删除操作需要移动大量的元素,不适用于频繁插入和删除的场景。
第五章实验过程和结果分析在本次实验中,我们以顺序存储结构为基础,实现了线性表的增删改查操作,并进行了遍历操作。
通过实验,我们发现顺序存储结构在查询操作上有较好的性能,但在插入和删除操作上的性能较差。
第六章附件本文档涉及的附件详见附件文件。
数据结构实验报告线性表
数据结构实验报告线性表数据结构实验报告:线性表引言数据结构是计算机科学中非常重要的一个概念,它是用来组织和存储数据的一种方式。
线性表是数据结构中最基本的一种,它是由n个数据元素组成的有限序列。
在本次实验中,我们将对线性表进行深入研究,并进行实验验证。
实验目的1. 了解线性表的基本概念和特性2. 掌握线性表的顺序存储结构和链式存储结构3. 熟练掌握线性表的基本操作:插入、删除、查找等4. 通过实验验证线性表的操作和性能实验内容1. 学习线性表的基本概念和特性2. 熟悉线性表的顺序存储结构和链式存储结构3. 实现线性表的基本操作:插入、删除、查找等4. 对线性表的操作进行性能测试和分析实验步骤1. 学习线性表的基本概念和特性,包括线性表的定义、顺序存储结构和链式存储结构等2. 实现线性表的基本操作:插入、删除、查找等3. 设计实验用例,对线性表的操作进行性能测试4. 对实验结果进行分析和总结实验结果1. 实现了线性表的顺序存储结构和链式存储结构2. 实现了线性表的基本操作:插入、删除、查找等3. 对线性表的操作进行了性能测试,并得出了相应的性能数据4. 对实验结果进行了分析和总结,得出了相应的结论结论通过本次实验,我们深入了解了线性表的基本概念和特性,掌握了线性表的顺序存储结构和链式存储结构,熟练掌握了线性表的基本操作,并对线性表的性能进行了测试和分析。
这些都为我们进一步深入学习和应用数据结构打下了坚实的基础。
总结数据结构是计算机科学中非常重要的一部分,线性表作为数据结构中最基本的一种,对我们学习和应用数据结构具有重要的意义。
通过本次实验,我们对线性表有了更深入的了解,并且掌握了相关的操作和性能测试方法,这将为我们今后的学习和应用提供很大的帮助。
数据结构实验一-线性表
数据结构实验⼀-线性表实验⼀线性表⼀、实验⽬的1、深刻理解线性结构的特点,以及在计算机内的两种存储结构。
2、熟练掌握线性表的顺序存储结构和链式存储结构,及其它们的基本操作,重点掌握查找、插⼊和删除等操作。
⼆、实验要求1、认真阅读程序,将未完成的代码补全(红⾊部分)。
2、上机调试,并运⾏程序。
3、保存和截图程序的运⾏结果,并结合程序进⾏分析。
三、实验内容和基本原理1、实验1.1 顺序表的操作利⽤顺序表存储⽅式实现下列功能(见参考程序1):1)通过键盘输⼊数据建⽴⼀个线性表,并输出该线性表。
如,依次输⼊元素25,21,46,90,12,98。
2)根据屏幕菜单的选择,进⾏数据的插⼊、删除和查找,并在插⼊或删除数据后,再输出线性表。
如,在第2个位置上插⼊元素43,然后输出顺序表。
删除顺序表第4个元素,输出改变的顺序表。
3)在屏幕菜单中选择0,结束程序的运⾏。
基本原理:在顺序表的第i个位置上插⼊⼀个元素时,必须先将线性表的第i个元素之后的所有元素依次后移⼀个位置,以便腾空⼀个位置,在把新元素插⼊到该位置。
当要删除第i个元素时,只需将第i个元素之后的所有元素前移⼀个位置。
程序代码(蓝⾊为补充的语句)://* * * * * * * * * * * * * * * * * * * * * * * *//*PROGRAM :顺序结构的线性表 *//*CONTENT :建⽴,插⼊,删除,查找 *//*编程语⾔: Visual c++ 6.0 *//* * * * * * * * * * * * * * * * * * * * * *#include#include#define MAXSIZE 20typedef int ElemType; //数据元素的类型typedef struct{ElemType a[MAXSIZE];int length;}SqList; //顺序存储的结构体类型SqList a,b,c;//函数声明void creat_list(SqList *L);void out_list(SqList L);void insert_sq(SqList *L,int i,ElemType e); ElemType delete_sq(SqList *L,int i);int locat_sq(SqList L,ElemType e);//主函数void main(){int i,k,loc;ElemType e,x;char ch;do {printf("\n\n\n");printf("\n 吴肖遥20151681310131");printf("\n 1.建⽴线性表");printf("\n 2.插⼊元素");printf("\n 3.删除元素");printf("\n 4.查找元素");printf("\n 0.结束程序运⾏");printf("\n =====================");printf("\n 请输⼊要执⾏的操作: ");scanf("%d",&k);switch(k){case 1:{creat_list(&a);out_list(a);}break;case 2:{printf("\n请输⼊插⼊位置: ",a.length+1); scanf("%d",&i);printf("请输⼊要插⼊的元素值: ");scanf("%d",&e);insert_sq(&a,i,e);out_list(a);}break;case 3:{printf("\n请输⼊要删除元素的位置: ",a.length); scanf("%d",&i);x=delete_sq(&a,i);out_list(a);if(x!=-1)printf("\n删除的元素为:%d\n",x);else printf("要删除的元素不存在!");}break;case 4:{printf("\n请输⼊要查找的元素值:");scanf("%d",&e);loc=locat_sq(a,e);if(loc==-1)printf("\n未找到指定元素!");elseprintf("\n已找到,元素的位置是: %d ",loc);}break;}/*switch*/}while(k!=0);printf("\n 按回车键,返回...\n");ch=getchar();}/*main*///建⽴线性表void creat_list(SqList *L){int i;printf("请输⼊线性表的长度: ");scanf("%d",&L->length);for(i=0;ilength;i++){printf("数据 %d =",i);scanf("%d",&(L->a[i]));}}//输出线性表void out_list(SqList L){int i;for(i=0;i<=L.length-1;i++)printf("%10d",L.a[i]);}//在线性表的第i个位置插⼊元素evoid insert_sq(SqList *L,int i,ElemType e){int j;if(L->length==MAXSIZE)printf("线性表已满!\n");else {if(i<1||i>L->length+1)printf("输⼊位置错!\n");else {for(j=L->length-1;j>=i-1;j--)L->a[j+1]=L->a[j];L->a[j+1]=e;/*将未完成的代码补全,提⽰:此处添加⼀条语句,将被删除的元素值赋给e*/ L->length++;}}}//删除第i个元素,返回其值ElemType delete_sq(SqList *L,int i){ElemType x;int j;if(L->length==0)printf("空表!\n");else if(i<1||i>L->length){printf("输⼊位置错!\n");x=-1;}else{x=L->a[i-1];for(j=i;j<=L->length-1;j++)L->a[j-1]=L->a[j];/*将未完成的代码补全,提⽰:此处添加⼀条语句,将被删除元素之后的元素左移。
数据结构--实验报告 线性表的基本操作
数据结构--实验报告线性表的基本操作数据结构--实验报告线性表的基本操作一、引言本实验报告旨在通过实际操作,掌握线性表的基本操作,包括初始化、插入、删除、查找等。
线性表是最基本的数据结构之一,对于理解和应用其他数据结构具有重要的作用。
二、实验目的1·了解线性表的定义和基本特性。
2·掌握线性表的初始化操作。
3·掌握线性表的插入和删除操作。
4·掌握线性表的查找操作。
5·通过实验巩固和加深对线性表的理解。
三、线性表的基本操作1·初始化线性表线性表的初始化是将一个线性表变量设置为空表的过程。
具体步骤如下:(1)创建一个线性表的数据结构,包括表头指针和数据元素的存储空间。
(2)将表头指针指向一个空的数据元素。
2·插入元素插入元素是向线性表中指定位置插入一个元素的操作。
具体步骤如下:(1)判断线性表是否已满,如果已满则无法插入元素。
(2)判断插入位置是否合法,如果不合法则无法插入元素。
(3)将插入位置及其后面的元素都向后移动一个位置。
(4)将待插入的元素放入插入位置。
3·删除元素删除元素是从线性表中删除指定位置的元素的操作。
具体步骤如下:(1)判断线性表是否为空,如果为空则无法删除元素。
(2)判断删除位置是否合法,如果不合法则无法删除元素。
(3)将删除位置后面的元素都向前移动一个位置。
(4)删除最后一个元素。
4·查找元素查找元素是在线性表中查找指定元素值的操作。
具体步骤如下:(1)从线性表的第一个元素开始,逐个比较每个元素的值,直到找到目标元素或遍历完整个线性表。
(2)如果找到目标元素,则返回该元素的位置。
(3)如果未找到目标元素,则返回找不到的信息。
四、实验步骤1·初始化线性表(1)定义线性表的数据结构,包括表头指针和数据元素的存储空间。
(2)将表头指针指向一个空的数据元素。
2·插入元素(1)判断线性表是否已满。
数据结构--实验报告 线性表的基本操作
数据结构--实验报告线性表的基本操作数据结构实验报告[引言]在本次实验中,我们将学习线性表的基本操作,包括插入、删除、查找等。
通过实践操作,加深对线性表的理解和掌握。
[实验目的]1.学习线性表的基本概念和操作。
2.熟悉线性表的插入、删除和查找等基本操作。
3.掌握线性表的实现方式及其相应的算法。
[实验内容]1.线性表的定义与表示1.1 线性表的定义1.2 线性表的顺序存储结构1.3 线性表的链式存储结构2.线性表的基本操作2.1初始化线性表2.2判断线性表是否为空2.3 插入操作2.3.1 在指定位置插入元素2.3.2 在表尾插入元素2.4 删除操作2.4.1 删除指定位置的元素2.4.2 删除指定值的元素2.5 查找操作2.5.1 按位置查找元素2.5.2 按值查找元素2.6 修改操作2.6.1修改指定位置的元素 2.6.2 修改指定值的元素2.7 清空线性表2.8 销毁线性表[实验步骤]1.初始化线性表1.1 创建一个空的线性表对象1.2 初始化线性表的容量和长度2.插入操作2.1在指定位置插入元素2.1.1 检查插入位置的合法性2.1.2 将插入位置后的元素依次后移2.1.3在指定位置插入新元素2.2 在表尾插入元素2.2.1 将表尾指针后移2.2.2 在表尾插入新元素3.删除操作3.1 删除指定位置的元素3.1.1 检查删除位置的合法性3.1.2 将删除位置后的元素依次前移3.1.3 修改线性表的长度3.2 删除指定值的元素3.2.1 查找指定值的元素位置3.2.2调用删除指定位置的元素操作4.查找操作4.1 按位置查找元素4.1.1 检查查找位置的合法性4.1.2 返回指定位置的元素4.2 按值查找元素4.2.1 从头到尾依次查找元素4.2.2 返回第一个匹配到的元素5.修改操作5.1修改指定位置的元素5.1.1 检查修改位置的合法性5.1.2修改指定位置的元素值5.2修改指定值的元素5.2.1 查找指定值的元素位置5.2.2调用修改指定位置的元素操作6.清空线性表6.1 设置线性表长度为07.销毁线性表7.1 释放线性表的内存空间[实验结果]使用线性表进行各种基本操作的测试,并记录操作的结果和运行时间。
数据结构实验报告线性表
数据结构实验报告线性表数据结构实验报告:线性表引言:数据结构是计算机科学中的重要概念,它涉及到如何组织和存储数据,以及如何有效地操作和管理这些数据。
线性表是数据结构中最基本的一种,它是一种有序的数据元素集合,其中的元素之间存在着一对一的关系。
一、线性表的定义和特点线性表是由n个数据元素组成的有限序列,其中n为表的长度。
这些数据元素可以是相同类型的,也可以是不同类型的。
线性表中的数据元素按照一定的顺序排列,并且每个数据元素都有唯一的前驱和后继。
线性表的特点有以下几个方面:1. 数据元素之间是一对一的关系,即每个数据元素只有一个直接前驱和一个直接后继。
2. 线性表中的元素是有序的,每个元素都有一个确定的位置。
3. 线性表的长度是有限的,它的长度可以是0,也可以是任意正整数。
二、线性表的实现方式线性表可以使用不同的数据结构来实现,常见的实现方式有数组和链表。
1. 数组实现线性表:数组是一种连续存储的数据结构,它可以用来存储线性表中的元素。
数组的优点是可以快速访问任意位置的元素,但是插入和删除操作需要移动其他元素,效率较低。
2. 链表实现线性表:链表是一种非连续存储的数据结构,它通过指针将线性表中的元素链接起来。
链表的优点是插入和删除操作简单高效,但是访问任意位置的元素需要遍历链表,效率较低。
三、线性表的基本操作线性表的基本操作包括插入、删除、查找和修改等。
1. 插入操作:插入操作用于向线性表中插入一个新元素。
具体步骤是先将插入位置后面的元素依次后移,然后将新元素插入到指定位置。
2. 删除操作:删除操作用于从线性表中删除一个元素。
具体步骤是先将删除位置后面的元素依次前移,然后将最后一个元素删除。
3. 查找操作:查找操作用于在线性表中查找指定元素。
具体步骤是从线性表的第一个元素开始逐个比较,直到找到匹配的元素或者到达线性表的末尾。
4. 修改操作:修改操作用于修改线性表中的某个元素的值。
具体步骤是先查找到要修改的元素,然后将其值更新为新值。
实验一 线性表 实验报告
数据结构实验报告实验名称:实验一线性表学生姓名:班级:班内序号:学号:日期:2012年11月3日1、实验要求据线性表的抽象数据类型的定义,选择下面任一种链式结构实现线性表,并完成线性表的基本功能。
线性表存储结构(五选一):1、带头结点的单链表2、不带头结点的单链表3、循环链表4、双链表5、静态链表线性表的基本功能:1、构造:使用头插法、尾插法两种方法2、插入:要求建立的链表按照关键字从小到大有序3、删除4、查找5、获取链表长度6、销毁7、其他:可自行定义编写测试main()函数测试线性表的正确性2、程序分析2.1存储结构单链表的存储结构2.2关键算法分析一:关键算法1:头插法自然语言描述:a:在堆中建立新结点b:将a[i]写入到新结点的数据域c:修改新结点的指针域d:修改头结点的指针域,并将新结点加入链表中伪代码描述:a:Node * s=new Node ;b:s->data=a[i] ;c:s->next=front->next;d:front->next=s;2:尾插法自然语言描述:a:在堆中建立新结点b:将a[i]写入到新结点的数据域c:将新结点加入到链表中d:修改尾指针伪代码描述:a:Node * s=new Node ;b:s->data=a[i] ;c:r->next=s;d:r=s;3:删除大于min小于max元素算法:自然语言描述:a:建立新结点b:保存第一个结点的位置c:执行循环,查找到p结点为第一个大于min小于max的元素,q为比min 大的前一个元素位置d:执行循环,查找到比max小的最后一个元素位置e:将上述两步骤中的满足条件的中间节点删掉f:将前后两条断链重新连接起来,连接p和q结点伪代码描述:a:Node *p,*q,*r;b: p=front->next;c:while(p&&p->data<=min){q=p;p=p->next;}d和e:while(p&&p->data<max) //找比max小的最后一个元素位置{r=p;p=p->next;delete r; //释放满足条件的结点}f: q->next=p;4:链表逆置算法自然语言描述:a:建立新结点b:判断链表是否为空表或者单结点链表c:将开始结点变成终端结点d:执行循环,使每次循环都将后一个结点变成开始结点e:遍历打印伪代码描述:a:Node *p,*q;b:if(front->next&&front->next->next)c: p=front->next;q=p->next;p->next=NULL;d:while(q){p=q; //每次循环将后一个结点变成起始结点q=q->next;p->next=front->next;front->next=p;}e: z=front->next;while(z) //遍历打印逆置后的序列{cout<<z->data<<"";z=z->next;}5.销毁函数自然语言描述:a:新建立一个指针,指向头结点b:判断要释放的结点是否存在c:暂时保存要释放的结点d:移动a中建立的指针e:释放要释放的指针伪代码描述:a:Node * p=frontb:while(p)c:front=pd:p=p->nexte:delete front6.按位查找函数(查找第i个元素的位置)自然语言描述:a:初始化工作指针p和计数器j,p指向第一个结点,j=1b:循环以下操作,直到p为空或者j等于1b1:p指向下一个结点b2:j加1c:若p为空,说明第i个元素不存在,抛出异常d:否则,说明p指向的元素就是所查找的元素,返回元素地址伪代码描述a:Node * p=front->next;j=1;b:while(p&&(j!=i))b1:p=p->nextb2:j++c:if(!p) throw ”查找位置有误”d:return p7:按位查找函数(查找值为x的元素并返回其位置)自然语言描述:a:初始化工作指针p和计数器j,p指向第一个结点,j=1b:循环以下操作,找到这个元素或者p指向最后一个结点b1:判断p指向的结点是不是要查找的值,如果是,返回j,否则p指向下一个结点,并且j的值加1c:如果找到最后一个结点还没有找到要查找的元素,返回查找失败信息伪代码描述:a:Node * p=front->next;j=1;b:while(p)b1: if(p->next==x)return j;p=p->next;j++ ;c:throw "找不到指定元素";8.插入函数自然语言描述:a:在堆中建立新结点b:将要插入的结点的数据写入到新结点的数据域c:修改新结点的指针域d:修改前一个指针的指针域,使其指向新插入的结点的位置伪代码描述:a:Node * s=new Node ;b:s-data=xc:s->next=p->nextd:p->next=s9.删除函数自然语言描述:a:从第一个结点开始,查找要删除的位数i前一个位置i-1的结点b:设q指向第i个元素c:将q元素从链表中删除d:保存q元素的数据e:释放q元素伪代码描述:a: if(i!=1)p=Get(i-1);b: q=p->nextc:p->next=q->nextd:x=q->datae:delete q10.遍历输出函数自然语言描述:a:判断该链表是否为空链表,如果是,报错b:如果不是空链表,新建立一个temp指针c:将temp指针指向头结点d:打印temp指针的data域e:逐个往后移动temp指针,直到temp指针指向的next域为空伪代码描述:a:If(front->next==NULL)cout<<"该链表为空链表!"<<endl;b和c:Node * temp=front->next;d和e:while(temp){cout<<temp->data<<"";temp=temp->next;}11.获取链表长度函数自然语言描述:a:判断该链表是否为空链表,如果是,输出长度0b:如果不是空链表,新建立一个temp指针,初始化整形数n为0c:将temp指针指向头结点d:判断temp指针是否为空,如果不是,n加1,否则return ne: 使temp指针逐个后移,重复d操作,直到temp指针指向的next域为0,返回n伪代码描述:a:int n=0;if(front->next==NULL) //如果为空链表{n=0;}b和c: else{Node * temp=front->next;d:while(temp){n++;e: temp=temp->next;}}return n;二、代码详细分析1、头插法关键代码:Node * s=new Node ;s->data=a[i] ;s->next=front->next;front->next=s;示意图:2、尾插法关键代码:Node * s=new Node ;s->data=a[i] ;r->next=s;r=s;示意图:3:删除大于min 小于max 元素算法:关键代码:Node *p,*q,*r,*s;p=front->next;while (p&&p->data<=min){q=p;p=p->next;} //此循环结束时,当前p 结点为第一个大于min 小于max 的元素,q 为比min 大的前一个元素位置while (p&&p->data<max) //找比max 小的最后一个元素位置{r=p;p=p->next;delete r; //释放满足条件的结点}q->next=p;流程图:4:链表逆置算法关键代码:Node *p,*q,*z;if (front->next&&front->next->next) //当链表不是空表或者单结点时{p=front->next;q=p->next;p->next=NULL; //将开始结点变成终端结点while(q){p=q; //每次循环将后一个结点变成起始结点q=q->next;p->next=front->next;front->next=p;}}流程图:5、查找算法关键代码:Node *p=front->next;int j=1;while(p&&(j!=i)) //i=1时循环体不执行{p=p->next;j++;}if(!p) throw"查找位置有误";elsereturn p;流程图:六、删除算法关键代码:Node *p=front;if (i!=1)p=Get(i-1); //查到第i-1个元素的地址Node *q=p->next;p->next=q->next;int x=q->data;delete q;return x;流程图:三、关键算法的时间、空间复杂度头插法/尾插法 O(n)按位查找/按值查找 O(n)插入操作 O(n)逆置操作 O(n)删除大于min小于max操作o(n)2.3其他函数中的按值查找可以修改,把终止条件改为直到指向的结点的next域为空,返回多个地址,那么在链表中如果存在多个待找元素都可以返回。
数据结构--实验报告 线性表的基本操作
数据结构--实验报告线性表的基本操作线性表的基本操作实验报告1.引言线性表是最基本的数据结构之一,它可以用来存储一系列具有相同数据类型的元素。
本实验旨在通过实践掌握线性表的基本操作,包括插入、删除、查找和修改元素等。
本文档将详细介绍实验所需的步骤和操作方法。
2.实验目的1.掌握线性表的插入和删除操作。
2.理解线性表的查找和修改元素的方法。
3.熟悉线性表的基本操作在算法中的应用。
3.实验环境本实验使用编程语言/软件名称作为开发环境,具体要求如下:________●操作系统:________操作系统名称和版本●编程语言:________编程语言名称和版本4.实验步骤4.1 初始化线性表在程序中创建一个空的线性表,用于存储元素。
实现方法:________具体的初始化方法和代码示例 4.2 插入元素在线性表中指定位置插入一个新元素。
实现方法:________具体的插入元素方法和代码示例 4.3 删除元素删除线性表中指定位置的元素。
实现方法:________具体的删除元素方法和代码示例 4.4 查找元素在线性表中查找指定元素的位置。
实现方法:________具体的查找元素方法和代码示例 4.5 修改元素修改线性表中指定位置的元素值。
实现方法:________具体的修改元素方法和代码示例5.实验结果在完成上述步骤后,我们得到了一个可以进行插入、删除、查找和修改元素的线性表。
具体操作结果如下:________●插入元素操作结果:________插入元素的具体操作结果●删除元素操作结果:________删除元素的具体操作结果●查找元素操作结果:________查找元素的具体操作结果●修改元素操作结果:________修改元素的具体操作结果6.实验总结通过本次实验,我们深入理解了线性表的基本操作,并且掌握了这些操作的实现方法。
线性表在实际应用中十分常见,熟练掌握线性表的操作对于开发高效的算法和数据结构具有重要意义。
实验报告_线性表
电子科技大学实验报告课程名称:数据结构与算法学生姓名:学号:点名序号:指导教师:实验地点:基础实验大楼实验时间:4月3日2014-2015-2学期信息与软件工程学院实验报告(一)学生姓名:学号:指导教师:实验地点:基础实验大楼实验时间:4月3日一、实验室名称:软件实验室二、实验项目名称:数据结构与算法—线性表的实现三、实验学时:4四、实验原理:在链式存储结构中,存储数据结构的存储空间可以不连续,各数据结点的存储顺序与数据元素之间的逻辑关系可以不一致,而数据元素之间的逻辑关系是由指针域来确定的。
链式存储方式即可以用于表示线性结构,也可用于表示非线性结构。
一般来说,在线性表的链式存储结构中,各数据结点的存储符号是不连续的,并且各结点在存储空间中的位置关系与逻辑关系也不一致。
对于线性链表,可以从头指针开始,沿各结点的指针扫描到链表中的所有结点。
线性表的链接存储中,为了方便在表头插入和删除结点的操作,经常在表头结点(存储第一个元素的结点)的前面增加一个结点,称之为头结点或表头附加结点。
这样原来的表头指针由指向第一个元素的结点改为指向头结点,头结点的数据域为空,头结点的指针域指向第一个元素的结点。
五、实验目的:本实验通过定义单向链表的数据结构,设计创建链表、插入结点、遍历结点等基本算法,使学生掌握线性链表的基本特征和算法,并能熟练编写C 程序,培养理论联系实际和自主学习的能力,提高程序设计水平。
六、实验内容:使用数据结构typedef struct node {Elemtype data;struct node *next;} ListNode, *ListPtr;typedef struct stuInfo {char stuName[10]; /*学生姓名*/int Age /*年龄*/} ElemType实现带头结点的单向链表的创建、删除链表、插入结点等操作,并能实现年龄递增的两个单向链表合并一个链表,合并后的链表按年龄递减,可认为同名同年龄是同一个学生,每个学生在合并后的链表中仅出现一次。
线性表的实验报告
线性表的实验报告线性表的实验报告概述:线性表是一种常见的数据结构,它是由一组具有相同数据类型的元素组成的序列。
本次实验旨在通过实际操作线性表,掌握线性表的基本操作以及了解其应用场景。
实验目的:1. 理解线性表的概念和基本操作;2. 掌握线性表的顺序存储结构和链式存储结构;3. 熟悉线性表的常见应用场景。
实验材料:1. 计算机;2. 编程软件(如C、C++、Java等);3. 实验教材或参考资料。
实验步骤:一、线性表的顺序存储结构实验1. 创建一个空的线性表;2. 向线性表中插入若干元素;3. 删除线性表中的某个元素;4. 根据索引查找线性表中的元素;5. 遍历线性表,输出所有元素。
二、线性表的链式存储结构实验1. 创建一个空的链表;2. 向链表中插入若干节点;3. 删除链表中的某个节点;4. 根据节点值查找链表中的节点;5. 遍历链表,输出所有节点。
实验结果:1. 顺序存储结构实验结果:- 成功创建空的线性表;- 成功插入若干元素;- 成功删除某个元素;- 成功根据索引查找元素;- 成功遍历线性表,输出所有元素。
2. 链式存储结构实验结果:- 成功创建空的链表;- 成功插入若干节点;- 成功删除某个节点;- 成功根据节点值查找节点;- 成功遍历链表,输出所有节点。
实验分析:1. 顺序存储结构适用于元素个数固定或变化不大的情况,插入和删除操作需要移动大量元素,效率较低;2. 链式存储结构适用于元素个数不固定的情况,插入和删除操作只需修改指针,效率较高;3. 线性表的应用场景包括但不限于:图书馆图书管理系统中的图书列表、学生信息管理系统中的学生列表等。
实验总结:通过本次实验,我深入了解了线性表的概念、基本操作以及两种常见存储结构。
顺序存储结构适用于元素个数固定的情况,而链式存储结构适用于元素个数不固定的情况。
线性表在实际应用中有着广泛的应用场景,如图书馆管理系统、学生信息管理系统等。
在以后的学习和工作中,我将灵活运用线性表,为解决实际问题提供便利。
实验一线性表操作实验报告
实验一_线性表操作_实验报告实验一:线性表操作一、实验目的1.理解线性表的基本概念和特点。
2.掌握线性表的基本操作,包括插入、删除、查找等。
3.通过实验,提高动手能力和解决问题的能力。
二、实验原理线性表是一种较为常见的数据结构,它包含零个或多个数据元素,相邻元素之间有前后关系。
线性表具有以下特点:1.元素之间一对一的顺序关系。
2.除第一个元素外,每个元素都有一个直接前驱。
3.除最后一个元素外,每个元素都有一个直接后继。
常见的线性表有数组、链表等。
本实验主要针对链表进行操作。
三、实验步骤1.创建链表:首先创建一个链表,并给链表添加若干个节点。
节点包括数据域和指针域,数据域存储数据,指针域指向下一个节点。
2.插入节点:在链表中插入一个新的节点,可以选择在链表的头部、尾部或中间插入。
3.删除节点:删除链表中的一个指定节点。
4.查找节点:在链表中查找一个指定数据的节点,并返回该节点的位置。
5.遍历链表:从头节点开始,依次访问每个节点的数据。
四、实验结果与分析1.创建链表结果:我们成功地创建了一个链表,每个节点都有数据域和指针域,数据域存储数据,指针域指向下一个节点。
2.插入节点结果:我们成功地在链表的头部、尾部和中间插入了新的节点。
插入操作的时间复杂度为O(1),因为我们只需要修改指针域即可。
3.删除节点结果:我们成功地删除了链表中的一个指定节点。
删除操作的时间复杂度为O(n),因为我们可能需要遍历整个链表才能找到要删除的节点。
4.查找节点结果:我们成功地在链表中查找了一个指定数据的节点,并返回了该节点的位置。
查找操作的时间复杂度为O(n),因为我们可能需要遍历整个链表才能找到要查找的节点。
5.遍历链表结果:我们成功地遍历了整个链表,并访问了每个节点的数据。
遍历操作的时间复杂度为O(n),因为我们可能需要遍历整个链表。
通过本次实验,我们更加深入地理解了线性表的基本概念和特点,掌握了线性表的基本操作,包括插入、删除、查找等。
数据结构--实验报告_线性表的基本操作备用
实验目的实验内容和要求源代码顺序表的代码单链表的代码测试结果顺序表的测试结果单链表的测试结果五、心得体会实验一线性表的基本操作及其应用一、实验目的1.帮助读者复习C++语言程序设计中的知识。
2.熟悉线性表的逻辑结构。
3.熟悉线性表的基本运算在两种存储结构上的实现。
4.掌握顺序表的存储结构形式及其描述和基本运算的实现。
5.熟练掌握动态链表结构及有关算法的设计二、实验内容题目一: 顺序表的基本操作[问题描述]实现顺序表的建立、求长度, 取元素、修改元素、插入、删除等顺序表的基本操作。
[基本要求](1)依次从键盘读入数据, 建立带头结点的顺序表;(2)输出顺序表中的数据元素(3)求顺序表的长度;(4)根据指定条件能够取元素和修改元素;(5)实现在指定位置插入和删除元素的功能。
(6)根据算法, 将两个有序的顺序表合并成一个有序顺序表。
[测试数据] 由学生任意指定。
题目二: 单链表的基本操作[问题描述]实现带头结点的单链表的建立、求长度, 取元素、修改元素、插入、删除等单链表的基本操作。
[基本要求](1)依次从键盘读入数据, 建立带头结点的单链表;(2)输出单链表中的数据元素(3)求单链表的长度;(4)根据指定条件能够取元素和修改元素;(5)实现在指定位置插入和删除元素的功能。
(6)根据算法, 将两个有序的单链表合并成一个有序单链表。
[测试数据]由学生任意指定。
三、源代码顺序表的基本操作#include<iostream>using namespace std;#define TRUE 1#define FALSE 0#define OK 1#define ERROR 0#define OVERFLOW -2typedef int Status;typedef int ElemType;#define LIST_INIT_SIZE 100#define LISTINCREMENT 10typedef struct { //结构体ElemType *elem;int length;int listsize;}SqList;SqList Lx;Status InitList_Sq(SqList &L) //分配空间{ L.elem=new ElemType[LIST_INIT_SIZE];if(!L.elem)exit(OVERFLOW);L.length =0;L.listsize=LIST_INIT_SIZE;return OK;}Status ListInsert(SqList &L,int i,ElemType e) //插入新元素{ int *q,*p;ElemType *newbase;if(i<1 || i>L.length+1) return ERROR;if(L.length>=L.listsize){ newbase=new ElemType[L.listsize+LISTINCREMENT];if(!newbase) exit(OVERFLOW);L.elem=newbase;L.listsize+=LISTINCREMENT;}q=&(L.elem[i-1]);for (p=&(L.elem[L.length-1]);p>=q;--p)*(p+1)=*p;*q=e;++L.length;return OK;}Status Listlength(SqList L) //长度{ int *p=L.elem; //判断线形表是否存在while(p){ return (L.length); }}Status GetElem(SqList L, int i,ElemType &e) //取元素{ if(i<1 || i>L.length)return ERROR;else{ e=L.elem[i-1];return e;}}void MergeList(SqList La,SqList Lb,SqList &Lc) //合并{ ElemType ai,bj;InitList_Sq(Lc);int i=1,j=1,k=0;int La_len,Lb_len;La_len=Listlength(La);Lb_len=Listlength(Lb);while((i<=La_len)&&(j<=Lb_len)){ GetElem(La,i,ai);GetElem(Lb,j,bj);if(ai<=bj){ ListInsert(Lc,++k,ai);++i; }else{ ListInsert(Lc,++k,bj);++j; }}while(i<=La_len){ GetElem(La,i++,ai);ListInsert(Lc,++k,ai);}while(j<=Lb_len){ GetElem(Lb,j++,bj);ListInsert(Lc,++k,bj);}}void show(SqList L,int i) //显示{ int j;ElemType k;cout<<"顺序表显示如下:"<<endl;for(j=0;j<i-1;j++){ k=L.elem[j];cout<<k<<"->"; }if(j==i-1 && i>0){ k=L.elem[j]; cout<<k; }cout<<endl;}void create(SqList &L,int n) //输入元素{ int e;for(int i=0;i<n;i++){ cin>>e;L.elem[i]=e;L.length=i+1; }}Status ListDelete_Sq(SqList &L,int i,ElemType &e) //删除{ ElemType *p, *q;if(i<1 || i>L.length) return ERROR;p=&(L.elem[i-1]);e=*p;q=L.elem+L.length-1;for(++p;p<=q;++p) *(p-1)=*p;--L.length;return OK;}Status Listxiugei(SqList &L,int i,ElemType &e) //修改{ if(i<1 || i>L.length)return ERROR;else{ L.elem[i-1]=e;return OK; }}void shuru(SqList &L1) //顺序表的创建{ int a;InitList_Sq(L1);cout<<"请输入顺序表的长度: ";cin>>a;cout<<"请输入顺序表的元素(共"<<a<<"个)"<<endl;create(L1,a);show(L1,a);}void chaxun(SqList &L1) //取第i个位置的元素{ int j;ElemType e1;cout<<"请选择所要取出元素的位置:";cin>>j;while(j<0||j>Listlength(L1)){ cout<<"输入有误, 请重新输入"<<endl;cout<<"请选择所要取出元素的位置:";cin>>j; }GetElem(L1,j,e1);cout<<"取出的元素为:"<<e1<<endl; }void xiugai(SqList &L1) //修改第i个位置的元素{ int a;int j; ElemType e1;a=L1.length;cout<<"请选择所要修改元素的位置:";cin>>j;while(j<0||j>Listlength(L1)){ cout<<"输入有误, 请重新输入"<<endl;cout<<"请选择所要修改元素的位置:";cin>>j; }cout<<"要修改成的元素:";cin>>e1;Listxiugei(L1,j,e1);cout<<"修改后的顺序表数据:"<<endl;show(L1,a);}void shanchu(SqList &L1) //删除顺序表里的元素{ int a;int j; ElemType e1;a=L1.length;cout<<"请选择所要删除元素的位置:";cin>>j;while(j<0||j>Listlength(L1)){ cout<<"输入有误, 请重新输入"<<endl;cout<<"请选择所要删除元素的位置:";cin>>j; }ListDelete_Sq(L1,j,e1);cout<<"修改后的顺序表数据:"<<endl;show(L1,a-1);}void charu(SqList &L1) //插入元素到顺序表里{ int a; int j; ElemType e1;a=L1.length;cout<<"请选择所要插入元素的位置:";cin>>j;while(j<0||j>Listlength(L1)){ cout<<"输入有误, 请重新输入"<<endl;cout<<"请选择所要插入元素的位置:";cin>>j; }cout<<"要插入的元素:";cin>>e1;ListInsert(L1,j,e1);cout<<"修改后的顺序表数据:"<<endl;show(L1,a+1);}void hebing(SqList &L3) //合并两个顺序表{ SqList L1,L2;int a,b;InitList_Sq(L1); InitList_Sq(L2);cout<<"请输入第一个有序表的长度: "; cin>>a;cout<<"请输入第一个有序表的元素(共"<<a<<"个)"<<endl;create(L1,a);show(L1,a);cout<<"请输入第二个有序表的长度: "; cin>>b;cout<<"请输入第二个有序表的元素(共"<<b<<"个)"<<endl;create(L2,b);show(L2,b);MergeList(L1,L2,L3);cout<<"合并后的有序表如下: "; show(L3,a+b);}void main() //主菜单{ int choice;for(;;){ cout<<" 顺序表的基本操作"<<endl;cout<<" 1.顺序表的创建"<<endl;cout<<" 2.顺序表的显示"<<endl;cout<<" 3.顺序表的长度"<<endl;cout<<" 4.取第i个位置的元素"<<endl;cout<<" 5.修改第i个位置的元素"<<endl;cout<<" 6.插入元素到顺序表里"<<endl;cout<<" 7.删除顺序表里的元素"<<endl;cout<<" 8.合并两个顺序表"<<endl;cout<<" 9.退出系统"<<endl;cout<<"请选择: ";cin>>choice;switch(choice){ case 1: shuru(Lx);break;case 2: show(Lx,Lx.length);break;case 3: cout<<"顺序表的长度:"<<Listlength(Lx)<<endl;break;case 4: chaxun(Lx);break;case 5: xiugai(Lx);break;case 6: charu(Lx);break;case 7: shanchu(Lx);break;case 8: hebing(Lx);break;case 9: cout<<"退出系统!"<<endl;exit(0);break;default : cout<<"输入有误, 请重新选择"<<endl;break; } }}单链表的基本操作#include<iostream>using namespace std;#define true 1#define false 0#define ok 1#define error 0#define overflow -2typedef int Status;typedef int ElemType;typedef struct LNode //存储结构{ ElemType data;struct LNode *next;}LNode,*LinkList;void CreateList(LinkList &L,int n) //尾插法创建单链表{ LinkList p;L=new LNode;L->next=NULL; //建立一个带头结点的单链表LinkList q=L; //使q指向表尾for(int i=1;i<=n;i++){ p=new LNode;cin>>p->data;p->next=NULL;q->next=p;q=p; }}Status GetElem(LinkList L,int i,ElemType &e)//取第i个元素{ LinkList p=L->next;int j=1;while(p&&j<i){ p=p->next;++j; }if(!p||j>i) return error; //第i个元素不存在e=p->data;return ok;}Status LinkInsert(LinkList &L,int i,ElemType e) //插入{ LinkList p=L;int j=0;while(p&&j<i-1){ p=p->next;++j; } //寻找第i-1个结点if(!p||j>i-1)return error; //i小于1或者大于表长加1 LinkList s=new LNode; //生成新结点s->data=e;s->next=p->next; //插入L中p->next=s;return ok;}Status ListDelete(LinkList &L,int i,ElemType &e) // 删除{ LinkList p=L;LinkList q;int j=0;while(p->next&&j<i-1){ //寻找第i个结点, 并令p指向其前驱p=p->next;++j; }if(!(p->next)||j>i-1) return error; //删除位置不合理q=p->next;p->next=q->next; //删除并释放结点e=q->data;delete(q);return ok;}void MergeList(LinkList &La,LinkList &Lb,LinkList &Lc){ //合并两个顺序链表LinkList pa,pc,pb;pa=La->next;pb=Lb->next;Lc=pc=La;while(pa&&pb){ if(pa->data<=pb->data){ pc->next=pa;pc=pa;pa=pa->next; }else{ pc->next=pb;pc=pb;pb=pb->next; }}pc->next=pa?pa:pb;delete(Lb);}void show(LinkList L) //显示{ LinkList p;p=L->next;while(p){ cout<<p->data<<"-->";p=p->next; }cout<<endl;}int Length(LinkList L,int i) //表长{ i=0;LinkList p=L->next;while(p){ ++i;p=p->next; }return i;}void xiugai(LinkList L) //修改{ int i,j=1;ElemType k;ElemType e,m;LinkList p=L->next;cout<<"请输入要修改的元素位置(0<i<length):";cin>>i;GetElem(L,i,e);cout<<"该位置的元素:"<<e<<endl;cout<<"修改后的元素值:";cin>>k;while(p&&j<i){ p=p->next;++j; }m=p->data;p->data=k;cout<<"修改后的单链表显示如下:"<<endl;show(L);}void hebing() //合并两个单链表{ int a,b;LinkList La,Lb,Lc;cout<<"请输入第一个有序链表的长度:"<<endl;cin>>a;cout<<"请输入第一个有序链表的元素共("<<a<<"个): "<<endl;CreateList(La,a);show(La);cout<<"请输入第二个有序链表的长度:"<<endl;cin>>b;cout<<"请输入第二个有序链表的元素共("<<b<<"个): "<<endl;CreateList(Lb,b);show (Lb);MergeList(La,Lb,Lc);cout<<"合并后的有序链表如下: "<<endl;show(Lc);}void main() //主函数{ int select;int x;ElemType y;LinkList list;for(;;){ cout<<" 单链表的基本操作"<<endl;cout<<" 1.单链表的创建"<<endl;cout<<" 2.单链表的显示"<<endl;cout<<" 3.单链表的长度"<<endl;cout<<" 4.取第i个位置的元素"<<endl;cout<<" 5.修改第i个位置的元素"<<endl;cout<<" 6.插入元素到单链表里"<<endl;cout<<" 7.删除单链表里的元素"<<endl;cout<<" 8.合并两个单链表"<<endl;cout<<" 9.退出系统"<<endl;cout<<"请选择:";cin>>select;switch(select){ case 1:cout<<"请输入单链表的长度:"<<endl;cin>>x;cout<<"请输入"<<x<<"个元素"<<endl;CreateList(list,x);break;case 2: cout<<"单链表显示如下:"<<endl;show(list);break;case 3: int s;cout<<"单链表的长度为:"<<Length(list,s)<<endl;break;case 4: cout<<"请选择所要取出元素的位置:";cin>>x;while(x<0||x>Length(list,s)){ cout<<"输入有误, 请重新输入"<<endl;cout<<"请选择所要取出元素的位置:";cin>>x; }GetElem(list,x,y);cout<<"该位置的元素为:"<<y<<endl;break;case 5: xiugai(list); break;case 6: cout<<"请选择要插入的位置:"; cin>>x;while(x<0||x>Length(list,s)){ cout<<"输入有误, 请重新输入"<<endl;cout<<"请选择所要插入元素的位置:";cin>>x; }cout<<"要插入的元素值:";cin>>y;LinkInsert( list,x,y);cout<<"插入后单链表显示如下:"<<endl;show(list);break;case 7: cout<<"请选择要删除的位置:"; cin>>x;while(x<0||x>Length(list,s)){ cout<<"输入有误, 请重新输入"<<endl;cout<<"请选择所要删除元素的位置:";cin>>x; }ListDelete(list,x,y);cout<<"要删除的元素值:"<<y<<endl;cout<<"删除后的单链表显示如下:"<<endl;show(list);break;case 8: hebing();break;case 9: exit(0);break;default : cout<<"输入有误, 请重新输入"<<endl;break;}}}四、测试结果顺序表的测试结果单链表的测试结果五、心得体会当听到老师说写数据结构实验报告时, 我有点惊讶, 才学了不到一个月, 就要写实验报告。
数据结构线性表实验报告五篇
数据结构线性表实验报告五篇第一篇:数据结构线性表实验报告实验报告课程名:数据结构实验名:线性表及其操作姓名:班级:学号:撰写时间:2014.09.24一实验目的与要求1.掌握线性表的实现2.掌握线性表的基本操作的实现二实验内容• 分别完成线性表的顺序表示及链式表示• 在两种表示上, 分别实现一些线性表的操作, 至少应该包括–在第i个位置插入一个元素–删除第i个元素–返回线性表长–返回第i个元素的值三实验结果与分析#include #include //---------线性表链式表示-----------struct V//声明一个结构体类型struct V { int value;struct V * next;//定义结构体变量};void PrintLink(struct V*p)//定义一个结构体指针{ while(p!=NULL)//只要指针指向的变量不为NULL;就会一直循环链表指向下一个结构体{printf(“%d, ”,(*p).value);p=(*p).next;//指针指向下一个结构体} printf(“n”);} void Link(){struct V*head;head=(struct V*)malloc(sizeof(struct V));//开辟一个长度为size的内存(*head).value=-100;//表头为-100(*head).next=NULL;printf(“------------线性表链式表示------------n”);int i,n=10;struct V*p=head;printf(“10个数据:n”);for(i=0;i(*p).next=(struct V*)malloc(sizeof(struct V));p=(*p).next;(*p).value=2*i;(*p).next=NULL;} PrintLink(head);//调用PrintLink函数printf(“删除第四个数据:n”);int k=4;p=head;for(i=1;ip=(*p).next;} struct V*temp=(*p).next;//k表示插入和删除的位置(*p).next=(*temp).next;free(temp);PrintLink(head);printf(“插入第十个数据:n”);k=10;p=head;for(i=1;ip=(*p).next;} temp=(*p).next;(*p).next=(struct V*)malloc(sizeof(struct V));(*(*p).next).value=-99;(*(*p).next).next=temp;PrintLink(head);}//---------线性表顺序表示-----------void seq1(){ int i,n=10,k=4;int a[10];//---------输出数组元素------------printf(“-------------线性表顺序表示---------n”);for(i=0;ia[i]=i;} printf(“数组元素为:n”);for(i=0;iprintf(“%3d”,a[i]);} printf(“n”);//--------插入一个数组元素---------int m=n+1,j=12;//插入元素12 int b[20];for(i=0;i if(i{b[i]=a[i];}else if(i==k){b[i]=j;}else{b[i]=a[i-1];} } printf(“输出插入一个元素的数组:n”);for(i=0;i{if(i{c[i]=a[i];}else{c[i]=a[i+1];} } printf(“输出删除一个元素的数组:n”);for(i=0;i printf(“数组元素为:n”);for(i=1;i<=a[0];i++){a[i]=i;} for(i=0;i<2*a[0];i++){printf(“%d,”,a[i]);} printf(“n”);//-----在k 位置插入一个元素------------for(i=a[0];i>=k;i--){a[i+1]=a[i];} a[k]=-100;++a[0];for(i=0;i<2*a[0];i++){printf(“%d,”,a[i]);} printf(“n”);//-------在k---------------for(i=0;i>k;i++){a[i]=a[i+1];} a[k]=-1;a[0]=n;--a[0];for(i=0;i<2*a[0];i++){printf(“%d,”,a[i]);} printf(“n”);} int main(int argc,char *argv[]){ seq1();seq2();Link();return 0;} 图1:实验结果截图实验分析:已在程序中按规定格式标注。
数据结构实验二 线性表
数据结构实验二线性表数据结构实验二线性表1. 实验目的1.1 理解线性表的概念和特性1.2 学习线性表的顺序存储结构和链式存储结构1.3 掌握线性表的基本操作:初始化、插入、删除、查找、修改、遍历等1.4 熟悉线性表的应用场景2. 实验内容2.1 线性表的顺序存储结构实现2.1.1 定义线性表结构体2.1.2 初始化线性表2.1.3 插入元素2.1.4 删除元素2.1.5 查找元素2.1.6 修改元素2.1.7 遍历线性表2.2 线性表的链式存储结构实现2.2.1 定义链表节点结构体2.2.2 初始化链表2.2.3 插入元素2.2.4 删除元素2.2.5 查找元素2.2.6 修改元素2.2.7 遍历链表3. 实验步骤3.1 实现顺序存储结构的线性表3.2 实现链式存储结构的线性表3.3 编写测试程序,验证线性表的各种操作是否正确3.4 进行性能测试,比较两种存储结构的效率差异4. 实验结果与分析4.1 执行测试程序,检查线性表的操作结果是否正确4.2 对比顺序存储结构和链式存储结构的性能差异4.3 分析线性表的应用场景,总结线性表的优缺点5. 实验总结5.1 总结线性表的定义和基本操作5.2 回顾实验中遇到的问题和解决方法5.3 提出对线性表实现的改进方向和思考附件:请参考附件中的源代码和实验报告模板。
法律名词及注释:1. 版权:指对某一作品享有的法律上的权利,包括复制权、发行权、改编权等。
2. 法律责任:指违反法律或合同规定所承担的责任。
3. 保密义务:指个人或组织根据法律、法规、合同等规定需要承担的保密责任。
4.知识产权:指人们在社会实践中所创造的智力劳动成果所享有的权利,包括专利权、著作权、商标权等。
线性表实验报告
线性表实验报告实验目的:掌握线性表的基本概念和实现方式,熟悉线性表的各种操作。
实验原理:线性表是由同类型的数据元素构成的有序序列。
在线性表中,除了第一个元素外,每个元素都有且仅有一个直接前驱元素;除了最后一个元素外,每个元素都有且仅有一个直接后继元素。
本实验主要通过C语言的实现,实现了线性表的基本操作,包括初始化、插入、删除、查找等。
实验内容:1.初始化线性表:定义一个长度为n的结构体数组,用于存储线性表的元素,同时设置线性表的长度为0。
2.插入元素:在指定位置pos后插入元素elem,首先判断线性表是否已满,若已满则无法插入;若未满,则将pos后的所有元素往后移动一位,然后将elem插入到pos位置,最后将线性表的长度加1。
3.删除元素:删除指定位置pos的元素,首先判断线性表是否为空或pos是否合法,若为空或pos不合法则无法删除;若合法,则将pos后的所有元素往前移动一位,最后将线性表的长度减1。
4.查找元素:按照元素值查找元素在线性表中的位置,首先判断线性表是否为空,若为空则无法查找;若不为空,则遍历线性表,逐一比较元素值,找到则返回其位置,找不到则返回-1。
5.输出线性表:按顺序输出线性表中的元素值。
实验结果:经过测试,线性表的各种操作均实现了。
可以正确地初始化、插入、删除、查找元素,并成功输出线性表中的元素值。
实验总结:通过本实验,我对线性表的概念和实现方式有了更深入的了解,并通过C语言的实现掌握了线性表的各种操作。
线性表是数据结构中最基本、最简单的一种,但在实际应用中非常广泛。
掌握了线性表的操作,对于理解和应用其他更复杂的数据结构具有重要的意义。
线性表实验报告
线性表实验报告一、实验目的本次实验的主要目的是深入理解线性表的基本概念和操作,通过实际编程实现线性表的存储和基本运算,掌握线性表在数据结构中的应用,提高对数据结构的理解和编程能力。
二、实验环境本次实验使用的编程语言为C++,开发工具为Visual Studio 2019。
三、实验原理线性表是一种最基本、最简单的数据结构,它是由 n(n≥0)个数据元素组成的有限序列。
在这个序列中,每个数据元素的位置是按照其逻辑顺序排列的。
线性表有两种存储结构:顺序存储结构和链式存储结构。
顺序存储结构是用一组地址连续的存储单元依次存储线性表中的数据元素,使得逻辑上相邻的两个元素在物理位置上也相邻。
其优点是可以随机访问表中的任意元素,时间复杂度为 O(1);缺点是插入和删除操作需要移动大量元素,时间复杂度为 O(n)。
链式存储结构是通过指针将各个数据元素链接起来,每个数据元素由数据域和指针域组成。
其优点是插入和删除操作不需要移动大量元素,时间复杂度为 O(1);缺点是不能随机访问表中的元素,需要从头指针开始遍历,时间复杂度为 O(n)。
四、实验内容本次实验实现了顺序表和链表的基本操作,包括创建、插入、删除、查找、遍历等。
1、顺序表的实现定义顺序表的结构体,包括数据存储数组和表的长度。
实现顺序表的初始化函数,将表的长度初始化为 0。
实现顺序表的插入函数,在指定位置插入元素,如果插入位置非法或表已满,则返回错误。
实现顺序表的删除函数,删除指定位置的元素,如果删除位置非法,则返回错误。
实现顺序表的查找函数,查找指定元素,如果找到则返回元素的位置,否则返回-1。
实现顺序表的遍历函数,输出表中的所有元素。
2、链表的实现定义链表的结构体,包括数据域和指向下一个节点的指针域。
实现链表的创建函数,创建一个空链表。
实现链表的插入函数,在指定位置插入元素,如果插入位置非法,则返回错误。
实现链表的删除函数,删除指定位置的元素,如果删除位置非法,则返回错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性表实验报告
一、实验的目的要求
1、了解线性表的逻辑结构特性,以及这种结构特性在计算机内的两种存储结构。
2、掌握线性表的顺序存储结构的定义及其C语言实现。
3、掌握线性表的链式存储结构——单链表的定义及其C语言实现。
4、掌握线性表在顺序存储结构即顺序表中的各种基本操作。
5、掌握线性表在链式存储结构——单链表中的各种基本操作。
6、认真阅读和掌握实验的程序。
7、上机运行本程序。
8、保存和打印出程序的运行结果,并结合程序进行分析。
二、实验的主要内容
题目:请编制C语言,利用链式存储方式来实现线性表的创建、插入、删除和查找等操作。
具体地说,就是要根据键盘输入的数据建立一个单链表,并输出该单链表;然后根据屏幕
菜单的选择,可以进行数据的插入或删除,并在插入或删除数据后,再输出单链表;最后
在屏幕菜单中选择0,即可结束程序的运行。
三、解题思路分析
在链表中插入数据,不需要进行大量的数据移动,只需要找到插入点即可,可以采用后插入的算法,在插入点的后面添加结点。
在链表中删除数据,先找到删除点,然后进行指针赋值操作。
四、程序清单
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
typedef int ElemType;
typedef struct LNode
{ElemType data;
struct LNode *next;
}LNode;
LNode *L;
LNode *creat_L();
void out_L(LNode *L);
void insert_L(LNode *L,int i,ElemType e); ElemType delete_L(LNode *L,ElemType e);
int locat_L(LNode *L,ElemType e);
void main()
{int i,k,loc;
ElemType e,x;
char ch;
do{printf("\n");
printf("\n 1.建立单链表");
printf("\n 2.插入元素");
printf("\n 3.删除元素");
printf("\n 4.查找元素");
printf("\n 0.结束程序运行");
printf("\n================================"); printf("\n 请输入您的选择(1,2,3,4,0)"); scanf("%d",&k);
switch(k)
{case 1:{L=creat_L();
out_L(L);
}break;
case 2:{printf("\n请输入插入位置:");
scanf("%d",&i);
printf("\n请输入要插入元素的值:");
scanf("%d",&e);
insert_L(L,i,e);
out_L(L);
}break;
case 3:{printf("\n请输入要删除元素的位置:"); scanf("%d",&i);
x=delete_L(L,i);
out_L(L);
if(x!=-1)
{printf("\n删除的元素为:%d\n",x);
printf("删除%d后的单链表为:\n",x);
out_L(L);
}
else printf("\n要删除的元素不存在!");
}break;
case 4:{printf("\n请输入要查找的元素值:"); scanf("%d",&e);
loc=locat_L(L,e);
if(loc==-1)printf("\n为找到指定元素!");
else printf("\n已找到,元素位置是%d",loc); }break;
}
printf("\n----------------");
}while(k>=1&&k<5);
printf("\n 按回车键,返回...\n");
ch=getchar();
}
LNode *creat_L()
{ LNode *h,*p,*s; ElemType x;
h=(LNode *)malloc(sizeof(LNode));
h->next=NULL;
p=h;
printf("\n请输入第一个数据元素:");
scanf("%d",&x);
while(x!=-999)
{s= (LNode *)malloc(sizeof(LNode));
s->data=x; s->next=NULL;
p->next=s; p=s;
printf("请输入下一个数据:(输入-999表示结束.)"); scanf("%d",&x);
}
return(h);
}
void out_L(LNode*L)
{ LNode*p;
p=L->next; printf("\n\n");
while(p!=NULL)
{
printf("%5d",p->data);p=p->next;};
}
void insert_L(LNode*L,int i,ElemType e)
{ LNode *s,*p;
int j;
p=L;
j=0;
while(p!=NULL&&j<=i-1){p=p->next;j++;}
if(p==NULL||i<1) printf("\n插入位置错误!");
else { s=(LNode * )malloc(sizeof(LNode));
s->data=e;
s->next=p->next;
p->next=s;
}
}
ElemType delete_L(LNode *L,int i)
{ LNode *p, *q; int j; ElemType x;
p=L;j=0;
while(p->next!=NULL&&j<i-1){p=p->next;j++;}
if(!p->next||i<1) {printf("\n删除位置错误!");return(-1);} else{ q=p->next; x=q->data;
p->next=q->next; free(q);
return(x);
}
}
int locat_L(LNode *L,ElemType e)
{ LNode *p; int j=1;
p=L->next;
while(p!=NULL && p->data!=e) {p=p->next; j++;}
if(p!=NULL)return(j); else return(-1);
}
五、调试心得及收获。
1、链式存储在曾加、删除元素师效率高,线性表的链式存储方式是利用不连续的内存空
间来保存结点的信息。
2、在节点中,不仅需要保存结点本身的数据值,还需要利用指针域保存指向后继的指针
3、要编写一个线性表的程序,必须了解及熟悉掌握其每一项基本操作。
4、算法并不是程序,要运行必须加工。
六、其它所想到的。
使程序能在对链表结点进行删除或插入操作时先检查用户是否已经创建链表,若没有创建,则提示用户创建一个链表。