IC-HK_datasheet
共享)40个集成电路下载网站
共享)40个集成电路下载网站01. http://www.pi-electronic.de/Short2.htm02 ./200112/6P14-1.htm03. /zhuye.htm04. /web/jdpj9.htm05. http://www.promelec.ru/pdftop.html06. http://hot.ee/montazh/AN127.html07.http://www.onsemi.co.jp/site/support/literature/list/0,4456,datasheets_503,00.html?startPos=201&outputSize=50&08. /sc/docs/products/index.htm09. /dc.asp10. http://doc.semicon.toshiba.co.jp/noseek/us/td/td2.htm11. /eng/#12./chinese/products/products-frame.asp?Title=Datasheet-Async%20SRAM&URL=http%3A/ //English/Datasheets/ASYNCHRONOUSSTATICRAM.html13. /14. /15. /Tables/71.htm16. /l_datasheet3.cfm17. /newpage3.htm18. /ds/19. /datasheets/temic/20. /products/datasheets.asp21. /5.htm22. /products/23. /Information.ASP24. /REPAIR/F_chippins.html#CHIPPINS_00125. /gtcdown.htm26. http://www.maxwolf.ru/faq/eparts.html27. http://www.eureca.de/german/ccdsensor/toshiba/obsolete.html28. /datasheets/index.cfm29. /products/discontinued/30. /Products/TwoWay/31. http://hot.ee/montazh/Audio.html32. http://www.sames.co.za/layout4/Energy_AllProducts.asp33 ./Analog_Root/sitePage/mainSectionResource/0,2131,level4%253D%25252D1%2526level 1%253D214%2526level2%253D219%2526level3%253D%25252D1%2526resourceWebLawID%253D13,00.html34. /products/comm/communications.shtm35. /results.asp?q=MTV004N36. /audio/english/product.html37. /sc/docs/products/index.htm38. /sc/docs/products/index.htm39. /cgi//cgi-bin/web/lsiresult.cgi40. /web/dzbic.htm/ztgss.htm集成电路型号前缀(一)集成电路型号前缀(一)集成电路型号前缀对应国外生产厂商互联网网址A INTECH(美国英特奇公司)A- INTECH(美国英特奇公司AC TEXAS INSTRUMENTS [T1](美国德克萨斯仪器公司) /AD ANALOG DEVICES(美国模拟器件公司) /AM ADVANCED MICRO DEVICES(美国先进微电子器件公司)/ AM DATA-INTERSIL(美国戴特-英特锡尔公司) /AN PANASONIC(日本松下电器公司) /AY GENERAL INSTRUMENTS[G1](美国通用仪器公司)BA ROHM(日本东洋电具制作所)(日本罗姆公司) /BX SONY(日本索尼公司) /CA RCA(美国无线电公司)CA PHILIPS(荷兰菲利浦公司) /CA SIGNETICS(美国西格尼蒂克公司) /CAW RCA(美国无线电公司)CD FAIRCHILD(美国仙童公司) /CD RCA(美国无线电公司)CIC SOLITRON(美国索利特罗器件公司)CM CHERRY SEMICONDUCTOR(美国切瑞半导体器件公司) /CS PLESSEY(英国普利西半导体公司)CT SONY(日本索尼公司) /CX SONY(日本索尼公司) /CXA SONY(日本索尼公司) /CXD SONY(日本索尼公司) /CXK DAEWOO(韩国大宇电子公司)DBL PANASONIC(日本松下电器公司) /DN AECO(日本阿伊阔公司)D...C GTE(美国通用电话电子公司微电路部)EA SIGNETICS(美国西格尼蒂克公司) /EEA THOMSON-CSF(法国汤姆逊半导体公司) /EF THOMSON-CSF(法国汤姆逊半导体公司) /EFB PHILIPS(荷兰菲利浦公司) /EGC THOMSON-SGF(法国汤姆逊半导体公司)ESM PHILIPS(荷兰菲利浦公司) /F FAIRCHILD(美国仙童公司) /FCM FAIRCHILD(美国仙童公司) /G GTE(美国微电路公司)GD GOLD STAR[韩国金星(高尔达)电子公司]GL GOLD STAR[韩国金星(高尔达)电子公司]GM GOLD STAR[韩国金星(高尔达)电子公司]HA HITACHI(日本日立公司) /HD HITACHI(日本日立公司) /HEF PHILIPS(荷兰菲利浦公司) /HM, HZ HITACHI(日本日立公司) /ICL, IG INTERSIL(美国英特锡尔公司)IR, IX SHARP[日本夏普(声宝)公司] /ITT, JU ITT(德国ITT半导体公司) /KA, KB SAMSUNG(韩国三星电子公司) /KC SONY(日本索尼公司) /KDA SAMSUNG(韩国三星电子公司) /KIA, KID KEC(韩国电子公司)集成电路型号前缀(二)集成电路型号前缀(二)集成电路型号前缀(二)集成电路型号前缀对应国外生产厂商国际互联网网址KM KS SAMSUNG(韩国三星电子公司) /L SGS-ATES SEMICONDUCTOR(意大利SGS-亚特斯半导体公司) /L SANYO(日本三洋电气公司) /LA SANYO(日本三洋电气公司) /LB SANYO(日本三洋电气公司) /LC SANYO(日本三洋电气公司) /LC GENERAL INSTRUMENTS(GI)(美国通用仪器公司)LF PHILIPS(荷兰菲利浦公司) /LF NATIONAL SEMICONDUCTOR(美国国家半导体公司) /LH NATIONAL SEMICONDUCTOR(美国国家半导体公司) /LH LK SHARP[日本夏普(声宝)公司] /LM SANYO(日本三洋电气公司) /LM NATIONAL SEMICONDUCTOR(美国国家半导体公司) /LM SIGNETICS(美国西格尼蒂公司) /LM FAIRCILD(美国仙童公司) /LM SGS-ATES SEMICONDUCTOR(意大利SGS-亚特斯半导体公司) / LM PHILIPS(荷兰菲利浦公司) /LM MOTOROLA(美国莫托罗拉半导体产品公司) /LM SAMSUNG(韩国三星电子公司) /LP NATIONAL SEMICONDUCTOR(美国国家半导体公司) /LR LSC SHARP[日本夏普(声宝)公司] /M SGS-ATES SEMICONDUCTOR(意大利SGS-亚特斯半导体公司) /M MITSUBISHI(日本三菱电机公司) /MA ANALOG SYSTEMS(美国模拟系统公司) /MAX (美国)美信集成产品公司//MB FUJITSU(日本富士通公司) /MBM FUJITSU(日本富士通公司) /MC MOTOROLA(美国莫托罗拉半导体产品公司) /MC PHILIPS(荷兰菲利浦公司) /MC ANALOG SYSTEMS(美国模拟系统公司) /MF MITSUBISHI(日本三菱电机公司) /MK MOSTEK(美国莫斯特卡公司)ML PLESSEY(美国普利西半导体公司)ML MITEL SEMICONDUCTOR(加拿大米特尔半导体公司) /MLM MOTOROAL(美国莫托罗拉半导体产品公司) /MM NATIONAL SEMICONDUCTOR(美国国家半导体公司) /MN PANASONIC(日本松下电器公司) /MN MICRO NETWORK(美国微网路公司)MP MICRO POWER SYSTEMS(美国微功耗系统公司)MPS MICRO POWER SYSTEMS(美国微功耗系统公司)MSM OKI(美国OKI半导体公司) /MSM OKI(日本冲电气有限公司) /N NA SIGNETICS(美国西格尼蒂克公司) /NC NITRON(美国NITROR公司)NE SIGNETICS(美国西格尼蒂克公司) /NE PHILIPS(荷兰菲利浦公司) /NE MULLARD(英国麦拉迪公司)NE SGS-ATES SEMICONDUCTOR(意大利SGS-亚特斯半导体公司) /NJM NEW JAPAN RADIO(JRC)(新日本无线电公司)OM PANASONIC(日本松下电器公司) /OM SIGNETICS(美国西格尼蒂克公司) /集成电路型号前缀(三)集成电路型号前缀(三)集成电路型号前缀(三)集成电路型号前缀对应国外生产厂商国际互联网网址RC RAYTHEON(美国雷声公司)RM RAYTHEON(美国雷声公司)RH-IX SHARP[日本夏普(声宝)公司] /S SIEMENS(德国西门子公司) /S AMERICAN MICRO SYSTEMS(美国微系统公司)SA PHILIPS(荷兰菲利浦公司) /SAA PHILIPS(荷兰菲利浦公司) /SAA SIGNETICS(美国西格尼蒂克公司) /SAA GENERAL INSTRUMENTS(GI)(美国通用仪器公司)SAA ITT(德国ITT-半导体公司) /SAB SIGNETICS(美国西格尼蒂克公司) /SAB AEG-TELEFUNKEN(德国德律风根公司) http://www.telefunken.de/engl/index_e.html SAF SIGNETICS(美国西格尼蒂克公司) /SAK PHILIPS(荷兰菲利浦公司) /SAS HITACHI(日本日立公司) /SAS AEG-TELEFUNKEN(德国德律风根公司) http://www.telefunken.de/engl/index_e.html SAS SIEMENS(德国西门子公司) /SDA (德国西门子公司) /SC SIGNETICS(美国西格尼蒂克公司) /SE SIGNETICS(美国西格尼蒂克公司) /SE PHILIPS(荷兰菲利浦公司) /SG SILICON GENERAL(美国通用硅片公司) /SG MOTOROAL(美国莫托罗拉半导体产品公司) /SG PHILIPS(荷兰菲利浦公司) /SH FAIRCHILD(美国仙童公司) /SI SANKEN(日本三肯电子公司) http://www.sanken-elec.co.jp/SK RCA(美国无线电公司)SL PLESSEY(英国普利西半导体公司)SN MOTOROAL(美国莫托罗拉半导体产品公司) /SN TEXAS INSTRUMENTS(TI)(德国德克萨斯仪器公司) /SND SSS(美国固体科学公司) /SO SIEMENS(德国西门子公司) /SP PLESSEY(英国普利西半导体公司)STK SANYO(日本三洋电气公司) /STR SANKEN(日本三肯电子公司) http://www.sanken-elec.co.jp/SW PLESSEY(英国普利西半导体公司)T TOSHIBA(日本东芝公司) /T GENERAL INSTRUMENTS(GI)(美国通用仪器公司)TA TOSHIBA(日本东芝公司) /TAA SIGNETICS(美国西格尼蒂克公司) /TAA SIEMENS(德国西门子公司) /TAA SGS-ATES SEMICONDUCTOR(意大利SGS-亚特斯半导体公司) /TAA PRO ELECTRON(欧洲电子联盟)TAA PHILIPS(荷兰菲利浦公司) /TAA PLESSEY(英国普利西半导体公司)TAA MULLARD(英国麦拉迪公司)TBA FAIRCHILD(美国仙童公司) /TBA SIGNETICS(美国西格尼蒂克公司) /TBA SGS-ATES SEMICONDUCTOR(意大利SGS-亚特斯半导体公司) /TBA HITACHI(日本日立公司) /。
Datasheet MLX90614 中文 数据手册 rev008
单区视场和双区视场 TO-39 封装 红外温度传感器
特性和优点
尺寸小,成本低 易集成 在极宽温度范围内工作,带出厂校准: 传感器工作温度范围:-40…+125˚C 被测目标温度范围:-70…+380˚C Ta 和 To 在 0 到 50° C 时,测量精度可达 0.5° C 高(医疗)精度校准 测量值分辨率 0.02° C 单区视场和双区视场可选 SMBus 兼容数字接口 可配置 PWM 连续输出 3V 或 5V 供电,也可使用 8…16V 供电调制 支持睡眠模式 适合不同应用领域的多种封装方式和测试方式 车用级别标准
3901090614 Rev 008
第 2ห้องสมุดไป่ตู้/ 52 页
数据手册 2013/2/28
MLX90614 系列
单区视场和双区视场 TO-39 封装 红外温度传感器
3 目录
1 功能图 ........................................................................................................................................................................................................ 1 2 概述 ......................................................................................................................................................................
IC行业知识简介
IC 的分类
四、PGA插针网格阵列封装
PGA (Pin Grid Array Package)芯片封装形式在芯片的内外有多个方阵形 的插针,每个方阵形插针沿芯片的四周间隔一定距离排列。根据引脚数目 的多少,可以围成2-5圈。安装时,将芯片插入专门的PGA插座。为使 CPU能够更方便地安装和拆卸,从486芯片开始,出现一种名为ZIF的 CPU插座,专门用来满足PGA封装的CPU在安装和拆卸上的要求。 ZIF (Zero Insertion Force Socket)是指零插拔力的插座。把这种插座上的 扳手轻轻抬起,CPU就可很容易、轻松地插入插座中。然后将扳手压回原 处,利用插座本身的特殊结构生成的挤压力,将CPU的引脚与插座牢牢地 接触,绝对不存在接触不良的问题。 而拆卸CPU芯片只需将插座的扳手轻轻抬起,则压力解除,CPU芯片即 可轻松取出。 PGA封装具有以下特点: 1.插拔操作更方便,可靠性高。 2.可适应更高的频率。
主动元件:电路中能够执行资料运算、处理的元件。 包括各式各样的晶片,例如半导体元件中的电晶体、 积体电路、影像管和显示器等都属于主动元件。
被动元件:不影响信号基本特征,而仅令讯号通过而 未加以变动的电路元件。 最常见的有电阻、电容、电感、变压器等 。
IC 的类
按使用温度范围分为: 商业级:0℃-70℃
如何界定一个产品的价格
第一种:查阅历史记录
/
AV 官网 一般来说当前市场价格相当于AV官方价格的
60%~70%左右。综合其他网站的价格平均值,得 出一个基本报价
第二种:依据市场反映,按采购所告知的进 价乘以公司所规定的利润额,得出一个精确 报价。
IC 产品实战经验
类似的还有华强IC (),IC MINER( http://)
ICS557-01 Datasheet说明书
PCI-EXPRESS CLOCK SOURCEDescriptionThe ICS557-01 is a clock chip designed for use inPCI-Express Cards as a clock source. It provides a pair of differential outputs at 100 MHz in a small 8-pin SOIC package.Using IDT’s patented Phase-Locked Loop (PLL) techniques, the device takes a 25 MHz crystal input and produces HCSL (Host Clock Signal Level) differential outputs at 100 MHz clock frequency. LVDS signal levels can also be supported via an alternative termination scheme.Features•Supports PCI-Express TM HCSL Outputs0.7 V current mode differential pair •Supports LVDS Output Levels•Packaged in 8-pin SOIC•RoHS 5 (green ) or RoHS 6 (green and lead free) compliant packaging•Operating voltage of 3.3 V•Low power consumption•Input frequency of 25 MHz•Short term jitter 100 ps (peak-to-peak)•Output Enable via pin selection•Industrial temperature range availableBlock DiagramPin Assignment Pin DescriptionsPin NumberPinNamePinTypePin Description1OE Input Output Enable signal(H = outputs are enabled, L = outputs are disabled/tristated).Internal pull-up resistor.2X1Input Crystal or clock input. Connect to a 25 MHz crystal or single ended clock. 3X2XO Crystal Connection. Connect to a parallel mode crystal.Leave floating if clock input.4GND Power Connect to ground.5IREF Output A 475Ω precision resistor connected between this pin and groundestablishes the external reference current.6CLK Output HCSL differential complementary clock output.7CLK Output HCSL differential clock output.8VDD Power Connect to +3.3 V.Applications Information External ComponentsA minimum number of external components are required for proper operation.Decoupling CapacitorsDecoupling capacitors of 0.01 μF should be connected between VDD and the ground plane (pin 4) as close to the VDD pin as possible. Do not share ground vias between components. Route power from power source through the capacitor pad and then into IDT pin.CrystalA 25 MHz fundamental mode parallel resonant crystal with C L = 16 pF should be used. This crystal must have less than 300 ppm of error across temperature in order for theICS557-01 to meet PCI Express specifications.Crystal CapacitorsCrystal capacitors are connected from pins X1 to ground and X2 to ground to optimize the accuracy of the output frequency.C L= Crystal’s load capacitance in pFCrystal Capacitors (pF) = (C L- 8) * 2For example, for a crystal with a 16 pF load cap, each external crystal cap would be 16 pF. (16-8)*2=16.Current Source (Iref) Reference Resistor - R RIf board target trace impedance (Z) is 50Ω, then R R = 475Ω(1%), providing IREF of 2.32 mA. The output current (I OH) is equal to 6*IREF.Output TerminationThe PCI-Express differential clock outputs of the ICS557-01 are open source drivers and require an external series resistor and a resistor to ground. These resistor values and their allowable locations are shown in detail in thePCI-Express Layout Guidelines section.The ICS557-01can also be configured for LVDS compatible voltage levels. See the LVDS Compatible Layout Guidelines sectionGeneral PCB Layout RecommendationsFor optimum device performance and lowest output phase noise, the following guidelines should be observed.1. Each 0.01µF decoupling capacitor should be mounted on the component side of the board as close to the VDD pin as possible.2. No vias should be used between decoupling capacitor and VDD pin.3. The PCB trace to VDD pin should be kept as short as possible, as should the PCB trace to the ground via. Distance of the ferrite bead and bulk decoupling from the device is less critical.4. An optimum layout is one with all components on the same side of the board, minimizing vias through other signal layers (any ferrite beads and bulk decoupling capacitors can be mounted on the back). Other signal traces should be routed away from the ICS557-01.This includes signal traces just underneath the device, or on layers adjacent to the ground plane layer used by the device.PCI-Express Layout GuidelinesFigure 1: PCI-Express Device RoutingTypical PCI-Express (HCSL) WaveformLVDS Compatible Layout GuidelinesFigure: LVDS Device RoutingTypical LVDS WaveformAbsolute Maximum RatingsStresses above the ratings listed below can cause permanent damage to the ICS557-01. These ratings are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.DC Electrical CharacteristicsUnless stated otherwise, VDD = 3.3 V ±5%, Ambient Temperature -40 to +85°C1 Single edge is monotonic when transitioning through region.2 Inputs with pull-ups/-downs are not included.ItemRatingSupply Voltage, VDD, VDDA 5.5 VAll Inputs and Outputs-0.5 V to VDD+0.5 V Ambient Operating Temperature (commercial)0 to +70°C Ambient Operating Temperature (industrial)-40 to +85°C Storage Temperature -65 to +150°C Junction Temperature 125°C Soldering Temperature 260°CESD Protection (Input)2000 V min. (HBM)ParameterSymbolConditions Min.Typ.Max.UnitsSupply Voltage V 3.135 3.465Input High Voltage 1V IH 2.0VDD +0.3V Input Low Voltage 1V IL VSS-0.30.8V Input Leakage Current 2I IL 0 < Vin < VDD-55μA Operating Supply Current I DD With 50Ω and 2 pF load 55mA I DDOE OE =Low35mA Input Capacitance C IN Input pin capacitance 7pF Output Capacitance C OUT Output pin capacitance 6pF Pin Inductance L PIN 5nH Output Resistance Rout CLK outputs 3.0k ΩPull-up ResistorR PUPOE60k ΩAC Electrical Characteristics - CLK/CLKUnless stated otherwise, VDD=3.3 V ±5%, Ambient Temperature -40 to +85°C1 Test setup is R L =50 ohms with2 pF , R R = 475Ω (1%).2 Measurement taken from a single-ended waveform.3 Measurement taken from a differential waveform.4Measured at the crossing point where instantaneous voltages of both CLKOUT and CLKOUT are equal.5 CLKOUT pins are tri-stated when OE is low asserted. CLKOUT is driven differential when OE is high.Thermal Characteristics (8-pin SOIC)ParameterSymbolConditions Min.Typ.Max.UnitsInput Frequency 25MHz Output Frequency 100MHzOutput High Voltage 1,2V OH 660700850mV Output Low Voltage 1,2V OL-150027mV Crossing Point Voltage 1,2Absolute250350550mV Crossing Point Voltage 1,2,4Variation over all edges140mV Jitter, Cycle-to-Cycle 1,380ps Rise Time 1,2t OR From 0.175 V to 0.525 V 175332700ps Fall Time 1,2t OFFrom 0.525 V to 0.175 V175344700ps Rise/Fall Time Variation 1,2125ps Duty Cycle 1,34555%Output Enable Time 5All outputs 30µs Output Disable Time 5All outputs30µs Stabilization Time t STABLEFrom power-up VDD=3.3 V3.0ms Spread Change Timet SPREAD Settling period after spread change3.0msParameterSymbolConditionsMin.Typ.Max.UnitsThermal Resistance Junction to AmbientθJA Still air150°C/W θJA 1 m/s air flow 140°C/W θJA 3 m/s air flow120°C/W Thermal Resistance Junction to CaseθJC40°C/WMarking Diagram (ICS557M-01LF) Marking Diagram (ICS557MI-01LF)Notes:1. ###### is the lot code.2. YYWW is the last two digits of the year, and the week number that the part was assembled.3. “L ” designates Pb (lead) free packaging.4. “I” denotes industrial temperature.5. Bottom marking: (orgin). Origin = country of origin if not USA.Package Outline and Package Dimensions (8-pin SOIC, 150 Mil. Narrow Body) Package dimensions are kept current with JEDEC Publication No. 95Ordering InformationPart / Order Number Marking Shipping Packaging Package Temperature 557M-01LF See Page 8Tubes8-pin SOIC0 to +70° C557M-01LFT Tape and Reel8-pin SOIC0 to +70° C557MI-01LF Tubes8-pin SOIC-40 to +85° C557MI-01LFT Tape and Reel8-pin SOIC-40 to +85° C"LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.Corporate HeadquartersIntegrated Device Technology, For Sales800-345-7015408-284-8200Fax: 408-284-2775For Tech Support/go/clockhelpInnovate with IDT and accelerate your future networks. Contact:www.IDT .com。
英飞凌 ICE5QRxx80BG 第五代准谐振集成电源IC 数据表
采用 DSO-12 封装的准谐振 800 V CoolSET ™产品亮点• 集成 800 V CoolMOS ™,雪崩能力强 • 创新型准谐振操作,其专有设计可降低 EMI• 可选进入和退出待机功率电平的增强型主动突发模式 • 主动突发模式,最低待机功率可小于 100 mW • 借助共源共栅配置实现快速启动 • 数字降频模式,提高整体系统效率 • 支持输入过压和欠压保护的可靠线路保护 • 完善的保护机制•无铅电镀、无卤模塑化合物,符合 RoHS 标准特性• 集成 800 V CoolMOS ™,雪崩能力强• 显著缩小高低压线路间的开关频率差,实现高效率和良好的 EMI 性能• 可选进入和退出待机功率电平的增强型主动突发模式 • 主动突发模式,最低待机功率可小于 100 mW • 借助共源共栅配置实现快速启动 • 数字降频技术,过零点可达 10 个 • 内置数字软启动 • 逐周期峰值电流限制• 最大导通/关断时间限制,以避免在启动和断电时产生噪音 • 支持输入过压和欠压保护的可靠线路保护•针对 VCC 过压、VCC 欠压、过载/开路、输入/输出过压及过温状况的自动重启模式保护• 受限的 VCC 短接至地的充电电流• 无铅电镀、无卤模塑化合物,符合 RoHS 标准应用• 适用于家用电器/白色家电、电视、电脑及服务器的辅助电源• 蓝光播放器、机顶盒和 LCD/LED 显示器描述准谐振 CoolSET ™ - (ICE5QRxx80BG) 是第五代准谐振集成电源 IC ,支持共源共栅配置,并针对离线开关模式电源进行了优化。
产品在单一封装中搭载了两个独立芯片,分别为控制器芯片和高压 MOSFET 芯片。
借助经改善的数字降频技术和专有的创新型准谐振操作,IC 可在实现低 EMI 效果时兼顾更高效率。
而增强型主动突发模式更是为待机功率范围的选择提供了灵活性。
此外, ICE5QRxx80BG 有宽的供电电压工作范围 (10.0~25.5 V), 功耗较低。
9013 datasheet
FEATURES特 征Power dissipation最大耗散功率P CM: 0.625 WTamb=25Collector current 最大集电极电流I CM : 0.5 ACollector-base voltage集电极--基极击穿电压V (BR)CBO : 45 VELECTRICAL CHARACTERISTICS Tamb=25unless otherwise specified电 特 性环境温度 除 非 另 有 规 定Parameter 参 数Symbol符 号Test conditions 测试 条件MIN 最小值TYP 典型值MAX 最大值UNIT 单位Collector-base breakdown voltage 集电极--基极击穿电压 V(BR)CBO Ic= 100A I E =045 V Collector-emitter breakdown voltage 集电极--发射极击穿电压 V(BR)CEO Ic= 0. 1 mA I B =025 V Emitter-base breakdown voltage 发射极--基极击穿电压 V(BR)EBO I E = 100A I C =05V Collector cut-off current 集电极--基极截止电流 I CBO V CB = 40 V I E =00.1A Collector cut-off current 集电极--发射极截止电流 I CEO V CE = 20 V I B =00.1A Emitter cut-off current 发射极--基极截止电流I EBO V EB = 5 V I C =00.1AH FE 1V CE = 1 V, I C = 50 mA 64300DC current gain(note)直流电流增益H FE2V CE = 1V, I C =500 mA 40Collector-emitter saturation voltage 集电极--发射极饱和压降 V CE (sat)I C = 500 mA, I B =50 mA 0.6 V Base-emitter saturation voltage 基极--发射极饱和压降V BE (sat)I C = 500mA, I B = 50 mA 1.2 V Base-emitter voltage 基极--发射极正向电压V BEI E =100mA1.4 VTransition frequency 特征频率f TV CE = 6 V, I C = 20 mAf =30MHz150MHzCLASSIFICATION OF H FE(1) 分类Rank 档次D E F G H I Range 范围64-9178-11296-135112-166144-220190-300Wing Shing Computer Components Co., (H.K.)Ltd.Tel:(852)2341 9276 Fax:(852)2797 8153Homepage: E-mail: wsccltd@。
HK32C003 数据手册说明书
HK32C003数据手册版本:1.1发布日期:2023-07-19深圳市航顺芯片技术研发有限公司前言前言编写目的本文档介绍了HK32C003系列芯片的功能框图、存储器映射、外设接口、电气特性、管脚封装等,旨在帮助用户快速了解该系列芯片的特点及功能。
读者对象本文适用于以下读者:•开发工程师•芯片测试工程师•芯片选型工程师版本说明本文档对应的产品系列为HK32C003系列芯片。
修订记录目录1 简介 (1)2 产品概述 (2)2.1 产品特性 (2)2.2 器件一览表 (4)3 功能介绍 (6)3.1 结构框图 (6)3.2 存储器映射 (7)3.2.1 Flash特性 (7)3.2.2 Flash选项字 (8)3.2.3 SRAM (8)3.2.4 EEPROM (8)3.3 CRC计算单元 (9)3.4 NVIC (9)3.5 EXTI (10)3.6 复位 (10)3.6.1 系统复位 (10)3.6.2 电源复位 (11)3.7 时钟 (11)3.7.1 时钟源 (11)3.7.2 时钟树 (12)3.8 供电方案 (12)3.9 低功耗模式 (12)3.10 独立看门狗 (14)3.11 窗口看门狗 (14)3.12 System Tick定时器 (14)3.13 基本定时器 (14)3.14 通用定时器 (14)3.15 高级定时器 (14)3.16 AWU定时器 (15)3.17 STBAWU定时器 (15)3.19 I2C总线 (15)3.20 USART (15)3.21 SPI (16)3.22 GPIO (16)3.23 ADC (16)3.23.1 ADC的外部触发源 (16)3.23.2 AWD唤醒功能 (17)3.24 64位UID (17)3.25 调试接口 (17)4 电气性能指标 (18)4.1 最大绝对额定值 (18)4.1.1 极限电压特性 (18)4.1.2 极限电流特性 (18)4.1.3 极限温度特性 (18)4.2 工作参数 (19)4.2.1 推荐工作条件 (19)4.2.2 复位和低压检测 (19)4.2.3 上/下电复位特性 (19)4.2.4 内部参考电压 (19)4.2.5 工作电流特性 (19)4.2.6 HSI时钟特性 (21)4.2.7 LSI时钟特性 (21)4.2.8 GPIO输入时钟 (21)4.2.9 Flash存储器特性 (22)4.2.10 IO输入引脚特性 (22)4.2.11 IO输出引脚特性 (22)4.2.12 NRST复位管脚特性 (23)4.2.13 TIM计数器特性 (23)4.2.14 ADC特性 (24)5 典型电路 (25)6 管脚定义 (26)6.1 SOP8封装 (26)6.2 TSSOP16封装 (27)6.3 TSSOP20封装 (28)6.4 QFN20封装 (30)6.5 引脚复用(AF)功能表 (31)6.6 IOMUX引脚功能多重映射 (32)7 封装参数 (33)7.1 封装尺寸 (33)7.1.1 SOP8封装 (33)7.1.2 TSSOP16封装 (34)7.1.3 TSSOP20封装 (35)7.1.4 QFN20封装 (36)7.2 丝印信息 (38)7.2.1 SOP8丝印 (38)7.2.2 TSSOP16丝印 (38)7.2.3 TSSOP20丝印 (38)7.2.4 QFN20丝印 (39)8 订货信息 (40)8.1 订货代码 (40)8.2 订货包装 (40)9 缩略语 (42)10 重要提示 (43)1简介本文档为HK32C003系列芯片的数据手册。
IC datasheet pdf-IP3102,pdf datasheet (Versatile Gate Driver)
PIN CONNECTIONS
PIN DESCRIPTIONS
NO 1 2 3 4 5 6 7 8 SYMBOL CIGN CT RPHF CPH GND LO HO VCC I/O I I I I O O DESCRIPTION Ignition Time Control Pin with external Capacitor Internal Oscillator Timing Control Pin with Capacitor Preheating Frequency Control Pin with external Resistor Preheating Time Control Pin with external Capacitor Ground Low Side Gate Drive Output High Side Gate Drive Output Supply Voltage
ABSOLUTE MAXIMUM RATINGS
CHARACTERISTICS Maximum Supply Voltage Maximum Operating Supply Voltage Totem-pole Output Peak Current Power Dissipation(8DIP) PIN1,2,3,4 Voltage Output Clamp Diode Current Operating Junction Temperature Storage Temperature SYMBOL VCCMAX VOPMAX IPEAK Pd VIN ICLAMP Tj Tstg VALUE 30 24 +1 800 -0.4 ~ 6 30 -25 ~ +125 -65 ~ 150 UNIT V V A mW V mA
IQS550EV02 Datasheet说明书
IQS550EV02 DatasheetTrackpad demo module using IQS550-B0001 OverviewThe IQS550-B000 is a trackpad solution with on-chip gesture recognition,flexible device setup and leading sensitivity management and adjustment. The IQS550EV02 uses a 13x9 diamond sensor pattern to detect user proximity and touch. Finger position co-ordinates are then identified and gesture outputs are generated. With effective co-ordinate filtering, and advanced processing algorithms, the IQS550 provides reliable and stable outputs.The IQS550EV02 is an assembled demo unit, which is ready to be evaluated using the Azoteq CT210/DS100 USB dongle and the IQS5xx-B000 PC GUI software. The trackpad has a Mylar overlay material, which provides a smooth tracking surface and outputs high performance finger coordinates. The sensor reports these outputs via standard I 2C protocol to the master and it is also fully configurable and programmable via this interface.The IQS550EV02 is a standard IQS5xx-B000 product, and thus the IQS5xx-B000 product datasheet can be referenced for all relevant information:/images/stories/pdf/iqs5xx-b000_trackpad_datasheet.pdfThe trackpad module used on the IQS550EV02 is the TPS65. This is one of numerous trackpad modules that Azoteq have developed, and are available to purchase for immediate design integration and mass production.2 Device ConfigurationThe IQS550EV02 is programmed with the standard B000 trackpad firmware, with the setup parameters pre-configured for this PCB. Some of the important parameter configurations are shown in the table below.Since this is just an example configuration, all normal IQS550-B000 setup flexibility exists, and the configuration can be modified as required by the user.Table 2.1IQS550EV02 Parameter / Setup SummaryFigure 1.1IQS550EV02Trackpad ModuleTo obtain the full device configuration simply connect the trackpad module to a CT210/DS100 and run it with the IQS5xx-B000 PC GUI software. At start up all GUI parameters are updated to match the on-chip values, and can therefore easily be read back in the GUI.3 Connecting to PCThe module has a breakout PCB which converts the standard TPS65 flex connector to a 10-way CT210/DS100 compatible connector.3.1 Hardware ConnectionsTo connect the IQS550EV02 to the PC, simply connect the 10-way ribbon cable from the CT210/DS100 to the P1 connector on the trackpad module. The following table shows the connections required.Table 3.1 Hardware connections to CT210/DS1003.2 Evaluation in GUIThe features of the IQS550-B000 product can be evaluated and visualised using the following PC GUI software:/images/stories/software/azoteq_iqs5xxb000_setup.zipThis allows the designer to see the full power and information available from the IQS550 trackpad product. For more information on the GUI including the device setup procedure please see the following application note:(please note the IQS550EV02 is already configured, this is just additional information)/images/stories/pdf/AZD087%20-%20IQS5xx-B000%20Setup%20and%20User%20Guide.pdfBasicAdvancedFigure 3.1 2D preset display examplesFigure 3.2 3D preset display examples3.3 ProgrammingThe IQS550EV02 is already programmed with suitable settings for the trackpad, and for general evaluation programming is not required.The IQS5xx-B000 GUI enables a user to modify the configuration of a trackpad and to subsequently program the device with a hex file containing the newly updated settings.This is explained further in the AZD087 application note.4 Supporting MaterialThe IQS5xx-B000 product range has various supporting material available to assist with product integration and design.There is an example project for the I2C master code required to communicate with the IQS5xx-B000 slave device. It is designed for the Arduino Uno, and the full example project and description document can be found here:/images/stories/software/iqs550_arduino_example_code.zipThe IQS5xx-B000 parameters are obtained using the PC GUI, and once the desired performance is achieved the custom HEX file is exported from the GUI and is available for programming onto the device during production testing. The IQS5xx device has an I2C bootloader through which the programming is achieved. A full example project (also for an Arduino Uno) with documentation for the programming is available here:/images/stories/software/IQS5xx%20Bootloader%20Example%20v1.1.zipA design guide is available which provides details for some of the basic concepts and design considerations needed when embarking on a custom design:/images/stories/pdf/azd068-trackpad_design_guide.pdfThe PCB layout and sensor design is critical to the performance of the trackpad, and obtaining a configuration that will be operational across product and IC variation for the expected temperature ranges is an intricate process.Azoteq has the expertise to handle these issues without the time investment needed by the customer. Azoteq have a manufacturing facility with the expertise and equipment to build and test high quality high volume trackpad modules. It is strongly recommended that the trackpad design is handled by Azoteq, who deliver a complete module solution.5 Electrical CharacteristicsFor all general electrical characteristics, please refer to the IQS5xx-B000 datasheet.5.1 Current ConsumptionWith the parameters configured for the specific module, some expected current consumption values can be provided.Please note these are bench measured values, and can vary depending on numerous factors. For example in Active mode (during a user touch), the current varies according to the size of the touch due to change in the amount of processing required. The following are simply to provide an estimate of what can be expected.Table 5.1 Total Current ConsumptionFigure 5.1 Front and back view of IQS550EV02 trackpad module6 Contact InformationPlease visit for a list of distributors and worldwide representation.The following patents relate to the device or usage of the device:US 6,249,089; US 6,952,084; US 6,984,900; US 7,084,526; US 7,084,531; US 8,395,395; US 8,531,120; US 8,659,306; US 8,823,273; US 9,209,803; US 9,360,510; EP 2,351,220; EP 2,559,164; EP 2,656,189; HK 1,156,120; HK 1,157,080; SA 2001/2151; SA 2006/05363; SA 2014/01541; SA 2015/023634IQ Switch®, SwipeSwitch™, ProxSense®, LightSense™, AirButton TM, ProxFusion™, Crystal Driver™ and thelogo are trademarks of Azoteq.The information in this Datasheet is believed to be accurate at the time of publication. Azoteq uses reasonable effort to maintain the information up-to-date and accurate, but does not warrant the accuracy, completeness or reliability of the information contained herein. All content and information are provided on an “as is” basis only, witho ut any representations or warranties, express or implied, of any kind, including representations about the suitability of these products or information for any purpose. Values in the datasheet is subject to change without notice, please ensure to always use the latest version of this document. Application specific operating conditions should be taken into account during design and verified before mass production. Azoteq disclaims all warranties and conditions with regard to these products and information, including but not limited to all implied warranties and conditions of merchantability, fitness for a particular purpose, title and non-infringement of any third party intellectual property rights. Azoteq assumes no liability for any damages or injury arising from any use of the information or the product or caused by, without limitation, failure of performance, error, omission, interruption, defect, delay in operation or transmission, even if Azoteq has been advised of the possibility of such damages. The applications mentioned herein are used solely for the purpose of illustration and Azoteq makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Azoteq products are not authorized for use as critical components in life support devices or systems. No licenses to patents are granted, implicitly, express or implied, by estoppel or otherwise, under any intellectual property rights. In the event that any of the abovementioned limitations or exclusions does not apply, it is agreed that Azoteq’s total liability for all losses, damages and causes of action (in contract, tort (including without limitation, negligence) or otherwise) will not exceed the amount already paid by the customer for the products. Azoteq reserves the right to alter its products, to make corrections, deletions, modifications, enhancements, improvements and other changes to the content and information, its products, programs and services at any time or to move or discontinue any contents, products, programs or services without prior notification. For the most up-to-date information and binding Terms and Conditions please refer to /ip***************。
深圳市富满电子集团股份有限公司 5088SS二合一锂电池保护IC说明书
5088SS(文件编号:S&CIC1620)二合一锂电池保护IC概述5088SS产品是单节锂离子/锂聚合物可充电电池组保护的高集成度解决方案。
5088SS包括了先进的功率MOSFET,高精度的电压检测电路和延时电路。
5088SS具有过充,过放,过流,短路等所有的电池所需保护功能,并且工作时功耗非常低。
该芯片适用于一切需要锂离子或锂聚合物可充电电池长时间供电的各种信息产品的应用场合。
特点内部集成等效18mΩ左右的先进的功率MOSFET;2段放电过流保护:过放电流1、负载短路电流;充电过流保护具有0V充电功能延时时间内部设定;高精度电压检测;低静态耗电流:正常工作电流3.0uA兼容ROHS和无铅标准。
采用SOP-8封装形式塑封。
应用单芯锂离子电池组; 锂聚合物电池组。
5088SS(文件编号:S&CIC1620)二合一锂电池保护IC 极限参数电气特性参数5088SS(文件编号:S&CIC1620)二合一锂电池保护IC 功能描述5088SS是一款高精度的锂电池保护电路。
正常状态下,如果对电池进行充电,则5088SS可能会进入过电压充电保护状态;同时,满足一定条件后,又会恢复到正常状态。
如果对电池放电,则可能会进入过电压放电保护状态或过电流放电保护状态;同时,满足一定条件后,也会恢复到正常状态。
正常状态在正常状态下,5088SS由电池供电,其VDD端电压在过电压充电保护阈值V OC和过电压放电保护阈值V OD 之间,VM端电压在充电器检测电压(V CHG)与过电流放电保护阈值(V EDI)之间,内置N-MOS管导通。
此时,既可以使用充电器对电池充电,也可以通过负载使电池放电。
过电压充电保护状态保护条件正常状态下,对电池进行充电,如果使VDD端电压升高超过过电压充电保护阈值V OC,且持续时间超过过电压充电保护延迟时间t OC,则5088SS将使内置N-MOS管关闭,充电回路被“切断”,即5088SS进入过电压充电保护状态。
ISSC IS2021S_Datasheet 规格书
RF Hardware Fully Bluetooth 4.1 (EDR) system in 2.4 GHz ISM band. Combined TX/RX RF terminal simplifies external matching and reduces external
联系人:廖'R / Fred Liao 手机: 135 1003 2582 Q Q: 316224953 SKYPE: szmyland_fred E-mail: 316224953@
LHL@
Preliminary Datasheet
IS2021S
Bluetooth 4.1 Multimedia SOC
ISSC/台湾创杰,2014 年已并入美国微芯(MICROCHIP,简称 MCHP),多年来专注于蓝牙芯片开发与设计,经过多年耕耘,ISSC 已成为蓝牙芯片领导品ห้องสมุดไป่ตู้。
我司是 ISSC 最资深的代理,从卖出 ISSC 品牌的第一颗芯片至今, 协助 ISSC 方案为全球用户所熟知和认可,亦辅佐和见证了数家蓝牙 成品工厂从初创到跻身为知名企业的成长历程。我司既提供性价比优 越和交期及时的 IC 或 Module,也在香港和深圳配备有多名资深软硬 件工程师,协助客人进行产品开发和设计,从 PCB layout 到试产、量 产的导入,全程提供贴心服务,是蓝牙方案公司或成品工厂的优秀合 作伙伴。请保留以下联系方式,欢迎洽询,共襄盛举!
FEATURES Support preliminary Bluetooth v4.1
MP2307同步整流降压IC datasheet
MP23073A, 23V, 340KHz Synchronous Rectified Step-Down ConverterThe Future of Analog IC TechnologyTMTMDESCRIPTIONThe MP2307 is a monolithic synchronous buck regulator. The device integrates 100m Ω MOSFETS that provide 3A of continuous load current over a wide operating input voltage of 4.75V to 23V. Current mode control provides fast transient response and cycle-by-cycle current limit.An adjustable soft-start prevents inrush current at turn-on and in shutdown mode, the supply current drops below 1µA.This device, available in an 8-pin SOIC package, provides a very compact system solution with minimal reliance on external components.EVALUATION BOARD REFERENCEBoard Number Dimensions EV2307DN-00A2.0”X x 1.5”Y x 0.5”ZFEATURES• 3A Continuous Output Current,4A Peak Output Current• Wide 4.75V to 23V Operating Input Range • Integrated 100m Ω Power MOSFET Switches • Output Adjustable from 0.925V to 20V • Up to 95% Efficiency • Programmable Soft-Start• Stable with Low ESR Ceramic Output Capacitors • Fixed 340KHz Frequency• Cycle-by-Cycle Over Current Protection • Input Under Voltage Lockout• Thermally Enhanced 8-Pin SOIC PackageAPPLICATIONS• Distributed Power Systems • Networking Systems• FPGA, DSP, ASIC Power Supplies • Green Electronics/Appliances • Notebook Computers“MPS” and “The Future of Analog IC Technology” are Trademarks of Monolithic Power Systems, Inc.TYPICAL APPLICATIONC510095908580757065605550E F F I C I E N C Y (%)0.11.010LOAD CURRENT (A)MP2307_EC01Efficiency vs Load CurrentPACKAGE REFERENCE* For Tape & Reel, add suffix –Z (eg. MP2307DN–Z)For Lead Free, add suffix –LF (eg. MP2307DN–LF–Z) ABSOLUTE MAXIMUM RATINGS (1) Supply Voltage V IN.......................–0.3V to +26V Switch Voltage V SW.................–1V to V IN + 0.3V Boost Voltage V BS..........V SW – 0.3V to V SW + 6V All Other Pins.................................–0.3V to +6V Junction Temperature...............................150°C Lead Temperature....................................260°C Storage Temperature .............–65°C to +150°C Recommended Operating Conditions (2) Input Voltage V IN............................4.75V to 23V Output Voltage V OUT....................0.925V to 20V Ambient Operating Temp..............–40°C to +85°C Thermal Resistance (3)θJA θJCSOIC8N..................................50......10...°C/W Notes:1) Exceeding these ratings may damage the device.2) The device is not guaranteed to function outside of itsoperating conditions.3) Measured on approximately 1” square of 1 oz copper.ELECTRICAL CHARACTERISTICSV IN = 12V, T A = +25°C, unless otherwise noted.Parameter Symbol ConditionMinTypMaxUnits Shutdown Supply Current V EN = 0V 0.3 3.0 µASupply Current V EN = 2.0V, V FB = 1.0V 1.3 1.5 mAFeedback Voltage V FB 4.75V ≤ V IN≤ 23V 0.900 0.925 0.950 VFeedback Overvoltage Threshold 1.1 VError Amplifier Voltage Gain (4)A EA 400 V/VError Amplifier Transconductance G EA∆I C = ±10µA 820 µA/VHigh-Side Switch On-Resistance (4)R DS(ON)1 100 mΩLow-Side Switch On-Resistance (4)R DS(ON)2 100 mΩHigh-Side Switch Leakage Current V EN = 0V, V SW = 0V 0 10 µAUpper Switch Current Limit Minimum Duty Cycle 4.0 5.8 ALower Switch Current Limit From Drain to Source 0.9 ACOMP to Current SenseTransconductanceG CS 5.2 A/VOscillation Frequency F osc1300 340 380 KHzShort Circuit Oscillation Frequency F osc2V FB = 0V 110 KHzMaximum Duty Cycle D MAX V FB = 1.0V 90 %Minimum On Time (4)T ON 220 nsEN Shutdown Threshold Voltage V EN Rising 1.1 1.5 2.0 VEN Shutdown Threshold VoltageHysterisis220 mVELECTRICAL CHARACTERISTICS (continued)V IN = 12V, T A = +25°C, unless otherwise noted.UnitsTypMaxMinParameter Symbol ConditionEN Lockout Threshold Voltage 2.2 2.5 2.7 VEN Lockout Hysterisis 210 mVInput Under Voltage LockoutV IN Rising 3.80 4.05 4.40 VThresholdInput Under Voltage Lockout210 mVThreshold HysteresisSoft-Start Current V SS = 0V 6 µA15 msSoft-Start Period C SS = 0.1µFThermal Shutdown (4) 160 °CNote:4) Guaranteed by design, not tested.TYPICAL PERFORMANCE CHARACTERISTICSC1 = 2 x 10µF, C2 = 2 x 22µF, L= 10µH, C SS= 0.1µF, T A = +25°C, unless otherwise noted.V IN20mV/div.V OUT20mV/div.VSW10V/div.I L1A/div.MP2307-TPC01Steady State TestWaveformsV IN = 12V, V OUT = 3.3V, I OUT = 0AV IN200mV/div.V OUT20MV/div.V SWV/div.I L2A/div.MP2307-TPC02Steady State TestWaveformsVIN = 12V, V OUT = 3.3V, I OUT = 3AV EN5V/div.V OUT2V/div.V SW10V/div.I L1A/div.2ms/div.MP2307-TPC03Startup throughEnable WaveformsV IN = 12V, V OUT = 3.3V, No LoadV EN5V/div.V OUT2V/div.V SW10V/div.I L2A/div.2ms/div.MP2307-TP04Startup ThroughEnable WaveformsV IN = 12V, V OUT = 3.3V,I OUT = 3A (Resistance Load)V EN5V/div.V OUT2V/div.V SW10V/div.I L1A/div.2ms/div.MP2307-TPC05Shutdown ThroughEnable WaveformsV IN = 12V, V OUT = 3.3V, No LoadV OUT2V/div.V SW10V/div.V EN5V/div.IL2A/div.MP2307-TPC06Shutdown ThroughEnable WaveformsV IN = 12V, V OUT = 3.3V,I OUT= 3A (Resistance Load)V OUT200mV/div.I L1A/div.I LOAD1A/div.MP2307 -TPC07Load Transient TestWaveformsV IN = 12V, V OUT = 3.3V,I OUT = 1A to 2A stepV OUT2V/div.I L2A/div.MP2307-TPC08Short Circuit TestWaveformsV IN = 12V, V OUT = 3.3VV OUT2V/div.I L2A/div.MP2307-TPC09Short Circuit RecoveryWaveformsV IN = 12V, V OUT = 3.3VPIN FUNCTIONSPin #Name Description1 BSHigh-Side Gate Drive Boost Input. BS supplies the drive for the high-side N-Channel MOSFETswitch. Connect a 0.01µF or greater capacitor from SW to BS to power the high side switch. 2 IN Power Input. IN supplies the power to the IC, as well as the step-down converter switches.Drive IN with a 4.75V to 23V power source. Bypass IN to GND with a suitably large capacitorto eliminate noise on the input to the IC. See Input Capacitor .3 SW Power Switching Output. SW is the switching node that supplies power to the output. Connectthe output LC filter from SW to the output load. Note that a capacitor is required from SW toBS to power the high-side switch.4 GND Ground (Connect the exposed pad to Pin 4).5 FB Feedback Input. FB senses the output voltage and regulates it. Drive FB with a resistivevoltage divider connected to it from the output voltage. The feedback threshold is 0.925V. SeeSetting the Output Voltage .6 COMP Compensation Node. COMP is used to compensate the regulation control loop. Connect aseries RC network from COMP to GND. In some cases, an additional capacitor from COMP toGND is required. See Compensation Components.7 ENEnable Input. EN is a digital input that turns the regulator on or off. Drive EN high to turn onthe regulator; low to turn it off. Attach to IN with a 100k Ω pull up resistor for automatic startup. 8 SS Soft-Start Control Input. SS controls the soft-start period. Connect a capacitor from SS to GNDto set the soft-start period. A 0.1µF capacitor sets the soft-start period to 15ms. To disable thesoft-start feature, leave SS unconnected.OPERATIONFUNCTIONAL DESCRIPTIONThe MP2307 regulates input voltages from 4.75V to 23V down to an output voltage as low as 0.925V, and supplies up to 3A of load current.The MP2307 uses current-mode control to regulate the output voltage. The output voltage is measured at FB through a resistive voltage divider and amplified through the internal transconductance error amplifier. The voltage at the COMP pin is compared to the switch current (measured internally) to control the output voltage.The converter uses internal N-Channel MOSFET switches to step-down the input voltage to the regulated output voltage. Since the high side MOSFET requires a gate voltage greater than the input voltage, a boost capacitor connected between SW and BS is needed to drive the high side gate. The boost capacitor is charged from the internal 5V rail when SW is low. When the FB pin voltage exceeds 20% of the nominal regulation value of 0.925V, the over voltage comparator is tripped and the COMP pin and the SS pin are discharged to GND, forcing the high-side switch off.EN COMP SS FB GNDSWBSINFigure 1—Functional Block DiagramAPPLICATIONS INFORMATIONCOMPONENT SELECTIONSetting the Output VoltageThe output voltage is set using a resistive voltage divider connected from the output voltage to FB. The voltage divider divides the output voltage down to the feedback voltage by the ratio:2R 1R 2R V V OUTFB +=Thus the output voltage is:2R 2R 1R 925.0V OUT +×= R2 can be as high as 100k Ω, but a typical value is 10k Ω. Using the typical value for R2, R1 is determined by:)925.0V (81.101R OUT −×= (k Ω)For example, for a 3.3V output voltage, R2 is 10k Ω, and R1 is 26.1k Ω. Table 1 lists recommended resistance values of R1 and R2 for standard output voltages.Table 1—Recommended Resistance ValuesVOUT R1 R2 1.8V 9.53k Ω 10k Ω 2.5V 16.9k Ω 10k Ω 3.3V 26.1k Ω 10k Ω 5V 44.2k Ω 10k Ω 12V 121k Ω 10k ΩInductorThe inductor is required to supply constant current to the load while being driven by the switched input voltage. A larger value inductor will result in less ripple current that will in turn result in lower output ripple voltage. However, the larger value inductor will have a larger physical size, higher series resistance, and/or lower saturation current. A good rule for determining inductance is to allow the peak-to-peak ripple current to be approximately 30% of the maximum switch current limit. Also, make sure that the peak inductor current is below the maximum switch current limit.The inductance value can be calculated by:⎟⎟⎠⎞⎜⎜⎝⎛−×∆×=IN OUT L S OUT V V 1I f V L Where V OUT is the output voltage, V IN is the input voltage, f S is the switching frequency, and ∆I L is the peak-to-peak inductor ripple current. Choose an inductor that will not saturate under the maximum inductor peak current, calculated by:⎟⎟⎠⎞⎜⎜⎝⎛−×××+=IN OUT S OUT LOAD LP V V 1L f 2V I I Where I LOAD is the load current.The choice of which style inductor to use mainly depends on the price vs. size requirements and any EMI constraints.Optional Schottky DiodeDuring the transition between the high-side switch and low-side switch, the body diode of the low-side power MOSFET conducts the inductor current. The forward voltage of this body diode is high. An optional Schottky diode may be paralleled between the SW pin and GND pin to improve overall efficiency. Table 2 lists example Schottky diodes and their Manufacturers.Table 2—Diode Selection GuidePart NumberVoltage/CurrentRatingVendorB130 30V, 1A Diodes, Inc. SK1330V, 1ADiodes, Inc. MBRS130 30V, 1AInternationalRectifierInput CapacitorThe input current to the step-down converter is discontinuous, therefore a capacitor is required to supply the AC current while maintaining the DC input voltage. Use low ESR capacitors for the best performance. Ceramic capacitors are preferred, but tantalum or low-ESR electrolytic capacitors will also suffice.Choose X5R or X7R dielectrics when using ceramic capacitors.Since the input capacitor (C1) absorbs the input switching current, it requires an adequate ripple current rating. The RMS current in the input capacitor can be estimated by:⎟⎟⎠⎞⎜⎜⎝⎛×−×=IN OUT IN OUT LOAD 1C V V1V V I I The worst-case condition occurs at V IN = 2V OUT ,where I C1 = I LOAD /2. For simplification, use an input capacitor with a RMS current rating greater than half of the maximum load current. The input capacitor can be electrolytic, tantalum or ceramic. When using electrolytic or tantalum capacitors, a small, high quality ceramic capacitor, i.e. 0.1µF, should be placed as close to the IC as possible. When using ceramic capacitors, make sure that they have enough capacitance to provide sufficient charge to prevent excessive voltage ripple at input. The input voltage ripple for low ESR capacitors can be estimated by:⎟⎟⎠⎞⎜⎜⎝⎛−×××=∆IN OUT IN OUT S LOAD IN V V 1V V f 1C I V Where C1 is the input capacitance value.Output CapacitorThe output capacitor (C2) is required to maintain the DC output voltage. Ceramic, tantalum, or low ESR electrolytic capacitors are recommended. Low ESR capacitors are preferred to keep the output voltage ripple low. The output voltage ripple can be estimated by:⎟⎟⎠⎞⎜⎜⎝⎛××+×⎟⎟⎠⎞⎜⎜⎝⎛−××=∆2C f 81R V V 1L f V V S ESR IN OUTS OUT OUTWhere C2 is the output capacitance value and R ESR is the equivalent series resistance (ESR) value of the output capacitor.When using ceramic capacitors, the impedance at the switching frequency is dominated by the capacitance which is the main cause for the output voltage ripple. For simplification, the output voltage ripple can be estimated by:⎟⎟⎠⎞⎜⎜⎝⎛−××××=IN OUT 2SOUTOUT V V 12C L f 8V ∆V When using tantalum or electrolytic capacitors, the ESR dominates the impedance at the switching frequency. For simplification, the output ripple can be approximated to:ESR IN OUTS OUT OUT R V V 1L f V ∆V ×⎟⎟⎠⎞⎜⎜⎝⎛−××=The characteristics of the output capacitor also affect the stability of the regulation system. The MP2307 can be optimized for a wide range of capacitance and ESR values.Compensation ComponentsMP2307 employs current mode control for easy compensation and fast transient response. The system stability and transient response are controlled through the COMP pin. COMP is the output of the internal transconductance error amplifier. A series capacitor-resistor combination sets a pole-zero combination to govern the characteristics of the control system. The DC gain of the voltage feedback loop is given by:OUTFB EA CS LOAD VDC V V A G R A ×××=Where V FB is the feedback voltage (0.925V),A VEA is the error amplifier voltage gain, G CS is the current sense transconductance and R LOAD is the load resistor value.The system has two poles of importance. One is due to the compensation capacitor (C3) and the output resistor of the error amplifier, and the other is due to the output capacitor and the load resistor. These poles are located at:VEA EA1P A 3C 2G f ××π=LOAD2P R 2C 21f ××π=Where G EA is the error amplifier transconductance.The system has one zero of importance, due to the compensation capacitor (C3) and the compensation resistor (R3). This zero is located at:3R 3C 21f 1Z ××π=The system may have another zero of importance, if the output capacitor has a large capacitance and/or a high ESR value. The zero, due to the ESR and capacitance of the output capacitor, is located at:ESRESR R 2C 21f ××π=In this case, a third pole set by thecompensation capacitor (C6) and the compensation resistor (R3) is used to compensate the effect of the ESR zero on the loop gain. This pole is located at:3R 6C 21f 3P ××π=The goal of compensation design is to shape the converter transfer function to get a desired loop gain. The system crossover frequency where the feedback loop has the unity gain is important. Lower crossover frequencies result in slower line and load transient responses, while higher crossover frequencies could cause system instability. A good standard is to set the crossover frequency below one-tenth of the switching frequency.To optimize the compensation components, the following procedure can be used.1. Choose the compensation resistor (R3) to set the desired crossover frequency. Determine R3 by the following equation:FBOUTCS EA S FB OUT CS EA C V V G G f 1.02C 2V V G G f 2C 23R ×××××π<××××π=Where f C is the desired crossover frequency which is typically below one tenth of the switching frequency.2. Choose the compensation capacitor (C3) to achieve the desired phase margin. For applications with typical inductor values, setting the compensation zero (f Z1) below one-forth of the crossover frequency provides sufficient phase margin.Determine C3 by the following equation:Cf 3R 243C ××π>Where R3 is the compensation resistor.3. Determine if the second compensation capacitor (C6) is required. It is required if the ESR zero of the output capacitor is located atless than half of the switching frequency, or the following relationship is valid:2f R 2C 21S ESR <××πIf this is the case, then add the secondcompensation capacitor (C6) to set the pole f P3 at the location of the ESR zero. Determine C6 by the equation:3R R 2C 6C ESR×=External Bootstrap DiodeIt is recommended that an external bootstrap diode be added when the system has a 5V fixed input or the power supply generates a 5V output. This helps improve the efficiency of the regulator. The bootstrap diode can be a low cost one such as IN4148 or BAT54.10nFFigure 2—External Bootstrap DiodeThis diode is also recommended for high duty cycle operation (whenINOUTV V >65%) and high output voltage (V OUT >12V) applications.TYPICAL APPLICATION CIRCUITC5Figure 3—MP2307 with 3.3V Output, 22uF/6.3V Ceramic Output CapacitorMP2307 – 3A, 23V, 340KHz SYNCHRONOUS RECTIFIED STEP-DOWN CONVERTERNOTICE: The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.MP2307 Rev. 1.7 113/14/2006 MPS Proprietary Information. Unauthorized Photocopy and Duplication Prohibited.© 2006 MPS. All Rights Reserved.TMPACKAGE INFORMATIONSOIC8N (EXPOSED PAD)NOTE:1) Control dimension is in inches. Dimension in bracket is millimeters.2) Exposed Pad Option (N-Package) ; 2.31mm -2.79mm x 2.79mm - 3.81mm. Recommend Solder Board Area: 2.80mm x 3.82mm = 10.7mm 2 (16.6 mil 2)3) The length of the package does not include mold flash. Mold flash shall not exceed 0.006in. (0.15mm) per side. With the mold flash included, over-all length of the package is 0.2087in. (5.3mm) max.4) The width of the package does not include mold flash. Mold flash shall not exceed 0.10in. (0.25mm) per side.With the mold flash included, over-all width of the package is 0.177in. (4.5mm) max.Land Pattern。
电子芯片香港销售合同模板
电子芯片香港销售合同模板【合同编号】HKEC-[日期]-[序号]甲方(卖方):_________地址:________________电话:________________邮箱:________________乙方(买方):_________地址:________________电话:________________邮箱:________________鉴于甲乙双方就电子芯片的销售与购买达成一致,特订立本合同,以资遵守。
第一条产品信息1.1 产品名称:_________1.2 规格型号:_________1.3 数量:_________1.4 单价:_________1.5 总价:_________1.6 产品技术参数及性能指标详见附件A。
第二条交付条件2.1 交货时间:自合同签订之日起____天内。
2.2 交货地点:________________2.3 运输方式:________________2.4 风险转移:货物交付乙方指定地点后,风险由甲方转移至乙方。
第三条支付方式3.1 付款条件:乙方应在收到甲方发货通知后____天内支付全款。
3.2 付款方式:通过银行转账至甲方指定账户。
第四条质量保证4.1 甲方保证提供的电子芯片符合合同约定的质量标准和技术要求。
4.2 质保期限:自交货之日起____个月内。
4.3 如发现产品质量问题,乙方有权要求甲方无偿更换或修复。
第五条违约责任5.1 如甲方未能按时交货,应向乙方支付迟延交货的违约金,计算方式为每日总合同金额的_____%。
5.2 如乙方未能按时支付款项,应向甲方支付逾期支付的滞纳金,计算方式为每日逾期金额的_____%。
第六条争议解决6.1 本合同的解释、效力及执行均适用香港特别行政区法律。
6.2 双方因履行本合同所发生的任何争议,应首先通过友好协商解决;协商不成时,可提交香港国际仲裁中心进行仲裁。
第七条其他事项7.1 本合同一式两份,甲乙双方各执一份,具有同等法律效力。
电子工程师必上的十大专业网站
电子工程师必上的十大专业网站在电子产业混,情报能力是相当重要的,具体体现在一要能及早全面地获得最新的设计资讯,二要能认识一些专家级的大虾,当有设计难题时,这些大虾可以伸出热情的手拉你一把,则对你的设计会帮助很大的。
小可我在电子产业混了几年,在这方面还是积累了一些感受,在此跟大家分享一下。
总的感受是对专业网站:人不在多,有虾(大虾)则灵,贴不在水,有精则优。
下面的专业网站点评,是偶的一些感受,不当之处还望指正啊。
1、原装IC网www.originic.hk原装IC网最大的特色是品质不错,供应原装IC,这是其他专业网站没法比的,因为它在和供应商合作上提供了很大的优势,网站无论是在品牌和内容方面都做有一定的特色,自然吸引了很多采购、工程师,这里需要特别指出的是虽然原装IC网人气在国内不算第一,但是来此的工程师是不少的,其中不乏专家级的大虾,小弟我的一些难找的料就是在这里解决的,所以还是隆重推荐一下。
总的点评如下内容:★★★★速度:★★★★服务功能:★★★★2、中国电子网提起21ic,大家一下会想到它的BBS,没错!21ic的BBS是中国最好的专业BBS,不但信息量大,而且涵盖范围广,更有n多大虾整天潜于水中。
刚入门的菜鸟在这里可以尽情提问向大虾学习。
不过21ic的资讯实在不敢恭维,自己独家的东西不多,不过这个网站的技术方案信息还是不错的。
总体评价:内容:★★★速度:★★★★服务功能:★★★★3、电子设计技术EDN的合作方是排行全球第一的媒体集团Reed集团,拥有遍布全球的专业媒体资源,这是其傲人的资本。
在中国,《电子设计技术》是仅次于《电子工程专辑》的杂志,拥有很高的知名度,EDNChina的资讯也比较快,而且技术方案也比较齐全,它的一个特色是博客内容做的不错,有很多精彩的内容。
总体评价:内容:★★★速度:★★★★服务功能:★★★★★4、中电网因为曾经和全球知名的分销商有过密切的合作,所以中电网在半导体电子商务方面有得天独厚的优势,这个网站半导体产品信息齐全,而且有很多商情信息,另外就是,中电网最近几年在在线研讨会方面做的不错,很多国际大厂都在这个网站做视频研讨会,是个学习提升的好途径。
液晶网址大全
论坛
供求
阿里巴巴 中华电子采购网 中华电子元器件网 电子辅料采购网 中国电子材料网 华强电子世界网 中采网 液晶与显示 平板显示文摘 国际电子商情 万方数据 电子专业书刊网 电子产品世界 电子工程专集 电子经理世界 线路人家 今日电子 中国电子报 IC搜索 电子之家 液晶时代 彩显之家 中国平板显示器网 17站口 积水化学工业 香港爱高实业 东莞市弈东电子有限公司 深圳格力浦电子有限公司 清溢精密光电有限公司 美精微光电有限公司 深圳光阳印刷材料有限公司 长兴化学工业 苏州瑞红 飞世尔科技股份有限公司 深纺光电材料有限公司 广东福地日合偏光器材有限公司 北京金吉奥梦科技有限公司 深圳南玻 深圳南亚
/ / / / /rhqywy/bmn etenterprise/szweiguang/wellight.htm / /default.asp / / / / / / / / /cnmain.htm /
杂志
下载
sparce
PIN
菲林凸版
光刻胶
偏光片 滤光膜 材料
ITO玻璃
材料 深圳莱宝 深圳昂志 深圳豪威 深圳三鑫 ITO玻璃 深圳伟光 张家港蓝天幕墙 昆山东泰 金坛康达克 芜湖长信 蚌埠华益 北京清华亚王 石家庄永生华清 石家庄国大有限公司 河北鹿泉 烟台万润 西安瑞联 上海交大
LC
LCD中文资讯网 LCD中文资讯网
液晶网址大全 分类 大全 液晶网址 名称
Hale Waihona Puke 综合中华液晶网 清华液晶中心 中国液晶显示器网 中国液晶网 液晶时代 河北工大 世界液晶网 液晶资讯 液晶导航网 中国光学光电子导航网 中日液晶网 国际光电与显示 液晶之友 飞达光学 液晶显示器城 SMT之家 国际电光产业资讯 液晶光电研究室 广州市光学电子行业协会 中国资讯网 显示联盟 国际光电与显示网 集成电路教育网 中国液晶资讯网 52RD研发论坛 液晶之家 中国光谷论坛 平板显示吧 液晶俱乐部 液晶DIY COG工艺论坛 COB绑定技术论坛 中国平板显示网 PCB论坛网 绑定在线 中国PC论坛网
IC外贸资料
IC外贸资料South Korea Haechon Company 82-?South Korea Hanchang CorporationSouth KoreaSouth KoreaSouth Korea SEMIWELLSouth Korea HNSSouth Korea SJ CORPROATION? 82-31-2456125 South KoreaSouth Korea Bee Sung ElectronicsSouth KoreaSouth KoreaSouth Korea Semicon Networks Co., Ltd. South Korea Neodis Co.,LtdSouth Korea IP SemiconductorSouth Korea NYG CO.,LTDSouth KoreaSouth KoreaSouth Korea NetCom Co. LtdSouth Korea Jinpoong Trade Co., LtdSouth Korea Sincere Electronics CoSouth KoreaSouth Korea JM Tec Co., LtdSouth KoreaSouth Korea Mania Electronics IncSouth Korea Star Logix, IncSouth KoreaSouth Korea TnB T echSouth Korea julie 822-6679-3321South Korea Ilwol Semicom Co.,LtdSouth KoreaSouth KoreaSouth Korea Pacific Century Co., LtdSouth Korea General Parts Co.,LtdSouth Korea America TechmaSouth Korea MJCkorea 82-32-8349986South Korea Hyunjun Semiconductor Co., LtdSouth KoreaSouth KoreaSouth Korea Hye-Sung Trading Co 82--32--562-2016 South Korea Mpost co., LtdSouth KoreaSouth KoreaSouth KoreaSouth Korea lena?South Korea LeocomSouth KoreaSouth Korea DNCSouth KoreaSouth KoreaSouth Korea RaontechSouth Korea LP TRADINGSouth KoreaSouth KoreaSouth Korea Bright Electronics Co., Ltd South KoreaSouth KoreaSouth KoreaSouth Korea J-ComSouth KoreaSouth Korea Multichip Co.,LtdSouth Korea IsuTradeSouth Korea world apexSouth Korea On N Off International Co., Ltd South Korea intekkoreaSouth KoreaSouth Korea Geobo IncSouth Korea 9South KoreaSouth Korea Chungwoo TradingSouth Korea RoySouth Korea ILWOL Semicom Co LtdSouth KoreaSouth KoreaSouth Korea Dae Yang UISouth Korea IC PartnerSouth Korea Pois T echSouth Korea Mission 21 IncSouth Korea Best Elecom Co., LtdSouth Korea BaDa ElectronicsSouth Korea Samjung Trading Corp. 65 South Korea SAM Technology Inc.South Korea?South Korea?South Korea Villica International Co., Ltd South Korea Saveforyou Co., LtdSouth KoreaSouth Korea Co., Ltd ( Advanced International Korea) South Korea Mamiel Co.,LtdSouth KoreaSouth Korea Seven Semi Co., LteSouth KoreaSouth Korea? 82-2-6679429South KoreaSouth KoreaSouth KoreaSouth Korea NessTEK?South Korea Sincere Trading Co.,Ltd South Korea Bns Semiconductor Co., Ltd South Korea SJ CORPROATIONSouth Korea FourzivSouth Korea HangilSouth Korea MICOMSouth KoreaSouth KoreaSouth KoreaSouth Korea SM TECHSouth Korea PelcodeSouth KoreaSouth Korea Swan Electronics Co.,Ltd South Korea Tae Kyung SemicomSouth Korea wtg koreaSouth Korea? TONY AHN?South KoreaSouth Korea Dong Myong Semiconductors South Korea Unidus Techpia Co Ltd South KoreaSouth Korea A1 Silicon Co., LTDSouth KoreaSouth Korea 00-South Korea 205) 925-8524South KoreaSouth KoreaSouth Korea Smart People & Generate Co.,Ltd South Korea South KoreaSouth KoreaSouth Korea JINSUNG DNSSpain Dachs Kondel InternationalSpain FQ Ingenieria Electronica, SASpainSpain AgustinSpainSpain ALBERTO?SpainSpainSpain ATIS 00-34-1Spain Blanco?SpainSpain access musicSpainSpainSpainSpain "ANGEL IGLESIAS ."SpainSpainSpainSpain techgraf 00-34-9Spain VENCO ELECTRóNICA,Spain Joaquin G. de Segura 000-3Spain Sacoel .Spain Chari Muoz. 34 0Spain Find ComponentsSpain Cige Informatica, . 34-3Spain Corel Iberica ComponentesSpain dankoSpain DiscoelSpainSpain thanks 0034-657-876324Spain SalasSpainSpainSpain GRUPO INTEX-IBERCOLMEX,Spain metaliplastSpainSpain TODAS 8SpainSpain fortes y gomez fotografos scSpainSpain ELECSON COMPONENTES ELECTRONICOS, SL 34-91-4699419 Spain Giza TechnologiesSpainSpain Goldney Electronics SLSpainSpainSpain Fast Components EuropeSpain Soluciones Técnicas Solaqua Systems, 0034-928-698378 SpainSpain Javier GalianaSpainSpain Xavi?SpainSpain HEALTHCARE?Spain RADE TECNOLOGIAS Spain MELGUI ELECTRONICA Spain Const. Met. Neubauer 1 SpainSpain Josep Ma Adrià0 SpainSpainSpain AlbiralSpainSpainSpain lavisonesSpainSpain BRIGMTONSpainSpain M0NCH0Spain microcom sistemas SpainSpain ON-TVSpain Diselec Electronica SpainSpain 33-612-715742Spain PedroSpainSpainSpain pedroSpainSpain RamonsatSpainSpainSpain SocoredSpain Open Trading Technologies Spain Canarytronic ?Spain Servinteg Electrónic a . Spain Spain Silicium,SpainSpain soufimen component SpainSpainSpain TOFICONI, .SpainSpain urs andreiSpainSpainSpain 909-612-9171FranceFrance Akila 721FranceFranceFranceFranceFranceFranceFranceFranceFranceFranceFranceFranceFrance HazFrance IsaroFrance jk artz 3FranceFranceFrance kasun 094-0-6FranceFrance north sails?FranceFranceFrance Prinex Enterprises Pvt Ltd FranceFrance 9FranceFranceFranceFranceFrance Samanthika NarayanaFranceFrance 0044-FranceFrance 7-473-2727012FranceFrance Weerasekara? 90-532-2584587 Sudan alyaa medical centerSudanSudan Khebra Center。
LIS8412【最新版】_Datasheet V1.2
引脚功能描述
引脚顺序 1 2 3 4 5 6 7 8
引脚名 GND S CS VDD NC Drain Drain Drain
输入/输出 -
输入 输入 输入
输入\输出 输入\输出 输入\输出
2/7
功能 芯片地 内部 MOS 源极 初级侧电流检测 芯片供电 空脚 内部 MOS 漏极 内部 MOS 漏极 内部 MOS 漏极
应用
LED球泡灯驱动 LED T5/T8灯驱动
功率应用
输入电压 170VAC-264VAC
典型应用电路
LED天花灯驱动 LED景观灯驱动
输出电压 <100V
1/7
输出电流 <360MA
LIS-DS-8412-V1.2
LIS8412
非隔离降压式 LED 驱动控制器
功能框图
引脚俯视图 (DIP-8)
6/7
LIS-DS-8412-V1.2
LIS8412
非隔离降压式 LED 驱动控制器
封装信息
修改历史
版本 V1.1 V1.2
日期 May, 2013 Jun, 2013
-0.3V~35V 150 oC -40 oC~85 oC -55 oC~150 oC 260 oC
-0.3V~7V
-0.3V~600V
标识和订购信息
LIS8412-D-G-TB
封装类型 DIP-8
封装编带 Tube
3/7
LIS-DS-8412-V1.2
LIS8412
非隔离降压式 LED 驱动控制器
VDD 过压保护 LIS8412 也集成了 VDD 的过压保护功能,当 VDD 电 压超过保护阈值后, 开关管会关断,进入自动重 起保护模式。当错误条件消失,系统自动恢复正常 工护功能,当芯片温度超过保 护阈值后,开关管会关断,进入自动重起保护模式。 当错误条件消失,系统自动恢复正常工作状态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Rev 21.11.01, Page 1/13current of 100mApulse current of 100mAFig. 2: Signal patterns for Example 1 -pulse current of 100mAAPPLICATION NOTESSetting the laser currentWhen switching DC currents of up to 150mA or pulse currents of up to 700mA one channel is sufficient (Example 1). Input ENx of the unused channel should be jumpered to GND and pin AGNDx left open. Higher currents or several different current levels can be obtained by using both channels (Example 2 and 3).Example 1:Switching a current of 100mA 1. 100mA < 150mA | one channel 2. Switching on and off only | RK can beomitted (RK = 0S )3. As shown in Figure 1 (cf. data sheet, Figures2..4), the required voltage V(CI) for RK = 0S is read off at I(LDK) = 100mA as V(CI) =1.75VWith the circuit shown in Figure 3 and a voltage of 1.75V at pin CI the laser current can be switched between typically 0mA and 100mA by applying an appropriate pulse pattern to EN1.Rev 21.11.01, Page 2/13Fig. 5: Signal patterns for Example 2Example 2:Switching between 50mA and 250mA 1.More than two current levels | both channelsare required2.The lower DC current level of 50mA isprovided by channel 1 and the remaining 200mA pulse current by channel 23.As shown in Figure 4 (cf. data sheet, Figure3), an RK2 value is selected for I(LDK) =200mA and the corresponding voltage V(CI)then determined - e.g. RK2 = 2S und V(CI) =2.75V4.Again as shown in Figure 4, the appropriatevalue of RK1 is determined for I(LDK) =50mA and V(CI) = 2.75V as RK1 = 20SWith the circuit shown in Figure 6, a voltage of 2.75V at pin CI, RK1 = 20S , RK2 = 2S and EN1 = VDD the laser current can be switched between typically 50mA and 250mA by applying an appropriate pulse pattern to EN2.Rev 21.11.01, Page 3/13Fig. 7: Signal patterns for Example 3Example 3:Switching the laser current between 0mA, 100mA, 200mA and 300mA1. More than two current levels | both channelsare required2.100mA are provided by channel 1, 200mA bychannel 2 and 300mA by both channels together3.Similar to Example 2, here RK2 is chosen to3S and V(CI) to 3V for I(LDK) = 200mA4.As shown in Figure 3 of the data sheet thecorresponding value of RK1 is read off at ca.9S for I(LDK) = 100mA and V(CI) = 3VWith the circuit shown in Figure 8, a voltage of 3V at pin CI, RK2 = 3S and RK1 = 9S a pulse pattern similar to the one shown in Figure 7 can be obtained.Rev 21.11.01, Page 4/13VREF Fig. 9: Controlled laser power with iC-HK in conjunction with iC-WK Fig. 10: Pulse pattern for Example 4 -laser power controlled by iC-WKControlling the laser power in conjunction with iC-WKiC-HK operates as a voltage-controlled current source. Canges in temperature, ageing and reflections from attached lenses will alter the power/current ratio of the laser diode in such a way that the emitted laser power differs from the adjusted bias point. The laser power thus has to be monitored and the laser current readjusted accordingly. This can be achieved by using laser driver iC-WK; this device has the added advantage of an integrated soft start facility which protects the laser diode when the power supply is switched on.When using laser diodes with integrated monitor diodes (all pin configurations are possible) iC-WK can monitor the emitted laser power and control the voltage at pin CI in such a way that the mean value of the monitor current Im av - and thus the mean value of the emitted optical laser power - remains constant. For iC-WK to achieve a proper control to the mean the pulse frequency has to be higher than 100kHz. Otherwise iC-WK will try to readjust with every pulse.It is imperative that the pulse signals are available at ENx when the power supply is switched on! Otherwise, as a monitor signal is then lacking, iC-WK will set the voltage at CI to maximum which might damage the laser diode with the first high pulse at ENx.Example 4: Switching a current of 100mA with control to the mean value by iC-WKThe typical monitor current (Im hi ) for the chosen laser power is determined from the laser diode data sheet.Since iC-WK controls the mean value of the monitor current this has to be calculated from the duty cycle:Im av = Im hi × t hi / TThe value of RM is calculated from the internal reference voltage of iC-WK (Item No. 101, iC-WKdata sheet: typically 500mV) asRM = 500 mV / Im av iC-WK sets voltage V(CI) so that the mean value of the monitor current matches the target current Im av .Rev 21.11.01, Page 5/13 Fig. 11: Ripple at CI with respect to ImRev 21.11.01, Page 6/13Rev 21.11.01, Page 7/13power control for pulse and bias currentiC-WK controls the mean value of the monitor current.This thus has to be calculated from the high and low level and the duty cycle of the monitor current as follows:Im av = Im hi × t hi / T + Im lo × t lo / TFor a current ratio of k = Im hi / Im lo it follows that Im av = Im lo × (t lo + k t hi ) / T orIm av = Im hi / k × (t lo + k t hi ) / TResistor RM is calculated asRM = 500mV / Im avThe optimum operating point for iC-WK is if the voltage across CI and GND is approximately 1.7V. With the aid of resistor RGND or diode DGND the ground potential of iC-WK can thus be raised with respect to the system ground. RGND is typically set toRGND = (V(CI) - 1.7V) / 45mADiode DGND should be selected so that the forward voltage V fw (DGND) isV fw (DGND) = V(CI) - 1.7VRev 21.11.01, Page 8/13Fig. 18: Puls pattern for overcurrent shutdownVREF Overcurrent protection through permanent shutdown of iC-WKTo protect the laser diode the additional circuitry shown in Figure 17 can be applied. The permanent shutdown of iC-WK prevents overcurrent.If for a given laser current Iop the overcurrent threshold Iop max is a certain percentage higher than the desired high level Iop hi , then this also applies to each of the partial currents for the two channels. It is thus sufficient when monitoring the laser current to monitor a single channel only. To keep the requirements on the specification of the switching transistor Q1 relatively low it is advisable to monitor the channel with the lower frequency. The shutdown/limitation threshold is calculated asIop lomax = Iop lo × Iop max / Iop hi .The required RKx for the bias channel is calculated asRKx = U BE / Iop maxThe value for the other RKx and voltage V(CI) can be determined using Figures 2..4 from the data sheet.With excessive laser current the voltage drop across RKx exceeds U BE (Q1). Transistor Q1 is switched on, thus lowering the voltage at pin GND on iC-WK and therefore the voltage at CI. iC-WK tries to compensate for this,resulting in a higher current in LDK which activates iC-WK‘s permanent overcurrent shutdown.Rev 21.11.01, Page 9/13Fig. 20: Temperature dependency of the laserbiasVREF Fig. 19: Laser current limitation without an iC-WK shutdownLaser current limitation without an iC-WK shutdownAnother way of providing protection against overcurrent is illustrated in Figure 19. With increasing current through RK1 transistor Q1 is switched on, lowering the voltage at CI and thus reducing the laser current without triggering iC-WK‘s overcurrent shutdown.Caution: Due to the direct feedback of the controlled current through RKx to the control voltage at CI there is a certain tendency towards oscillation. This can be counteracted by experimenting with the settings of the components involved.Hint: Please bear in mind that the laser characteristic of most laser diodes has a strong temperature dependency, in particular with regard to threshold current (I th ) and efficiency. To avoid damage to the laser diode sufficient cooling has to be provided and/or protection against overcurrent implemented as shown above.Rev 21.11.01, Page 10/13Layout adviseiC-HK can be used in a wide range of applications from CW to over 150 MHz. Very fast switches have thus been integrated, which have to be properly blocked to prevent ringing. A small blocking capacitor is therefore required for iC-WK between pin 2 (CI) and 3 (AGND) and also at pin 4 (CI) of iC-HK (cf. Figure 19). Increasing capacitor CLDA might also help to suppress ringing.If the connection between the laser diode and iC-HK (LDK Pin 7) is loaded inductively, a small capacitor CLD in parallel with the laser diode is recommended to suppress current spikes.With higher pulse frequencies it is advisable to use separate grounds for iC-WK, iC-HK, capacitor C1 and resistors Rkx respectively.The connection between VCC and LDA (dashed line) is necessary for laser currents >70mA.Device Typical value CommentCVCC 100nF Power supply blocking capacitor for iC-WK CVDD 100nF Power supply blocking capacitor for iC-HK CLDA 1µF Laser diode supply smoothing capacitorCLD 2.2nF Laser diode ESD protection, filtering with inductive loads; to be mounted directly across the laser diode CI 47nF..Averaging capacitor for V(CI)-control by iC-WK CM MDA smoothing capacitor, has to be calculatedC122pFCI smoothing capacitor (used with current limitation)LEDV fw <V(VCC WK ) -V(GND WK ) -1V Load for iC-WK output stage; LED must be capable of 45mA; may be replaced by a resistor or even jumpered DGND V fw .V(CI) - 1.7V Ground shift at iC-WK to increase V(CI)RGND 0S .. 100S Ground shift at iC-WK to increase V(CI)RM 200S .. 50k S Set point of monitor current (mean value)RK10S .. Set point of current through channel 1RK20S .. Set point of current through channel 2RCI1k SDecoupling of pin CI at iC-WK and iC-HK for laser current limitationRev 21.11.01, Page 11/13Fig. 21: Minimum circuit for M- or N-type laserdiodes; jumper J1 for I(LDK) > 70mA Fig. 22: Minimum circuit for P-type laser diodes;jumper J1 for I(LDK) > 70mAlevels (e.g. 50mA and 220mA)Fig. 24: Circuit for switching between two currentlevels with GND shift for iC-WK via RGND or DGNDAPPLICATION EXAMPLESRev 21.11.01, Page 12/13200200Rev 21.11.01, Page 13/13 RMcurrent and to allow dithering。