Simple randomized mergesort on parallel disks

合集下载

模糊聚类分析和排序在研究生招生中的应用

模糊聚类分析和排序在研究生招生中的应用

meh d o mie ycutr g c odn ot eie ftig f n idc metg te ,i p t r ad to b n d b l s i ,a cr igt ao n so ekn o e r t u f w r en h d h o o h s o t omut id x c mp e e sv otd me o sb sd o zy cu tra ay i. I re o sle s l w l — e o rh n ies r t d ae n f z ls n ls in e h u e s n od rt ov i a mi r p o lmsta e rvd e d a . rbe t h yp o ien w i es h t
(. 1 兰州交通 大学数理与软件 3程学院 , - 兰州 707 ; . 300 2 兰州交通大学环境与市政工程学院 , 兰州 707 ) 300

要: 模糊聚类分析按一定要求和规律对模 糊性 问题加以处理 ,通常先建立模糊相似关 系而
后按 实际要求进行分类。文中针对研究生招 生工作,组建模糊数学模型 ,在 用传递闭包法求得 聚 类顺序 的基础 上 ,根 据 “ 以类 聚” 的 思 想 ,提 出 了基 于模 糊 聚 类 的 两种 多指 标综 合排 序 方 物
法 ,为 以词 : 模糊聚类分析 ;研究生招生 ;传递闭包 ; 排序
Ap l a i n o u z l se nay i n o ti p i to ff z y cu t r a lssa d s r n c
p sg a u t n r n e o t r d a e e ta c
用传递闭包方法求得招生顺序后 , 根据“ 物以类聚”

泊松融合原理和python代码

泊松融合原理和python代码

泊松融合原理和python代码【原创版】目录1.泊松融合原理概述2.Python 代码实现泊松融合原理3.泊松融合原理的应用正文1.泊松融合原理概述泊松融合原理是一种概率论中的经典理论,由法国数学家泊松提出。

泊松融合原理描述了一个事件在特定时间间隔内发生的概率与另一个事件在相同时间间隔内发生的次数之间的关系。

具体而言,泊松融合原理表明,一个事件在时间间隔Δt 内发生的次数服从泊松分布,即P(X=k)=e^(-λΔt) * (λΔt)^k / k!,其中λ是事件的平均发生率,X 是事件在时间间隔Δt 内发生的次数,k 是事件发生的次数。

2.Python 代码实现泊松融合原理为了验证泊松融合原理,我们可以使用 Python 编写代码模拟事件的发生过程。

以下是一个简单的 Python 代码示例:```pythonimport randomimport mathdef poisson_fusion(lambda_value, dt, num_trials):"""泊松融合原理模拟:param lambda_value: 事件的平均发生率:param dt: 时间间隔:param num_trials: 模拟次数:return: 事件在时间间隔内发生的次数"""count = 0for _ in range(num_trials):# 随机生成一个 0 到 dt 之间的时间间隔t = random.uniform(0, dt)# 计算在时间间隔内事件发生的次数k = int(lambda_value * t)# 计算泊松分布的概率poisson_prob = math.exp(-lambda_value * t) * (lambda_value * t) ** k / k# 根据泊松分布概率随机生成事件发生的次数count += random.choice([0, 1, 2, 3, 4],p=poisson_prob)return count# 示例lambda_value = 1 # 事件的平均发生率为 1dt = 1 # 时间间隔为 1um_trials = 1000 # 模拟次数为 1000# 模拟事件在时间间隔内发生的次数counts = [poisson_fusion(lambda_value, dt, num_trials) for _in range(num_trials)]# 计算平均值和方差mean = sum(counts) / num_trialsvariance = sum((count - mean) ** 2 for count in counts) / num_trialsprint("平均值:", mean)print("方差:", variance)```3.泊松融合原理的应用泊松融合原理在实际应用中有很多场景,例如统计学、保险、生物学等领域。

数据结构普里姆算法

数据结构普里姆算法

数据结构普里姆算法普里姆算法(Prim's algorithm)是一种贪心算法,用于在加权无向图中找到最小生成树。

该算法在每一步选择当前生成树到最远未连接点的最小边,直到所有的点都被连接起来。

以下是普里姆算法的基本步骤:1.随机选择图中的一点作为起始点,将其加入生成树集合中。

2.在所有连接已选择点和未选择点的边中,选择权重最小的边。

将这条边以及其对应的未选择点加入到生成树集合中。

3.重复步骤2,直到所有的点都被加入到生成树集合中。

下面是使用Python实现的普里姆算法示例:```pythonimport heapqdef prim(graph,start):mst={}#最小生成树的键值对,键为节点,值为该节点所在的最小权重边visited=set([start])#已访问的节点集合edges=[#用于存储最小权重边的优先队列,键为权重,值为边的信息(weight,start,to)for to,weight in graph[start].items()]heapq.heapify(edges)while edges:weight,frm,to=heapq.heappop(edges)if to not in visited:visited.add(to)mst[to]=(frm,weight)#将边加入最小生成树中for to_next,weight2in graph[to].items():if to_next not in visited:heapq.heappush(edges, (weight2,to,to_next))#将相邻未访问节点加入优先队列中return mst```其中,`graph`是一个字典,表示无向图的邻接表形式。

字典的键表示节点,值是另一个字典,表示与该节点相邻的节点及其对应的权重。

`start`是算法的起始点。

函数返回一个字典,表示最小生成树,其中键是节点,值是该节点所在的最小权重边。

吉莱斯皮随机模拟算法python

吉莱斯皮随机模拟算法python

吉莱斯皮随机模拟算法python(原创实用版)目录1.吉莱斯皮随机模拟算法概述2.Python 在吉莱斯皮随机模拟算法中的应用3.吉莱斯皮随机模拟算法的具体实现4.Python 代码示例及算法效果展示正文1.吉莱斯皮随机模拟算法概述吉莱斯皮随机模拟算法(Gillespie Algorithm)是一种在计算机上模拟生物种群遗传漂变过程的随机算法,由美国遗传学家约翰·霍华德·吉莱斯皮(John Howard Gillespie)于 1976 年提出。

该算法主要应用于生物信息学领域,可以帮助研究者更好地理解基因频率在种群中的变化规律。

2.Python 在吉莱斯皮随机模拟算法中的应用Python 作为一种广泛应用于生物信息学的编程语言,拥有丰富的库和函数,可以方便地实现吉莱斯皮随机模拟算法。

Python 的优势在于其简洁的语法和强大的功能,使得研究者能够更高效地完成模拟过程。

3.吉莱斯皮随机模拟算法的具体实现在 Python 中实现吉莱斯皮随机模拟算法的具体步骤如下:(1)导入所需库:如 numpy、random 等;(2)定义种群的初始基因型频率;(3)对基因型进行随机抽样,并计算抽样后的基因型频率;(4)根据新的基因型频率,计算下一代的基因型频率;(5)重复步骤(3)和(4),进行足够多的迭代,以达到稳定状态。

4.Python 代码示例及算法效果展示以下是一个简单的 Python 代码示例,实现了吉莱斯皮随机模拟算法的基本过程:```pythonimport numpy as npimport randomdef gillespie_algorithm(N, p, q, initial_frequencies):# 初始化种群基因型频率frequencies = np.array(initial_frequencies)frequencies_new = frequencies.copy()# 迭代次数iteration = 0while not np.all(np.abs(frequencies_new - frequencies) < 1e-6):# 随机抽样sampled_genotypes = random.sample(range(1, N+1), N) # 计算抽样后的基因型频率frequencies_new =np.dot(sampled_genotypes.reshape(-1, 2), frequencies) # 更新基因型频率frequencies = frequencies_new# 迭代次数增加iteration += 1return frequencies# 示例:模拟一个具有两个等频基因 A 和 a 的种群,初始基因型频率为 [0.5, 0.5]= 1000p = 0.5q = 0.5initial_frequencies = [p, q]frequencies = gillespie_algorithm(N, p, q,initial_frequencies)print("最终基因型频率:", frequencies)```运行上述代码后,可以得到种群在经过足够多次迭代后达到的稳定基因型频率。

随机森林剪枝算法技巧

随机森林剪枝算法技巧

随机森林剪枝算法技巧
随机森林剪枝算法是一种优化技术,用于调整随机森林模型,以提高其预测性能。

以下是一些常用的随机森林剪枝算法技巧:
1. 预剪枝(Pre-pruning):在构建决策树的过程中,预剪枝算法会提前停止树的生长。

这可以通过一些早停准则来实现,例如树的深度、节点中的样本数、误差增加的次数等。

预剪枝可以防止过拟合,提高模型的泛化能力。

2. 后剪枝(Post-pruning):后剪枝算法是在决策树构建完成后进行剪枝。

它会删除一些分支,以减少模型的复杂度,提高泛化能力。

后剪枝算法包括子树替换、子树收缩等。

3. 代价复杂性剪枝(Cost Complexity Pruning):代价复杂性剪枝是一种后剪枝算法,它通过计算树的误差率来决定是否剪枝。

如果剪去某个分支后,树的误差率会降低,那么就保留这个分支。

代价复杂性剪枝可以找到一棵近似最优的决策树。

4. 优化剪枝参数:剪枝算法的效果很大程度上取决于参数的设置。

例如,在预剪枝中,如何选择合适的早停准则;在后剪枝中,如何选择误差率降低的阈值等。

需要通过交叉验证等方法来选择最优的参数。

5. 集成学习:通过将多棵决策树集成在一起,可以提高模型的预测精度和稳定性。

常见的集成学习方法包括Bagging和Boosting。

集成学习可以进一步增强剪枝算法的效果。

以上是一些常见的随机森林剪枝算法技巧,这些技巧可以帮助你优化随机森林模型,提高模型的预测性能。

pandas中merge函数用法

pandas中merge函数用法

pandas中merge函数用法pandas中的merge函数用于将两个数据集合并在一起,类似于关系数据库中的join操作。

merge函数有多个参数,其中最常用的参数包括:- left:左侧数据集,通常是一个DataFrame对象。

- right:右侧数据集,通常是一个DataFrame对象。

- how:合并方式,默认为‘inner’。

可选的合并方式包括‘inner’(内连接)、‘outer’(外连接)、‘left’(左连接)和‘right’(右连接)。

- on:合并的键,可以是一个列名或列名的列表。

如果左右数据集中的列名不同,则可以使用left_on和right_on参数指定左右两个数据集的键。

- suffixes:用于处理重复列名的后缀,默认为('_x', '_y')。

拓展:除了上述常用的参数,merge函数还有一些其他的参数可供使用,例如:- left_index和right_index:如果为True,则使用左或右数据集的索引作为合并的键。

- sort:如果为True,则按照合并键对结果进行排序,默认为False。

- validate:检查合并对象的类型,可以选择‘one_to_one’(一对一)、‘one_to_many’(一对多)、‘many_to_one’(多对一)或‘many_to_many’(多对多)。

- indicator:如果为True,则表示在结果中添加一个列用于指示每个行来自于哪个输入DataFrame。

总结起来,merge函数可以根据指定的合并键将两个数据集合并在一起,并根据指定的合并方式进行连接操作。

在合并过程中,可以根据需要使用不同的参数设置来处理重复列名、重复索引等情况。

em算法例题

em算法例题

em算法例题
以下是一个关于EM算法的例题:
假设我们有一个包含两个混合分布的数据集,每个分布都是高斯分布。

我们的目标是通过EM算法来对数据进行聚类。

1. 初始化模型参数:我们首先需要初始化两个分布的均值和方差。

假设我们初始的均值分别为μ1 = 0和μ2 = 3,方差分别为σ1 = 1和σ2 = 2。

2. Expectation Step(E步):根据当前的模型参数,计算每个样本属于每个分布的概率。

使用高斯分布的概率密度函数来计算概率。

3. Maximization Step(M步):根据E步的结果,更新模型参数。

计算每个分布的新的均值和方差。

将每个样本的概率作为权重,对样本进行加权平均得到新的均值。

4. 重复步骤2和3,直到模型参数收敛或达到最大迭代次数。

5. 聚类结果:根据最终的模型参数,将每个样本分配到概率较大的那个分布中。

可以根据均值的大小来确定聚类结果。

这个例题展示了如何使用EM算法对混合分布进行聚类。

EM 算法通过迭代地更新模型参数来最大化似然函数,从而找到最优的模型参数。

在每个迭代步骤中,E步计算每个样本属于每
个分布的概率,M步更新模型参数。

最终的聚类结果可以根据模型参数来确定。

随机森林构建方法英语作文

随机森林构建方法英语作文

随机森林构建方法英语作文英文回答:Random forests are an ensemble machine learningalgorithm that combines multiple decision trees to enhance the overall accuracy and stability of the model. They are constructed by iteratively selecting a random subset ofdata points and features to train individual decision trees. The predictions from these individual trees are then combined to provide a final prediction.The process of building a random forest involves the following steps:1. Bootstrap Sampling: A random subset of data pointsis selected with replacement from the original dataset.This process helps create diversity among the decision trees.2. Feature Subset Selection: A subset of features israndomly selected from the available set of features. This helps reduce overfitting and improve generalization.3. Tree Building: A decision tree is trained on the bootstrapped data using the selected features. The tree is constructed by recursively splitting the data into smaller and smaller subsets based on the best split criteria.4. Aggregation: Predictions from all the individual decision trees are combined to make a final prediction. For classification tasks, majority voting is typically used, while for regression tasks, the average prediction is employed.Random forests have several advantages over individual decision trees:Reduced Overfitting: By using multiple decision trees trained on different subsets of data, random forests reduce the likelihood of overfitting, which occurs when a model is too closely aligned with the training data.Improved Generalization: The diversity introduced by random sampling and feature selection enhances the generalization ability of random forests, making them less susceptible to noise and outliers in the data.Robustness: Random forests are relatively robust to hyperparameter tuning and can often provide good results with default settings.中文回答:随机森林构建方法。

SIMPLE算法介绍

SIMPLE算法介绍

SIMPLE算法介绍简单算法指的是解决问题的一种基础算法,它通常具有简单直观、易于理解和实现的特点。

本文将介绍几个常见的简单算法,包括递归算法、排序算法、算法和贪心算法。

一、递归算法递归算法是指一个函数调用自身的过程。

它将一个大型的问题拆分为一个或多个与原问题类似但规模较小的子问题,并通过递归调用解决这些子问题,最后组合子问题的结果来解决原问题。

递归算法通常有两个部分:基线条件和递归条件。

基线条件指的是递归停止的条件,递归条件指的是问题拆分为子问题的条件。

例如,计算阶乘的算法可以使用递归实现:```pythondef factorial(n):if n == 1:return 1else:return n * factorial(n-1)```递归算法可以解决一些复杂的问题,但是由于递归调用本身的开销较大,可能会导致性能问题和栈溢出等问题。

二、排序算法排序算法的目标是将一组数据按照一些规则进行排序。

常见的排序算法有冒泡排序、插入排序、选择排序、快速排序、归并排序等。

冒泡排序的思想是依次比较相邻的元素,如果顺序不对则交换它们的位置,直到全部元素都按照规则排序。

插入排序的思想是将每个元素插入到已经排好序的子序列中的适当位置。

选择排序的思想是每次选择最小的元素放到已经排好序的子序列的末尾。

快速排序的思想是选取一个基准值,将小于基准值的元素都放到基准值的左边,大于基准值的元素都放到基准值的右边,然后对左右两个子序列递归地进行快速排序。

归并排序的思想是将序列拆分成两个子序列,对两个子序列分别进行排序,然后将两个排好序的子序列合并成一个有序序列。

三、算法算法是指在给定的数据集中查找一些特定元素或满足其中一种条件的元素。

常见的算法有顺序、二分、深度优先和广度优先等。

顺序是逐个比较数据集中的元素,直到找到目标元素或遍历完整个数据集。

二分是在已经排好序的数据集中逐步缩小范围。

首先将数据集分成两半,然后判断目标元素在哪一半中,再递归地对目标半部分进行二分。

随机森林模型 区分训练集和验证集

随机森林模型 区分训练集和验证集

随机森林模型区分训练集和验证集下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, suchas educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!随机森林模型:区分训练集和验证集导言在机器学习领域中,随机森林模型是一种强大而灵活的算法,常被用于分类和回归问题。

使用随机森林完成多分类任务

使用随机森林完成多分类任务

使用随机森林完成多分类任务随机森林(Random Forest)是一种常用的机器学习算法,广泛应用于分类和回归问题。

在本文中,我们将探讨如何使用随机森林算法来完成多分类任务,并介绍该算法的基本原理和实施步骤。

一、随机森林简介随机森林是一种集成学习(Ensemble Learning)方法,通过构建多个决策树进行投票或取平均值来做出最终预测。

每个决策树都是独立生成的,且彼此之间无关联,因此可以并行生成和预测。

随机森林具有以下特点:1. 通过随机抽样(有放回)生成多个训练集,用于生成不同的决策树,提高模型的多样性;2. 对每个决策树的节点划分时,随机选取一部分特征进行评估,减少特征之间的相关性;3. 针对分类问题,通过投票集成决策树的预测结果。

二、随机森林的应用场景随机森林适用于各种分类问题,特别是多分类任务。

它在医疗诊断、金融风控、电商推荐等领域有广泛应用。

下面我们将介绍如何使用随机森林算法来完成多分类任务。

三、使用随机森林进行多分类任务的步骤1. 数据准备在进行多分类任务之前,我们需要准备好带有标签的训练数据集。

确保数据集中的样本标签具有明确的分类信息,并且特征和标签之间的关系合理。

2. 特征选择与提取对于多分类问题,通常使用特征选择和提取的方法对特征进行降维和筛选。

可以使用相关性分析、信息增益等方法来选择有效的特征。

3. 数据集划分将数据集划分为训练集和测试集。

通常,训练集占总样本的70%~80%,测试集占剩余的20%~30%。

4. 随机森林模型构建采用多个决策树组成的随机森林进行模型构建。

对于每个决策树,在生成过程中随机抽取部分特征进行划分,并设定每个决策树的最大深度。

基于训练集数据进行拟合和训练。

5. 模型评估与调优使用测试集对构建的随机森林模型进行评估,并根据评估结果对模型进行调优。

常用的评估指标包括准确率、精确率、召回率及F1得分。

6. 预测与应用使用调优后的随机森林模型对新数据进行预测,并将预测结果应用于实际业务场景。

随机森林 规则提取 python

随机森林 规则提取 python

随机森林规则提取 python随机森林是一种常用的机器学习算法,它在解决分类和回归问题时表现出色。

本文将重点介绍随机森林在Python中的应用,包括规则提取等方面。

随机森林是由多个决策树构成的集成学习模型。

每个决策树都是通过对训练数据进行随机选择和特征随机采样来构建的。

在分类问题中,随机森林通过投票的方式决定最终的类别;在回归问题中,随机森林通过平均预测结果来得到最终的输出。

在Python中,我们可以使用scikit-learn库来实现随机森林算法。

首先,我们需要导入相应的库和数据集。

下面是一个示例:```from sklearn.ensemble import RandomForestClassifierfrom sklearn.datasets import load_irisfrom sklearn.model_selection import train_test_split# 导入数据集iris = load_iris()X, y = iris.data, iris.target# 划分训练集和测试集X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=0.2, random_state=42)```接下来,我们可以创建一个随机森林分类器,并对训练集进行训练:```# 创建随机森林分类器clf = RandomForestClassifier(n_estimators=100, random_state=42)# 训练模型clf.fit(X_train, y_train)```随机森林中的每个决策树都可以提供一些规则信息,我们可以使用`clf.estimators_`属性来访问每个决策树。

下面是一个示例:```# 获取随机森林中的决策树trees = clf.estimators_# 提取规则rules = []for tree in trees:rule = get_rules(tree)rules.append(rule)```在上面的代码中,我们使用了一个名为`get_rules`的函数来从每个决策树中提取规则。

《2024年随机森林算法优化研究》范文

《2024年随机森林算法优化研究》范文

《随机森林算法优化研究》篇一一、引言随机森林(Random Forest)是一种以决策树为基础的集成学习算法,由于其优秀的性能和稳健的表现,被广泛应用于机器学习和数据挖掘领域。

然而,随机森林算法在处理复杂问题时仍存在过拟合、效率低下等问题。

本文旨在研究随机森林算法的优化方法,提高其准确性和效率。

二、随机森林算法概述随机森林算法通过构建多个决策树来对数据进行训练和预测,每个决策树都使用随机选择的一部分特征进行训练。

最终,随机森林对各个决策树的预测结果进行集成,以得到更为准确的预测结果。

随机森林算法具有抗过拟合能力强、训练效率高、易实现等优点。

三、随机森林算法存在的问题虽然随机森林算法在很多领域取得了显著的效果,但仍然存在一些问题:1. 过拟合问题:当数据集较大或特征维度较高时,随机森林算法容易产生过拟合现象。

2. 计算效率问题:随着数据集规模的扩大,随机森林算法的计算效率会逐渐降低。

3. 特征选择问题:在构建决策树时,如何选择合适的特征是一个关键问题。

四、随机森林算法优化方法针对上述问题,本文提出以下优化方法:1. 引入集成学习技术:通过集成多个随机森林模型,可以有效提高模型的泛化能力和抗过拟合能力。

例如,可以使用Bagging、Boosting等集成学习技术来构建多个随机森林模型,并对它们的预测结果进行集成。

2. 优化决策树构建过程:在构建决策树时,可以采用特征选择方法、剪枝技术等来提高决策树的准确性和泛化能力。

此外,还可以通过调整决策树的深度、叶子节点数量等参数来优化模型性能。

3. 特征重要性评估与选择:在构建随机森林时,可以利用特征重要性评估方法来识别对模型预测结果贡献较大的特征。

然后,根据实际需求和业务背景,选择合适的特征进行建模。

这样可以减少噪声特征对模型的影响,提高模型的准确性和效率。

4. 优化模型参数:针对不同的问题和数据集,可以通过交叉验证等方法来调整随机森林算法的参数,如决策树的数量、每个决策树所使用的特征数量等。

分层生长曲线模型stata

分层生长曲线模型stata

分层生长曲线模型stata
分层生长曲线模型(HLM)是一种统计模型,常用于分析个体在
时间上的变化,特别是在教育、心理学和医学研究中。

这种模型允
许我们考虑数据的层次结构,比如个体观测数据嵌套在群体数据中。

在Stata中,我们可以使用mixed命令来拟合分层生长曲线模型。

首先,我们需要准备数据,确保数据集中包含了个体的多次观
测数据以及个体所属的群体信息。

接下来,我们可以使用Stata中
的mixed命令来拟合分层生长曲线模型。

该命令的语法通常为:
mixed outcome_var time_var || group_var: time_var, covstruct(covariance_structure)。

在这个命令中,我们需要指定因变量(outcome_var)和时间变
量(time_var),并用两个竖线(||)将时间变量和群体变量(group_var)分隔开来。

在后面的部分,我们可以指定时间变量与
群体变量的交互项,以及指定协变量结构
(covariance_structure)。

在拟合了模型之后,我们可以使用Stata的命令来检验模型的
拟合程度、参数估计的显著性以及模型的预测能力等。

同时,我们也可以进行模型诊断,比如检验模型的假设是否成立,以及检验模型的残差是否符合正态分布等。

总之,在Stata中,我们可以使用mixed命令来拟合分层生长曲线模型,并通过一系列的统计检验和诊断来评估模型的质量和适用性。

希望这个回答能够帮助你更好地理解在Stata中如何进行分层生长曲线模型的分析。

Python中的时间序列分析与机器学习模型组合

Python中的时间序列分析与机器学习模型组合

Python中的时间序列分析与机器学习模型组合在Python中,时间序列分析和机器学习模型是两个常用的概念。

时间序列分析是对于一系列按时间顺序排列的数据进行分析和预测的方法,而机器学习模型则是利用计算机算法从数据中学习并做出预测的工具。

在实践中,将时间序列分析和机器学习模型相结合可以帮助我们更好地理解和预测时间序列数据。

首先,让我们了解一下时间序列分析的基本概念和方法。

时间序列数据是按时间顺序排列的数据序列,例如股票价格、气温变化等。

时间序列分析通过对历史数据的统计分析和模式识别来预测未来数据的走势。

常见的时间序列分析方法包括移动平均法、指数平滑法和ARIMA模型等。

移动平均法是一种简单且常用的时间序列预测方法。

它通过计算一定时间内数据的平均值来预测未来数据的趋势。

指数平滑法是一种根据历史数据赋予不同权重的方法,最近的数据权重较大,越远的数据权重越小。

ARIMA模型是一种结合自回归、滑动平均和差分操作的统计模型,可以对时间序列数据进行预测和建模。

接下来,让我们探讨一下机器学习模型在时间序列分析中的应用。

机器学习模型通常能够更好地捕捉时间序列数据中的复杂模式和非线性关系。

例如,支持向量机(SVM)模型可以通过学习数据中的支持向量来构建模型,并用来预测未来数据。

同样,随机森林(Random Forest)模型通过集成多个决策树来提高预测准确度。

在将时间序列分析和机器学习模型相结合时,我们可以使用传统的时间序列方法来进行数据的初步分析和预测,然后使用机器学习模型对预测结果进行改进和优化。

例如,我们可以首先使用ARIMA模型对时间序列数据进行建模和预测,然后使用机器学习模型(例如SVM或随机森林)对ARIMA模型的预测结果进行进一步的预测和优化。

此外,我们还可以使用机器学习模型来提取时间序列数据中的特征,并将其用于建立更准确的模型。

例如,我们可以使用卷积神经网络(CNN)来提取图像数据中的时间序列特征,然后使用这些特征进行分类或预测。

uplift 模型的使用流程

uplift 模型的使用流程

uplift 模型的使用流程
使用Uplift模型的流程主要包括以下几个步骤:
1. 数据准备:收集需要训练和预测的数据集。

该数据集应包含用户特征、干扰特征和转化标签。

2. 特征工程:对原始数据进行处理,包括缺失值填充、特征编码或转化等。

同时,为了提高模型的预测能力,可以通过特征选择、特征交互或特征变换等方法提取更有意义的特征。

3. 数据划分:将数据集划分为训练集和测试集。

通常使用一定比例的数据作为训练集,剩下的作为测试集。

4. 训练模型:选择合适的Uplift模型进行训练。

常见的Uplift 模型包括T-learner、X-learner、S-learner等。

在训练过程中,需要使用训练集来拟合模型参数。

5. 评估模型:使用测试集评估模型的性能。

常用的评估指标包括Uplift score、Uplift AUC等。

6. 调参优化:对训练得到的模型进行调参优化,以提高模型的性能和稳定性。

可以使用网格搜索、随机搜索等方法来确定最佳的超参数组合。

7. 模型应用:使用训练得到的最优模型对新样本进行预测。

根据预测结果计算出每个样本的Uplift值,根据Uplift值对样本进行排序或划分。

8. 业务决策:根据Uplift值的排序或划分结果,制定相应的业务策略。

比如,将Uplift值最高的一部分样本作为目标用户,针对这部分用户进行个性化推荐、优惠活动或广告投放等。

simple算法适用条件

simple算法适用条件

simple算法适用条件Simple算法适用条件简洁的算法(Simple Algorithm)是一种简单、直观、易于理解和实现的计算机算法。

它在一些特定的应用场景中具有一定的适用条件。

本文将从不同的角度探讨Simple算法的适用条件。

一、输入规模小Simple算法适用于输入规模较小的问题。

由于Simple算法的实现简单,通常不需要复杂的数据结构和算法,因此对于规模较小的问题,Simple算法能够快速得出解决方案。

例如,对于一个包含少量元素的数组进行排序,可以使用简单的冒泡排序算法,而不必使用更复杂的快速排序或归并排序。

二、问题的复杂性低Simple算法适用于问题的复杂性低的情况。

复杂性低意味着问题本身的结构简单,不涉及复杂的逻辑和计算。

在这种情况下,Simple 算法能够直接、简单地解决问题,而无需引入复杂的算法和数据结构。

例如,计算两个整数的和、差、积和商的问题,可以使用简单的加法、减法、乘法和除法运算符来解决。

三、数据分布均匀Simple算法适用于数据分布均匀的情况。

数据分布均匀意味着数据的取值范围较小,且各个取值的出现频率相似。

在这种情况下,Simple算法能够快速地找到问题的解决方案。

例如,计算数组中元素的平均值,如果数组中的元素取值分布均匀,可以直接将所有元素相加再除以元素个数来得到平均值。

四、问题具有局部性Simple算法适用于问题具有局部性的情况。

局部性指的是问题的解决只需要考虑一部分数据,而不需要考虑所有数据。

在这种情况下,Simple算法可以通过直接访问和处理局部数据来解决问题,而无需对整个数据集进行操作。

例如,查找数组中最小值的问题,只需要遍历数组一次,记录当前最小值即可,无需对整个数组进行排序或比较。

五、问题具有单一目标Simple算法适用于问题具有单一目标的情况。

单一目标意味着问题的解决只需要考虑一个优化目标,而不需要考虑多个目标的权衡。

在这种情况下,Simple算法可以通过直接追求单一目标来解决问题,而无需考虑复杂的权衡和调整。

格雷厄姆算法流程

格雷厄姆算法流程

格雷厄姆算法流程格雷厄姆算法是一种用于解决图论中最短路径问题的算法。

它的核心思想是通过不断更新每个节点的最短路径估计值,从而找到从起点到终点的最短路径。

以下是格雷厄姆算法的详细流程:1. 首先,我们需要定义一个图,包含一组节点和边。

每个节点代表一个地点,每条边代表两个地点之间的路径。

这个图应该是有向图,并且边上应该有权重,表示从一个节点到另一个节点的距离。

2. 接下来,我们需要初始化算法的数据结构。

我们创建一个数组D,用于存储每个节点的最短路径估计值。

初始状态下,除了起点节点,其他节点的估计值都设为无穷大。

3. 然后,我们选择起点节点,并将其最短路径估计值设为0。

同时,我们将起点节点放入一个优先队列Q中,以便按照最短路径估计值的大小进行排序。

4. 进入循环,直到优先队列Q为空。

在每次循环中,我们从Q中取出最短路径估计值最小的节点u。

5. 遍历节点u的所有邻居节点v。

对于每个邻居节点v,我们计算经过节点u到达节点v的路径的长度。

如果该长度小于节点v的最短路径估计值,我们更新节点v的最短路径估计值,并将其加入优先队列Q中。

6. 重复步骤4和5,直到优先队列Q为空。

此时,所有的节点的最短路径估计值应该已经确定。

7. 最后,我们可以通过查看数组D的值来获取从起点到其他节点的最短路径长度。

格雷厄姆算法的时间复杂度为O((V + E) log V),其中V表示节点的数量,E表示边的数量。

该算法在解决最短路径问题方面非常高效,并且在实际应用中得到了广泛的应用。

总结起来,格雷厄姆算法是一种用于解决最短路径问题的有效算法。

通过不断更新节点的最短路径估计值,该算法可以找到从起点到终点的最短路径。

它的核心思想简单明了,易于理解和实现。

在实际应用中,格雷厄姆算法具有广泛的适用性,并且在时间复杂度上表现出色。

通过了解和掌握这个算法,我们可以更好地解决各种图论问题,为实际应用提供有效的解决方案。

sas考试内容

sas考试内容

选择题:SAS语言中,用于创建新数据集的关键字是:A. DATA(正确答案)B. SETC. PROCD. LIBRARY在SAS程序中,用于读取外部数据文件的关键字是:A. INPUTB. INFILE(正确答案)C. FILED. READSAS中,用于计算变量总和的函数是:A. SUM(正确答案)B. AVGC. TOTALD. ADD下列哪个语句用于在SAS中创建直方图?A. PROC PRINT;B. PROC UNIVARIATE; HISTOGRAM; (正确答案)C. PROC FREQ;D. PROC MEANS;在SAS中,用于对数据集进行排序的过程步骤是:A. PROC SORT; (正确答案)B. PROC RANK;C. PROC ORDER;D. PROC ARRANGE;SAS语言中,用于合并两个数据集的关键字是:A. MERGE(正确答案)B. COMBINEC. JOIND. CONCATENATE下列哪个选项不是SAS中的循环语句?A. %DO %END;(正确答案)B. DO UNTIL; END;C. DO WHILE; END;D. DO OVER; END;在SAS中,用于计算描述性统计量的过程步骤是:A. PROC UNIVARIATE;B. PROC MEANS;(正确答案)C. PROC FREQ;D. PROC SORT;SAS程序中,用于声明局部宏变量的关键字是:A. %LET;(正确答案)B. %GLOBALC. %LOCALD. %VAR。

盘点一下数据平滑算法

盘点一下数据平滑算法

盘点⼀下数据平滑算法 在⾃然语⾔处理中,经常要计算单词序列(句⼦)出现的概率估计。

我们知道,在训练时,语料库不可能包含所有可能出现的序列。

 因此,为了防⽌对训练样本中未出现的新序列概率估计值为零,⼈们发明了好多改善估计新序列出现概率的算法,即数据平滑算法。

Laplace 法则(Add-one) 最简单的算法是Laplace法则,思路很简单,统计数据集中的元素在训练数据集中出现的次数时,计数器的初始值不要设成零,⽽是设成1。

这样,即使该元素没有在训练集中出现,其出现次数统计值⾄少也是1。

因此,其出现的概率估计值就不会是零了。

假设测试集 V 中某个元素在训练集 T 中出现 r 次,经过Laplace法则调整后的统计次数为: r∗=r+1 当然这样做,纯粹是为了不出现零概率,并没有解决对未见过的实例进⾏有效预测的问题。

因此,Laplace法则仅仅是⼀种⾮常初级的技术,有点太⼩⼉科了。

Add-delta 平滑 Lidstone ’ s 不是加 1, ⽽是加⼀个⼩于 1 的正数,通常 = 0.5 ,此时⼜称为 Jeffreys-Perks Law 或 ELE 效果⽐ Add-one 好,但是仍然不理想。

Good-Turing 估计 Laplace⽅法⼀个很明显的问题是 ∑r∗≠∑r。

Good-Turning ⽅法认为这是⼀个重⼤缺陷,需要给予改进。

其实我觉得这真不算重要,只要能合理估计未见过的新实例的概率,总的统计次数发⽣变化⼜怎样呢? Good-Turing 修正后的计算公式还真的很巧妙,它在Laplace法则后⾯乘了⼀个修正系数,就可以保证总次数不变。

这个拿出来炫⼀炫还是没问题的: 其中,表⽰测试集 V 中,⼀共有个元素在训练集 T 中出现过次。

虽然我觉得这个⽅法没啥⽤,但是它的确保证了测试集中元素在训练集中出现的总次数不变。

即: Good-Turing 估计适合单词量⼤并具有⼤量的观察数据的情况下使⽤,在观察数据不⾜的情况下,本⾝出现次数就是不可靠的,利⽤它来估计出现次数就更不可靠了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CS–1996–15Simple Randomized Mergesort on Parallel Disks1 Rakesh Barve Edward F.Grove Jeffrey Scott VitterDepartment of Computer ScienceDuke University Durham,North Carolina27708–0129October1996Simple Randomized Mergesorton Parallel Disks1Rakesh D.Barve2Edward F.Grove3Jeffrey Scott Vitter4 Dept.of Computer Science Dept.of Computer Science Dept.of Computer Science Duke University Duke University Duke University Durham,NC27708–0129Durham,NC27708–0129Durham,NC27708–0129 rbarve@ efg@ jsv@ 1An earlier version of the paper appeared in[BGV96].2Support was provided in part by an IBM Graduate Fellowship.3Support was provided in part by the U.S.Army Research Office under grant DAAH04–93–G–0076while the author was at Duke University.4Support was provided in part by the National Science Foundation under grant CCR–9522047and by the U.S.Army Research Office under grant DAAH04–96–1–0013.AbstractWe consider the problem of sorting afile of N records on the D-disk model of parallel I/O in which there are two sources of parallelism.Records are transferred to and from disk concurrently in blocks of B contiguous records.In each I/O operation,up to one block can be transferred to or from each of the D disks in parallel.We propose a simple,efficient, randomized mergesort algorithm called SRM that uses a forecast-and-flush approach to over-come the inherent difficulties of simple merging on parallel disks.SRM exhibits a limited use of randomization and also has a useful deterministic version.Generalizing the technique of forecasting,our algorithm is able to read in,at any time,the“right”block from any disk, and using the technique offlushing,our algorithm evicts,without any I/O overhead,just the “right”blocks from memory to make space for new ones to be read in.The disk layout of SRM is such that it enjoys perfect write parallelism,avoiding fundamental inefficiencies of previous mergesort algorithms.By analysis of generalized maximum occupancy problems we are able to derive an analytical upper bound on SRM’s expected overhead valid for arbitrary inputs.The upper bound derived on expected I/O performance of SRM indicates that SRM is provably better than disk-striped mergesort(DSM)for realistic parameter values D,M, and B.Average-case simulations show further improvement on the analytical upper bound. Unlike previously proposed optimal sorting algorithms,SRM outperforms DSM even when the number D of parallel disks is small.Key Words:I/O,External Memory,Disk,Parallel Disks,Sorting,Mergesort,Merging, Forecasting,Maximum Occupancy,Disk Striping.1 1IntroductionThe classical problem of sorting and related processing is reported to consume roughly20 percent of computing resources in large-scale installations[Knu73,LV85].In the light of the rapidly increasing gap between processor speeds and disk memory access times,popularly referred to as the I/O bottleneck,the specific problem of external memory sorting assumes particular importance.In external sorting,the records to be sorted are simply too many tofit in internal memory and so have to be stored on disk,thus necessitating I/O as a fundamental,frequently used operation during sorting.One way to alleviate the effects of the I/O bottleneck is to use parallel disk systems [HGK+94,PGK88,Uni89,GS84,Mag87].Aggarwal and Vitter[AV88],generalizing initial work done by Floyd[Flo72]and Hong and Kung[HK81],laid the foundation for I/O algo-rithms by studying the I/O complexity of sorting and related problems.The model they studied[AV88]considers an internal memory of size M and I/O reads or writes that each result in a transfer of D blocks,where each block is comprised of B contiguous records,from or to disks.Subsequently,Vitter and Shriver[VS94]considered a realistic D-disk two-level memory model in which secondary memory is partitioned into D physically distinct and independent disk drives or read-write heads that can simultaneously transmit a block of data,with the requirement that M≥2DB.In the D-disk two-level memory hierarchy[VS94],there are two sources of parallelism. First,as in traditional I/O systems,records are transferred concurrently in blocks of B con-tiguous records.Secondly,in a single I/O operation,each of the D disks can simultaneously transfer one(but only one)block of B records,so that each I/O operation can potentially transfer DB records in parallel.To be more precise,D is the number of blocks that can be transmitted in parallel at the speed at which data comes offor goes onto the magnetic disk media.The parameter D may thus be smaller than the actual number of disks if the channel bandwidth from the disks is not sufficient for each disk to transmit or receive a block simultaneously.It then might be useful to consider two disk parameters D and D′,where D is the channel bandwidth in terms of the number of blocks coming offor going onto disk that can be transferred simultaneously,and D′is the number of disks sharing the bandwidth.As long as at least D of the D′disks have a block to transmit,the I/O channel can remain busy.Hybrid models with multiple channels and several disks per channel are also possible.In this paper we adopt the simpler and more restrictive model in which D=D′and develop algorithms that are near-optimal even for this more restrictive model.A more detailed discussion of disk models and characteristics appears in[RW94].The problem of external sorting in the D-disk model has been extensively studied.Algorithms have been developed that use an asymptotically optimalΘ(Nlog(M/B))numberof I/O operations1,as well as doing an optimal amount of work in internal memory.The previously developed sorting algorithms for the D-disk model have larger than desired constant factors,and some are complicated to implement.As a result,the simple technique of mergesort with disk striping(DSM),which can be asymptotically sub-optimal in terms of number of I/Os by a multiplicative factor of ln(M/B),is commonly used in practice for2 2.MAIN RESULTS external sorting on parallel disks[NV90,NV93].In DSM,the disks are coordinated so that in each parallel read and write,the locations of the blocks accessed on each disk are the same, which has the logical effect of sorting with D′=1disk and block size B′=DB.In each merge pass,R=Θ(M/DB)runs are merged together at a time,except possibly in the last pass.The number of passes required is thus ln(N/M)/ln(M/DB),with an additional passfor initial run formation.The resulting I/O complexity of DSM isΘ(Nlog(M/DB))).The advantage of DSM is its simplicity,which results in very small constant factors,thus making it attractive for efficient implementation on existing parallel disk systems.But the disadvantage of DSM is that it becomes inefficient as the number of disks gets larger.Thus,on the one hand we have external sorting algorithms that are optimal(up to a constant factor)but are not efficient in practice unless the number of disks is very large, and on the other hand we have a simple disk striping technique that works well with a small number of disks.In this paper,we propose a Simple Randomized Mergesort(SRM)that is practical and provably efficient for a wide range of values of D.We show that SRM is asymptotically optimal within very small constant factors when M=Ω(DB log D),which is generally satisfied in practice.Moreover,even for ranges of D,M,and B when SRM is sub-optimal, it still remains efficient and faster than DSM,as borne out by our theoretical analysis and empirical simulations.In the next section we describe SRM and some previous approaches to external merge-sort,and we list our main theoretical result Theorem1,which gives an analytical upper bound on SRM’s expected number of I/Os in the worst case.Sections3–8focus on SRM and its analysis.Section3discusses the basic idea of SRM and the way that records are distributed on the disks,which is important to attain efficient read and write parallelism. Section4discusses the forecasting data structure needed for parallel reads.Section5de-scribes the merge process in detail.We analyze the merge process in Sections6,7,and7.1 and prove Theorem1.In Section8,we briefly discuss the potential benefits of a determin-istic version of our algorithm.In Sections9and10,we demonstrate the practical merit of SRM by comparison with DSM.We base our comparisons on both our analytical worst-case expected bounds as well as the more optimistic empirical simulations of average-case performance,for a wide variety of values for the parameters M,D,and B.2Main Results2.1BackgroundThefirst step in mergesorting afile of N records is to sort the records internally,one half memoryload at a time so as to overlap computation with I/O,to get2N/M sorted runs each of length M/2.Techniques like replacement selection[Knu73]can produce roughly N/M runs each of length about M.Then,in a series of passes over thefile,R sorted runs of records are repeatedly merged together until thefile is sorted.At each step of the merge, the record with the smallest key value among the R leading records of the R runs being merged is appended to the output run.The merge order parameter R is preferably chosen as close to M/2B as possible so as to reduce the number of passes and still allow double buffering.In order to carry out a merge,the leading portions of all the runs need to be in main memory.As soon as any run’s leading portion in memory gets depleted by the merge process,an I/O read operation is required.Since a large number of runs(close to M/2B2.2Overview of SRM3 runs)are merged together at a time,the amount of memory available for buffering leading portions of runs is very small on average.It is of paramount importance that only those blocks that will be required in the near future with respect to the merge process are fetched into main memory by the parallel reads.However,this memory management is difficult to achieve since the order in which the data in various disk blocks will participate in the merge process is input dependent and unknown.Vitter and Shriver[VS94]give further intuition regarding the difficulty of mergesorting on parallel disks.In Greed Sort[NV90],the trick of “approximate merging”is used to circumvent this difficulty.Aggarwal and Plaxton[AP94] use the Sharesort technique that does repeated merging with accompanying overhead.Recently,Pai et al[PSV94]considered the average-case performance of a simple merging scheme for R=D sorted runs,one run on each disk.They use an approximate model of average-case inputs and require that the internal memory be sufficiently large.They also require that each run reside entirely on a single disk;in order to get full output bandwidth, the output run must be striped across disks.A mergesort based on their merge scheme thus requires an extra transposition pass between merge passes so that striped output runs of the previous merge pass can be realigned onto individual disks.2.2Overview of SRMWe present an efficient,practical,randomized algorithm for external sorting called Simple Randomized Mergesort(SRM).Our algorithm uses a generalization of the forecasting tech-nique[Knu73]in order to carry out parallel prefetching of appropriate disk blocks during merging.Randomization is used only while choosing,for each input run,the disk on which to place thefirst block of the run;the remaining blocks of that run are cyclically striped across the disks.The use of randomization is thus very restricted;the merging itself is deterministic.If the internal memory available is of size M,with block size B and with D parallel disks,SRM merges R runs together at a time in each merge pass,where R is the largest integer satisfying M/B≥2R+4D+RD/B.We note that M/B is the number of internal memory blocks available.Hence the merge order(the number of runs SRM merges together at a time)is determined by the amount of internal memory at its disposal.As a function of M,B,and D,the merge order R is given by(M/B−4D)/(2+D/B).In the the realistic case that D=O(B),SRM merges an optimal number(namely,R=Θ(M/B))of runs together at a time.For simplicity in the exposition,we assume that D=O(B).(We can use the partial striping technique of[VS94]to enforce the assumption if needed.) There are two aspects to our analysis of the algorithm—one theoretical and one practical. Thefirst(and main)part of our analysis is bounding the expected number of I/Os of SRM, where the expectation is with respect to the randomization internal to SRM and the bound on the expectation holds for any input.SRM uses an elegant internal memory management scheme to solve the fundamental prefetching difficulties of simple merging on parallel disks alluded to earlier in Section2.1.Below we briefly sketch this technique: At any time while merging together R runs,let us consider how SRM reads in the next R blocks on disk required by the merge process.Observing that the next R blocks on disk will not,in general,be uniformly distributed among the D disks,we denote as d∗the maximum number of blocks among these R blocks that reside on a single disk.The blocks of the R input runs are striped across the disks.In order to maximize parallelism,in each I/O read operation,SRM fetches into memory one block from each disk whenever there is space to accomodate D blocks in main memory.In any I/O read operation,the block that is read in from each disk is the one that contains the smallest key among all the input4 2.MAIN RESULTS blocks on that disk that are not yet in memory.This is achieved by using the forecasting technique.In the event that there is only enough free memory to read in F additional disk blocks,where F<D,SRMflushes out D−F previously read blocks from memory back to disk.Among the blocks already in memory,the D−F blocks chosen forflushing are precisely the D−F blocks that will participate in the merge farthest in the future.The internal memory buffer SRM that uses is just large enough to ensure that no block that is among the R blocks required next by the merge is everflushed out.Moreover,there is no actual I/O that accompanies theflushing operation;SRM merely pretends that those blocks had never been read into memory.The forecasting andflushing are enough to ensure that bringing precisely those R blocks that are next required by the merge from disk into memory will take no more than d∗I/O read operations.This memory management scheme enables us to obtain a handle on SRM’s performance. We are able to relate SRM’s performance to a combinatorial problem we call the dependent maximum occupancy problem,which is a generalization of the classical maximum occupancy problem[KSC78,VF90].Our main theorem below gives expressions for the I/O performance of SRM for three patterns of growth rate between the number M/B of blocks in internal memory and the number D of disks in the parallel disk system.The different sizes of internal memory considered correspond to certain values of the merge order R as defined by the formula R=(M/B−4D)/(2+D/B)given above.The general formulation in terms of occupancy statistics is given later.Theorem1Under the assumption that D=O(B),the merge order R=Θ(M/B)of SRMis optimal.SRM mergesort uses Nln R )I/O write operations2,which is optimal.The expected number Reads SRM of I/O read operations done by SRM can be bounded from above as follows:1.If R=kD for constant k,as R,D→∞,we haveReads SRM≤N DB ln(N/M)k ln ln D 1+ln ln ln D ln ln D+O (log log log D)2DB +cNln(rD ln D)+O(1)which is optimal within a constant factor,namely c.The magnitude of c depends on r.3.If R=rD ln D where r=Ω(1),we haveReads SRM≤N DB ln(N/M)2√r+log r D√DBln(N/M)2Strictly speaking,the expressions for the exact number of“passes”and hence the number of I/O oper-ations required to sort N records using a mergesort involves applying the ceiling(⌈⌉)function to certain logarithmic terms.Employing these exact expressions would mean dealing with a complicated dependence on N,without having any significant impact on our results for large N.Thus in this exposition we choose to overlook this issue and not apply the ceiling function,thus obtaining simplified expressions for I/O complexity.5 The mergesort algorithm by Pai et al[PSV94]uses significantly more I/Os and internal memory.In their scheme,the internal memory size needs to beΩ(D2B)to attain an efficient merging algorithm.The other aspect of our analysis deals with the practical merit of our SRM mergesort al-gorithm on existing parallel disk systems.In Sections9and10,we consider implementations of disk striping(DSM)and SRM mergesort algorithms for the interesting case R=kD,in which the number of blocks in internal memory scales linearly with the number of disks D being used.We demonstrate that SRM’s good I/O performance is not merely asymptotic, but extends to practical situations as well.Like DSM,SRM also overlaps I/O operations and internal computation,which is important in practice.3SRM Data LayoutOur primary goal in this paper is to take advantage of mergesort’s simplicity and potential for high efficiency in practice when used with parallel disk systems.We use striped input runs in our merging procedure so that the output runs of one merge pass written with full write parallelism can participate as input runs in the next pass without any reordering or transposition.In this scheme,if the0th block of a run r is on disk d r,then the i th block resides on disk(i+d r)mod D.Striping alone is not enough to ensure good performance. If many runs are being merged and the disk d r for each run r is chosen deterministically, the merging algorithm can have abysmal worst case performance.Throughout the entire duration of the merge,the R leading blocks of the R runs may always lie on the same disk, thus causing I/O throughput to be only a factor of1/D of optimal.A natural alternative that we pursue in this paper is to consider a randomized approach to mergesort.We randomly assign the starting disk d r for each input run r.Then,on average,it is not necessary to read many blocks from the same disk at one time.The analysis involves an interesting reduction to a maximum bucket occupancy problem.In order to facilitate analysis,for each run r we choose the disk d r on which r’s initial block will reside independently and identically with uniform probability.The location of every subsequent block of run r is determined deterministically by cycling through the disks.We will measure our algorithm’s performance by bounding the expected number of I/Os required to merge R runs for any arbitrary(that is,worst-case)set of input runs;the expectation is with respect to the randomization in the placement of thefirst block of the runs.The actual key values of the records that constitute the runs can be arbitrary and their relative order does not affect the bounds we derive.If we consider the problem of deterministic mergesorting with random inputs,as opposed to randomized mergesorting,we believe that the same analysis technique can yield similar bounds(but for the average-case)for a version of our algorithm in which the starting disk d r for run r is deterministically chosen to be uniformly staggered,so that d r=0for r=0,1,...,R/D−1,d r=1for r=R/D,R/D+1,...,2R/D−1and so on.Moreover,as we indicate in Section8,by taking into consideration the lengths of the runs being merged in different stages of the mergesort,it may be possible to improve the bound on overall average I/O performance.In this paper,however,we concentrate on our SRM method,since a very limited amount of explicit randomization in SRM(used to determine the random starting disks d r)enables us to get around the average-case assumption of the deterministic version, thus facilitating the elegant analysis presented here.6 5.THE SRM MERGING PROCEDURE4Forecasting Format and Data StructureAs observed earlier,each of the R runs that participate in a merge is output onto disk either during the run formation stage or during some earlier merge.This enables us to begin each run on a uniformly random disk.We can also format each block of every run so as to implant some future information as explained below.This is a generalization of the forecasting technique of[Knu73].We denote the i th block of a run r as b r,i and the smallest (first)key in block b r,i as k r,i.Blocks of a run r are formatted as follows:•Implanted in the initial block b r,0of run r are the key values k r,j for0≤j≤D−1.(Typically in practice,the D key values will indeedfit in a small portion of one block.Even if this is not so,since D=O(B),this information willfit in at most O(1) blocks.)•Implanted in the i th block b r,i,where i>0,of run r is the single key value k r,(i+D). The extra information for forecasting in each block is only one key value,not one record. So the extra space taken up by the forecasting format of runs is negligible.For simplicity, we assume that all key values are distinct.Definition1At any time t during the merge,consider the unprocessed portions of the R runs.Among these records,the record with the smallest key is called the next record of the merge at time t.A block belonging to any run is said to begin participating in the merge process at the time t when itsfirst record becomes the next record of the merge.A block ceases to participate in the merge as soon as all of its records get depleted by the merge.At any point of time,consider all the blocks not in memory that reside on disk i.The smallest block of run j on disk i is the block that will be the earliest participating block among all the blocks of run j on disk i.The smallest block on disk i is the the earliest participating block on disk i at that time.At any time,the leading block of a run is the block(possibly partly consumed)that contains the smallest key value in that run at that time.Note that a block can become a leading block much before beginning to participate in the merge.On an I/O read,the block read in by SRM from disk i is always the smallest block on disk i at that time.To be able to do this,SRM maintains a forecasting data structure. Definition2The forecasting data structure(FDS)consists of D arrays H0,H1,...,H D−1, one corresponding to each disk.At any point of time,H i[j]stores K i,j,where K i,j is the smallest key value in the smallest block of run j on disk i.At any time,in order for SRM to read in the smallest block from disk i,it merely needs to read in the smallest block of run j on disk i,where j is the run with the smallest key in H i.5The SRM Merging ProcedureIn this section,we discuss how SRM merges R runs striped across D disks,with the ran-domized layout described in Section3.The SRM merging process can be specified as a set of two concurrent logical controlflows corresponding to internal merge processing and I/O scheduling,respectively.By internal merge processing,we refer to the computation that merges the leading portions of runs after these leading portions have been brought into internal memory.Internal merge processing5.1Internal Memory Management7 has to wait when some run’s leading portion in memory gets depleted or when the write buffers get full and need to be written to disk.By I/O scheduling we refer to the algorithm that decides which blocks to bring in from the disks.I/O scheduling decisions are based on information from the FDS data structure and the amount of unoccupied internal memory. Implementing internal merge processing and the I/O schedule as concurrent modules makes the overlapping of CPU computation and I/O operations an easier task.Internal merge processing can be implemented using a variety of techniques;we refer the reader to[Knu73].In this section,we focus on the I/O scheduling algorithm.Wefirst discuss issues pertaining to management of internal memory and maintaining the FDS data structure during the merge.We then go on to introduce some terminology and notation that helps us describe I/O operations and the I/O scheduling algorithm.The terminology we develop here will be used even in subsequent sections when we analyze the algorithm.5.1Internal Memory ManagementManagement of internal memory blocks plays a key role in the interaction between the I/O scheduling algorithm and internal merge processing.In SRM,internal memory management of merge data is done at block level granularity,so internal fragmentation within internal memory blocks is not an issue.By an internal block,we mean a set of contiguous internal memory locations withfixed boundaries,large enough to hold B records.Note that the internal structures pertaining to internal memory management need to be updated whenever internal merge processing is in certain critical states and after every I/O read operation.In this subsection,we describe some of the more important aspects of SRM’s internal memory management.The number M/B of blocks in internal memory,expressed in terms of R,B and D, is2R+4D+RD/B.Of these,SRM maintains a dynamically changing partition {M L,M R,M D,M W}of2R+4D physical blocks of internal memory.Definition3The set M L of R internal blocks is maintained such that at any time,if the leading block of any run is in internal memory,its internal block is in M L.The set M D contains D internal blocks maintained such that each I/O read operation of SRM can read in D blocks from disks into the internal memory blocks of M D.The remaining R+D internal memory blocks comprise the set M R.The sets are maintained such that as soon as there are D unoccupied internal blocks,a parallel read can be initiated into M D.In addition,SRM uses a set M W of2D internal memory blocks as an output buffer.The D internal memory blocks of M D are used specifically to initiate I/O read oper-ations at the earliest possible time,potentially bringing in blocks even before they begin participating.The output buffer M W is large enough to ensure that the output run can be written out with full parallelism in the forecasting format described earlier.The forecasting data structure FDS and related auxiliary data structures occupy not more than about RD/B blocks.5.2Maintaining the dynamic partition of internal memoryAs internal merging proceeds and the parallel I/O operations keep transferring blocks be-tween the parallel disk system and internal memory,internal memory blocks need to be exchanged among the sets M L,M R,M D,and M W in order to ensure that the assertions in Definition3are met.Below,we describe three types of exchanges of internal memory blocks in the management of M L,M R,and M D:8 5.THE SRM MERGING PROCEDURE1.Consider any state of internal merge processing when the last record in the leadingblock of a run r gets consumed by the merge.If run r’s new leading block occupies an internal block of M R,then M R and M L mutually exchange the internal blocks corresponding to the new and old leading blocks so that M R gets an unoccupied internal block and M L gets an occupied one.2.Consider any I/O read operation that has just completed.I/O read operations alwaysread in blocks into the D internal memory blocks of set M D.If the read operation brings into M D a block that is the leading block of some run r,then M L and M D exchange internal blocks corresponding to the old and new leading blocks,so that M D gets an unoccupied internal block and M L gets an occupied one.3.Whenever M R has at least one unoccupied internal memory block and M D has atleast one occupied internal memory block,M R and M D exchange internal memory blocks so that M D obtains an unoccupied block and M R gets an occupied one.In addition,records are added to blocks of M W as the internal merging proceeds.5.3Maintaining the Forecasting Data StructureWhenever a block belonging to run j is read into memory from disk i,the forecasting data from that block is used to update the entry H i[j]of FDS.We will see in Definition6that SRM may at timesflush a block belonging to run j to the disk i it originated from.This will not require any I/O but merely require that the entry H i[j]of FDS be updated with the smallest key of the particular block beingflushed. If more than one block from a particular run j areflushed together,all to the same disk i, then the entry H i[j]is updated with the smallest key value among all the blocks from run j beingflushed to disk i.5.4Terminology and NotationDefinition4Suppose we order a set A of blocks in ascending order by the blocks’smallest key values.We define Rank A(b),for b∈A,to be the rank of block b in this order.Thefirst (smallest-valued)block has rank1and the last(largest-valued)block has rank|A|.For any time t during the merge,we define the following terms:•F t denotes the set of full blocks in internal memory such that no block b in F t is the leading block of any run at time t.•S t denotes the set of D blocks,each of which is the smallest block on one of the D disks.•Fset t(l)={b|b∈F t,Rank F t(b)≥|F t|−l+1}denotes the set of the l highest ranked blocks of F t.By definition,no block of Fset t(l)is a leading block.•OutRank t=min b∈S t{Rank F t∪S t(b)}denotes the rank of the smallest-ranked block of S t in the set F t∪S t.Definition5The operation ParRead t is executed at a time t only when D unoccupied internal blocks are available in M ing FDS,it reads in the set S t of D blocks into M D, exchanging internal blocks of M D with M L as in point2of Section5.1if necessary.FDS is updated as described in Section5.3using the implanted information in blocks of S t.。

相关文档
最新文档