【超级经典】一元二次不等式及其解法(含答案)
(完整版)一元二次不等式的经典例题及详解
一元二次不等式专题练习例1 解不等式:(1)015223>--x x x ;(2)0)2()5)(4(32<-++x x x .例2 解下列分式不等式: (1)22123+-≤-x x (2)12731422<+-+-x x x x例3 解不等式242+<-x x例4 解不等式04125622<-++-x x x x . 例5 解不等式x xx x x <-+-+222322. 例6 设R m ∈,解关于x 的不等式03222<-+mx x m .例7 解关于x 的不等式)0(122>->-a x a ax . 例8 解不等式331042<--x x .例9 解关于x 的不等式0)(322>++-a x a a x . 例10 已知不等式02>++c bx ax 的解集是{})0(><<αβαx x .求不等式02>++a bx cx 的解集.例11 若不等式1122+--<++-x x b x x x a x 的解为)1()31(∞+-∞,, ,求a 、b 的值. 例12不等式022<-+bx ax 的解集为{}21<<-x x ,求a 与b 的值. 例13解关于x 的不等式01)1(2<++-x a ax . 例14 解不等式x x x ->--81032.例1解:(1)原不等式可化为0)3)(52(>-+x x x把方程0)3)(52(=-+x x x 的三个根3,25,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.∴原不等式解集为⎭⎬⎫⎩⎨⎧><<-3025x x x 或 (2)原不等式等价于⎩⎨⎧>-<-≠⇔⎩⎨⎧>-+≠+⇔>-++2450)2)(4(050)2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{}2455>-<<--<x x x x 或或说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”,其法如下图.分析:当分式不等式化为)0(0)()(≤<或x g x f 时,要注意它的等价变形 ①0)()(0)()(<⋅⇔<x g x f x g x f ②0)()(0)(0)()(0)(0)()(0)()(<⋅=⇔≤⎩⎨⎧≠≤⋅⇔≤x g x f x f x g x f x g x g x f x g x f 或或例2(1)解:原不等式等价于⎩⎨⎧≠-+≥+-+-⇔≥+-+-⇔≤+-++-⇔≤+---+⇔≤+--⇔+≤-0)2)(2(0)2)(2)(1)(6(0)2)(2()1)(6(0)2)(2(650)2)(2()2()2(302232232x x x x x x x x x x x x x x x x x x x x xx x x x用“穿根法”∴原不等式解集为[)[)+∞⋃-⋃--∞,62,1)2,(。
第04讲 一元二次不等式及其解法(解析版)
第04讲一元二次不等式及其解法(解析版)在数学中,一元二次不等式是一种包含一个未知数的二次不等式。
在解决一元二次不等式的问题时,常用的方法有图形法、试探法、代入法和区间判定法等。
本文将对一元二次不等式的解法进行解析,并详细介绍各个方法的应用。
一、图形法图形法是解决一元二次不等式问题的一种直观方法。
我们可以绘制一元二次不等式的函数图像,并观察函数图像与坐标轴的交点。
通过观察交点的位置,我们可以判断出一元二次不等式的解集。
例如,对于不等式x^2 - 4x > 0,我们可以将其转化为方程x^2 - 4x = 0,并绘制出函数图像。
解方程得到两个根x = 0和x = 4,并在坐标轴上标记出这两个点。
由于不等式为大于0,即x^2 - 4x > 0,我们需要找到函数图像在x = 0和x = 4之间的部分。
从图形上观察得知,解集为x ∈ (0, 4)。
二、试探法试探法是解决一元二次不等式问题的一种简单有效的方法。
我们通过取特定的值来检验不等式的成立情况,从而确定解集的范围。
以不等式x^2 - 5x + 6 < 0为例,我们可以通过对不等式两边同时代入特定的值,如x = 0、x = 3、x = 4等,来观察不等式的成立情况。
经过试探可知,当x ∈ (2, 3)时,不等式成立。
因此,解集为x ∈ (2, 3)。
三、代入法代入法是一种将不等式转化为方程然后解方程的方法。
我们通过将不等式两边同时减去一个常数,使其转化为一个等式,然后通过解方程求解解集。
例如,在解决不等式x^2 - 3x > 2时,我们可以将不等式转化为方程x^2 - 3x = 2。
然后,我们将方程两边同时减去2,得到x^2 - 3x - 2 = 0。
通过解方程可以得出两个根x = -1和x = 2。
由于不等式为大于2,即x^2 - 3x > 2,我们需要找到函数图像在x = -1和x = 2之外的部分。
因此,解集为x ∈ (-∞, -1) ∪ (2, +∞)。
(十)一元二次不等式及其解法(答案)
§7.2 一元二次不等式及其解法题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0.( √ )(2)若不等式ax 2+bx +c >0的解集是(-∞,x 1)∪(x 2,+∞),则方程ax 2+bx +c =0的两个根是x 1和x 2.( √ )(3)若方程ax 2+bx +c =0(a ≠0)没有实数根,则不等式ax 2+bx +c >0的解集为R .( × ) (4)不等式ax 2+bx +c ≤0在R 上恒成立的条件是a <0且Δ=b 2-4ac ≤0.( × )(5)若二次函数y =ax 2+bx +c 的图象开口向下,则不等式ax 2+bx +c <0的解集一定不是空集.( √ ) 题组二 教材改编2.已知全集U =R ,集合A ={x |x 2-x -6≤0},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪4-x x +1≤0,那么集合A ∩(∁U B )等于( )A .[-2,4)B .(-1,3]C .[-2,-1]D .[-1,3] 答案 D解析 因为A ={x |-2≤x ≤3},B ={x |x <-1或x ≥4}, 故∁U B ={x |-1≤x <4},所以A ∩(∁U B )={x |-1≤x ≤3},故选D. 3.y =log 2(3x 2-2x -2)的定义域是________________. 答案 ⎝ ⎛⎭⎪⎫-∞,1-73∪⎝ ⎛⎭⎪⎫1+73,+∞解析 由题意,得3x 2-2x -2>0,令3x 2-2x -2=0,得x 1=1-73,x 2=1+73,∴3x 2-2x -2>0的解集为 ⎝ ⎛⎭⎪⎫-∞,1-73∪⎝ ⎛⎭⎪⎫1+73,+∞. 题组三 易错自纠4.不等式-x 2-3x +4>0的解集为________.(用区间表示) 答案 (-4,1)解析 由-x 2-3x +4>0可知,(x +4)(x -1)<0, 得-4<x <1.5.若关于x 的不等式ax 2+bx +2>0的解集是⎝⎛⎭⎫-12,13,则a +b =________. 答案 -14解析 ∵x 1=-12,x 2=13是方程ax 2+bx +2=0的两个根,∴⎩⎨⎧a 4-b2+2=0,a 9+b3+2=0,解得⎩⎪⎨⎪⎧a =-12,b =-2,∴a +b =-14.6.已知关于x 的不等式(a 2-4)x 2+(a +2)x -1≥0的解集为空集,则实数a 的取值范围为____________. 答案 ⎣⎡⎭⎫-2,65 解析 当a 2-4=0时,a =±2.若a =-2,不等式可化为-1≥0,显然无解,满足题意;若a =2,不等式的解集不是空集,所以不满足题意;当a ≠±2时,要使不等式的解集为空集,则⎩⎪⎨⎪⎧a 2-4<0,(a +2)2+4(a 2-4)<0,解得-2<a <65.综上,实数a 的取值范围为⎣⎡⎭⎫-2,65.题型一 一元二次不等式的求解命题点1 不含参的不等式典例 求不等式-2x 2+x +3<0的解集. 解 化-2x 2+x +3<0为2x 2-x -3>0, 解方程2x 2-x -3=0,得x 1=-1,x 2=32,∴不等式2x 2-x -3>0的解集为(-∞,-1)∪⎝⎛⎭⎫32,+∞, 即原不等式的解集为(-∞,-1)∪⎝⎛⎭⎫32,+∞. 命题点2 含参不等式典例 解关于x 的不等式ax 2-2≥2x -ax (a ∈R ). 解 原不等式可化为ax 2+(a -2)x -2≥0.①当a =0时,原不等式化为x +1≤0,解得x ≤-1. ②当a >0时,原不等式化为⎝⎛⎭⎫x -2a (x +1)≥0, 解得x ≥2a或x ≤-1.③当a <0时,原不等式化为⎝⎛⎭⎫x -2a (x +1)≤0. 当2a >-1,即a <-2时,解得-1≤x ≤2a ; 当2a=-1,即a =-2时,解得x =-1满足题意;当2a <-1,即-2<a <0时,解得2a≤x ≤-1. 综上所述,当a =0时,不等式的解集为{x |x ≤-1};当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥2a 或x ≤-1; 当-2<a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪ 2a ≤x ≤-1;当a =-2时,不等式的解集为{-1};当a <-2时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-1≤x ≤2a . 思维升华 含有参数的不等式的求解,往往需要对参数进行分类讨论.(1)若二次项系数为常数,首先确定二次项系数是否为正数,再考虑分解因式,对参数进行分类讨论,若不易分解因式,则可依据判别式符号进行分类讨论.(2)若二次项系数为参数,则应先考虑二次项系数是否为零,确定不等式是不是二次不等式,然后再讨论二次项系数不为零的情形,以便确定解集的形式; (3)对方程的根进行讨论,比较大小,以便写出解集. 跟踪训练 解下列不等式: (1)0<x 2-x -2≤4; (2)12x 2-ax >a 2(a ∈R ). 解 (1)原不等式等价于⎩⎪⎨⎪⎧ x 2-x -2>0,x 2-x -2≤4,则⎩⎪⎨⎪⎧(x -2)(x +1)>0,(x -3)(x +2)≤0, 可得⎩⎪⎨⎪⎧x >2或x <-1,-2≤x ≤3.借助于数轴,如图所示,∴原不等式的解集为{x |-2≤x <-1或2<x ≤3}. (2)∵12x 2-ax >a 2,∴12x 2-ax -a 2>0, 即(4x +a )(3x -a )>0,令(4x +a )(3x -a )=0, 得x 1=-a 4,x 2=a3.当a >0时,-a 4<a3,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪ x <-a 4或x >a 3; 当a =0时,x 2>0,解集为{x |x ∈R 且x ≠0};当a <0时,-a 4>a3,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <a 3或x >-a 4. 综上所述,当a >0时,不等式的解集为 ⎩⎨⎧x ⎪⎪⎭⎬⎫x <-a 4或x >a 3;当a =0时,不等式的解集为{x |x ∈R 且x ≠0}; 当a <0时,不等式的解集为⎩⎨⎧x ⎪⎪⎭⎬⎫x <a 3或x >-a 4.题型二 一元二次不等式恒成立问题命题点1 在R 上的恒成立问题典例 (1)若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为( )A .(-3,0]B .[-3,0)C .[-3,0]D .(-3,0) 答案 D解析 ∵2kx 2+kx -38<0为一元二次不等式,∴k ≠0,又2kx 2+kx -38<0对一切实数x 都成立,则必有⎩⎪⎨⎪⎧2k <0,Δ=k 2-4×2k ×⎝⎛⎭⎫-38<0,解得-3<k <0. (2)设a 为常数,对于∀x ∈R ,ax 2+ax +1>0,则a 的取值范围是( ) A .(0,4) B .[0,4) C .(0,+∞) D .(-∞,4) 答案 B解析 对于∀x ∈R ,ax 2+ax +1>0,则必有⎩⎪⎨⎪⎧a >0,Δ=a 2-4a <0或a =0,∴0≤a <4. 命题点2 在给定区间上的恒成立问题典例 设函数f (x )=mx 2-mx -1.若对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围. 解 要使f (x )<-m +5在x ∈[1,3]上恒成立, 即m ⎝⎛⎭⎫x -122+34m -6<0在x ∈[1,3]上恒成立. 有以下两种方法:方法一 令g (x )=m ⎝⎛⎭⎫x -122+34m -6,x ∈[1,3]. 当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3),即7m -6<0, 所以m <67,所以0<m <67;当m =0时,-6<0恒成立; 当m <0时,g (x )在[1,3]上是减函数, 所以g (x )max =g (1),即m -6<0, 所以m <6,所以m <0.综上所述,m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪m <67. 方法二 因为x 2-x +1=⎝⎛⎭⎫x -122+34>0, 又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.因为函数y =6x 2-x +1=6⎝⎛⎭⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可. 所以m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪m <67. 命题点3 给定参数范围的恒成立问题典例 对任意m ∈[-1,1],函数f (x )=x 2+(m -4)x +4-2m 的值恒大于零,求x 的取值范围. 解 由f (x )=x 2+(m -4)x +4-2m =(x -2)m +x 2-4x +4, 令g (m )=(x -2)m +x 2-4x +4.由题意,知在[-1,1]上,g (m )的值恒大于零,∴⎩⎪⎨⎪⎧g (-1)=(x -2)×(-1)+x 2-4x +4>0,g (1)=(x -2)+x 2-4x +4>0. 解得x <1或x >3.故当x 的取值范围为(-∞,1)∪(3,+∞)时,对任意的m ∈[-1,1],函数f (x )的值恒大于零. 思维升华 (1)对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.另外常转化为求二次函数的最值或用分离参数法求最值.(2)解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数. 跟踪训练 函数f (x )=x 2+ax +3.(1)当x ∈R 时,f (x )≥a 恒成立,求实数a 的取值范围; (2)当x ∈[-2,2]时,f (x )≥a 恒成立,求实数a 的取值范围; (3)当a ∈[4,6]时,f (x )≥0恒成立,求实数x 的取值范围. 解 (1)∵当x ∈R 时,x 2+ax +3-a ≥0恒成立, 需Δ=a 2-4(3-a )≤0,即a 2+4a -12≤0, ∴实数a 的取值范围是[-6,2].(2)当x ∈[-2,2]时,设g (x )=x 2+ax +3-a ≥0,分如下三种情况讨论(如图所示):①如图①,当g (x )的图象恒在x 轴上方且满足条件时,有Δ=a 2-4(3-a )≤0,即-6≤a ≤2. ②如图②,g (x )的图象与x 轴有交点, 但当x ∈[-2,+∞)时,g (x )≥0,即⎩⎪⎨⎪⎧Δ≥0,x =-a2≤-2,g (-2)≥0,即⎩⎪⎨⎪⎧a 2-4(3-a )≥0,-a2≤-2,4-2a +3-a ≥0,可得⎩⎪⎨⎪⎧a ≥2或a ≤-6,a ≥4,a ≤73,解得a ∈∅.③如图③,g(x)的图象与x轴有交点,但当x∈(-∞,2]时,g(x)≥0.即⎩⎪⎨⎪⎧Δ≥0,x=-a2≥2,g(2)≥0,即⎩⎪⎨⎪⎧a2-4(3-a)≥0,-a2≥2,7+a≥0,可得⎩⎪⎨⎪⎧a≥2或a≤-6,a≤-4,a≥-7.∴-7≤a≤-6,综上,实数a的取值范围是[-7,2].(3)令h(a)=xa+x2+3.当a∈[4,6]时,h(a)≥0恒成立.只需⎩⎪⎨⎪⎧h(4)≥0,h(6)≥0,即⎩⎪⎨⎪⎧x2+4x+3≥0,x2+6x+3≥0,解得x≤-3-6或x≥-3+ 6.∴实数x的取值范围是(-∞,-3-6]∪[-3+6,+∞).题型三一元二次不等式的应用典例甲厂以x千克/小时的速度匀速生产某种产品(生产条件要求1≤x≤10),每小时可获得的利润是100·⎝⎛⎭⎫5x+1-3x元.(1)要使生产该产品2小时获得的利润不低于3 000元,求x 的取值范围;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润. 解 (1)根据题意,得200⎝⎛⎭⎫5x +1-3x ≥3 000, 整理得5x -14-3x ≥0,即5x 2-14x -3≥0,又1≤x ≤10,可解得3≤x ≤10.即要使生产该产品2小时获得的利润不低于3 000元,x 的取值范围是[3,10]. (2)设利润为y 元,则y =900x ·100⎝⎛⎭⎫5x +1-3x =9×104⎝⎛⎭⎫5+1x -3x 2=9×104⎣⎡⎦⎤-3⎝⎛⎭⎫1x -162+6112, 故当x =6时,y max =457 500元.即甲厂以6千克/小时的生产速度生产900千克该产品时获得的利润最大,最大利润为457 500元. 思维升华 求解不等式应用题的四个步骤(1)阅读理解,认真审题,把握问题中的关键量,找准不等关系.(2)引进数学符号,将文字信息转化为符号语言,用不等式表示不等关系,建立相应的数学模型. (3)解不等式,得出数学结论,要注意数学模型中自变量的实际意义. (4)回归实际问题,将数学结论还原为实际问题的结果.跟踪训练 某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域; (2)若再要求该商品一天营业额至少为10 260元,求x 的取值范围. 解 (1)由题意,得y =100⎝⎛⎭⎫1-x 10·100⎝⎛⎭⎫1+850x . 因为售价不能低于成本价,所以100⎝⎛⎭⎫1-x10-80≥0. 所以y =f (x )=40(10-x )(25+4x ),定义域为x ∈[0,2]. (2)由题意得40(10-x )(25+4x )≥10 260, 化简得8x 2-30x +13≤0,解得12≤x ≤134.所以x 的取值范围是⎣⎡⎦⎤12,2.转化与化归思想在不等式中的应用典例 (1)已知函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),若关于x 的不等式f (x )<c 的解集为(m ,m +6),则实数c 的值为________.(2)已知函数f (x )=x 2+2x +ax ,若对任意x ∈[1,+∞),f (x )>0恒成立,则实数a 的取值范围是________.思想方法指导 函数的值域和不等式的解集转化为a ,b 满足的条件;不等式恒成立可以分离常数,转化为函数值域问题. 解析 (1)由题意知f (x )=x 2+ax +b =⎝⎛⎭⎫x +a 22+b -a 24. ∵f (x )的值域为[0,+∞), ∴b -a 24=0,即b =a 24.∴f (x )=⎝⎛⎭⎫x +a 22. 又∵f (x )<c ,∴⎝⎛⎭⎫x +a22<c , 即-a 2-c <x <-a2+c .∴⎩⎨⎧-a2-c =m , ①-a2+c =m +6. ②②-①,得2c =6,∴c =9.(2)∵当x ∈[1,+∞)时,f (x )=x 2+2x +a x >0恒成立,即x 2+2x +a >0恒成立.即当x≥1时,a>-(x2+2x)恒成立.令g(x)=-(x2+2x),则g(x)=-(x2+2x)=-(x+1)2+1在[1,+∞)上单调递减,∴g(x)max=g(1)=-3,故a>-3.∴实数a的取值范围是{a|a>-3}.答案(1)9(2){a|a>-3}1.不等式(x-1)(2-x)≥0的解集为()A.{x|1≤x≤2} B.{x|x≤1或x≥2} C.{x|1<x<2} D.{x|x<1或x>2}答案A解析由(x-1)(2-x)≥0可知,(x-2)(x-1)≤0,所以不等式的解集为{x|1≤x≤2}.2.(2018·河北省三市联考)若集合A={x|3+2x-x2>0},集合B={x|2x<2},则A∩B等于()A .(1,3)B .(-∞,-1)C .(-1,1)D .(-3,1)答案 C解析 依题意,可求得A =(-1,3),B =(-∞,1),∴A ∩B =(-1,1).3.(2018·商丘调研)已知函数f (x )=⎩⎪⎨⎪⎧x +2,x ≤0,-x +2,x >0,则不等式f (x )≥x 2的解集为( ) A .[-1,1] B .[-2,2] C .[-2,1] D .[-1,2]答案 A解析 方法一 当x ≤0时,x +2≥x 2,∴-1≤x ≤0;①当x >0时,-x +2≥x 2,∴0<x ≤1.②由①②得原不等式的解集为{x |-1≤x ≤1}.方法二 作出函数y =f (x )和函数y =x 2的图象,如图所示,由图知f (x )≥x 2的解集为[-1,1].4.若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的取值范围是( )A .{a |0<a <4}B .{a |0≤a <4}C .{a |0<a ≤4}D .{a |0≤a ≤4}答案 D解析 由题意知,当a =0时,满足条件.当a ≠0时,由⎩⎪⎨⎪⎧a >0,Δ=a 2-4a ≤0, 得0<a ≤4,所以0≤a ≤4.5.某商场若将进货单价为8元的商品按每件10元出售,每天可销售100件,现准备采用提高售价来增加利润.已知这种商品每件售价提高1元,销售量就会减少10件.那么要保证每天所赚的利润在320元以上,售价每件应定为( )A .12元B .16元C .12元到16元之间D .10元到14元之间答案 C解析 设售价定为每件x 元,利润为y ,则y =(x -8)[100-10(x -10)],依题意有(x -8)[100-10(x -10)]>320,即x 2-28x +192<0,解得12<x <16,所以每件售价应定为12元到16元之间.6.若不等式x 2-(a +1)x +a ≤0的解集是[-4,3]的子集,则a 的取值范围是( )A .[-4,1]B .[-4,3]C .[1,3]D .[-1,3]答案 B解析 原不等式为(x -a )(x -1)≤0,当a <1时,不等式的解集为[a,1],此时只要a ≥-4即可,即-4≤a <1;当a =1时,不等式的解为x =1,此时符合要求;当a >1时,不等式的解集为[1,a ],此时只要a ≤3即可,即1<a ≤3,综上可得-4≤a ≤3.7.若不等式-2≤x 2-2ax +a ≤-1有唯一解,则a 的值为________.答案 1±52解析 若不等式-2≤x 2-2ax +a ≤-1有唯一解,则x 2-2ax +a =-1有两个相等的实根,所以Δ=4a 2-4(a +1)=0,解得a =1±52. 8.若0<a <1,则不等式(a -x )⎝⎛⎭⎫x -1a >0的解集是____________. 答案 ⎩⎨⎧⎭⎬⎫x ⎪⎪ a <x <1a 解析 原不等式即(x -a )⎝⎛⎭⎫x -1a <0, 由0<a <1,得a <1a ,∴a <x <1a. ∴不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪ a <x <1a . 9.(2018·济南模拟)若不等式mx 2+2mx -4<2x 2+4x 对任意x 都成立,则实数m 的取值范围是________.答案 (-2,2]解析 原不等式等价于,(m -2)x 2+2(m -2)x -4<0,①当m -2=0,即m =2时,对任意x ,不等式都成立;②当m -2<0,即m <2时,Δ=4(m -2)2+16(m -2)<0,解得-2<m <2.综合①②,得m ∈(-2,2].10.(2018·湛江调研)已知函数f (x )=ax 2+bx +c (a ≠0),若不等式f (x )<0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <12或x >3,则f (e x )>0(e 是自然对数的底数)的解集是__________. 答案 {x |-ln 2<x <ln 3}解析 依题意可得f (x )=a ⎝⎛⎭⎫x -12(x -3)(a <0),则f (e x )=a ⎝⎛⎭⎫e x -12(e x -3)(a <0), 由f (e x )=a ⎝⎛⎭⎫e x -12(e x -3)>0,可得12<e x <3, 解得-ln 2<x <ln 3.11.设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ).(1)若m =-1,n =2,求不等式F (x )>0的解集;(2)若a >0,且0<x <m <n <1a,比较f (x )与m 的大小. 解 (1)由题意知,F (x )=f (x )-x =a (x -m )(x -n ).当m =-1,n =2时,不等式F (x )>0,即a (x +1)(x -2)>0.当a >0时,不等式F (x )>0的解集为{x |x <-1或x >2};当a <0时,不等式F (x )>0的解集为{x |-1<x <2}.(2)f (x )-m =F (x )+x -m =a (x -m )(x -n )+x -m =(x -m )(ax -an +1),∵a >0,且0<x <m <n <1a, ∴x -m <0,1-an +ax >0.∴f (x )-m <0,即f (x )<m .12.已知不等式(a +b )x +2a -3b <0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >-34,求不等式(a -2b )x 2+2(a -b -1)x +a -2>0的解集.解 因为(a +b )x +2a -3b <0,所以(a +b )x <3b -2a ,因为不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >-34, 所以a +b <0,且3b -2a a +b=-34, 解得a =3b <0,则不等式(a -2b )x 2+2(a -b -1)x +a -2>0,等价于bx 2+(4b -2)x +3b -2>0,即x 2+⎝⎛⎭⎫4-2b x +3-2b<0, 即(x +1)⎝⎛⎭⎫x +3-2b <0.因为-3+2b<-1, 所以所求不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-3+2b <x <-1.13.若关于x 的不等式x 2+ax -2>0在区间[1,5]上有解,则实数a 的取值范围是____________.答案 ⎝⎛⎭⎫-235,+∞ 解析 方法一 ∵x 2+ax -2>0在x ∈[1,5]上有解,令f (x )=x 2+ax -2,∵f (0)=-2<0,f (x )的图象开口向上,∴只需f (5)>0,即25+5a -2>0,解得a >-235. 方法二 由x 2+ax -2>0在x ∈[1,5]上有解,可得a >2-x 2x =2x-x 在x ∈[1,5]上有解. 又f (x )=2x-x 在x ∈[1,5]上是减函数, ∴⎝⎛⎭⎫2x -x min =-235,只需a >-235. 14.不等式a 2+8b 2≥λb (a +b )对于任意的a ,b ∈R 恒成立,则实数λ的取值范围为__________. 答案 [-8,4]解析 因为a 2+8b 2≥λb (a +b )对于任意的a ,b ∈R 恒成立,所以a 2+8b 2-λb (a +b )≥0对于任意的a ,b ∈R 恒成立,即a 2-λba +(8-λ)b 2≥0恒成立,由一元二次不等式的性质可知,Δ=λ2b 2+4(λ-8)b 2=b 2(λ2+4λ-32)≤0,所以(λ+8)(λ-4)≤0,解得-8≤λ≤4.15.(2018·郑州质检)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≥0,x 2-2x ,x <0, 若关于x 的不等式[f (x )]2+af (x )-b 2<0恰有1个整数解,则实数a 的最大值是( )A .2B .3C .5D .8答案 D解析 作出函数f (x )的图象如图实线部分所示,由[f (x )]2+af (x )-b 2<0, 得-a -a 2+4b 22<f (x )<-a +a 2+4b 22, 若b ≠0,则f (x )=0满足不等式,即不等式有2个整数解,不满足题意,所以b =0,所以-a <f (x )<0,且整数解x 只能是3,当2<x <4时,-8<f (x )<0,所以-8≤-a <-3,即a 的最大值为8,故选D.16.(2017·宿州模拟)若关于x 的不等式4x -2x +1-a ≥0在[1,2]上恒成立,则实数a 的取值范围为__________.答案 (-∞,0]解析 因为不等式4x -2x +1-a ≥0在[1,2]上恒成立,所以4x -2x +1≥a 在[1,2]上恒成立.令y =4x -2x +1=(2x )2-2×2x +1-1=(2x -1)2-1.因为1≤x ≤2,所以2≤2x ≤4.由二次函数的性质可知,当2x =2,即x =1时,y 取得最小值0,所以实数a 的取值范围为(-∞,0].。
高考数学 一元二次不等式及其解法大全(含练习和答案)
一元二次不等式及其解法1.一元二次不等式(20(0)ax bx c a ++>>)与相应的二次函数(2(0)y ax bx c a =++>)及一元二次方程(20(0)ax bx c a ++=>)的关系(简称三个二次之间的关系)判别式Δ=b 2-4acΔ>0 Δ=0 Δ<0 二次函数y =ax 2+bx +c (a >0)的图象一元二次方程 ax 2+bx +c =0 (a >0)的根有两相异实根1212,()x x x x < 有两相等实根 122b x x a==-没有实数根 ax 2+bx +c >0 (a >0)的解集R ax 2+bx +c <0 (a >0)的解集∅ 注:(1)若0a <时,可以先将二次项系数化为正数,若对应方程有两实根,则可根据“大于取两边,小于取中间”求解集。
2.简单的分式不等式(1)()0()f x g x >⇔______________; (2)()0()f xg x <⇔____________ (3)()0()f x g x ≥⇔ ___________ (4)()0()f x g x ≤⇔_____________ 3.二次不等式恒成立的条件(1)ax 2+bx +c >0 (a ≠0)对一切x ∈R 恒成立的充要条件是___________ (2)ax 2+bx +c <0 (a ≠0)对一切x ∈R 恒成立的充要条件是___________1.(人教A 版教材习题改编)不等式2x 2-x -1>0的解集是( )A .(-12,1) B .(1,+∞)C .(-∞,1)∪(2,+∞)D .(-∞,-12)∪(1,+∞)2.不等式x -12x +1≤0的解集为( )A .(-12,1]B .{x |x ≥1或x <-12}C .[-12,1]D .{x |x ≥1或x ≤-12} 3.(2012·福建高考)已知关于x 的不等式x 2-ax +2a >0在R 上恒成立,则实数a 的取值范围是________.4.一元二次不等式ax 2+bx +2>0的解集是(-12,13),则a +b 的值是________.(一)考向1 一元二次不等式的解法例1 求下列不等式的解集(1)22730x x ++> (2)3+2x -x 2≥0;(3)2830x x -+-> (4)213502x x -+-> (5)22320x x -+-< (6)2xx -1≤1解一元二次不等式的步骤: (1)把二次项系数化为正数;(2)先考虑因式分解法,再考虑求根公式法或配方法或判别式法; (3)写出不等式的解集. 变式训练1 解下列不等式:(1)2310x x -+≤ (2)23520x x +-> (3)22530x x --+> (4)29610x x -+-<(5)3012x x+≤- (6)-1≤x 2+2x -1≤2;(二)考向2 三个二次的关系例2 已知关于x 的不等式x 2+ax +b <0的解集(-1,2),试求关于x 的不等式ax 2+x +b <0的解集. 【思路点拨】 不等式解集的端点值是相应方程的根.(1)给出一元二次不等式的解集,则可知二次项系数的符号和相应一元二次方程的两根.(2)三个二次的关系体现了数形结合,以及函数与方程的思想方法.变式训练2 若关于x的不等式axx-1<1的解集是{x|x<1或x>2},求实数a的取值范围.(三)考向3含参数的一元二次不等式的解法例3求不等式12x2-ax>a2(a∈R)的解集.【思路点拨】先求方程12x2-ax=a2的根,讨论根的大小,确定不等式的解集.解含参数的一元二次不等式的步骤(1)二次项若含有参数应讨论参数是等于0,小于0,还是大于0,然后将不等式转化为二次项系数为正的形式.(2)判断方程实根的个数,讨论判别式Δ与0的关系.(3)确定方程无实根时可直接写出解集,确定方程有两个相异实根时,要讨论两实根的大小关系,从而确定解集形式.变式训练3 解关于x的不等式x2-(a+1)x+a<0.(四)考向4 不等式恒成立问题例4 若不等式mx 2-mx -1<0对一切实数x 恒成立,求实数m 的取值范围.【思路点拨】分m =0与m ≠0两种情况讨论,当m ≠0时,用判别式法求解.1.不等式ax 2+bx +c >0的解是全体实数(或恒成立)的条件是当a =0时,b =0,c >0;当a ≠0时,⎩⎪⎨⎪⎧a >0,Δ<0;不等式ax 2+bx +c <0的解是全体实数(或恒成立)的条件是当a =0时,b =0,c <0;当a ≠0时,⎩⎪⎨⎪⎧a <0,Δ<0.2.解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.变式训练4 对任意a ∈[-1,1]不等式x 2+(a -4)x +4-2a >0恒成立,则实数x 的取值范围是________.一个过程解一元二次不等式的一般过程是:一看(看二次项系数的符号),二算(计算判别式,判断方程根的情况),三写(写出不等式的解集).两点联想不等式ax 2+bx +c >0(或ax 2+bx +c <0)(a ≠0)的求解,善于联想:(1)二次函数y =ax 2+bx +c 的图象与x 轴的交点,(2)方程ax 2+bx +c =0(a ≠0)的根,运用好“三个二次”间的关系.三个防范1.二次项系数中含有参数时,参数的符号影响不等式的解集;不要忘了二次项系数是否为零的情况.2.解含参数的一元二次不等式,可先考虑因式分解,再对根的大小进行分类讨论;若不能因式分解,则可对判别式进行分类讨论,分类要不重不漏.3.不同参数范围的解集切莫取并集,应分类表述.课时训练1.设集合M={}2230x x x --<,N=12log 0,x x M N ⎧⎫<⋂⎨⎬⎩⎭则等于 ( )A .-(1,1) B.(1,3) C.(0,1) D.(-1,0)2.在R 上定义运算:(1)x y x y ⊗⊗=-,若不等式()()1x a x a -⊗+<对任意实数x 成立,则 ( )A 、11a -<<B 、02a <<C 、1322a -<<D 、3122a -<<3.“|x -1|<2成立”是“x (x -3)<0成立”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.定义02x x <>或运算a b ad bc c d ⎛⎫=- ⎪⎝⎭,则不等式1011x x ⎛⎫<< ⎪⎝⎭的解集为() A .(1,1)- B. (1,0)(0,1)-⋃C. (1)(1-⋃D.5.设A ={x ∈Z ||x -2|≤5},则A 中最小元素为( )A .2B .-3C .7D .06、不等式20x ax b --<的解集为{}223,10x x bx ax <<-->则的解集为( )A 、{}23x x <<B 、1132x x ⎧⎫<<⎨⎬⎩⎭C 、1123x x ⎧⎫-<<-⎨⎬⎩⎭D 、{}32x x -<<-7.设x ∈R ,则“x >12”是“2x 2+x -1>0”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8.不等式102xx-≥+的解集为 ( ) A.[]2,1- B. (]2,1- C. ()(),21,-∞-⋃+∞ D. (](),21,-∞-⋃+∞ 9. “关于x 的不等式x 2-2ax +a >0的解集为R ”是“0≤a ≤1”( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 10.不等式22530x x --≥成立的一个必要不充分条件是 ( )A .0x ≥ B. 02x x <>或 C. 12x <- D. 132x x ≤-≥或 11.不等式22253x x a a -+≥-对任意实数x 恒成立,则实数a 的取值范围为 ( )A .[]1,4- B. [)(,2)5,-∞-⋃+∞ C. (][),14,-∞-⋃+∞ D. []2,5-12、若函数222,0(),0x x x f x x ax x ⎧-≥=⎨-+<⎩是奇函数,则满足()f x a x >的的取值范围是________13.若不等式2(1)0x a x a --+≤的解集是[-4,3]的子集,则a 的取值范围是________14.已知不等式|x -2|>1的解集与不等式x 2+ax +b >0的解集相等,则a +b 的值为________.15. 设命题p :2x 2-3x +1≤0; 命题q :x 2-(2a +1)x +a (a +1)≤0, 若命题p 是命题q 的必要不充分条件,则实数a 的取值范围是________. 16.不等式ax 2+4x +a >1-2x 2对一切x ∈R 恒成立,则实数a 的取值范围是________.一元二次不等式及其解法答案1、D 【解析】 ∵2x 2-x -1=(x -1)(2x +1)>0, ∴x >1或x <-12.故原不等式的解集为(-∞,-12)∪(1,+∞).2、A 【解析】 原不等式等价于(1)(21)0210x x x -+≤⎧⎨+≠⎩.∴原不等式的解集为(-12,1].3、(0,8) 【解析】 ∵x 2-ax +2a >0在R 上恒成立, ∴Δ=a 2-4×2a <0,∴0<a <8.4、-14 【解析】 由已知得方程ax 2+bx +2=0的两根为-12,13.则⎩⎨⎧-b a =-12+132a =(-12)×13解得⎩⎪⎨⎪⎧a =-12,b =-2, ∴a +b =-14.典例分析:例1:(1)原不等式可化为(3)(21)0x x ++> 故原不等式的解集为132x x x ⎧⎫<->-⎨⎬⎩⎭或(2)原不等式化为x 2-2x -3≤0, 即(x -3)(x +1)≤0, 故原不等式的解集为{x |-1≤x ≤3}. (3)原不等式可化为2830x x -+<284(1)(3)520∆=-⨯-⨯-=>212830413413x x x x ∴-+-===方程有两个实根,故原不等式的解集为{}413413x x << (4)原不等式可化为26100x x -+≤ 26411040∆=-⨯⨯=-<∴原不等式的解集为∅(5)原不等式可化为22620x x -+> 2(6)42270∆=--⨯⨯=-<∴故原不等式的解集为R(6) ∵2x x -1≤1⇔2xx -1-1≤0 ⇔x +1x -1≤0 ⇔(1)(1)01110x x x x ≤⎧⇔-≤<⎨-≠⎩-+∴原不等式的解集为[-1,1).变式训练1 (1)9450∆=-=> 12353522x x ∴==对应的方程有两实数根 ∴原不等式的解集为35352x ⎧-+⎪≤≤⎨⎪⎪⎩⎭(2)原不等式可化为(31)(2)0x x -+> ∴原不等式的解集为123x x x ⎧⎫<->⎨⎬⎩⎭或(3)∵-2x 2-5x +3>0, ∴2x 2+5x -3<0,∴(2x -1)(x +3)<0, ∴原不等式的解集为{x |-3<x <12}.(4)原不等式可化为2(31)0x -> ∴原不等式的解集为13x x ⎧⎫≠⎨⎬⎩⎭(5)原不等式可化为(3)(12)0120x x x +-≤⎧⎨-≠⎩ (3)(21)0120x x x +-≥⎧⎨-≠⎩则 13212x x x ⎧≤-≥⎪⎪∴⎨⎪≠⎪⎩或∴原不等式的解集为132x x x ⎧⎫≤->⎨⎬⎩⎭或(6)这是一个双向不等式,可转化为不等式组⎩⎪⎨⎪⎧x 2+2x -1≥-1,x 2+2x -1≤2,即⎩⎪⎨⎪⎧x 2+2x ≥0, ①x 2+2x -3≤0. ② 由①得x ≥0或x ≤-2; 由②得-3≤x ≤1. 故得所求不等式的解集为{x |-3≤x ≤-2或0≤x ≤1}.例2 由于x 2+ax +b <0的解集是(-1,2),所以⎩⎪⎨⎪⎧1-a +b =0,4+2a +b =0,解得⎩⎪⎨⎪⎧a =-1,b =-2.故不等式即为-x 2+x -2<0, ∵⎩⎪⎨⎪⎧-1<0,Δ=1-8=-7<0∴不等式ax 2+x +b <0的解集为R .,变式训练2 解: axx -1<1⇔(a -1)x +1x -1<0⇔[(a -1)x +1](x -1)<0,由原不等式的解集是{x |x <1或x >2}, 知⎩⎪⎨⎪⎧a -1<0,-1a -1=2⇒a =12. ∴实数a 的取值范围是{12}. 例3 ∵12x 2-ax >a 2, ∴12x 2-ax -a 2>0,即(4x +a )(3x -a )>0,令(4x +a )(3x -a )=0, 得:x 1=-a 4,x 2=a3.①a >0时,-a 4<a 3,解集为{x |x <-a 4或x >a3};②a =0时,x 2>0,解集为{x |x ∈R 且x ≠0};③a <0时,-a 4>a 3,解集为{x |x <a 3或x >-a4}.综上所述:当a >0时,不等式的解集为{x |x <-a 4或x >a3};当a =0时,不等式的解集为{x |x ∈R 且x ≠0};当a <0时,不等式的解集为{x |x <a3或x >-变式训练3 【解】 原不等式可化为(x -a )(x -1)<0.当a >1时,原不等式的解集为(1,a ); 当a =1时,原不等式的解集为空集; 当a <1时,原不等式的解集为(a ,例4 要使mx 2-mx -1<0对一切实数x 恒成立,若m =0,显然-1<0;若m ≠0,则⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0,解得-4<m <0, 故实数m 的取值范围是(-4,0].,变式训练4 【解析】 设f (a )=(x -2)a +x 2-4x +4,则原问题可转化为一次函数(或常数函数)f (a )在区间[-1,1]上恒正时x 应满足的条件,故应有⎩⎪⎨⎪⎧f (-1)>0,f (1)>0. 即⎩⎪⎨⎪⎧x 2-5x +6>0,x 2-3x +2>0, 化为⎩⎪⎨⎪⎧(x -2)(x -3)>0,(x -1)(x -2)>0. 解之,得x <1或x >3.课时训练1、B 解:由2230x x --<, 得13x -<<由12log 0x <,得1x > 所以{}13M N x x ⋂=<<2、C 解:()()1x a x a -⊗+<对任意实数x 成立, 即()(1)1x a x a ---<对任意实数x 成立2210x x a a ∴--++>恒成立 214(1)0a a ∴∆=--++< 1322a ∴-<< 3. B 【解析】 ∵|x -1|<2⇔-1<x <3,又x (x -3)<0⇔0<x <3.则(0,3)(-1,3). 4、C 解:由题意可知原不等式即为2011x <-< ,212x ∴<<1221x x ∴<<<-或5. B 【解析】 由|x -2|≤5,得-3≤x ≤7, 又x ∈Z ,∴A 中的最小元素为-36、C 解:由题意知2,3是方程20x ax b --=的解235,236a ab b +==⎧⎧∴∴⎨⎨⨯=-=-⎩⎩ 22106510bx ax x x ∴-->--->不等式为2116+5+1023x x x x ⎧⎫<∴-<<-⎨⎬⎩⎭即, 7、 A 【解析】 2x 2+x -1>0的解集为{x |x >12或x <-1}, 故由x >12⇒2x 2+x -1>0,但2x 2+x -1>0D ⇒/x >12. 则“x >12”是“2x 2+x -1>0”的充分不必要条件. 8、B 解:由102x x -≥+,得(1)(2)020x x x -+≥⎧⎨+≠⎩ 则(1)(2)020x x x -+≤⎧⎨+≠⎩解得21x -<≤ (]2,1∴-原不等式的解集为9、A 【解析】 关于x 的不等式x 2-2ax +a >0的解集为R ,则Δ=4a 2-4a <0,解得0<a <1,由集合的包含关系可知选A.10、B 解:原不等式可化为(21)(3)0x x +-≥,解得132x x ≤-≥或 所以原不等式成立的一个必要不充分条件是02x x <>或11、A 解:由题意知,2225(1)4x x x -+=-+的最小值为4,所以22253x x a a -+≥- 对任意实数x 恒成立,只需234a a -≤,解得14a -≤≤12、(13,)-+∞ 解:()(1)(1)f x f f ∴-=-是奇函数, 即1(12)a --=--2()2a f x ∴=->-,则不等式等价于22002222x x x x x x ≥<⎧⎧⎨⎨->--->-⎩⎩,或,解得030x x ≥<<,或-1- 即(13,)x ∈--+∞13、43a -≤≤ 解:原不等式可化为()(1)0x a x --≤,当1a <时,不等式的解集为[],1a , 此时只要4a ≥-即可,即41a -≤<,当1a =时,不等式的解集为1x =,此时符合要求; 当1a >时,不等式的解集为[]1,a ,此时只要3a ≤即可,即13a <≤,综上可得43a -≤≤14. -1 【解析】 由|x -2|>1得x -2<-1或x -2>1,即x <1或x >3.依题意得知,不等式x 2+ax +b >0的解集是(-∞,1)∪(3,+∞)于是有⎩⎪⎨⎪⎧1×3=b ,1+3=-a ,即a =-4,b =3,a +b =-1. 15、[0,12], 解:由2x 2-3x +1≤0,得12≤x ≤1, 由x 2-(2a +1)x +a (a +1)≤0,得a ≤x ≤a +1,由命题p 是命题q 的必要不充分条件知,p 是q 的充分不必要条件,即{x |12≤x ≤1}{x |a ≤x ≤a +1}, ∴⎩⎪⎨⎪⎧a ≤12,a +1≥1,∴0≤a ≤12. 16、 (2,+∞) 【解析】 由题意知,不等式(a +2)x 2+4x +a -1>0对一切x ∈R 恒成立,则有⎩⎪⎨⎪⎧a +2>0,Δ=16-4(a +2)(a -1)<0,解得a >2.。
一元二次不等式及其解法练习及同步练习题(含答案)
一元二次不等式及其解法练习(一)、一元二次不等式的解法1、求解下列不等式(1)、23710x x -≤ (2)、2250x x -+-< (3)、2440x x -+-< (4)205x x -<+2、求下列函数的定义域(1)、y =(2)y =3、已知集合{}{}22|160,|430A x x B x x x =-<=-+>,求A B ⋃含参数的一元二次不等式的解法含参数的一元二次不等式的解法与具体的一元二次不等式的解法在本质上是一致的,这类不等式可从分析两个根的大小及二次系数的正负入手去解答,但遗憾的是这类问题始终成为绝大多数学生学习的难点,此现象出现的根本原因是不清楚该如何对参数进行讨论,而参数的讨论实际上就是参数的分类,而参数该如何进行分类?下面我们通过几个例子体会一下。
一.二次项系数为常数例1、解关于x 的不等式:0)1(2>--+m x m x 解:原不等式可化为:(x-1)(x+m )>0 (两根是1和-m ,谁大?)(1)当1<-m 即m<-1时,解得:x<1或x>-m(2)当1=-m 即m=-1时,不等式化为:0122>+-x x ∴x ≠1(3)当1>-m 即m>-1时,解得:x<-m 或x>1综上,不等式的解集为: (){}m x x x m -><-<或时当1|,11(){}1|,12≠-=x x m 时当 (){}1-|,13><->x m x x m 或时当例2:解关于x 的不等式:.0)2(2>+-+a x a x (不能因式分解)解:()a a 422--=∆ (方程有没有根,取决于谁?) ()()R a a a 时,解集为即当32432404212+<<-<--=∆()()32432404222+=-==--=∆a a a a 或时当 (i )13324-≠-=x a 时,解得:当(ii )13-324-≠+=x a 时,解得:当()()时或即当32432404232+>-<>--=∆a a a a 两根为()242)2(21aa a x --+-=,()242)2(22aa a x ----=.()()242)2(242)2(22aa a x aa a x --+->----<或此时解得:综上,不等式的解集为: (1)当324324+<<-a 时,解集为R ; (2)当324-=a 时,解集为(13,-∞-)⋃(+∞-,13); (3)当324+=a 时,解集为(13,--∞-)⋃(+∞--,13); (4)当324-<a 或324+>a 时, 解集为(248)2(,2+---∞-a a a )⋃(+∞+-+-,248)2(2a a a ); 二.二次项系数含参数例3、解关于x 的不等式:.01)1(2<++-x a ax解:若0=a ,原不等式.101>⇔<+-⇔x x 若0<a ,原不等式ax x a x 10)1)(1(<⇔>--⇔或.1>x 若0>a ,原不等式.0)1)(1(<--⇔x ax )(* 其解的情况应由a 1与1的大小关系决定,故 (1)当1=a 时,式)(*的解集为φ;(2)当1>a 时,式)(*11<<⇔x a; (3)当10<<a 时,式)(*a x 11<<⇔. 综上所述,不等式的解集为: ①当0<a 时,{11><x ax x 或}; ②当0=a 时,{1>x x };③当10<<a 时,{a x x 11<<};④当1=a 时,φ;⑤当1>a 时,{11<<x ax}.例4、解关于x 的不等式:.012<-+ax ax解:.012<-+ax ax(1)当0=a 时,.01R x ∈∴<-原式可化为(2)当0>a 时, 此时 a a 42+=∆>0 两根为a a a a x 2421++-=,aa a a x 2422+--=. 解得:a a a a 242+--aa a a x 242++-<< (3)当a<0时, 原式可化为:012>-+ax x aa 4+=∆此时 ①当0<∆即04<<-a 时,解集为R ; ②当0=∆即4-=a 时,解得:21-≠x ; ③当0>∆即4-<a 时解得:或a a a a x 242+-->aa a a x 242++-< 综上,(1)当0>a 时,解集为(a a a a 242+--,aa a a 242++-); (2)当04≤<-a 时,解集为R ;(3)当4-=a 时,解集为(21,-∞-)⋃(+∞-,21); (4)当4-<a 时,解集为(a a a a 24,2+--∞-)⋃(+∞++-,242aa a a ). 上面四个例子,尽管分别代表了四种不同的类型,但它们对参数a 都进行了讨论,看起来比较复杂,特别是对参数a 的分类,对于初学者确实是一个难点,但通过对它们解题过程的分析,我们可以发现一个规律:参数a 的分类是根据不等式中二次项系数等于零和判别式0=∆时所得到的a 的值为数轴的分点进行分类,如: 解关于x 的不等式:033)1(22>++-ax x a解:033)1(22>++-ax x a )(* 1012=⇒=-a a 或1-=a ;203)1(4922=⇒=⨯-⨯-=∆a a a 或2-=a ;∴当2-<a 时,012>-a 且0<∆,)(*解集为R ;当2-=a 时,012>-a 且0=∆,)(*解集为(1,∞-)⋃(+∞,1);当12-<<-a 时,012>-a 且0>∆,)(*解集为(223123,22----∞-a a a )⋃(+∞--+-,22312322a a a ); 当1-=a 时,)(*1033<⇔>+-⇔x x ,)(*解集为(1,∞-);当11<<-a 时,012<-a 且0>∆,)(*解集为(22312322----a a a ,22312322--+-a a a ); 当1=a 时,)(*1033->⇔>+⇔x x ,)(*解集为(+∞-,1);当21<<a 时,012>-a 且0>∆,)(*解集为(223123,22----∞-a a a )⋃(+∞--+-,22312322a a a ); 当2=a 时,012>-a 且0=∆,)(*解集为(1,-∞-)⋃(+∞-,1);当2>a 时,012>-a 且0<∆,)(*解集为R .综上,可知当2-<a 或2>a 时,解集为R ;当2-=a 时,(1,∞-)⋃(+∞,1);当12-<<-a 或21<<a 时,解集为 (223123,22----∞-a a a )⋃(+∞--+-,22312322a a a );当1-=a 时,解集为(1,∞-); 当11<<-a 时,)(*解集为(22312322----a a a ,22312322--+-a a a );当1=a 时,)(*解集为(+∞-,1);当2=a 时,解集为(1,-∞-)⋃(+∞-,1).通过此例我们知道原来解任意含参数的一元二次不等式对参数进行分类讨论时只需求出二次项系数等于零和判别式0=∆时所得到的参数的值,然后依此进行分类即可,这样这类问题便有了“通法”,都可迎刃而解了。
高中数学必修5一元二次不等式及其解法精选题目(附答案)
高中数学必修5一元二次不等式及其解法精选题目(附答案)1.一元二次不等式我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式,即形如ax2+bx+c>0(≥0)或ax2+bx+c<0(≤0)(其中a≠0)的不等式叫做一元二次不等式.2.一元二次不等式的解与解集使一元二次不等式成立的x的值,叫做这个一元二次不等式的解,其解的集合,称为这个一元二次不等式的解集.3.一元二次不等式与相应的二次函数及一元二次方程的关系表题型一:一元二次不等式解法1.解下列不等式:(1)2x2+5x-3<0;(2)-3x2+6x≤2;(3)4x2+4x+1>0;(4)-x2+6x-10>0.题型二:三个“二次”关系的应用2.若不等式ax 2+bx +2>0的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <13,则a +b 的值为( )A .14B .-10C .10D .-143.已知一元二次不等式x 2+px +q <0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <13,求不等式qx 2+px +1>0的解集.题型三:解含参数的一元二次不等式4.解关于x 的不等式x 2+(1-a )x -a <0.巩固练习:1.不等式6x 2+x -2≤0的解集为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-23≤x ≤12B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤-23或x ≥12 C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≥12D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤-23 2.设a <-1,则关于x 的不等式a (x -a )⎝ ⎛⎭⎪⎫x -1a <0的解集为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <a 或x >1a B .{x |x >a } C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >a 或x <1aD.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <1a 3.在R 上定义运算⊙:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围为( )A .(0,2)B .(-2,1)C .(-∞,-2)∪(1,+∞)D .(-1,2)4.不等式mx 2-ax -1>0(m >0)的解集可能是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-1或x >14 B .R C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-13<x <32 D .∅5.函数y =17-6x -x 2的定义域为( )A .[-7,1]B .(-7,1)C .(-∞,-7]∪[1,+∞)D .(-∞,-7)∪(1,+∞)6.已知全集U =R ,A ={x |x 2-1≥0},则∁U A =________.7.若二次函数y =ax 2+bx +c (a <0)的图象与x 轴的两个交点为(-1,0)和(3,0),则不等式ax 2+bx +c <0的解集是________.8.已知函数f (x )=⎩⎨⎧x 2+2x ,x ≥0,-x 2+2x ,x <0.若f (a )≤3,则a 的取值范围是________.9.解关于x 的不等式x 2-3ax -18a 2>0. 10.若函数f (x )=2 018ax 2+2ax +2的定义域是R ,求实数a 的取值范围.参考答案:1.[解] (1)Δ=49>0,方程2x 2+5x -3=0的两根为x 1=-3,x 2=12, 作出函数y =2x 2+5x -3的图象,如图①所示.由图可得原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-3<x <12.(2)原不等式等价于3x 2-6x +2≥0.Δ=12>0,解方程3x 2-6x +2=0,得x 1=3-33,x 2=3+33,作出函数y =3x 2-6x +2的图象,如图②所示,由图可得原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≤3-33或x ≥3+33. (3)∵Δ=0,∴方程4x 2+4x +1=0有两个相等的实根x 1=x 2=-12.作出函数y =4x 2+4x +1的图象如图所示.由图可得原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠-12,x ∈R.(4)原不等式可化为x 2-6x +10<0,∵Δ=-4<0, ∴方程x 2-6x +10=0无实根,∴原不等式的解集为∅. 2.解:由已知得,ax 2+bx +2=0的解为-12,13,且a <0. ∴⎩⎪⎨⎪⎧-b a =-12+13,2a =⎝ ⎛⎭⎪⎫-12×13,解得⎩⎨⎧a =-12,b =-2,∴a +b =-14.3.解:因为x 2+px +q <0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <13,所以x 1=-12与x 2=13是方程x 2+px +q =0的两个实数根,由根与系数的关系得⎩⎪⎨⎪⎧13-12=-p ,13×⎝ ⎛⎭⎪⎫-12=q ,解得⎩⎪⎨⎪⎧p =16,q =-16 .所以不等式qx 2+px +1>0即为-16x 2+16x +1>0,整理得x 2-x -6<0,解得-2<x <3.即不等式qx 2+px +1>0的解集为{x |-2<x <3}.4.[解] 方程x 2+(1-a )x -a =0的解为x 1=-1,x 2=a ,函数y =x 2+(1-a )x -a 的图象开口向上,则当a <-1时,原不等式解集为{x |a <x <-1};当a =-1时,原不等式解集为∅;当a >-1时,原不等式解集为{x |-1<x <a }. 5.设a ∈R ,解关于x 的不等式ax 2+(1-2a )x -2>0.5.解:(1)当a =0时, 不等式可化为x -2>0,解得x >2,即原不等式的解集为{x |x >2}.(2)当a ≠0时,方程ax 2+(1-2a )x -2=0的两根分别为2和-1a .①当a <-12时,解不等式得-1a <x <2,即原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1a <x <2;②当a =-12时,不等式无解,即原不等式的解集为∅;③当-12<a <0时,解不等式得2<x <-1a ,即原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2<x <-1a ; ④当a >0时,解不等式得x <-1a 或x >2,即原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-1a 或x >2. 练习:1.解析:选A 因为6x 2+x -2≤0⇔(2x -1)·(3x +2)≤0,所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-23≤x ≤12. 2.解析:选A ∵a <-1,∴a (x -a )·⎝ ⎛⎭⎪⎫x -1a <0⇔(x -a )·⎝ ⎛⎭⎪⎫x -1a >0.又a <-1,∴1a >a ,∴x >1a 或x <a .3.解析:选B 由a ⊙b =ab +2a +b ,得x ⊙(x -2)=x (x -2)+2x +x -2=x 2+x -2<0,所以-2<x <1.4.解析:选A 因为Δ=a 2+4m >0,所以函数y =mx 2-ax -1的图象与x 轴有两个交点,又m >0,所以原不等式的解集不可能是B 、C 、D ,故选A.5.解析:选B 由7-6x -x 2>0,得x 2+6x -7<0,即(x +7)(x -1)<0,所以-7<x <1,故选B.6.解析:∁U A ={x |x 2-1<0}={x |-1<x <1}. 答案:{x |-1<x <1}7.解析:根据二次函数的图象知所求不等式的解集为(-∞,-1)∪(3,+∞). 答案:(-∞,-1)∪(3,+∞)8.解析:当a ≥0时,a 2+2a ≤3,∴0≤a ≤1;当a <0时,-a 2+2a ≤3,∴a <0.综上所述,a 的取值范围是(-∞,1].9.解:将x 2-3ax -18a 2>0变形得(x -6a )(x +3a )>0, 方程(x -6a )(x +3a )=0的两根为6a ,-3a .所以当a >0时,6a >-3a ,原不等式的解集为{x |x <-3a 或x >6a };当a =0时,6a =-3a =0,原不等式的解集为{x |x ≠0}; 当a <0时,6a <-3a ,原不等式的解集为{x |x <6a 或x >-3a }. 10.解:因为f (x )的定义域为R ,所以不等式ax 2+2ax +2>0恒成立. (1)当a =0时,不等式为2>0,显然恒成立;(2)当a ≠0时,有⎩⎨⎧ a >0,Δ=4a 2-8a <0,即⎩⎨⎧a >0,0<a <2,所以0<a <2.综上可知,实数a 的取值范围是[0,2).。
一元二次不等式及其解法知识梳理及典型练习题(含答案)
一元二次不等式及其解法知识梳理及典型练习题(含答案)一元二次不等式及其解法1.一元一次不等式解法任何一个一元一次不等式经过不等式的同解变形后,都可以化为ax>b(a≠0)的形式。
当a>0时,解集为x>b/a;当a<0时,解集为x<b/a。
2.一元二次不等式及其解法1) 我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式。
2) 使某个一元二次不等式成立的x的值叫做这个一元二次不等式的解,一元二次不等式所有的解组成的集合叫做一元二次不等式的解集。
3) 一元二次不等式的解:对于一元二次不等式ax^2+bx+c>0(a>0),我们可以先求出其对应的一元二次方程ax^2+bx+c=0的解集,然后根据一元二次函数的图像,判断不等式的解集。
3.分式不等式解法对于分式不等式f(x)/g(x)>0或f(x)/g(x)<0,我们可以先化为标准型,即将右边化为0,左边化为分母的符号,然后将分式不等式转化为整式不等式求解。
对于分式不等式f(x)/g(x)≥0或f(x)/g(x)≤0,我们可以先求出f(x)/g(x)>0或f(x)/g(x)<0的解集,然后根据分式函数的图像判断不等式的解集。
例题1:已知集合A={x|x^2-2x-3≥0},B={x|-2≤x<2},则A∩B=[-2,-1]。
例题2:设f(x)=x^2+bx+1且f(-1)=f(3),则f(x)>0的解集为{x|x≠1,x∈R}。
例题3:已知-2<x/11<1/2,则x的取值范围是-22<x<11.解:首先求出方程2x2-8x-4=0的解为x1=-1,x2=2.根据题意,不等式在(1,4)内有解,即在x1和x2之间有解,则2x2-8x-4-a的图像必定开口向上,且在x1和x2处有两个零点。
又因为a>0时,图像整体上移,不可能在(1,4)内有解,故a<0.又因为当a=-4时,2x2-8x-4=0在(1,4)内有解,故a的取值范围是a<-4.故选A.1) 给定不等式 $2x^2-8x-4-a>0$ 在区间 $(1,4)$ 内有解,即$a<2x^2-8x-4$ 在区间 $(1,4)$ 内有解。
一元二次不等式及其解法训练题(含详解)
一元二次不等式及其解法(含详解)题组一 一元二次不等式的解法x +5(x -1)2≥2的解集是 ( ) A .[-3,12] B .[-12,3] C .[12,1)∪(1,3] D .[-12,1)∪(1,3] 解析:法一:首先x ≠1,在这个条件下根据不等式的性质原不等式可以化为x +5≥2(x-1)2,即2x 2-5x -3≤0,即(2x +1)(x -3)≤0,解得-12≤x ≤3,故原不等式的解集是[-12,1)∪(1,3]. 法二:特殊值检验法.首先x ≠1,排除B ,显然x =0,x =2是不等式的解,排除A 、C.答案:D2.解关于x 的不等式12x 2-ax >a 2(a ∈R).解:由12x 2-ax -a 2>0⇔(4x +a )(3x -a )>0⇔(x +a 4)(x -a 3)>0, ①a >0时,-a 4<a 3, 解集为{x |x <-a 4或x >a 3}; ②a =0时,x 2>0,解集为{x |x ∈R 且x ≠0};③a <0时,-a 4>a 3, 解集为{x |x <a 3或x >-a 4}. 题组二 一元二次不等式的实际应用y (万元)与产量x (台,若每台产品的售价为25万元,则生产者不亏本(销售收入不小于总成本)时的最低产量是( )A .100台B .120台C .150台D .180台解析:依题意得25x ≥3 000+20xx 2,整理得x 2+50x -30 000≥0,解得x ≥150或x ≤-200,因为0<x <240,所以150≤x <240,即最低产量是150台.答案:C4.某摩托车厂上年度生产摩托车的投入成本为1万元辆,年销售量为1000辆.本年度为适应市场需求,计划提高产品质量,适度增加投入成本.若每辆车投入成本增加的比例为x (0<xxx ,已知年利润=(出厂价-投入成本)×年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(2)为使本年度的年利润比上年度有所增加,则投入成本增加的比例x 应在什么范围内?解:(1)由题意得y =×x )-1×(1+x )]×x )(0<x <1),整理得y =-60x 2+20x +200(0<x <1).(2)要保证本年度的年利润比上年度有所增加,必须有⎩⎪⎨⎪⎧ y -(1.2-1)×1000>0,0<x <1,即⎩⎪⎨⎪⎧-60x 2+20x >0,0<x <1. 解得0<x <13. ∴投入成本增加的比例应在(0,13)范围内.ax 2+4x +a >1-2x 2对任意实数x 均成立,则实数a 的取值范围是( )A .a ≥2或a ≤-3B .a >2或a ≤-3C .a >2D .-2<a <2解析:原不等式可化为(a +2)x 2+4x +a -1>0,显然a =-2时不等式不恒成立,所以要使不等式对于任意的x 均成立,必须有a +2>0,且Δ<0,即⎩⎪⎨⎪⎧ a +2>0,16-4(a +2)(a -1)<0, 解得a >2.答案:C6.(2010·宁波模拟)设奇函数f (x )在[-1,1]上是单调函数,且f (-1)=-1,若函数f (x )≤t 2-2at +1对所有的x ∈[-1,1]都成立,当a ∈[-1,1]时,则t 的取值范围是________. 解析:∵f (x )为奇函数,f (-1)=-1,∴f (1)=-f (-1)=1.又∵f (x )在[-1,1]上是单调函数,∴-1≤f (x )≤1,∴当a ∈[-1,1]时,t 2-2at +1≥1恒成立,即t 2-2at ≥0恒成立,令g (a )=t 2-2at ,a ∈[-1,1],∴⎩⎪⎨⎪⎧t 2-2t ≥0,t 2+2t ≥0, ∴⎩⎪⎨⎪⎧t ≥2或t ≤0,t ≤-2或t ≥0, ∴t ≥2或t =0或t ≤-2.答案:(-∞,-2]∪{0}∪[2,+∞)7.已知函数f (x )=x 2+ax +3.(1)当x ∈R 时,f (x )≥a 恒成立,求a 的范围.(2)当x ∈[-2,2]时,f (x )≥a 恒成立,求a 的范围.解:(1)f (x )≥a 恒成立,即x 2+ax +3-a ≥0恒成立,必须且只需Δ=a 2-4(3-a )≤0,即a 2+4a -12≤0,∴-6≤a ≤2.(2)f (x )=x 2+ax +3=(x +a 2)2+3-a 24. ①当-a 2<-2,即a >4时,f (x )min =f (-2)=-2a +7,由-2a +7≥a 得a ≤73,∴a ∈∅. ②当-2≤-a 2≤2,即-4≤a ≤4时,f (x )min =3-a 24, 由3-a 24≥a ,得-6≤a ≤2.∴-4≤a ≤2. ③当-a 2>2,即a <-4时,f (x )min =f (2)=2a +7, 由2a +7≥a ,得a ≥-7,∴-7≤a <-4.综上得a ∈[-7,2].x 2-|x |-2<0 ( )A .{x |-2<x <2}B .{x |x <-2或x >2}C .{x |-1<x <1}D .{x |x <-1或x >1}解析:原不等式⇔|x |2-|x |-2<0⇔(|x |-2)(|x |+1)<0⇔|x |-2<0⇔-2<x <2. 答案:A9.已知不等式组⎩⎪⎨⎪⎧x 2-4x +3<0,x 2-6x +8<0的解集是不等式2x 2-9x +a <0的解集的子集,则实数a 的取值范围是________.解析:因为不等式组⎩⎪⎨⎪⎧x 2-4x +3<0,x 2-6x +8<0的解集是{x |2<x <3},设f (x )=2x 2-9x +a ,则由题意得⎩⎪⎨⎪⎧f (2)≤0,f (3)≤0,解得a ≤9. 答案:a ≤910.已知不等式ax 2-3x +6>4的解集为{x |x <1或x >b },(1)求a ,b ;(2)解不等式ax 2-(ac +b )x +bc <0.解:(1)因为不等式ax 2-3x +6>4的解集为{x |x <1或x >b },所以x 1=1与x 2=b 是方程ax 2-3x +2=0的两个实数根,且b >1.由根与系数的关系,得⎩⎨⎧ 1+b =3a ,1×b =2a .解得⎩⎪⎨⎪⎧ a =1,b =2.所以⎩⎪⎨⎪⎧a =1,b =2. (2)所以不等式ax 2-(ac +b )x +bc <0, 即x 2-(2+c )x +2c <0,即(x -2)(x -c )<0.①当c >2时,不等式(x -2)(x -c )<0的解集为{x |2<x <c }; ②当c <2时,不等式(x -2)(x -c )<0的解集为{x |c <x <2}; ③当c =2时,不等式(x -2)(x -c )<0的解集为∅. 综上所述:当c >2时,不等式ax 2-(ac +b )x +bc <0的解集为{x |2<x <c }; 当c <2时,不等式ax 2-(ac +b )x +bc <0的解集为{x |c <x <2}; 当c =2时,不等式ax 2-(ac +b )x +bc <0的解集为∅.。
一元二次不等式及解法作业(含答案)精选全文
可编辑修改精选全文完整版 一元二次不等式及其解法 一、选择题 1.不等式(x +5)(3-2x )≥6的解集是 ( )A.{x |x ≤-1或x ≥92}B.{x|-1≤x ≤92}C.{x |x ≤-92或x ≥1}D.{x |-92≤x ≤1}解析:因为不等式(x +5)(3-2x )≥6可化为2x 2+7x -9≤0,而2x 2+7x -9=0的两根为x 1=-92,x 2=1,所以函数f (x )=2x 2+7x -9与x 轴的交点为(-92,0),(1,0),又函数f (x )=2x 2+7x -9的图象开口向上,所以不等式(x +5)·(3-2x )≥6的解集是{x |-92≤x ≤1}.答案:D 2.设A ={x |x 2-2x -3>0},B ={x |x 2+ax +b ≤0},若A ∪B =R ,A ∩B =(3,4],则a +b 等于 ( )A.7B.-1C.1D.-7解析:A =(-∞,-1)∪(3,+∞),∵A ∪B =R ,A ∩B =(3,4],则B =[-1,4],∴a =-(-1+4)=-3,b =-1×4=-4,∴a +b =-7.答案:D3.若ax 2+x +a <0的解集为∅,则实数a 取值范围 ( )A.a ≥12B.a <12C.-12≤a ≤12D.a ≤-12或a ≥12解析:∵ax 2+x +a <0的解集为∅,01,.02a a >⎧∴∴⎨⎩≤≤答案:A 4.不等式12+-x x ≤0的解集是( ) A.(-∞,-1)∪(-1,2] B.[-1,2] C.(-∞,-1)∪[2,+∞)D.(-1,2]解析:由,012≤+-x x 得⎩⎨⎧≠+≤+-.01,0)1)(2(x x x 所以不等式的解集为(-1,2].答案:D5.不等式|x 2-x|<2的解集为 ( )A.(-1,2)B.(-1,1)C.(-2,1)D.(-2,2)解析:∵|x 2-x|<2,∴-2<x 2-x <2,即⎪⎩⎪⎨⎧<-->+-2.02,022x x x x 解得⎩⎨⎧<<-∈,21,x R x ∴x ∈(-1,2),故选A. 答案:A6.已知集合A ={x|3x-2-x 2<0},B ={x|x-a <0},且BA ,则实数a 的取值范围是( )A.a ≤1B.1<a ≤2C.a >2D.a ≤2解析:不等式3x-2-x 2<0化为x 2-3x+2>0⇒x >2或x <1,由不等式x-a <0,得x <a.要使B A,则a ≤1.答案:A二、填空题7.若关于x 的方程x 2+ax +a 2-1=0有一正根和一负根,则a 的取值范围为 .解析:令f (x )=x 2+ax +a 2-1,∴二次函数开口向上,若方程有一正一负根,则只需f (0)<0,即a 2-1<0,∴-1<a <1.答案:-1<a <18.不等式21213≤+-x x 的解集为__________________. 解析: x x x x x x x x x x x x x ⇔≤-+⇔≤-+⇔-≤+-⇔≤⇔≤-+-+-0)1)(3(03211322212221313∈(-∞,-3]∪(0,1].答案:(-∞,-3]∪(0,1]三、解答题1. 已知关于x 的二次方程x 2+2mx +2m +1=0.(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的范围.(2)若方程两根均在区间(0,1)内,求m 的范围.解:(1)条件说明抛物线f (x )=x 2+2mx +2m +1与x 轴的交点分别在区间(-1,0)和(1,2)内,画出示意图,得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧->-<∈-<⇒⎪⎪⎩⎪⎪⎨⎧>+=<+=>=-<+=65,21,21056)2(,024)1(,02)1(,012)0(m m R m m m f m f f m f ∴2165-<<-m . (2)据抛物线与x 轴交点落在区间(0,1)内,列不等式组⎪⎪⎩⎪⎪⎨⎧<-<≥∆>>10,0,0)1(,0)0(m f f ⎪⎪⎪⎩⎪⎪⎪⎨⎧<<--≤+≥->->⇒.01,2121,21,21m m m m m 或(这里0<-m <1是因为对称轴x =-m 应在区间(0,1) 2、已知2()2(2)4f x x a x =+-+,(1)如果对一切x R ∈,()0f x >恒成立,求实数a 的取值范围; (2)如果对[3,1]x ∈-,()0f x >恒成立,求实数a 的取值范围.解:(1)24(2)16004a a ∆=--<⇒<<;(2)(2)3(3)0a f --<-⎧⎨->⎩或3(2)10a -≤--≤⎧⎨∆<⎩或(2)1(1)0a f -->⎧⎨>⎩, 解得a φ∈或14a ≤<或112a -<<,∴a 的取值范围为1(,4)2-. 3.已知二次函数2()f x ax bx c =++的图象过点(1,0)-,问是否存在常数,,a b c ,使不等式21()(1)2x f x x ≤≤+对一切x R ∈都成立?解:假设存在常数,,a b c 满足题意,∵()f x 的图象过点(1,0)-,∴(1)0f a b c -=-+= ① 又∵不等式21()(1)2x f x x ≤≤+对一切x R ∈都成立,∴当1x =时,211(1)(11)2f ≤≤+,即11a b c ≤++≤,∴1a b c ++= ② 由①②可得:11,22a c b +==,∴211()()22f x ax x a =++-, 由21()(1)2x f x x ≤≤+对一切x R ∈都成立得:22111()(1)222x ax x a x ≤++-≤+恒成立, ∴2211()022(21)20ax x a a x x a ⎧-+-≥⎪⎨⎪-+-≤⎩的解集为R ,∴0114()042a a a >⎧⎪⎨--≤⎪⎩且21018(21)0a a a -<⎧⎨+-≤⎩,即20(14)0a a >⎧⎨-≤⎩且212(14)0a a ⎧<⎪⎨⎪-≤⎩∴14a =,∴14c =, ∴存在常数111,,424a b c ===使不等式21()(1)2x f x x ≤≤+对一切x R ∈都成立。
一元二次不等式及其解法(精)全
一元二次不等式5x2 10x 4.8 0的解集就是 二次函数y 5x2 10x 4.8的图象(抛物线) 位于x轴下方的点所对应的x的集合.
因此, 求解一元二次不等式可以先解相应的一元二次方程, 确定抛物线与x轴交点的横坐标, 再根据图象写出不等式的解集. 第一步:解方程5x2 10x 4.8 0,得:x1 0.8, x2 1.2;
问题: 怎样解不等式5x2 10x 4.8 0?
思考(:1)当x是什么实数时,函数y 5x2 10x 4.8的值是:
(1)0 (2)正数 (3)负数
(2)能否画出二次函数 y 5x2 10x 4.8 的图象。 y
(3)能否找出抛物线上纵坐标 y 0 的点?其横坐标应取哪些值?
0 0.8
y 5x2 10x 4.8
有两相异实根 x1, x2 (x1<x2)
有两相等实根 x1=x2= b 2a
ax2+bx+c>0 (a>0)的解集 {x|x<x1,或 x>x2}
{x|x≠
b
}
2a
ax2+bx+c<0
(a>0)的解集 {x|x1< x <x2 }
Φ
△<0 y
x O 没有实根
R Φ
例1:解下列不等式:
(1)x2 7x 12 0; (2) x2 2x 3 0; (3)x2 2x 1 0; (4)x2 2x 2 0.
从这题可得出求一元二次不等式的解集的 基本步骤是怎样的?
解一元二次不等式的基本步骤:
(1)化不等式为标准形式:ax2 bx c 0(a 0) 或ax2 bx c (0 a 0)
(2)确定方程ax2 bx c 0 a 0 的根;
一元二次不等式及其解法专题讲解及练习(含答案)
一元二次不等式及其解法. 一元二次不等式的解法(1)将不等式的右边化为零,左边化为二次项系数大于零的不等式ax 2+bx +c >0 (a >0)或ax 2+bx +c <0 (a >0).(2)求出相应的一元二次方程的根.(3)利用二次函数的图象与x 轴的交点确定一元二次不等式的解集. 2. 一元二次不等式与相应的二次函数及一元二次方程的关系如下表:题型一 一元二次不等式的解法例1 已知不等式ax 2-3x +6>4的解集为{x |x <1或x >b }.(1)求a ,b 的值;(2)解不等式ax 2-(ac +b )x +bc <0.解 (1)因为不等式ax 2-3x +6>4的解集为{x |x <1或x >b },所以x 1=1与x 2=b 是方程ax 2-3x +2=0的两个实数根,b >1且a >0.由根与系数的关系,得⎩⎨⎧1+b =3a,1×b =2a. 解得⎩⎪⎨⎪⎧a =1,b =2.(2)不等式ax 2-(ac +b )x +bc <0,即x 2-(2+c )x +2c <0,即(x -2)(x -c )<0. 当c >2时,不等式(x -2)(x -c )<0的解集为{x |2<x <c }; 当c <2时,不等式(x -2)(x -c )<0的解集为{x |c <x <2};当c =2时,不等式(x -2)(x -c )<0的解集为∅.所以,当c >2时,不等式ax 2-(ac +b )x +bc <0的解集为{x |2<x <c }; 当c <2时,不等式ax 2-(ac +b )x +bc <0的解集为{x |c <x <2}; 当c =2时,不等式ax 2-(ac +b )x +bc <0的解集为∅.(1)不等式ax 2+bx +c >0的解集为{x |2<x <3},则不等式ax 2-bx +c >0的解集为________.(2)解关于x 的不等式ax 2-2≥2x -ax (a ∈R ). (1)答案 {x |-3<x <-2}解析 令f (x )=ax 2+bx +c ,则f (-x )=ax 2-bx +c ,结合图象,可得ax 2-bx +c >0的解集为{x |-3<x <-2}.(2)解 原不等式可化为ax 2+(a -2)x -2≥0⇒(ax -2)(x +1)≥0. ①当a =0时,原不等式化为x +1≤0⇒x ≤-1.②当a >0时,原不等式化为⎝⎛⎭⎫x -2a (x +1)≥0⇒x ≥2a 或x ≤-1. ③当a <0时,原不等式化为⎝⎛⎭⎫x -2a (x +1)≤0. 当2a >-1,即a <-2时,原不等式等价于-1≤x ≤2a ; 当2a =-1,即a =-2时,原不等式等价于x =-1; 当2a <-1,即a >-2,原不等式等价于2a ≤x ≤-1. 综上所述,当a <-2时,原不等式的解集为⎣⎡⎦⎤-1,2a ; 当a =-2时,原不等式的解集为{-1}; 当-2<a <0时,原不等式的解集为⎣⎡⎦⎤2a ,-1; 当a =0时,原不等式的解集为(-∞,-1];当a >0时,原不等式的解集为(-∞,-1]∪⎣⎡⎭⎫2a ,+∞.练习题1. 不等式x 2<1的解集为________.答案 {x |-1<x <1}解析 x 2<1,则-1<x <1,∴不等式的解集为{x |-1<x <1}. 2. 函数y =x 2+x -12的定义域是____________.答案 (-∞,-4]∪[3,+∞)解析 由x 2+x -12≥0得(x -3)(x +4)≥0,∴x ≤-4或x ≥3. 3. 已知不等式x 2-2x +k 2-1>0对一切实数x 恒成立,则实数k 的取值范围为__________.答案 (-∞,-2)∪(2,+∞)解析 由题意,知Δ=4-4×1×(k 2-1)<0,即k 2>2,∴k >2或k <- 2. 4. (2012·重庆)不等式x -12x +1≤0的解集为( )A.⎝⎛⎦⎤-12,1B.⎣⎡⎦⎤-12,1C.⎝⎛⎭⎫-∞,-12∪[1,+∞)D.⎝⎛⎦⎤-∞,-12∪[1,+∞) 解析 x -12x +1≤0等价于不等式组⎩⎪⎨⎪⎧ x -1≤0,2x +1>0,①或⎩⎪⎨⎪⎧x -1≥0,2x +1<0.②解①得-12<x ≤1,解②得x ∈∅,∴原不等式的解集为⎝⎛⎦⎤-12,1. 5.若不等式ax 2+bx -2<0的解集为{x |-2<x <14},则ab 等于( )A .-28B .-26C .28D .26答案 C 解析 由已知得⎩⎨⎧-2+14=-ba-2×14=-2a,∴a =4,b =7,∴ab =28.5. 不等式x -3x +2<0的解集为解析 不等式x -3x +2<0可转化为(x +2)(x -3)<0,解得-2<x <3.6. 已知不等式ax 2-bx -1≥0的解集是⎣⎡⎦⎤-12,-13,则不等式x 2-bx -a <0的解集是 解析 由题意知-12,-13是方程ax 2-bx -1=0的根,所以由根与系数的关系得-12+⎝⎛⎭⎫-13=b a ,-12×⎝⎛⎭⎫-13=-1a.解得a =-6,b =5,不等式x 2-bx -a <0即为x 2-5x +6<0,解集为(2,3).7. 若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的值的集合是解析 由题意知a =0时,满足条件.a ≠0时,由⎩⎪⎨⎪⎧a >0Δ=a 2-4a ≤0得0<a ≤4,所以0≤a ≤4. 8. 已知关于x 的不等式ax -1x +1<0的解集是(-∞,-1)∪⎝⎛⎭⎫-12,+∞,则a =________. 答案 -2解析 由于不等式ax -1x +1<0的解集是(-∞,-1)∪⎝⎛⎭⎫-12,+∞,故-12应是ax -1=0的根,∴a =-2.9. (江西)不等式x 2-9x -2>0的解集是________.答案 {x |-3<x <2或x >3}解析 利用“穿根法”求解.不等式可化为(x -3)(x +3)x -2>0,即(x -3)(x +3)(x -2)>0,利用数轴穿根法可知,不等式的解集为{x |-3<x <2或x >3}. 10. 若关于x 的不等式ax 2-6x +a 2<0的解集是(1,m ),则m =________.答案 2解析 根据不等式与方程之间的关系知1为方程ax 2-6x +a 2=0的一个根,即a 2+a -6=0,解得a =2或a =-3,当a =2时,不等式ax 2-6x +a 2<0的解集是(1,2),符合要求;当a =-3时,不等式ax 2-6x +a 2<0的解集是(-∞,-3)∪(1,+∞),不符合要求,舍去.故m =2.11. 求不等式12x 2-ax >a 2 (a ∈R )的解集.解 原不等式可化为(3x -a )(4x +a )>0. 当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x <-a 4或x >a 3;当a =0时,不等式的解集为{x |x ∈R 且x ≠0}; 当a <0时,不等式的解集为{x |x <a 3或x >-a4}.。
一元二次不等式的解法 含答案
课时作业16 一元二次不等式及其解法时间:45分钟 满分:100分课堂训练1.不等式x 2-5x +6≤0的解集为( ) A .[2,3] B .[2,3) C .(2,3) D .(2,3]【答案】 A【解析】 因为方程x 2-5x +6=0的解为x =2或x =3,所以不等式的解集为{x |2≤x ≤3}.2.若a 2-174a +1<0,则不等式x 2+ax +1>2x +a 成立的x 的范围是( )A .{x |x ≥3或x ≤1}B .{x |x <14或x >4} #C .{x |1<x <3}D .{x |x ≤-3或x >1}【答案】 D【解析】 由a 2-174a +1<0,得:a ∈(14,4).不等式x 2+ax +1>2x +a ,可化为:(x -1)[x -(1-a )]>0, ∴x <1-a 或x >1, ∴x ≤-3或x >1.3.若关于x 的不等式ax 2-6x +a 2<0的解集为(1,m ),则实数m =________.【答案】 2【解析】 ∵x =1是方程ax 2-6x +a 2=0的根,∴a -6+a 2=0,∴a =2或-3.当a =2时,不等式2x 2-6x +4<0的解集为(1,2),∴m =2.当a =-3时,不等式-3x 2-6x +9<0的解集为(-∞,-3)∪(1,+∞),不合题意.4.求函数f (x )=log 2(x 2-x +14)+x 2-1的定义域.^【解析】由函数的解析式有意义,得⎩⎨⎧x 2-x +14>0,x 2-1≥0,即⎩⎨⎧x ≠12,x ≤-1或x ≥1.因此x ≤-1或x ≥1.故所求函数的定义域为{x |x ≤-1或x ≥1}.课后作业一、选择题(每小题5分,共40分) 1.不等式2x 2-x -1>0的解集是( ) A .(-12,1) B .(1,+∞)C .(-∞,1)∪(2,+∞)D .(-∞,-12)∪(1,+∞)【答案】 D【解析】 ∵2x 2-x -1=(2x +1)(x -1),∴由2x 2-x -1>0得(2x +1)(x -1)>0,解得x >1或x <-12,∴不等式的解集为(-∞,-12)∪(1,+∞).故应选D. \2.设集合A ={x |1<x <4},集合B ={x |x 2-2x -3≤0},则A ∩(∁R B )=( )A .(1,4)B .(3,4)C .(1,3)D .(1,2)∪(3,4)【答案】 B【分析】 先解不等式求出集合B ,然后进行集合的相应运算. 【解析】 B ={x |-1≤x ≤3},A ∩(∁R B )={x |3<x <4},故选B. 3.函数y =11-x2+lg(3x -x 2)的定义域为( ) A .{x |-1<x <1} B .{x |0<x <3} C .{x |0<x <1} D .{x |-1<x <3}【答案】 C)【解析】 由题意须满足⎩⎪⎨⎪⎧ 1-x 2>0,3x -x 2>0,即⎩⎪⎨⎪⎧x 2-1<0,x 2-3x <0,∴⎩⎪⎨⎪⎧-1<x <1,0<x <3,∴0<x <1. 4.不等式ax 2+bx +2>0的解集是{x |-12<x <13},则a -b 等于( )A .-4B .14C .-10D .10【答案】 C【解析】 ∵不等式ax 2+bx +2>0的解集为{x |-12<x <13}, ∴-12、13是方程ax 2+bx +2=0的两根,∴⎩⎨⎧-12+13=-b a-12×13=2a,解得⎩⎪⎨⎪⎧a =-12b =-2.∴a -b =-10.》5.设f (x )=x 2+bx +1,且f (-1)=f (3),则f (x )>0的解集为( )A .(-∞,-1)∪(3,+∞)B .RC .{x |x ≠1}D .{x |x =1}【答案】 C【解析】 ∵f (-1)=f (3) ∴1-b +1=9+3b +1 ∴b =-2,∴f (x )=x 2-2x +1=(x -1)2, ∴f (x )>0的解集为x ≠1.6.若关于x 的不等式mx 2-(2m +1)x +m -1≥0的解集为∅,则( ) ]A .m <0B .m <-18C .-18<m <0 D .m 的值不存在【答案】 B【解析】 要使不等式的解集为∅,则⎩⎪⎨⎪⎧m <0,Δ<0,∴m <-18. 7.若0<a <1,则不等式(a -x )(x -1a )>0的解集是( ) A .{x |1a <x <a } B .{x |a <x <1a } C .{x |x <a 或x >1a } D .{x |x <1a 或x >a }【答案】 B【解析】 原不等式可化为(x -a )(x -1a )<0.又∵0<a <1,∴1a >1>a >0,∴原不等式的解集为{x |a <x <1a }.(8.如果ax 2+bx +c >0的解集为{x |x <-2或x >4},那么对于函数f (x )=ax 2+bx +c 有( )A .f (5)<f (2)<f (-1)B .f (2)<f (5)<f (-1)C .f (2)<f (-1)<f (5)D .f (-1)<f (2)<f (5)【答案】 C【解析】 ∵ax 2+bx +c >0的解集为x <-2或x >4. 则a >0且-2和4是方程ax 2+bx +c =0的两根, ∴-b a =2,ca =-8.∴函数f (x )=ax 2+bx +c 的图象开口向上,对称轴为x =-b2a =1.∴f (5)>f (-1)>f (2),故选C.二、填空题(每小题10分,共20分)(9.二次函数y =ax 2+bx +c (x ∈R )的部分对应值如表:·【答案】 {x |x <-2,或x >3}【解析】 由图表可知a >0.且f (3)=0,f (-2)=0.∴ax 2+bx +c >0的解集为{x |x <-2,或x >3}.10.若a <0,则关于x 的不等式x 2-4ax -5a 2>0的解集是________. 【答案】 {x |x >-a 或x <5a }【解析】 方程x 2-4ax -5a 2=0的两根分别为-a 和5a ,且-a >5a .∴不等式的解集是{x |x >-a 或x <5a }.三、解答题(每小题20分,共40分.解答应写出必要的文字说明、证明过程或演算步骤)11.解不等式.(1)-x 2+2x -3>0;(2)x 2+x >-14;(3)-2x 2+3x -2<0.【分析】 把不等式化为二次项系数为正,右边为0的形式,利用“三个二次”之间的关系求解.【解析】 (1)原不等式可化为x 2-2x +3<0,?∵Δ=(-2)2-4×1×3=-8<0,∴原不等式的解集为∅. (2)原不等式可化为x 2+x +14>0.∵Δ=12-4×1×14=0,∴方程x 2+x +14=0有两个相等实根x 1=x 2=-12.∴原不等式的解集为{x |x ≠-12,x ∈R }. (3)原不等式可化为2x 2-3x +2>0. ∵Δ=(-3)2-4×2×2=-7<0, ∴原不等式的解集为R .【规律方法】 一元二次不等式化为二次项系数为正的形式后,若Δ≤0,可根据二次函数的图象直接写出解集.12.解关于x 的不等式(x -2)(ax -2)>0(a ∈R ). 【解析】 当a =0时,原不等式化为x -2<0,∴x <2. 当a <0时,原不等式化为(x -2)(x -2a )<0, ∴2a <x <2.当a >0时,原不等式化为(x -2)(x -2a )>0. ①当0<a <1时,x >2a 或x <2. ②当a =1时,x ≠2. ③当a >1时,x >2或x <2a .综上所述,当a =0时,原不等式的解集为{x |x <2};当a <0时,原不等式的解集为{x |2a <x <2};当0<a <1时,原不等式的解集为{x |x >2a 或x <2};当a =1时,原不等式的解集为{x |x ≠2};当a >1时,原不等式的解集为{x |x >2或x <2a }.。
(完整版)一元二次不等式及其解法练习及同步练习题(含答案)
13.2 一元二次不等式及其解法练习(一)、一元二次不等式的解法1、求解下列不等式(1)、23710x x -≤ (2)、2250x x -+-< (3)、2440x x -+-< (4)205x x -<+2、求下列函数的定义域(1)、y (2)y =3、已知集合{}{}22|160,|430A x x B x x x =-<=-+>,求A B ⋃(二)、检测题一、选择题1、不等式11023x x ⎛⎫⎛⎫--> ⎪⎪⎝⎭⎝⎭的解集为 ( ) A 、11|32x x ⎧⎫<<⎨⎬⎩⎭ B 、1|2x x ⎧⎫>⎨⎬⎩⎭ C 、1|3x x ⎧⎫<⎨⎬⎩⎭ D 、11|32x x x ⎧⎫<>⎨⎬⎩⎭或 2、在下列不等式中,解集为φ的是 ( )A 、22320x x -+>B 、2440x x ++>C 、2440x x --<D 、22320x x -+->3、函数()2log 3y x =+的定义域为 ( )A 、()(),13,-∞-⋃+∞B 、()3,1--C 、(][),13,-∞-⋃+∞D 、(][)3,13,--⋃+∞4、若2230x x -≤,则函数()21f x x x =++ ( ) A 、有最小值34,无最大值 B 、有最小值34,最大值1 C 、有最小值1,最大值194 D 、无最小值,也无最大值2 5、若不等式210x mx ++>的解集为R ,则m 的取值范围是( )A .RB .()2,2-C .()(),22,-∞-+∞D .[]2,2-6、不等式()221200x ax a a --<<的解集是( )A .()3,4a a -B .()4,3a a -C .()3,4-D .()2,6a a7、不等式220ax bx ++>的解集是1123x x ⎧⎫-<<⎨⎬⎩⎭,则a b -=( ) A .14-B .14C .10-D .10 二、填空题8、设()21f x x bx =++,且()()13f f =,则()0f x >的解集为 。
一元二次不等式及其解法 专题练习(含参考答案)
数学31 一元二次不等式及其解法一、选择题1.(2018·广西南宁摸底联考)若集合A ={x |x 2-2x <0},B ={x ||x |≤1},则A ∩B =( ) A . [-1,0) B .[-1,2) C .(0,1]D .[1,2)2.(2018·安徽江淮十校联考)不等式|x |·(1-2x )>0的解集为( ) A .(-∞,0)∪(0,12)B .(-∞,12)C .(12,+∞)D .(0,12)3.(2018·内蒙古包头模拟)若不等式f (x )=ax 2-x -c >0的解集为{x |-2<x <1},则函数y =f (-x )的大致图象为( )4.(2018·安徽淮北一中模拟)若(x -1)(x -2)<2,则(x +1)(x -3)的取值范围是( ) A .(0,3) B .[-4,-3) C .[-4,0)D .(-3,4]5.(2018·四川绵阳)国庆节期间,绵阳市某大型商场举行“购物送券”活动,一名顾客计划到该商场购物,他有三张商场的优惠券,商场规定每购买一件商品只能使用一张优惠券.根据购买商品的标价,三张优惠券的优惠方式不同,具体如下:优惠券A :若商品的标价超过100元,则付款时减免标价的10%; 优惠券B :若商品的标价超过200元,则付款时减免30元;优惠券C :若商品的标价超过200元,则付款时减免超过200元部分的20%.若顾客想使用优惠券C ,并希望比使用优惠券A 或B 减免的钱款都多,则他购买的商品的标价应高于( )A .300元B .400元C .500元D .600元6.(2018·江西南昌重点校联考)如果方程x 2+(m -1)x +m 2-2=0的两个实根一个小于-1,另一个大于1,那么实数m 的取值范围是( )A .(0,1)B .(-2,1)C .(-2,0)D .(-2,2)7.(2018·山东临沂期中)关于x 的不等式ax -b <0的解集是(1,+∞),则关于x 的不等式(ax +b )(x -3)>0的解集是( )A .(-∞,-1)∪(3,+∞)B .(1,3)C .(-1,3)D .(-∞,1)∪(3,+∞)8.(2018~2019山东洛阳一中月考题)不等式x 2-2x +5≥a 2-3a 对任意实数x 恒成立,则实数a 的取值范围为( )A .[-1,4]B .(-∞,-2)∪[5,+∞)C .(-∞,-1)∪[4,+∞)D .[-2,5] 二、填空题9.(2015·广东卷)不等式-x 2-3x +4>0的解集为10.(2018·全国名校大联考)不等式x 2-2ax -3a 2<0(a >0)的解集为 . 11.不等式-12<1x<2的解集为 .12.(2018·吉林辽源五校期末联考)若函数f (x )=x 2+ax +b 的两个零点是-1和2,则不等式af (-2x )>0的解集是 .三、解答题13.已知关于x 的不等式kx 2-2x +6k <0(k ≠0). (1)若不等式的解集为{x |x <-3或x >-2},求k 的值; (2)若不等式的解集为{x |x ∈R ,x ≠1k },求k 的值;(3)若不等式的解集为R ,求k 的取值范围; (4)若不等式的解集为∅,求k 的取值范围.14.(2018·天津红桥区期中)已知一元二次不等式x 2-ax -b <0的解集是{x |1<x <3}.(1)求实数a ,b 的值; (2)解不等式2x +ax +b >1.1.(2018·衡水金卷联考)已知集合M ={x |x 2-5x +4≤0},N ={x |2x >4},则( ) A .M ∩N ={x |2<x <4} B .M ∪N =R C .M ∩N ={x |2<x ≤4}D .M ∪N ={x |x >2}2.(2018·四川眉山中学期中)“0<m <1”是“关于x 的方程x 2+x +m 2-1=0有两个异号实数根”的什么条件( )A .充分不必要B .必要不充分C .充要D .既不充分也不必要3.(2018·黄冈模拟)若函数f (x )=(a 2+4a -5)x 2-4(a -1)x +3的图象恒在x 轴上方,则实数a 的取值范围是( )A .[1,19]B .(1,19)C .[1,19)D .(1,19]4.(2018·安徽淮北濉溪月考)若关于x 的不等式ax >b 的解集为(-∞,15),则关于x 的不等式ax 2+bx -45a >0的解集为 .5.(2018·河北正定中学月考)已知f (x )=ax 2+x -a ,a ∈R .(1)若不等式,f (x )>(a -1)x 2+(2a +1)x -3a -1对任意的x ∈[-1,1]恒成立,求实数a 的取值范围;(2)若a <0,解不等式f (x )>1.【参考答案】一、选择题1.(2018·广西南宁摸底联考)若集合A ={x |x 2-2x <0},B ={x ||x |≤1},则A ∩B =( C ) A . [-1,0) B .[-1,2) C .(0,1]D .[1,2)[解析] 由x 2-2x <0得0<x <2,所以A ={x |0<x <2},由|x |≤1得-1≤x ≤1,所以集合B ={x |-1≤x ≤1},所以A ∩B ={x |0<x ≤1},故选C .2.(2018·安徽江淮十校联考)不等式|x |·(1-2x )>0的解集为( A ) A .(-∞,0)∪(0,12)B .(-∞,12)C .(12,+∞)D .(0,12)[解析] 很明显x ≠0,则原不等式等价于⎩⎪⎨⎪⎧1-2x >0,x ≠0,解得x <12且x ≠0,所以实数x 的取值范围是(-∞,0)∪(0,12).3.(2018·内蒙古包头模拟)若不等式f (x )=ax 2-x -c >0的解集为{x |-2<x <1},则函数y =f (-x )的大致图象为( C )[解析] 由题意得⎩⎨⎧a <0,-2+1=1a,-2×1=-ca,解得a =-1,c =-2.则函数y =f (-x )=-x 2+x+2,由二次函数的图象可知选C .4.(2018·安徽淮北一中模拟)若(x -1)(x -2)<2,则(x +1)(x -3)的取值范围是( C ) A .(0,3) B .[-4,-3) C .[-4,0)D .(-3,4][解析] 由(x -1)(x -2)<2解得0<x <3,令f (x )=(x +1)·(x -3),则f (x )图象的对称轴是直线x =1,故f (x )在(0,1)上单调递减,在(1,3)上单调递增,f (x )在x =1处取得最小值,为-4,在x =3处取得最大值,为0,故(x +1)(x -3)的取值范围为[-4,0).5.(2018·四川绵阳)国庆节期间,绵阳市某大型商场举行“购物送券”活动,一名顾客计划到该商场购物,他有三张商场的优惠券,商场规定每购买一件商品只能使用一张优惠券.根据购买商品的标价,三张优惠券的优惠方式不同,具体如下:优惠券A :若商品的标价超过100元,则付款时减免标价的10%; 优惠券B :若商品的标价超过200元,则付款时减免30元;优惠券C :若商品的标价超过200元,则付款时减免超过200元部分的20%.若顾客想使用优惠券C ,并希望比使用优惠券A 或B 减免的钱款都多,则他购买的商品的标价应高于( B )A .300元B .400元C .500元D .600元[解析] 设购买的商品的标价为x 元,则(x -200)×20%>x ·10%,且(x -200)×20%>30,解得x >400,选B .6.(2018·江西南昌重点校联考)如果方程x 2+(m -1)x +m 2-2=0的两个实根一个小于-1,另一个大于1,那么实数m 的取值范围是( A )A .(0,1)B .(-2,1)C .(-2,0)D .(-2,2)[解析] 记f (x )=x 2+(m -1)x +m 2-2,依题意有⎩⎪⎨⎪⎧f (-1)<0,f (1)<0,即⎩⎪⎨⎪⎧1-(m -1)+m 2-2<0,1+(m -1)+m 2-2<0,解得0<m <1.选A . 7.(2018·山东临沂期中)关于x 的不等式ax -b <0的解集是(1,+∞),则关于x 的不等式(ax +b )(x -3)>0的解集是( C )A .(-∞,-1)∪(3,+∞)B .(1,3)C .(-1,3)D .(-∞,1)∪(3,+∞)[解析] ∵关于x 的不等式ax -b <0的解集为(1,+∞),∴a <0且ba =1,即a =b ,∴不等式(ax +b )(x -3)>0可转化为(x +1)(x -3)<0.解得-1<x <3,故选C .8.(2018~2019山东洛阳一中月考题)不等式x 2-2x +5≥a 2-3a 对任意实数x 恒成立,则实数a 的取值范围为( A )A .[-1,4]B .(-∞,-2)∪[5,+∞)C .(-∞,-1)∪[4,+∞)D .[-2,5][解析] x 2-2x +5=(x -1)2+4的最小值为4,所以x 2-2x +5≥a 2-3a 对任意实数x 恒成立,只需a 2-3a ≤4,解得-1≤a ≤4.故选A .二、填空题9.(2015·广东卷)不等式-x 2-3x +4>0的解集为__{x |-4<x <1}___. [解析] -x 2-3x +4>0⇔x 2+3x -4<0⇔(x +4)(x -1)<0⇔-4<x <1.10.(2018·全国名校大联考)不等式x 2-2ax -3a 2<0(a >0)的解集为__{x |-a <x <3a }___. [解析] ∵x 2-2ax -3a 2<0⇔(x -3a )·(x +a )<0,a >0,∴-a <3a ,则不等式的解集为{x |-a <x <3a }.11.不等式-12<1x <2的解集为 (-∞,-2)∪(12,+∞) .[解析] 原不等式可化为⎩⎨⎧1x >-12,1x <2,即⎩⎪⎨⎪⎧x +2x >0,1-2x x <0,∴⎩⎪⎨⎪⎧x (x +2)>0,x (x -12)>0,解得x <-2或x >12∴不等式的解集为(-∞,-2)∪(12,+∞).12.(2018·吉林辽源五校期末联考)若函数f (x )=x 2+ax +b 的两个零点是-1和2,则不等式af (-2x )>0的解集是 (-1,12) .[解析] ∵f (x )=x 2+ax +b 的两个零点是-1,2,∴-1,2是方程x 2+ax +b =0的两根,由根与系数的关系知⎩⎪⎨⎪⎧ -1+2=-a ,-1×2=b ,即⎩⎪⎨⎪⎧a =-1,b =-2,∴f (x )=x 2-x -2.不等式af (-2x )>0,即-(4x 2+2x -2)>0,则2x 2+x -1<0,解集为(-1,12).三、解答题13.已知关于x 的不等式kx 2-2x +6k <0(k ≠0). (1)若不等式的解集为{x |x <-3或x >-2},求k 的值; (2)若不等式的解集为{x |x ∈R ,x ≠1k },求k 的值;(3)若不等式的解集为R ,求k 的取值范围; (4)若不等式的解集为∅,求k 的取值范围.[解析] (1)由不等式的解集为{x |x <-3或x >-2}可知k <0,且-3与-2是方程kx 2-2x +6k =0的两根,∴(-3)+(-2)=2k ,解得k =-25.(2)由不等式的解集为{x |x ∈R ,x ≠1k }可知⎩⎪⎨⎪⎧k <0,Δ=4-24k 2=0,解得k =-66.(3)依题意知⎩⎪⎨⎪⎧ k <0,Δ=4-24k 2<0,解得k <-66.(4)依题意知⎩⎪⎨⎪⎧k >0,Δ=4-24k 2≤0,解得k ≥66.14.(2018·天津红桥区期中)已知一元二次不等式x 2-ax -b <0的解集是{x |1<x <3}. (1)求实数a ,b 的值; (2)解不等式2x +ax +b>1.[解析] (1)因为一元二次不等式x 2-ax -b <0的解集是{x |1<x <3},所以1和3是x 2-ax -b =0的两个实数根,得1+3=a,1×3=-b ,即a =4,b =-3.(2)不等式2x +a x +b >1,即2x +4x -3>1,即x +7x -3>0,即(x -3)·(x +7)>0,解得x >3或x <-7,故原不等式的解集为{x |x >3或x <-7}.1.(2018·衡水金卷联考)已知集合M ={x |x 2-5x +4≤0},N ={x |2x >4},则( C ) A .M ∩N ={x |2<x <4} B .M ∪N =R C .M ∩N ={x |2<x ≤4}D .M ∪N ={x |x >2}[解析] M ={x |x 2-5x +4≤0}={x |1≤x ≤4},N ={x |x >2}.所以M ∩N ={x |2<x ≤4},M ∪N ={x |x ≥1}.故选C .2.(2018·四川眉山中学期中)“0<m <1”是“关于x 的方程x 2+x +m 2-1=0有两个异号实数根”的什么条件( A )A .充分不必要B .必要不充分C .充要D .既不充分也不必要[解析] x 2+x +m 2-1=0两根异号⇔⎩⎪⎨⎪⎧Δ=1-4(m 2-1)>0,m 2-1<0.解得-1<m <1,∵(0,1)(-1,1),∴“0<m <1”是“关于x 的方程x 2+x +m 2-1=0有两异号实根”的充分不必要条件,故选A .3.(2018·黄冈模拟)若函数f (x )=(a 2+4a -5)x 2-4(a -1)x +3的图象恒在x 轴上方,则实数a 的取值范围是( C )A .[1,19]B .(1,19)C .[1,19)D .(1,19][解析] 函数图象恒在x 轴上方,即不等式(a 2+4a -5)x 2-4(a -1)x +3>0对于一切x ∈R 恒成立.当a 2+4a -5=0时,有a =-5或a =1.若a =-5,不等式化为24x +3>0,不满足题意;若a =1,不等式化为3>0,满足题意.当a 2+4a -5≠0时,应有⎩⎪⎨⎪⎧a 2+4a -5>0,16(a -1)2-12(a 2+4a -5)<0,解得1<a <19.综上1≤a <19.故选C .4.(2018·安徽淮北濉溪月考)若关于x 的不等式ax >b 的解集为(-∞,15),则关于x 的不等式ax 2+bx -45a >0的解集为 (-1,45) .[解析] 因为关于x 的不等式ax >b 的解集为(-∞,15),所以a <0,b a =15,所以不等式ax 2+bx -45a >0可化为x 2+b a x -45<0,即x 2+15x -45<0,解得-1<x <45,所以不等式ax 2+bx -45a >0的解集为(-1,45).5.(2018·河北正定中学月考)已知f (x )=ax 2+x -a ,a ∈R .(1)若不等式,f (x )>(a -1)x 2+(2a +1)x -3a -1对任意的x ∈[-1,1]恒成立,求实数a 的取值范围;(2)若a <0,解不等式f (x )>1.[解析] (1)原不等式等价于x 2-2ax +2a +1>0对任意的x ∈[-1,1]恒成立, 设g (x )=x 2-2ax +2a +1=(x -a )2-a 2+2a +1,x ∈[-1,1]; ①当a <-1时,g (x )min =g (-1)=1+2a +2a +1>0,无解;②当-1≤a ≤-1时,g (x )min =g (a )=-a 2+2a +1>0,得1-2<a ≤1; ③当a >1时,g (x )min =g (1) =1-2a +2a +1>0,得a >1. 综上,实数a 的取值范闱为(1-2,+∞).(2)f (x )>1,即ax 2+x -a -1>0,即(x -1)(ax +a +1)>0, 因为a <0,所以(x -1)(x +a +1a )<0,因为1-(-a +1a )=2a +1a ,所以当-12<a <0时,1<-a +1a ,解集为{x |1<x <-a +1a};当a =-12时,不等式可化为(x -1)2<0,不等式无解;当a <-12时,1>-a +1a ,解集为{x |-a +1a<x <1}.。
一元二次不等式(含答案)
一元二次不等式1.一元一次不等式解法任何一个一元一次不等式经过不等式的同解变形后,都可以化为ax >b (a ≠0)的形式. 当a >0时,解集为 ;当a <0时,解集为 . 2.一元二次不等式及其解法(1)我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为__________不等式.(2)使某个一元二次不等式成立的x 的值叫做这个一元二次不等式的解,一元二次不等式所有的解组成的集合叫做一元二次不等式的________.(3)一元二次不等式的解:函数与不等式 Δ>0Δ=0Δ<0二次函数 y =ax 2+bx +c (a >0)的图象一元二次方程 ax 2+bx +c =0 (a >0)的根 有两相异实根 x 1,x 2(x 1<x 2)有两相等实根 x 1=x 2=-b2a无实根ax 2+bx +c >0 (a >0)的解集 ① ② Rax 2+bx +c <0 (a >0)的解集{x |x 1<x <x 2}∅③3.分式不等式解法(1)化分式不等式为标准型.方法:移项,通分,右边化为0,左边化为f (x )g (x )的形式.(2)将分式不等式转化为整式不等式求解,如:f (x )g (x )>0 ⇔ f (x )g (x )>0; f (x )g (x )<0 ⇔ f (x )g (x )<0; f (x )g (x )≥0 ⇔ ⎩⎪⎨⎪⎧f (x )g (x )≥0,g (x )≠0; f (x )g (x )≤0 ⇔ ⎩⎪⎨⎪⎧f (x )g (x )≤0,g (x )≠0.已知集合A ={x |x 2-2x -3≥0},B ={x |-2≤x <2},则A ∩B =( ) A.[-2,-1]B.[-1,2)C.[-1,1]D.[1,2)解:∵A ={x |x ≥3或x ≤-1},B ={x |-2≤x <2},∴A ∩B ={x |-2≤x ≤-1}=[-2,-1].故选A . 设f (x )=x 2+bx +1且f (-1)=f (3),则f (x )>0的解集为( )A.{x |x ∈R }B.{x |x ≠1,x ∈R }C.{x |x ≥1}D.{x |x ≤1}解:f (-1)=1-b +1=2-b ,f (3)=9+3b +1=10+3b ,由f (-1)=f (3),得2-b =10+3b , 解出b =-2,代入原函数,f (x )>0即x 2-2x +1>0,x 的取值范围是x ≠1.故选B.已知-12<1x <2,则x 的取值范围是( )A.-2<x <0或0<x <12B.-12<x <2C.x <-12或x >2D.x <-2或x >12解:当x >0时,x >12;当x <0时,x <-2.所以x 的取值范围是x <-2或x >12,故选D.不等式1-2xx +1>0的解集是 .解:不等式1-2x x +1>0等价于(1-2x )(x +1)>0,也就是⎝⎛⎭⎫x -12(x +1)<0,所以-1<x <12. 故填⎩⎨⎧⎭⎬⎫x |-1<x <12,x ∈R .若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为________.解:显然k ≠0.若k >0,则只须(2x 2+x )max <38k ,解得k ∈∅;若k <0,则只须38k <(2x 2+x )min ,解得k ∈(-3,0).故k 的取值范围是(-3,0).故填(-3,0).类型一 一元一次不等式的解法已知关于x 的不等式(a +b )x +2a -3b <0的解集为⎝⎛⎭⎫-∞,-13,求关于x 的不等式(a -3b )x +b -2a >0的解集.解:由(a +b )x <3b -2a 的解集为⎝⎛⎭⎫-∞,-13,得a +b >0,且3b -2a a +b =-13, 从而a =2b ,则a +b =3b >0,即b >0,将a =2b 代入(a -3b )x +b -2a >0, 得-bx -3b >0,x <-3,故所求解集为(-∞,-3).点拨:一般地,一元一次不等式都可以化为ax >b (a ≠0)的形式.挖掘隐含条件a +b >0且3b -2a a +b =-13是解本题的关键.解关于x 的不等式:(m 2-4)x <m +2.解:(1)当m 2-4=0即m =-2或m =2时,①当m =-2时,原不等式的解集为∅,不符合 ②当m =2时,原不等式的解集为R ,符合(2)当m 2-4>0即m <-2或m >2时,x <1m -2.(3)当m 2-4<0即-2<m <2时,x >1m -2.类型二 一元二次不等式的解法解下列不等式:(1)x 2-7x +12>0; (2)-x 2-2x +3≥0;(3)x 2-2x +1<0; (4)x 2-2x +2>0.解:(1){x |x <3或x >4}.(2){x |-3≤x ≤1}.(3)∅.(4)因为Δ<0,可得原不等式的解集为R .已知函数f (x )=⎩⎪⎨⎪⎧-x +1,x <0,x -1,x ≥0, 则不等式x +(x +1)f (x +1)≤1的解集是( )A.{x |-1≤x ≤2-1}B.{x |x ≤1}C.{x |x ≤2-1}D.{x |-2-1≤x ≤2-1} 解:由题意得不等式x +(x +1)f (x +1)≤1等价于①⎩⎪⎨⎪⎧x +1<0,x +(x +1)[-(x +1)+1]≤1 或②⎩⎪⎨⎪⎧x +1≥0,x +(x +1)[(x +1)-1]≤1,解不等式组①得x <-1;解不等式组②得-1≤x ≤2-1.故原不等式的解集是{x |x ≤2-1}.故选C.类型三 二次不等式、二次函数及二次方程的关系已知关于x 的不等式x 2-bx +c ≤0的解集是{x |-5≤x ≤1},求实数b ,c 的值.解:∵不等式x 2-bx +c ≤0的解集是{x |-5≤x ≤1},∴x 1=-5,x 2=1是x 2-bx +c =0的两个实数根,∴由韦达定理知⎩⎪⎨⎪⎧-5+1=b ,-5×1=c ,∴⎩⎪⎨⎪⎧b =-4,c =-5. 已知不等式ax 2+bx +c >0的解集为{x |2<x <3},求不等式cx 2-bx +a >0的解集.解:∵不等式ax 2+bx +c >0的解集为{x |2<x <3},∴a <0,且2和3是方程ax 2+bx +c =0的两根,由根与系数的关系得⎩⎪⎨⎪⎧-ba =2+3,c a =2×3,a <0.即⎩⎪⎨⎪⎧b =-5a ,c =6a ,a <0.代入不等式cx 2-bx +a >0,得6ax 2+5ax +a >0(a <0).即6x 2+5x +1<0,∴所求不等式的解集为⎩⎨⎧⎭⎬⎫x |-12<x <-13.类型四 含有参数的一元二次不等式解关于x 的不等式:mx 2-(m +1)x +1<0.解:(1)m =0时,不等式为-(x -1)<0,得x -1>0,不等式的解集为{x |x >1}; (2)当m ≠0时,不等式为m ⎝⎛⎭⎫x -1m (x -1)<0.①当m <0,不等式为⎝⎛⎭⎫x -1m (x -1)>0, ∵1m <1,∴不等式的解集为⎩⎨⎧⎭⎬⎫x |x <1m 或x >1. ②当m >0,不等式为⎝⎛⎭⎫x -1m (x -1)<0. (Ⅰ)若1m <1即m >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x |1m <x <1;(Ⅱ)若1m >1即0<m <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x |1<x <1m ;(Ⅲ)若1m=1即m =1时,不等式的解集为∅.点拨:当x 2的系数是参数时,首先对它是否为零进行讨论,确定其是一次不等式还是二次不等式,即对m ≠0与m =0进行讨论,这是第一层次;第二层次:x 2的系数正负(不等号方向)的不确定性,对m <0与m >0进行讨论;第三层次:1m与1大小的不确定性,对m <1、m >1与m =1进行讨论.解关于x 的不等式ax 2-2≥2x -ax (a ∈R ).解:不等式整理为ax 2+(a -2)x -2≥0,当a =0时,解集为(-∞,-1].当a ≠0时,ax 2+(a -2)x -2=0的两根为-1,2a ,所以当a >0时,解集为(-∞,-1]∪⎣⎡⎭⎫2a ,+∞; 当-2<a <0时,解集为⎣⎡⎦⎤2a ,-1;当a =-2时,解集为{x |x =-1};当a <-2时,解集为⎣⎡⎦⎤-1,2a . 类型五 分式不等式的解法(1)解不等式x -12x +1≤1.解:x -12x +1≤1 ⇔ x -12x +1-1≤0 ⇔ -x -22x +1≤0 ⇔ x +22x +1≥0.x +22x +1≥0 ⇔ ⎩⎪⎨⎪⎧(x +2)(2x +1)≥0,2x +1≠0.得{xx >-12或x ≤-2}.※(2)不等式x -2x 2+3x +2>0的解集是 .解:x -2x 2+3x +2>0⇔x -2(x +2)(x +1)>0⇔(x -2)(x +2)(x +1)>0,数轴标根得{x |-2<x <-1或x >2},故填{x|-2<x <-1或x >2}.点拨:分式不等式可以先转化为简单的高次不等式,再利用数轴标根法写出不等式的解集,如果该不等式有等号,则要注意分式的分母不能为零.※用“数轴标根法”解不等式的步骤:(1)移项:使得右端为0(注意:一定要保证x 的最高次幂的项的系数为正数).(2)求根:就是求出不等式所对应的方程的所有根..(3)标根:在数轴上按从左到右(由小到大)依次标出各根(不需标出准确位置,只需标出相对位置即可).(4)画穿根线:从数轴“最右根”的右上方向左下方画线,穿过此根,再往左上方穿过“次右根”,一上一下依次穿过各根,“奇穿偶不穿”来记忆.(5)写出不等式的解集:若不等号为“>”,则取数轴上方穿根线以内的范围;若不等号为“<”,则取数轴下方穿根线以内的范围;若不等式中含有“=”号,写解集时要考虑分母不能为零.(1)若集合A ={x |-1≤2x +1≤3},B =⎩⎨⎧⎭⎬⎫x |x -2x ≤0,则A ∩B =( )A.{x |-1≤x <0}B.{x |0<x ≤1}C.{x |0≤x ≤2}D.{x |0≤x ≤1}解:易知A ={x |-1≤x ≤1},B 集合就是不等式组⎩⎪⎨⎪⎧x (x -2)≤0,x ≠0 的解集,求出B ={}x |0<x ≤2,所以A ∩B={x |0<x ≤1}.故选B.(2)不等式x -12x +1≤0的解集为( )A.⎝⎛⎦⎤-12,1B.⎣⎡⎦⎤-12,1C.⎝⎛⎭⎫-∞,-12∪[1,+∞)D.⎝⎛⎦⎤-∞,-12∪[1,+∞) 解:x -12x +1≤0⇔⎩⎪⎨⎪⎧(x -1)(2x +1)≤0,2x +1≠0得-12<x ≤1.故选A.类型六 和一元二次不等式有关的恒成立问题(1)若不等式x 2+ax +1≥0对于一切x ∈⎝⎛⎦⎤0,12成立,则a 的最小值为( ) A.0 B.-2 C.-52D.-3解:不等式可化为ax ≥-x 2-1,由于x ∈⎝⎛⎦⎤0,12,∴a ≥-⎝⎛⎭⎫x +1x .∵f (x )=x +1x 在⎝⎛⎦⎤0,12上是减函数, ∴⎝⎛⎭⎫-x -1x max=-52.∴a ≥-52.(2)已知对于任意的a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值总大于0,则x 的取值范围是( ) A.1<x <3B.x <1或x >3C.1<x <2D.x <1或x >2解:记g (a )=(x -2)a +x 2-4x +4,a ∈[-1,1],只须⎩⎪⎨⎪⎧g (1)>0,g (-1)>0⇒⎩⎪⎨⎪⎧x 2-3x +2>0,x 2-5x +6>0⇒x <1或x >3,故选B.点拨:对于参数变化的情形,大多利用参变量转换法,即参数转换为变量;变量转换为参数,把关于x 的二次不等式转换为关于a 的一次不等式,化繁为简,然后再利用一次函数的单调性,求出x 的取值范围.对于满足|a |≤2的所有实数a ,求使不等式x 2+ax +1>2x +a 成立的x 的取值范围.解:原不等式转化为(x -1)a +x 2-2x +1>0,设f (a )=(x -1)a +x 2-2x +1,则f (a )在[-2,2]上恒大于0,故有:⎩⎪⎨⎪⎧f (-2)>0,f (2)>0 即⎩⎪⎨⎪⎧x 2-4x +3>0,x 2-1>0 解得⎩⎪⎨⎪⎧x >3或x <1,x >1或x <-1.∴x <-1或x >3. 类型七 二次方程根的讨论若方程2ax 2-x -1=0在(0,1)内有且仅有一解,则a 的取值范围是( ) A.a <-1B.a >1C.-1<a <1D.0≤a <1解法一:令f(x)=2ax2-x-1,则f(0)·f(1)<0,即-1×(2a-2)<0,解得a>1.解法二:当a=0时,x=-1,不合题意,故排除C,D;当a=-2时,方程可化为4x2+x+1=0,而Δ=1-16<0,无实根,故a=-2不适合,排除A.故选B.。
高一一元二次不等式及其解法知识点+例题+练习 含答案
1.“三个二次”的关系判别式Δ=b2-4ac Δ>0Δ=0Δ<0二次函数y=ax2+bx+c (a>0)的图象一元二次方程ax2+bx+c=0(a>0)的根有两个相异实根x1,x2(x1<x2)有两个相等实根x1=x2=-b2a没有实数根ax2+bx+c>0 (a>0)的解集(-∞,x1)∪(x2,+∞)(-∞,-b2a)∪(-b2a,+∞)Rax2+bx+c<0(a>0)的解集(x1,x2) ∅∅不等式解集a<b a=b a>b(x-a)·(x-b)>0{x|x<a或x>b}{x|x≠a}{x|x<b或x>a}(x-a) (x-b)<0{x|a<x<b}∅{x|b<x<a}【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0.( √ ) (2)不等式x -2x +1≤0的解集是[-1,2].( × )(3)若不等式ax 2+bx +c >0的解集是(-∞,x 1)∪(x 2,+∞),则方程ax 2+bx +c =0的两个根是x 1和x 2.( √ )(4)若方程ax 2+bx +c =0(a ≠0)没有实数根,则不等式ax 2+bx +c >0的解集为R .( × ) (5)不等式ax 2+bx +c ≤0在R 上恒成立的条件是a <0且Δ=b 2-4ac ≤0.( × )1.(教材改编)不等式x 2-3x -10>0的解集是________. 答案 (-∞,-2)∪(5,+∞)解析 解方程x 2-3x -10=0得x 1=-2,x 2=5,由y =x 2-3x -10的开口向上,所以x 2-3x -10>0的解集为(-∞,-2)∪(5,+∞). 2.设集合M ={x |x 2-3x -4<0},N ={x |0≤x ≤5},则M ∩N =________. 答案 [0,4)解析 ∵M ={x |x 2-3x -4<0}={x |-1<x <4}, ∴M ∩N =[0,4).3.已知不等式ax 2-bx -1≥0的解集是⎣⎡⎦⎤-12,-13,则不等式x 2-bx -a <0的解集是________________. 答案 (2,3)解析 由题意知-12,-13是方程ax 2-bx -1=0的根,所以由根与系数的关系得-12+⎝⎛⎭⎫-13=b a ,-12×⎝⎛⎭⎫-13=-1a .解得a =-6,b =5,不等式x 2-bx -a <0即为x 2-5x +6<0,解集为(2,3).4.(教材改编)若关于x 的不等式m (x -1)>x 2-x 的解集为{x |1<x <2},则实数m 的值为________. 答案 2解析 因为m (x -1)>x 2-x 的解集为{x |1<x <2}. 所以1,2一定是m (x -1)=x 2-x 的解,∴m =2.5.(教材改编)若关于x 的方程x 2+ax +a 2-1=0有一正根和一负根,则a 的取值范围为________. 答案 (-1,1)解析 由题意可知,Δ>0且x 1x 2=a 2-1<0,故-1<a <1.题型一 一元二次不等式的求解命题点1 不含参的不等式例1 求不等式-2x 2+x +3<0的解集. 解 化-2x 2+x +3<0为2x 2-x -3>0, 解方程2x 2-x -3=0得x 1=-1,x 2=32,∴不等式2x 2-x -3>0的解集为(-∞,-1)∪(32,+∞),即原不等式的解集为(-∞,-1)∪(32,+∞).命题点2 含参不等式例2 解关于x 的不等式:x 2-(a +1)x +a <0. 解 由x 2-(a +1)x +a =0得(x -a )(x -1)=0, ∴x 1=a ,x 2=1,①当a >1时,x 2-(a +1)x +a <0的解集为{x |1<x <a }, ②当a =1时,x 2-(a +1)x +a <0的解集为∅, ③当a <1时,x 2-(a +1)x +a <0的解集为{x |a <x <1}. 引申探究将原不等式改为ax 2-(a +1)x +1<0,求不等式的解集. 解 若a =0,原不等式等价于-x +1<0,解得x >1. 若a <0,原不等式等价于(x -1a )(x -1)>0,解得x <1a 或x >1.若a >0,原不等式等价于(x -1a )(x -1)<0.①当a =1时,1a =1,(x -1a )(x -1)<0无解;②当a >1时,1a <1,解(x -1a )(x -1)<0得1a<x <1;③当0<a <1时,1a >1,解(x -1a )(x -1)<0得1<x <1a .综上所述:当a <0时,解集为{x |x <1a或x >1};当a =0时,解集为{x |x >1};当0<a <1时,解集为{x |1<x <1a };当a =1时,解集为∅;当a >1时,解集为{x |1a<x <1}.思维升华 含有参数的不等式的求解,往往需要对参数进行分类讨论.(1)若二次项系数为常数,首先确定二次项系数是否为正数,再考虑分解因式,对参数进行分类讨论,若不易分解因式,则可依据判别式符号进行分类讨论;(2)若二次项系数为参数,则应先考虑二次项系数是否为零,确定不等式是不是二次不等式,然后再讨论二次项系数不为零的情形,以便确定解集的形式; (3)对方程的根进行讨论,比较大小,以便写出解集.求不等式12x 2-ax >a 2(a ∈R )的解集.解 ∵12x 2-ax >a 2,∴12x 2-ax -a 2>0, 即(4x +a )(3x -a )>0,令(4x +a )(3x -a )=0, 得:x 1=-a 4,x 2=a3.①a >0时,-a 4<a 3,解集为⎩⎨⎧⎭⎬⎫x |x <-a 4或x >a 3;②a =0时,x 2>0,解集为{x |x ∈R 且x ≠0}; ③a <0时,-a 4>a 3,解集为⎩⎨⎧⎭⎬⎫x |x <a 3或x >-a 4.综上所述,当a >0时,不等式的解集为 ⎩⎨⎧⎭⎬⎫x |x <-a 4或x >a 3;当a =0时,不等式的解集为{x |x ∈R 且x ≠0}; 当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x <a 3或x >-a 4.题型二 一元二次不等式恒成立问题命题点1 在R 上恒成立例3 (1)若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为________.(2)设a 为常数,∀x ∈R ,ax 2+ax +1>0,则a 的取值范围是________. 答案 (1)(-3,0) (2)[0,4)解析 (1)2kx 2+kx -38<0对一切实数x 都成立,则必有⎩⎪⎨⎪⎧2k <0,Δ=k 2-4×2k ×(-38)<0,解之得-3<k <0. (2)∀x ∈R ,ax 2+ax +1>0,则必有⎩⎪⎨⎪⎧a >0,Δ=a 2-4a <0或a =0,∴0≤a <4.命题点2 在给定区间上恒成立例4 设函数f (x )=mx 2-mx -1.若对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围. 解 要使f (x )<-m +5在x ∈[1,3]上恒成立,即 m ⎝⎛⎭⎫x -122+34m -6<0在x ∈[1,3]上恒成立. 有以下两种方法:方法一 令g (x )=m ⎝⎛⎭⎫x -122+34m -6,x ∈[1,3]. 当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3)⇒7m -6<0, 所以m <67,所以0<m <67;当m =0时,-6<0恒成立; 当m <0时,g (x )在[1,3]上是减函数,所以g (x )max =g (1)⇒m -6<0,所以m <6,所以m <0. 综上所述:m 的取值范围是{m |m <67}.方法二 因为x 2-x +1=⎝⎛⎭⎫x -122+34>0, 又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.因为函数y =6x 2-x +1=6⎝⎛⎭⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可.所以,m 的取值范围是⎩⎨⎧⎭⎬⎫m |m <67.命题点3 给定参数范围的恒成立问题例5 对任意的k ∈[-1,1],函数f (x )=x 2+(k -4)x +4-2k 的值恒大于零,则x 的取值范围是________________________________________________________________________. 答案 {x |x <1或x >3}解析 x 2+(k -4)x +4-2k >0恒成立, 即g (k )=(x -2)k +(x 2-4x +4)>0, 在k ∈[-1,1]时恒成立.只需g (-1)>0且g (1)>0,即⎩⎪⎨⎪⎧x 2-5x +6>0,x 2-3x +2>0,解之得x <1或x >3.思维升华 (1)对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.另外常转化为求二次函数的最值或用分离参数法求最值.(2)解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.(1)若不等式x 2-2x +5≥a 2-3a 对任意实数x 恒成立,则实数a 的取值范围为__________.(2)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________. 答案 (1)[-1,4] (2)(-22,0) 解析 (1)x 2-2x +5=(x -1)2+4的最小值为4, 所以x 2-2x +5≥a 2-3a 对任意实数x 恒成立, 只需a 2-3a ≤4,解得-1≤a ≤4.(2)作出二次函数f (x )的草图,对于任意x ∈[m ,m +1],都有f (x )<0,则有⎩⎪⎨⎪⎧f (m )<0,f (m +1)<0,即⎩⎪⎨⎪⎧m 2+m 2-1<0,(m +1)2+m (m +1)-1<0,解得-22<m <0.题型三 一元二次不等式的应用例6 某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域; (2)若再要求该商品一天营业额至少为10 260元,求x 的取值范围. 解 (1)由题意得,y =100⎝⎛⎭⎫1-x 10·100⎝⎛⎭⎫1+850x . 因为售价不能低于成本价,所以100⎝⎛⎭⎫1-x10-80≥0. 所以y =f (x )=40(10-x )(25+4x ),定义域为x ∈[0,2]. (2)由题意得40(10-x )(25+4x )≥10 260, 化简得8x 2-30x +13≤0.解得12≤x ≤134.所以x 的取值范围是⎣⎡⎦⎤12,2.思维升华 求解不等式应用题的四个步骤(1)阅读理解,认真审题,把握问题中的关键量,找准不等关系.(2)引进数学符号,将文字信息转化为符号语言,用不等式表示不等关系,建立相应的数学模型.(3)解不等式,得出数学结论,要注意数学模型中自变量的实际意义. (4)回归实际问题,将数学结论还原为实际问题的结果.某汽车厂上年度生产汽车的投入成本为10万元/辆,出厂价为12万元/辆,年销售量为10 000辆.本年度为适应市场需求,计划提高产品质量,适度增加投入成本.若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应地提高比例为0.75x ,同时预计年销售量增加的比例为0.6x ,已知年利润=(出厂价-投入成本)×年销售量. (1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(2)为使本年度的年利润比上年度有所增加,则投入成本增加的比例x 应在什么范围内? 解 (1)y =[(1+0.75x )×12-(1+x )×10]×(1+0.6x )×10 000 =-6 000x 2+2 000x +20 000,即y =-6 000x 2+2 000x +20 000(0<x <1). (2)上年利润为(12-10)×10 000=20 000. ∴y -20 000>0,即-6 000x 2+2 000x >0, ∴0<x <13,即x 的范围为(0,13).14.转化与化归思想在不等式中的应用典例 (1)已知函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),若关于x 的不等式f (x )<c 的解集为(m ,m +6),则实数c 的值为________.(2)已知函数f (x )=x 2+2x +ax ,若对任意x ∈[1,+∞),f (x )>0恒成立,则实数a 的取值范围是________.思维点拨 (1)考虑“三个二次”间的关系; (2)将恒成立问题转化为最值问题求解. 解析 (1)由题意知f (x )=x 2+ax +b =⎝⎛⎭⎫x +a 22+b -a 24. ∵f (x )的值域为[0,+∞), ∴b -a 24=0,即b =a 24.∴f (x )=⎝⎛⎭⎫x +a 22. 又∵f (x )<c ,∴⎝⎛⎭⎫x +a22<c , 即-a 2-c <x <-a2+c .∴⎩⎨⎧-a2-c =m , ①-a2+c =m +6. ②②-①,得2c =6,∴c =9.(2)∵x ∈[1,+∞)时,f (x )=x 2+2x +ax >0恒成立,即x 2+2x +a >0恒成立.即当x ≥1时,a >-(x 2+2x )=g (x )恒成立.而g (x )=-(x 2+2x )=-(x +1)2+1在[1,+∞)上单调递减, ∴g (x )max =g (1)=-3,故a >-3. ∴实数a 的取值范围是{a |a >-3}. 答案 (1)9 (2){a |a >-3}温馨提醒 (1)本题的解法充分体现了转化与化归思想:函数的值域和不等式的解集转化为a ,b 满足的条件;不等式恒成立可以分离常数,转化为函数值域问题. (2)注意函数f (x )的值域为[0,+∞)与f (x )≥0的区别.[方法与技巧]1.“三个二次”的关系是解一元二次不等式的理论基础,一般可把a <0时的情形转化为a >0时的情形.2.f (x )>0的解集即为函数y =f (x )的图象在x 轴上方的点的横坐标的集合,充分利用数形结合思想.3.简单的分式不等式可以等价转化,利用一元二次不等式解法进行求解. [失误与防范]1.对于不等式ax 2+bx +c >0,求解时不要忘记讨论a =0时的情形. 2.当Δ<0时,ax 2+bx +c >0 (a ≠0)的解集为R 还是∅,要注意区别. 3.含参数的不等式要注意选好分类标准,避免盲目讨论.A 组 专项基础训练(时间:30分钟)1.不等式(x -1)(2-x )≥0的解集为____________. 答案 {x |1≤x ≤2}解析 由(x -1)(2-x )≥0可知(x -2)(x -1)≤0, 所以不等式的解集为{x |1≤x ≤2}.2.已知函数f (x )=⎩⎪⎨⎪⎧x +2, x ≤0,-x +2, x >0,则不等式f (x )≥x 2的解集为________.答案 [-1,1]解析 方法一 当x ≤0时,x +2≥x 2, ∴-1≤x ≤0;①当x >0时,-x +2≥x 2,∴0<x ≤1.② 由①②得原不等式的解集为{x |-1≤x ≤1}.方法二 作出函数y =f (x )和函数y =x 2的图象,如图,由图知f (x )≥x 2的解集为[-1,1].3.若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的取值范围是____________. 答案 [0,4]解析 由题意知a =0时,满足条件.a ≠0时,由⎩⎪⎨⎪⎧a >0,Δ=a 2-4a ≤0,得0<a ≤4,所以0≤a ≤4.4.已知不等式x 2-2x -3<0的解集是A ,不等式x 2+x -6<0的解集是B ,不等式x 2+ax +b <0的解集是A ∩B ,那么a +b =________. 答案 -3解析 由题意,A ={x |-1<x <3},B ={x |-3<x <2},A ∩B ={x |-1<x <2}, 则不等式x 2+ax +b <0的解集为{x |-1<x <2}. 由根与系数的关系可知,a =-1,b =-2, 所以a +b =-3.5.设a >0,不等式-c <ax +b <c 的解集是{x |-2<x <1},则a ∶b ∶c =________.答案 2∶1∶3解析 ∵-c <ax +b <c ,又a >0,∴-b +c a <x <c -b a. ∵不等式的解集为{x |-2<x <1},∴⎩⎪⎨⎪⎧ -b +c a =-2,c -b a =1,∴⎩⎨⎧ b =a 2,c =32a ,∴a ∶b ∶c =a ∶a 2∶3a 2=2∶1∶3. 6.若不等式-2≤x 2-2ax +a ≤-1有唯一解,则a 的值为__________.答案 1±52解析 若不等式-2≤x 2-2ax +a ≤-1有唯一解,则x 2-2ax +a =-1有两个相等的实根,所以Δ=4a 2-4(a +1)=0,解得a =1±52. 7.若0<a <1,则不等式(a -x )(x -1a)>0的解集是________________. 答案 {x |a <x <1a} 解析 原不等式即(x -a )(x -1a)<0, 由0<a <1得a <1a ,∴a <x <1a. 8.已知关于x 的不等式ax -1x +1<0的解集是⎩⎨⎧⎭⎬⎫x |x <-1或x >-12,则实数a =____________. 答案 -2解析 ax -1x +1<0⇔(x +1)(ax -1)<0, 依题意,得a <0,且1a =-12.∴a =-2. 9.设f (x )是定义在R 上的以3为周期的奇函数,若f (1)>1,f (2)=2a -3a +1,则实数a 的取值范围是________.答案 (-1,23) 解析 ∵f (x +3)=f (x ),∴f (2)=f (-1+3)=f (-1)=-f (1)<-1.∴2a -3a +1<-1⇔3a -2a +1<0⇔(3a -2)(a +1)<0, ∴-1<a <23. 10.设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ).(1)若m =-1,n =2,求不等式F (x )>0的解集;(2)若a >0,且0<x <m <n <1a,比较f (x )与m 的大小. 解 (1)由题意知,F (x )=f (x )-x =a (x -m )(x -n ).当m =-1,n =2时,不等式F (x )>0,即a (x +1)(x -2)>0.当a >0时,不等式F (x )>0的解集为{x |x <-1或x >2};当a <0时,不等式F (x )>0的解集为{x |-1<x <2}.(2)f (x )-m =F (x )+x -m =a (x -m )(x -n )+x -m =(x -m )(ax -an +1),∵a >0,且0<x <m <n <1a, ∴x -m <0,1-an +ax >0.∴f (x )-m <0,即f (x )<m .B 组 专项能力提升(时间:20分钟)11.已知函数f (x )=(ax -1)(x +b ),如果不等式f (x )>0的解集是(-1,3),则不等式f (-2x )<0的解集是__________________________.答案 (-∞,-32)∪(12,+∞) 解析 f (x )=0的两个解是x 1=-1,x 2=3且a <0,由f (-2x )<0得-2x >3或-2x <-1,∴x <-32或x >12.12.若关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a =________.答案 52解析 由x 2-2ax -8a 2<0,得(x +2a )(x -4a )<0,因a >0,所以不等式的解集为(-2a,4a ),即x 2=4a ,x 1=-2a ,由x 2-x 1=15,得4a -(-2a )=15,解得a =52. 13.已知函数f (x )=-x 2+ax +b 2-b +1(a ∈R ,b ∈R ),对任意实数x 都有f (1-x )=f (1+x )成立,当x ∈[-1,1]时,f (x )>0恒成立,则b 的取值范围是________.答案 b <-1或b >2解析 由f (1-x )=f (1+x )知f (x )图象的对称轴为直线x =1,则有a 2=1,故a =2. 由f (x )的图象可知f (x )在[-1,1]上为增函数.∴x ∈[-1,1]时,f (x )min =f (-1)=-1-2+b 2-b +1=b 2-b -2,令b 2-b -2>0,解得b <-1或b >2.14.设函数f (x )=x 2-1,对任意x ∈[32,+∞),f (x m)-4m 2·f (x )≤f (x -1)+4f (m )恒成立,则实数m 的取值范围是________________.答案 {m |m ≤-32或m ≥32} 解析 依据题意得x 2m 2-1-4m 2(x 2-1)≤(x -1)2-1+4(m 2-1)在x ∈[32,+∞)上恒成立, 即1m 2-4m 2≤-3x 2-2x +1在x ∈[32,+∞)上恒成立. 当x =32时,函数y =-3x 2-2x +1取得最小值-53, 所以1m 2-4m 2≤-53,即(3m 2+1)(4m 2-3)≥0, 解得m ≤-32或m ≥32. 15.求使不等式x 2+(a -6)x +9-3a >0,|a |≤1恒成立的x 的取值范围.解 将原不等式整理为形式上是关于a 的不等式(x -3)a +x 2-6x +9>0.令f (a )=(x -3)a +x 2-6x +9.因为f (a )>0在|a |≤1时恒成立,所以(1)若x =3,则f (a )=0,不符合题意,应舍去.(2)若x ≠3,则由一次函数的单调性,可得⎩⎪⎨⎪⎧ f (-1)>0,f (1)>0,即⎩⎪⎨⎪⎧x 2-7x +12>0,x 2-5x +6>0, 解得x <2或x >4.所以x 的取值范围是{x |x <2或x >4}.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 , 2
由函数 y 4 x 4 x 1的图象为:
2
原不等式的的解集是 { } . 方法二:∵ 原不等式等价于: (2 x 1) 0 ,
2
1 2
地址:西凤街 19 号 3 栋 3 楼附 2 号
联系电话:(028)67208488
都戴氏教育温江校区
∴原不等式的的解集是 { } . (4)方法一:
2 2 因为 0 ,方程 x 4 x 5 0 无实数解,
函数 y x 4x 5 的简图为:
2
所以不等式 x 4 x 5 0 的解集是 .
2
所以原不等式的解集是 . 方法二:∵ x 4x 5 ( x 2) 1 1 0
2
函数 y x 5x 的简图为:
2
因而不等式 x 5x 0 的解集是 {x | 0 x 5} .
2
方法二: x 5x 0 x( x 5) 0
2
x 0 x 0 或 x 5 0 x 5 0
解得
x 0 x 0 或 ,即 0 x 5 或 x . x 5 x 5
地址:西凤街 19 号 3 栋 3 楼附 2 号
联系电话:(028)67208488
都戴氏教育温江校区
【经典例题】 类型一:解一元二次不等式 例 1. 解下列一元二次不等式 (1) x 5x 0 ;
2
(2) x 4 x 4 0 ;
2
(3) x 4 x 5 0
2
思路点拨: 转化为相应的函数,数形结合解决,或利用符号法则解答. 解析: (1)方法一: 因为 (5)2 4 1 0 25 0 所以方程 x 5x 0 的两个实数根为: x1 0 , x2 5
2 因为 0 ,方程 x 2 x 3 0 无实数解,
1 2
由函数 y x 2 2 x 3 的简图为:
原不等式的解集是 . 方法二:∵ x 2 x 3 ( x 1) 2 2 0 ,
2 2
∴ 原不等式解集为 . 【变式 2】解不等式: 6 x x 6 6
b ; 2a
③ 0 时,方程无解 (3)根据不等式,写出解集. 2 知识点四:用程序框图表示求解一元二次不等式 ax +bx+c>0(a>0)的过程 开始
将原不等式化成一般形式 ax +bx+c>0(a>0)
2
Δ =b -4ac
2
Δ ≥0?
是
否
2
求方程 ax +bx+c=0 的 两个根 x1、x2
2 2
(3) 4 x 4 x 1 0 ; (4) x 2 x 3 0 .
2 2
【答案】 (1)方法一: 因为 (3) 4 2 (2) 25 0
2
地址:西凤街 19 号 3 栋 3 楼附 2 号
联系电话:(028)67208488
都戴氏教育温江校区
R
x x
பைடு நூலகம்
1
x x 2
(1)一元二次方程 ax bx c 0(a 0) 的两根 x1、x2 是相应的不等式的解集的端点的取值,是 抛物线 y ax bx c 与 x 轴的交点的横坐标; (2)表中不等式的二次系数均为正,如果不等式的二次项系数为负,应先利用不等式的性质转化 为二次项系数为正的形式,然后讨论解决;
2 2 2
1 1 (4 x 1)(5x 1) 0 ,解得 x , 4 5
地址:西凤街 19 号 3 栋 3 楼附 2 号
联系电话:(028)67208488
都戴氏教育温江校区
故不等式 nx mx 1 0 的解集为 (
2
1 1 , ) . 4 5
总结升华:二次方程的根是二次函数的零点,也是相应的不等式的解集的端点.根据不等式的解集的端 点恰为相应的方程的根,我们可以利用韦达定理,找到不等式的解集与其系数之间的关系,这一点是解 此类题的关键。 举一反三: 【变式 1】不等式 ax +bx+12>0 的解集为{x|-3<x<2},则 a=_______, b=________。 【答案】由不等式的解集为{x|-3<x<2}知 a<0,且方程 ax +bx+12=0 的两根为-3,2。
联系电话:(028)67208488
都戴氏教育温江校区
(2)写出相应的方程 ax 2 bx c 0 (a 0) ,计算判别式 : ① 0 时,求出两根 x1、x2 ,且 x1 x2 (注意灵活运用因式分解和配方法) ; ② 0 时,求根 x1 x 2
都戴氏教育温江校区
所以,原不等式的解集是 {x | x 2} 方法二: x2 4 x 4 ( x 2)2 0 (当 x 2 时, ( x 2)2 0 ) 所以原不等式的解集是 {x | x 2} (3)方法一: 原不等式整理得 x 4 x 5 0 .
2
方程 ax +bx+c=0 没 有实数根
是
x1=x2?
否
原不等式解集为 R
原不等式解集为
{x | x
b } 2a
原 不 等 式 解 集 为 {x|x<x1, 或 x>x2}(x1<x2)
结束 规律方法指导 1.解一元二次不等式首先要看二次项系数 a 是否为正;若为负,则将其变为正数; 2.若相应方程有实数根,求根时注意灵活运用因式分解和配方法; 3.写不等式的解集时首先应判断两根的大小,若不能判断两根的大小应分类讨论; 4.根据不等式的解集的端点恰为相应的方程的根,我们可以利用韦达定理,找到不等式的解集与 其系数之间的关系; 5.若所给不等式最高项系数含有字母,还需要讨论最高项的系数。
【变式 2】已知 ax 2 x c 0 的解为
2
∴代入不等式 cx 2 x a 0 得 2 x 2 x 12 0 ,
2 2
2 即 x x 6 0 , ( x 3)( x 2) 0 ,解得 2 x 3 ,
3 x 4 x 1或x 0
∴原不等式的解集为 {x | 3 x 0或1 x 4} . 类型二:已知一元二次不等式的解集求待定系数 例 2. 不等式 x mx n 0 的解集为 x (4,5) ,求关于 x 的不等式 nx mx 1 0 的解集。
ax 2 bx c 0 ( a 0)的解集
ax 2 bx c 0 ( a 0)的解集
注意:
2
有两相异实根
有两相等实根
x1 , x2 ( x1 x2 )
x1 x2
b 2a
无实根
x x x 或x x
1 2
b x x 2a
2 2
b 3 2 1 a 由根与系数关系得 12 (3) 2 6 a
解得 a=-2, b=-2。
1 1 x ,试求 a 、 c ,并解不等式 cx 2 2 x a 0 . 3 2 1 1 2 1 1 c 【答案】由韦达定理有: , ,∴ a 12 , c 2 . 3 2 a 3 2 a
2
因而不等式 x 5x 0 的解集是 {x | 0 x 5} . (2)方法一: 因为 0 , 方程 x 4 x 4 0 的解为 x1 x2 2 .
2
函数 y x 4x 4 的简图为:
2
地址:西凤街 19 号 3 栋 3 楼附 2 号
联系电话:(028)67208488
y ax2 bx c (a 0) 的 图 象 , 图 象 在 x 轴 上 方 部 分 对 应 的 横 坐 标 x 值 的 集 合 为 不 等 式 ax2 bx c 0 的解集,图象在 x 轴下方部分对应的横坐标 x 值的集合为不等式 ax2 bx c 0 的解
2 方程 2 x 3x 2 0 的两个实数根为: x1
1 , x2 2 2
函数 y 2 x2 3x 2 的简图为:
因而不等式 2 x 3x 2 0 的解集是: {x | x
2
1 或x 2} . 2
方法二:∵原不等式等价于 (2 x 1)( x 2) 0 , ∴ 原不等式的解集是: {x | x (2)整理,原式可化为 3x 6 x 2 0 ,
2
1 或x 2} . 2
因为 0 , 方程 3x 6 x 2 0 的解 x1 1
2
3 3 , x2 1 , 3 3
函数 y 3x 6 x 2 的简图为:
2
所以不等式的解集是 (1 (3)方法一: 因为 0
3 3 ,1 ). 3 3
2 方程 4 x 4 x 1 0 有两个相等的实根: x1 x2
2
2 2 (3) 解集分 0, 0, 0 三种情况, 得到一元二次不等式 ax bx c 0 与 ax bx c 0
的解集。 知识点三:解一元二次不等式的步骤 (1)先看二次项系数是否为正,若为负,则将二次项系数化为正数;
地址:西凤街 19 号 3 栋 3 楼附 2 号
2
【答案】原不等式可化为不等式组
2 2 ( x 4)( x 3) 0 x x 6 6 x x 12 0 ,即 ,即 , 2 2 x ( x 1) 0 6 x x 6 x x 0