2014年12月山东省学业水平考试题高中数学
山东省2014年普通高中学业水平考试数学模拟试题(一)
山东省2014年普通高中学业水平考试数学模拟试题一、选择题(每小题3分,共60分)1.已知集合A={1,2,3},B={2,3,4,},那么集合A ⋂B=( )A. {2} B . {2,3} C. {1,2,3} D. {1,2,3,4}2.不等式220x x -<的解集是( )A.{}02x x <<B. {}20x x -<<C.{}0,2x x x <>或D. {}2,0x x x <->或3.一个空间几何体的三视图如图所示,那么这个空间几何体是( )A. 球B. 圆锥C.正方体 D .圆柱4.已知直线l 经过点A(0,4),且与直线230x y --=垂直,那么直线l 的方程是( )A .280x y +-=B .280x y ++=C .240x y --=D .240x y -+=5.某校有学生1000人,其中高一学生400人.为调查学生了解消防知识的现状,采用按年级分层抽样的方法,从该校学生中抽取一个40人的样本,那么样本中高一学生的人数为( )A . 8B . 12C . 16D . 206.已知四个函数233,,3,log x y x y x y y x ====,其中奇函数是( ) A .3y x = B. 2y x = C. 3x y = D. 3log y x =7.如图,正方体ABCD-A 1B 1C 1D 1的棱长为a ,那么四棱锥D 1-ABCD 的体积是( )A. 312a B . 313a C. 314a D. 316a ()sin f x x =,那么()f x π-等于( )A . sin x B. cos x C. sin x - D. cos x -22,0()1,0x x f x x x +<⎧=⎨->⎩的零点个数是( ) A. 0个 B. 1个 C . 2个 D. 3个10.已知3tan 4θ=,那么tan()4πθ+等于( ) A. 7- B. 17- C . 7 D. 17△ABC 中,D 是BC 的中点,那么AB AC +等于( )A. BDB. ADC. 2BDD. 2AD12. 不等式组114x y x y ≥⎧⎪≥⎨⎪+≤⎩,所表示的平面区域的面积为( )A . 1B .2C . 3D . 413. 在ABC ∆中,3A π=,3BC =,1AC =,那么AB 等于( )A .1B .2C .3D .214.上海世博会期间,某日13时至21时累计..入园人数的折线图如图所示,那么在13时~14时,14时~15时,……,20时~21时八个时段中,入园人数最多的时段是( )A. 13时~14时 B . 16时~ 17时 C.18时~19时 D.19时~20时15. 已知两条直线,m n 和平面α,那么下列命题中的真命题为( ) m ∥n ,n ⊂α,则m ∥α m n ⊥,n ⊂α,则m ⊥αC .若m ∥n ,n ⊂α,m α⊄,则m ∥αm n ⊥ ,n ⊂α,m α⊄,则m ⊥α3sin 5α=,那么cos2α等于( ) A .725 B. 725- C.2425 D. 2425- 0a >,且4ab =,那么a b +的最小值是( )A. 2 B . 4 C. 6 D. 8 18.某校高二年级开设三门数学选修课程。
2014届普通高中学业水平考试试卷
A.B.C.D.无法确定
28.有五条线段长度分别为 ,从这 条线段中任取 条,则所取 条线段能构成一个三角形的概率为()
A.B.C.D.
29.从 个同类产品(其中 个是正品, 个是次品)中任意抽取 个的必然事件是()
A. 个都是正品B.至少有 个是次品C. 个都是次品D.至少有 个是正品
开阳一中2014届高中数学必修3学分认定考试卷
命题:数学教研组:陈孝勇
一、选择题(本大题共35小题,每小题3分,共105分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.下面对算法描述正确的一项是:()
A.算法只能用自然语言来描述B.算法只能用图形方式来表示
C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同
C. 且 越接近于 ,相关程度越大; 越接近于 ,相关程度越小
D.以上说法都不对
26.下列叙述错误的是()
A.频率是随机的,在试验前不能确定,随着试验次数的增加,频率一般会越来越接近概率
B.若随机事件 发生的概率为 ,则
C.互斥事件不一定是对立事件,但是对立事件一定是互斥事件
D. 张奖券中有一张有奖,甲先抽,乙后抽,那么乙与甲抽到有奖奖券的可能性相同
B平均数不大于最大值,不小于最小值
13.某同学使用计算器求 个数据的平均数时,错将其中一个数据 输入为 ,那么由此求出的平均数与实际平均数的差是( )
A.3.5 B.-3 C.3 D.-0.5
B少输入 平均数少 ,求出的平均数减去实际的平均数等于
C.至少有一个黒球与至少有 个红球D.恰有 个黒球与恰有 个黒球
35.在 根纤维中,有 根的长度超过 ,从中任取一根,取到长度超过 的纤维的概率是()
2014年全国普通高等学校招生统一考试理科数学(山东卷带解析)试题
2014年全国普通高等学校招生统一考试理科(山东卷)数学试题1、【题文】已知,是虚数单位,若与互为共轭复数,则()A.B.C.D.2、【题文】设集合,则()A.B.C.D.3、【题文】函数的定义域为()B.A.C.D.4、【题文】用反证法证明命题“设为实数,则方程至少有一个实根”时,要做的假设是()A.方程没有实根B.方程至多有一个实根C.方程至多有两个实根D.方程恰好有两个实根5、【题文】已知实数满足,则下面关系是恒成立的是()B.A.C.D.6、【题文】直线在第一象限内围成的封闭图形的面积为()A.B.C.D.47、【题文】为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,,第五组,右图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6 B.8 C.12 D.188、【题文】已知函数若方程有两个不相等的实根,则实数的取值范围是()C.D.A.B.9、【题文】已知满足约束条件,当目标函数在该约束条件下取到最小值时,的最小值为()A.5 B.4 C.D.210、【题文】已知,椭圆的方程为,双曲线的方程为,与的离心率之积为,则的渐近线方程为()A.B.C.D.11、【题文】执行右面的程序框图,若输入的的值为1,则输出的的值为________.12、【题文】在中,已知,当时,的面积为________.13、【题文】三棱锥中,,分别为,的中点,记三棱锥的体积为,的体积为,则________.14、【题文】若的展开式中项的系数为20,则的最小值 .15、【题文】已知函数,对函数,定义关于的对称函数为函数,满足:对于任意,两个点关于点对称,若是关于的“对称函数”,且恒成立,则实数的取值范围是_________.16、【题文】(本小题满分12分)已知向量,,设函数,且的图象过点和点.(Ⅰ)求的值;(Ⅱ)将的图象向左平移()个单位后得到函数的图象.若的图象上各最高点到点的距离的最小值为1,求的单调增区间.17、【题文】(本小题满分12分)如图,在四棱柱中,底面是等腰梯形,,,是线段的中点.(Ⅰ)求证:;(Ⅱ)若垂直于平面且,求平面和平面所成的角(锐角)的余弦值.18、【题文】(本小题满分12分)乒乓球台面被球网分成甲、乙两部分,如图,甲上有两个不相交的区域,乙被划分为两个不相交的区域.某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在上记3分,在上记1分,其它情况记0分.对落点在上的来球,队员小明回球的落点在上的概率为,在上的概率为;对落点在上的来球,小明回球的落点在上的概率为,在上的概率为.假设共有两次来球且落在上各一次,小明的两次回球互不影响.求:(Ⅰ)小明的两次回球的落点中恰有一次的落点在乙上的概率;(Ⅱ)两次回球结束后,小明得分之和的分布列与数学期望.19、【题文】(本小题满分12分)已知等差数列的公差为2,前项和为,且成等比数列.(Ⅰ)求数列的通项公式;(Ⅱ)令,求数列的前项和.20、【题文】(本小题满分13分)设函数(为常数,是自然对数的底数). (Ⅰ)当时,求函数的单调区间;(Ⅱ)若函数在内存在两个极值点,求的取值范围.21、【题文】(本小题满分14分)已知抛物线的焦点为,为上异于原点的任意一点,过点的直线交于另一点,交轴的正半轴于点,且有.当点的横坐标为时,为正三角形.(Ⅰ)求的方程;(Ⅱ)若直线,且和有且只有一个公共点,(ⅰ)证明直线过定点,并求出定点坐标;(ⅱ)的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.。
山东省日照一中2014届高三12月月考 文科数学 Word版含答案
绝密★启用前2013-2014学年度高三年级上学期单元过关测试数 学 试 题(文科)试题命制人:韩邦平 审核人:葛学清 李峰本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
第I 卷1至2页,第II 卷3至4页。
满分150分,考试用时120分钟。
第I 卷(共60分)注意事项:1.答第I 卷前,考生务必用0.5毫米黑色签字笔将姓名、座号、准考证号填写在答题卡规定的位臵。
2.第I 卷共2页。
答题时,考生须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案。
在试卷上作答无效。
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{{},sin ,M N y y x x R =-==∈,则集合M N ⋂等于 A.∅B.{}0C.{}1,0-D.{-2.命题“2,0x R x ∀∈>”的否定是 A.2,0x R x ∀∈≤ B.2,0x R x ∃∈> C.2,0x R x ∃∈< D.2,0x R x ∃∈≤3.已知3cos ,05ααπ=<<,则tan 4πα⎛⎫+= ⎪⎝⎭A.15B.17C.1-D.7- 4.“33log log a b >”是“1122a b ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 5.要得到函数)23sin(-=x y 的图象,只要将函数x y 3sin =的图象A.向左平移2个单位B.向右平移2个单位C.向左平移32个单位D.向右平移32个单位6.函数1g xy x=的图象大致是7.设,m n 是不同的直线,,αβ是不同的平面,有以下四个命题: ①若,m n αα⊥⊥,则//m n ②若,//m αβα⊥,则m β⊥; ③若,m m n α⊥⊥,则//n α ④若,n n αβ⊥⊥,则//βα. A.①③ B.①④ C.②③ D.②④8.如右图,某几何体的主(正)视图与左(侧)视图都是边长为1的正方形,且体积为12,则该几何体的俯视图可以是9.已知0,0m n >>,向量()1,1a = ,向量(),3b m n =- ,且()a ab ⊥+ ,则14m n+的最小值为A.18B.16C.9D.810.已知数列{}n a ,若点()()*,n n a n N ∈在经过点()8,4的定直线l 上,则数列{}n a 的前15项和15S 为A.12B.32C.60D.12011. 若等边三角形ABC 的边长为,该三角形所在平面内一点M 满足1263CM CB CA =+ ,则MA MB ⋅等于A.2-B.1-C.1D.212. 设函数()f x 的零点为1x ,函数()422x g x x =+-的零点为2x ,若1214x x ->,则()f x 可以是A.()122f x x =-B.()110x f x =-C. ()214f x x x =-+-D.()()ln 82f x x =-第II 卷(共90分)注意事项:第II 卷共6页。
2014年普通高等学校招生全国统一考试(山东卷)
2014年普通高等学校招生全国统一考试(山东卷)数学(理科)一、选择题:本大题共10小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知a ,b ∈R ,i 是虚数单位,若a -i 与2+b i 互为共轭复数,则(a +b i)2=( ) A .5-4i B .5+4i C .3-4i D .3+4i2.设集合A ={x ||x -1|<2},B ={y |y =2x ,x ∈[0,2]},则A ∩B =( ) A .[0,2] B .(1,3) C .[1,3) D .(1,4)3.函数f (x )=1(log 2x )2-1的定义域为( )A.⎝⎛⎭⎫0,12 B .(2,+∞) C.⎝⎛⎭⎫0,12∪(2,+∞) D.⎝⎛⎦⎤0,12∪[2,+∞)4.用反证法证明命题“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是( )A .方程x 3+ax +b =0没有实根B .方程x 3+ax +b =0至多有一个实根C .方程x 3+ax +b =0至多有两个实根D .方程x 3+ax +b =0恰好有两个实根5.已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( ) A.1x 2+1>1y 2+1 B .ln(x 2+1)>ln(y 2+1) C .sin x >sin y D .x 3>y 36.直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( ) A .2 2 B .4 2 C .2 D .47.为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17),将其按从左到右的顺序分别编号为第一组,第二组,…,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A .6B .8C .12D .188.已知函数f(x)=|x -2|+1,g(x)=kx ,若方程f(x)=g(x)有两个不相等的实根,则实数k 的取值范围是( )A.⎝⎛⎭⎫0,12B.⎝⎛⎭⎫12,1 C .(1,2) D .(2,+∞)9.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y -1≤0,2x -y -3≥0,当目标函数z =ax +by(a>0,b>0)在该约束条件下取到最小值25时,a 2+b 2的最小值为( )A .5B .4 C. 5 D .210.已知a>b>0,椭圆C 1的方程为x 2a 2+y 2b 2=1,双曲线C 2的方程为x 2a 2-y 2b 2=1,C 1与C 2的离心率之积为32,则C 2的渐近线方程为( ) A .x±2y =0 B.2x±y =0 C .x±2y =0 D .2x±y =0二、填空题:本大题共5小题,每小题5分,共25分11.执行如图所示的程序框图,若输入的x 的值为1,则输出的n 的值为________.12.在△ABC 中,已知=tan A ,当A =π6时,△ABC 的面积为________.13.三棱锥P-ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D-ABE 的体积为V 1,P-ABC 的体积为V 2,则V 1V 2=________.14.若⎝⎛⎭⎫ax 2+bx 6的展开式中x 3项的系数为20,则a 2+b 2的最小值为________.15.已知函数y =f(x)(x ∈R ).对函数y =g (x )(x ∈I ),定义g (x )关于f (x )的“对称函数”为函数y =h (x )(x ∈I ),y =h (x )满足:对任意x ∈I ,两个点(x ,h (x )),(x ,g (x ))关于点(x ,f (x ))对称.若h (x )是g (x )=4-x 2关于f (x )=3x +b 的“对称函数”,且h (x )>g (x )恒成立,则实数b的取值范围是________.三、解答题:本大题共6小题,共75分. 16.(本小题满分12分)已知向量a =(m ,cos 2x ),b =(sin 2x ,n ),函数f (x )=a ·b ,且y =f (x )的图象过点⎝⎛⎭⎫π12,3和点⎝⎛⎭⎫2π3,-2. (1)求m ,n 的值;(2)将y =f (x )的图象向左平移φ(0<φ<π)个单位后得到函数y =g (x )的图象.若y =g (x )图象上各最高点到点(0,3)的距离的最小值为1,求y =g (x )的单调递增区间.17.(本小题满分12分)如图,在四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是等腰梯形,∠DAB =60°,AB =2CD =2,M 是线段AB 的中点.(1)求证:C 1M ∥平面A 1ADD 1;(2)若CD 1垂直于平面ABCD 且CD 1=3,求平面C 1D 1M 和平面ABCD 所成的角(锐角)的余弦值.18.(本小题满分12分)乒乓球台面被球网分隔成甲、乙两部分,如图,甲上有两个不相交的区域A ,B ,乙被划分为两个不相交的区域C ,D .某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在C 上记3分,在D 上记1分,其他情况记0分.对落点在A 上的来球,队员小明回球的落点在C 上的概率为12,在D 上的概率为13;对落点在B 上的来球,小明回球的落点在C 上的概率为15,在D 上的概率为35.假设共有两次来球且落在A ,B 上各一次,小明的两次回球互不影响.求:(1)小明的两次回球的落点中恰有一次的落点在乙上的概率; (2)两次回球结束后,小明得分之和ξ的分布列与数学期望.19.(本小题满分12分)已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列. (1)求数列{a n }的通项公式; (2)令b n =(-1)n -14na n a n +1,求数列{b n }的前n 项和T n .20.(本小题满分13分)设函数f (x )=e x x 2-k ⎝⎛⎭⎫2x +ln x (k 为常数,e =2.718 28…是自然对数的底数). (1)当k ≤0时,求函数f (x )的单调区间;(2)若函数f (x )在(0,2)内存在两个极值点,求k 的取值范围.21.(本小题满分14分)已知抛物线C :y 2=2px (p >0)的焦点为F ,A 为C 上异于原点的任意一点,过点A 的直线l 交C 于另一点B ,交x 轴的正半轴于点D ,且有|F A |=|FD |.当点A 的横坐标为3时,△ADF 为正三角形.(1)求C 的方程;(2)若直线l 1∥l ,且l 1和C 有且只有一个公共点E , ①证明直线AE 过定点,并求出定点坐标;②△ABE 的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.答案一、选择题:本大题共10小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.解析:选D 根据已知得a =2,b =1,所以(a +b i)2=(2+i)2=3+4i.2.解析:选C |x -1|<2⇔-2<x -1<2,故-1<x <3,即集合A =(-1,3).根据指数函数的性质,可得集合B =[1,4].所以A ∩B =[1,3).3.解析:选C (log 2x )2-1>0,即log 2x >1或log 2x <-1,解得x >2或0<x <12,故所求的定义域是⎝⎛⎭⎫0,12∪(2,+∞). 4.解析:选A 至少有一个实根的否定是没有实根,故要做的假设是“方程x 3+ax +b =0没有实根”.5.解析:选D 根据指数函数的性质得x >y ,此时x 2,y 2的大小不确定,故选项A 、B中的不等式不恒成立;根据三角函数的性质,选项C 中的不等式也不恒成立;根据不等式的性质知,选项D 中的不等式恒成立.6.解析:选D 由4x =x 3,解得x =0或x =2或x =-2(舍去),根据定积分的几何意义可知,直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为7.解析:选C 第一组和第二组的频率之和为0.4,故样本容量为200.4=50,第三组的频率为0.36,故第三组的人数为50×0.36=18,故第三组中有疗效的人数为18-6=12.8.解析:选B 在同一坐标系中分别画出函数f(x),g(x)的图象如图所示,方程f(x)=g(x)有两个不相等的实根等价于两个函数的图象有两个不同的交点,结合图象可知,当直线y =kx 的斜率大于坐标原点与点(2,1)连线的斜率且小于直线y =x -1的斜率时符合题意,故12<k<1.9.解析:选B 解法一 不等式组表示的平面区域如图所示,根据目标函数的几何意义可知,目标函数在点A(2,1)处取得最小值,故2a +b =25,两端平方得4a 2+b 2+4ab =20,又4ab =2×a ×2b ≤a 2+4b 2,所以20≤4a 2+b 2+a 2+4b 2=5(a 2+b 2),所以a 2+b 2≥4,即a 2+b 2的最小值为4,当且仅当a =2b ,即b =25,a =45时等号成立.解法二 把2a +b =25看作平面直角坐标系aOb 中的直线,则a 2+b 2的几何意义是直线上的点与坐标原点距离的平方,显然a 2+b 2的最小值是坐标原点到直线2a +b =25距离的平方,即⎝⎛⎭⎪⎫|-25|52=4.10.解析:选A 椭圆C 1的离心率为a 2-b 2a ,双曲线C 2的离心率为a 2+b 2a ,所以a 2-b 2a ·a 2+b 2a =32,所以a 4-b 4=34a 4,即a 4=4b 4,所以a =2b ,所以双曲线C 2的渐近线方程是y =±12x ,即x±2y =0.二、填空题:本大题共5小题,每小题5分,共25分11. 解析:12-4×1+3≤0,x =2,n =1;22-4×2+3≤0,x =3,n =2;32-4×3+3≤0,x =4,n =3;42-4×4+3>0,此时输出n 值,故输出的n 值为3.答案:312.解析:根据平面向量数量积的概念得=cos A ,当A =π6时,根据已知可得=23,故△ABC 的面积为12·sin π6=16.答案:1613.解析:如图,设点C 到平面PAB 的距离为h ,三角形PAB 的面积为S ,则V 2=13Sh ,V 1=V E-ADB =13×12S ×12h =112Sh ,所以V 1V 2=14.14.解析:T r +1=C r 6(ax 2)6-r ⎝⎛⎭⎫b x r =C r 6a b -r b r x 12-3r ,令12-3r =3,得r =3,故C 36a 3b 3=20,所以ab =1,a 2+b 2≥2ab =2,当且仅当a =b =1或a =b =-1时,等号成立.答案:215.解析:函数g (x )的定义域是[-2,2],根据已知得h (x )+g (x )2=f (x ),所以h (x )=2f (x )-g (x )=6x +2b -4-x 2.h (x )>g (x )恒成立,即6x +2b -4-x 2>4-x 2恒成立,即3x +b >4-x 2恒成立.令y =3x +b ,y =4-x 2,则只要直线y =3x +b 在半圆x 2+y 2=4(y ≥0)上方即可,由|b |10>2,解得b >210(舍去负值),故实数b 的取值范围是(210,+∞).答案:(210,+∞)三、解答题:本大题共6小题,共75分. 16.解:(1)由题意知f (x )=a ·b =m sin 2x +n cos 2x . 因为y =f (x )的图象过点⎝⎛⎭⎫π12,3和⎝⎛⎭⎫2π3,-2, 所以⎩⎨⎧3=m sin π6+n cos π6,-2=m sin 4π3+n cos 4π3,即⎩⎨⎧3=12m +32n ,-2=-32m -12n ,解得m =3,n =1.(2)由(1)知f (x )=3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π6. 由题意知g (x )=f (x +φ)=2sin ⎝⎛⎭⎫2x +2φ+π6.设y =g (x )的图象上符合题意的最高点为(x 0,2),由题意知x 20+1=1,所以x 0=0, 即到点(0,3)的距离为1的最高点为(0,2). 将其代入y =g (x )得sin ⎝⎛⎭⎫2φ+π6=1, 因为0<φ<π,所以φ=π6.因此g (x )=2sin ⎝⎛⎭⎫2x +π2=2cos 2x . 由2k π-π≤2x ≤2k π,k ∈Z 得k π-π2≤x ≤k π,k ∈Z .所以函数y =g (x )的单调递增区间为⎣⎡⎦⎤k π-π2,k π,k ∈Z . 17.解:(1)因为四边形ABCD 是等腰梯形,且AB =2CD ,所以AB ∥DC ,又由M 是AB 的中点,因此CD ∥MA 且CD =MA .连接AD 1,在四棱柱ABCD -A 1B 1C 1D 1中,因为CD ∥C 1D 1,CD =C 1D 1,可得C 1D 1∥MA ,C 1D 1=MA ,所以四边形AMC 1D 1为平行四边形,因此C 1M ∥D 1A .又C 1M ⊄平面A 1ADD 1,D 1A ⊂平面A 1ADD 1,所以C 1M ∥平面A 1ADD 1. (2)解法一:连接AC ,MC ,由(1)知CD ∥AM 且CD =AM , 所以四边形AMCD 为平行四边形. 可得BC =AD =MC , 由题意∠ABC =∠DAB =60°,所以△MBC 为正三角形,因此AB =2BC =2,CA =3,因此CA ⊥CB . 以C 为坐标原点,建立如图所示空间直角坐标系C -xyz .所以A (3,0,0),B (0,1,0),D 1(0,0,3). 因此M ⎝⎛⎭⎫32,12,0,设平面C 1D 1M 的法向量n =(x ,y ,z ).得⎩⎨⎧3x -y =0,3x +y -23z =0,可得平面C 1D1M 的一个法向量n =(1,3,1).所以平面C 1D 1M 和平面ABCD 所成的角(锐角)的余弦值为55. 解法二:由(1)知平面D 1C 1M ∩平面ABCD =AB,过C 向AB 引垂线交AB 于N ,连接D 1N .由CD 1⊥平面ABCD ,可得D 1N ⊥AB ,因此∠D 1NC 为二面角C 1-AB -C 的平面角. 在Rt △BNC 中,BC =1,∠NBC =60°, 可得CN =32. 所以ND 1=CD 21+CN 2=152. 在Rt △D 1CN 中,cos ∠D 1NC =CN D 1N =32152=55.所以平面C 1D 1M 和平面ABCD 所成的角(锐角)的余弦值为55. 18.解:(1)记A i 为事件“小明对落点在A 上的来球回球的得分为i 分”(i =0,1,3), 则P (A 3)=12,P (A 1)=13,P (A 0)=1-12-13=16;记B i 为事件“小明对落点在B 上的来球回球的得分为i 分 ”(i =0,1,3), 则P (B 3)=15,P (B 1)=35,P (B 0)=1-15-35=15.记D 为事件“小明两次回球的落点中恰有一次的落点在乙上”. 由题意,D =A 3B 0+A 1B 0+A 0B 1+A 0B 3, 由事件的独立性和互斥性, P (D )=P (A 3B 0+A 1B 0+A 0B 1+A 0B 3) =P (A 3B 0)+P (A 1B 0)+P (A 0B 1)+P (A 0B 3)=P (A 3)P (B 0)+P (A 1)P (B 0)+P (A 0)P (B 1)+P (A 0)P (B 3) =12×15+13×15+16×35+16×15 =310,所以小明两次回球的落点中恰有一次的落点在乙上的概率为310.(2)由题意,随机变量ξ可能的取值为0,1,2,3,4,6, 由事件的独立性和互斥性,得 P (ξ=0)=P (A 0B 0)=16×15=130,P (ξ=1)=P (A 1B 0+A 0B 1)=P (A 1B 0)+P (A 0B 1)=13×15+16×35=16,P (ξ=2)=P (A 1B 1)=13×35=15,P (ξ=3)=P (A 3B 0+A 0B 3)=P (A 3B 0)+P (A 0B 3)=12×15+16×15=215,P (ξ=4)=P (A 3B 1+A 1B 3)=P (A 3B 1)+P (A 1B 3)=12×35+13×15=1130,P (ξ=6)=P (A 3B 3)=12×15=110.可得随机变量ξ的分布列为:所以数学期望Eξ=0×130+1×16+2×15+3×215+4×1130+6×110=9130.19.解析:(1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2,S 4=4a 1+4×32×2=4a 1+12,由题意得(2a 1+2)2=a 1(4a 1+12), 解得a 1=1,所以a n =2n -1. (2)b n =(-1)n-14n a n a n +1=(-1)n -14n (2n -1)(2n +1)=(-1)n -1⎝⎛⎭⎫12n -1+12n +1.当n 为偶数时,T n =⎝⎛⎭⎫1+13-⎝⎛⎭⎫13+15+…+⎝⎛⎭⎫12n -3+12n -1-⎝⎛⎭⎫12n -1+12n +1=1-12n +1=2n2n +1. 当n 为奇数时,T n =⎝⎛⎭⎫1+13-⎝⎛⎭⎫13+15+…-⎝⎛⎭⎫12n -3+12n -1+⎝⎛⎭⎫12n -1+12n +1=1+12n +1=2n +22n +1. 所以T n=⎩⎪⎨⎪⎧2n +22n +1,n 为奇数,2n2n +1,n 为偶数.⎝⎛⎭⎪⎫或T n=2n +1+(-1)n -12n +120.解析:(1)函数y =f (x )的定义域为(0,+∞). f ′(x )=x 2e x -2x e x x 4-k ⎝⎛⎭⎫-2x 2+1x=x e x -2e x x 3-k (x -2)x 2=(x -2)(e x -kx )x 3由k ≤0可得e x -kx >0,所以当x ∈(0,2)时,f ′(x )<0,函数y =f (x )单调递减, x ∈(2,+∞)时,f ′(x )>0,函数y =f (x )单调递增.所以f (x )的单调递减区间为(0,2),单调递增区间为(2,+∞). (2)由(1)知,k ≤0时,函数f (x )在(0,2)内单调递减, 故f (x )在(0,2)内不存在极值点;当k >0时,设函数g (x )=e x -kx ,x ∈[0,+∞), 因为g ′(x )=e x -k =e x -e ln k , 当0<k ≤1时,当x ∈(0,2)时,g ′(x )=e x -k >0,y =g (x )单调递增. 故f (x )在(0,2)内不存在两个极值点;当k >1时,得x ∈(0,ln k )时,g ′(x )<0,函数y =g (x )单调递减. x ∈(ln k ,+∞)时,g ′(x )>0,函数y =g (x )单调递增. 所以函数y =g (x )的最小值为g (ln k )=k (1-ln k ).函数f (x )在(0,2)内存在两个极值点当且仅当⎩⎪⎨⎪⎧g (0)>0,g (ln k )<0,g (2)>0,0<ln k <2,解得e<k <e 22,综上所述,函数f (x )在(0,2)内存在两个极值点时,k 的取值范围为⎝⎛⎭⎫e ,e 22. 21.解析:由题意知F ⎝⎛⎭⎫p 2,0. 设D (t,0)(t >0),则FD 的中点为⎝⎛⎭⎫p +2t 4,0.因为|F A |=|FD |,由抛物线的定义知3+p2=⎪⎪⎪⎪t -p 2, 解得t =3+p 或t =-3(舍去). 由p +2t4=3,解得p =2. 所以抛物线C 的方程为y 2=4x . (2)①由(1)知F (1,0),设A (x 0,y 0)(x 0y 0≠0),D (x D,0)(x D >0), 因为|F A |=|FD |,则|x D -1|=x 0+1, 由x D >0得x D =x 0+2,故D (x 0+2,0). 故直线AB 的斜率k AB =-y 02.因为直线l 1和直线AB 平行, 设直线l 1的方程为y =-y 02x +b ,代入抛物线方程得y 2+8y 0y -8by 0=0,由题意Δ=64y 20+32b y 0=0,得b =-2y 0. 设E (x E ,y E ),则y E =-4y 0,x E =4y 20. 当y 20≠4时,k AE =y E -y 0x E -x 0=-4y 0+y 04y 20-y 204=4y 0y 20-4, 可得直线AE 的方程为y -y 0=4y 0y 20-4(x -x 0), 由y 20=4x 0,整理可得y =4y 0y 20-4(x -1),直线AE 恒过点F (1,0).当y 20=4时,直线AE 的方程为x =1,过点F (1,0),所以直线AE 过定点F (1,0).②由①知直线AE 过焦点F (1,0),所以|AE |=|AF |+|FE |=(x 0+1)+⎝⎛⎭⎫1x 0+1=x 0+1x 0+2. 设直线AE 的方程为x =my +1,因为点A (x 0,y 0)在直线AE 上,故m =x 0-1y 0. 设B (x 1,y 1).直线AB 的方程为y -y 0=-y 02(x -x 0), 由于y 0≠0,可得x =-2y 0y +2+x 0, 代入抛物线方程得y 2+8y 0y -8-4x 0=0. 所以y 0+y 1=-8y 0,可求得y 1=-y 0-8y 0,x 1=4x 0+x 0+4. 所以点B 到直线AE 的距离为d =⎪⎪⎪⎪4x 0+x 0+4+m ⎝⎛⎭⎫y 0+8y 0-11+m 2=4(x 0+1)x 0= 4⎝⎛⎭⎫x 0+1x 0. 则△ABE 的面积S =12×4⎝⎛⎭⎫x 0+1x 0x 0+1x 0+2≥16,当且仅当1x 0=x 0,即x 0=1时等号成立.所以△ABE 的面积的最小值为16.。
2014年山东卷理科数学高考试卷(原卷 答案)
绝密★启用前2014年普通高等学校招生全国统一考试(山东卷)理科数学本试卷共21题,共150分。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题1.已知,a b R ∈,i 是虚数单位,若a i −与2bi +互为共轭复数,则2()a bi +=( ) A.54i − B.54i + C.34i − D.34i + 2.设集合{||1|2}A x x =−<,{|2,[0,2]}xB y y x ==∈,则AB =( )A.[0,2]B.(1,3)C.[1,3)D.(1,4) 3.函数()f x =( )A.1(0,)2B.(2,)+∞C.1(0,)(2,)2+∞ D.1(0,][2,)2+∞4.用反证法证明命题:“已知,a b 为实数,则方程20x ax b ++=至少有一个实根”时,要做的假设是( ) A.方程20x ax b ++=没有实根 B.方程20x ax b ++=至多有一个实根 C.方程20x ax b ++=至多有两个实根 D.方程20x ax b ++=恰好有两个实根5.已知实数,x y 满足x y a a <(01a <<),则下列关系式恒成立的是( ) A.221111x y >++ B.22ln(1)ln(1)x y +>+ C.sin sin x y > D.33x y > 6.直线4y x =与曲线3y x =在第一象限内围成的封闭图形的面积为( )A.B. C.2 D.47.为研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,......,第五组.右图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A.6B.8C.12D.188.已知函数()|2|1f x x =−+,()g x kx =,若()()f x g x =有两个不相等的实根,则实数k 的取值范围是( )A.1(0,)2 B.1(,1)2C.(1,2)D.(2,)+∞9.已知,x y 满足约束条件10,230,x y x y −−≤⎧⎨−−≥⎩当目标函数(0,0)z ax by a b =+>>在该约束条件下取到最小值时,22a b +的最小值为( )D.210.已知a b >,椭圆1C 的方程为22221x y a b +=,双曲线2C 的方程为22221x y a b−=,1C 与2C的离心率之积为2,则2C 的渐近线方程为( )A.0x =0y ±= C.20x y ±= D.20x y ±=二、填空题11.执行右面的程序框图,若输入的x 的值为1,则输出的n 的值为 ; 12.在ABC ∆中,已知tan AB AC A ⋅=,当6A π=时,ABC ∆的面积为 ;13.三棱锥P ABC −中,D ,E 分别为PB ,PC 的中点,记三棱锥D ABE −的体积为1V ,P ABC −的体积为2V ,则12VV = ;14.若26()b ax x+的展开式中3x 项的系数为20,则22a b +的最小值为 ;15.已知函数()()y f x x R =∈.对函数()()y g x x I =∈,定义()g x 关于()f x 的“对称函数”为()()y h x x I =∈,()y h x =满足:对任意x I ∈,两个点(,())x h x ,(,())x g x 关于点(,())x f x 对称,若()h x是()g x =关于()3f x x b =+的“对称函数”,且()()h x g x >恒成立,则实数b 的取值范围是 ;三、解答题:本大题共6小题,共75分. 16.(本小题满分12分)已知向量(,cos 2)a m x =,(sin 2,)b x n =,设函数()f x a b =⋅,且()y f x =的图象过点(12π和点2(,2)3π−. (Ⅰ)求,m n 的值; (Ⅱ)将()y f x =的图象向左平移ϕ(0ϕπ<<)个单位后得到函数()y g x =的图象.若()y g x =的图象上各最高点到点(0,3)的距离的最小值为1,求()y g x =的单调增区间.17.(本小题满分12分)如图,在四棱柱1111ABCD A B C D −中,底面ABCD 是等腰梯形,60DAB ∠=,22AB CD ==,M 是线段AB 的中点.(Ⅰ)求证:111//C M A ADD ;(Ⅱ)若1CD 垂直于平面ABCD且1CD =,求平面11C D M 和平面ABCD 所成的角(锐角)的余弦值.18.(本小题满分12分)乒乓球台面被网分成甲、乙两部分,如图,甲上有两个不相交的区域,A B ,乙被划分为两个不相交的区域,C D .某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在C 上记3分,在D 上记1分,其它情况记0分.对落点在A 上的来球,小明回球的落点在C 上的概率为12,在D 上的概率为13;对落点在B 上的来球,小明回球的落点在C 上的概率为15,在D 上的概率为35.假设共有两次来球且落在,A B 上各一次,小明的两次回球互不影响.求:(Ⅰ)小明的两次回球的落点中恰有一次的落点在乙上的概率; (Ⅱ)两次回球结束后,小明得分之和ξ的分布列与数学期望.19.(本小题满分12分)已知等差数列{}n a 的公差为2,前n 项和为n S ,且124,,S S S 成等比数列. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)令114(1)n n n n nb a a −+=−,求数列{}n b 的前n 项和n T .20.(本小题满分13分)设函数22()(ln )x e f x k x x x=−+(k 为常数, 2.71828e =⋅⋅⋅是自然对数的底数).(Ⅰ)当0k ≤时,求函数()f x 的单调区间;(Ⅱ)若函数()f x 在(0,2)内存在两个极值点,求k 的取值范围.21.(本小题满分14分)已知抛物线2:2(0)C y px p =>的焦点为F ,A 为C 上异于原点的任意一点,过点A 的直线l 交C 于另一点B ,交x 轴的正半轴于点D ,且有||||FA FD =.当点A 的横坐标为3时,ADF ∆为正三角形. (Ⅰ)求C 的方程;(Ⅱ)若直线1//l l ,且1l 和C 有且只有一个公共点E ,(ⅰ)证明直线AE 过定点,并求出定点坐标;(ⅱ)ABE ∆的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.2014年普通高等学校招生全国统一考试(山东卷)理科数学(参考答案)1.D 【解析】由已知得,2,1a b ==,即2a bi i +=+,所以22()(2)34,a bi i i +=+=+选D. 2.C 【解析】由已知{|13},{|14},A x x B y y =−<<=≤≤所以,[1,3),A B ⋂=选C.3.C 【解析】由已知得22(log )10,x −>即2log 1x >或2log -1x <,解得2x >或102x <<,故选C. 4.A 【解析】反证法的步骤第一步是假设命题反面成立,而“方程20x ax b ++=至少有一实根”的反面是“方程20x ax b ++=没有实根”,故选A. 5.D 【解析】由(01)xy a a a <<<及指数函数的性质得, ,x y >所以, 33x y >,选D. 6.D【解析】由已知得,23242001(4)(2)|44S x x dx x x =−=−=⎰,故选D. 7.C【解析】试题分析:由直方图可得分布在区间第一组与第二组共有20人,分布在区间第一组与第二组的频率分别为0.24,0.16,所以第一组有12人,第二组8人,第三组的频率为0.36,所以第三组的人数:18人,第三组中没有疗效的有6人,第三组中有疗效的有12人. 8.B【解析】由已知,函数f(x)=|x −2|+1,g(x)=kx 的图象有两个公共点,画图可知当直线介于l 1:y =12x,l 2:y =x 之间时,符合题意,故选B.9.B 【详解】由()0 0z ax by a b =+>>,得a zy x b b =−+,∵0,0a b >>,∴直线的斜率0a b−<,作出不等式对应的平面区域如图,由图可知当直线a z y x b b =−+经过点A 时,直线a zy x b b=−+的截距最小,此时z 最小.由10{230x y x y −−=−−=,解得21x y =⎧⎨=⎩,即(2,1)A ,此时目标函数()0 0z ax by a b =+>>,的最小值为2a b +=,所以点(,)P a b在直线2x y +=2d ==,即22a b +的最小值24d =.故选B .10.A 【解析】2=,所以,b a,双曲线的渐近线方程为y x =,即0x =,选A. 11.3【详解】框图中的条件即13x ≤≤. 运行程序:1,0,x n ==符合条件13x ≤≤,2,1x n ==; 符合条件13x ≤≤,3,2x n ==; 符合条件13x ≤≤,4,3x n ==;不符合条件13x ≤≤,输出3n =.答案为3. 12.16【详解】由tan AB AC A ⋅=uu u r uuu r 得,tantan 26cos tan ,cos 3cos 6A AB AC A A AB AC A ππ⋅=⋅===, 所以,1121sin sin 22366ABC S AB AC A π∆=⋅=⨯⨯=. 13.14【详解】由已知1.2EAB PAB S S ∆∆=设点C 到平面PAB 距离为h ,则点D 到平面PAB 距离为12h , 所以,1211132.143EAB PAB S h V V S h ∆∆⋅==14.2 【解析】26()b ax x+展开式的通项为266123166()()r r r r r r r r bT C ax a b C x x −−−+==,令1233,r −=得3r =,所以,由6333620a b C −=得1ab =,从而2222a b ab +≥=,当且仅当a b =时,22a b +的最小值为2.15.).+∞ 【解析】由“对称函数”的定义及中点坐标公式得()3,2h x x b =+所以,()62h x x b =+,()()h x g x >恒成立即恒成立,亦即直线3y x b =+位于半圆y =的上方.在同一坐标系内,画出直线3y x b =+及半圆y =(如图所示)2,=解得b =).+∞16.(I)1m n ==.(II )函数()y g x =的单调递增区间为[,],2k k k Z πππ−∈.【解析】试题分析:(Ⅰ)利用向量的数量积坐标运算公式代入函数式整理化简,将函数过的点(12π和点2(,2)3π−代入就可得到关于,m n 的方程,解方程求其值;(Ⅱ)利用图像平移的方法得到()y g x =的解析式,利用最高点到点(0,3)的距离的最小值为1求得ϕ角,得()2cos 2g x x =,求减区间需令[]22,2x k k πππ∈+解x 的范围试题解析:(1)由题意知.()y f x =的过图象过点(12π和2(,2)3π−,所以sincos,66{442sin cos ,33m n m n ππππ=+−=+即1,22{12,22m n m n =+−=−−解得{ 1.m n == (2)由(1)知.由题意知()()2sin(22)6g x f x x πϕϕ=+=++.设()y g x =的图象上符合题意的最高点为0(,2)x ,1=,所以,即到点(0,3)的距离为1的最高点为(0,2).将其代入()y g x =得sin(2)16πϕ+=,因为0ϕπ<<,所以6πϕ=,因此()2sin(2)2cos 22g x x x π=+=.由222,k x k k πππ−+≤≤∈Z 得,2k x k k πππ−+≤≤∈Z ,所以函数()y f x =的单调递增区间为[,],2k k k Z πππ−+∈17.(I )证明:见解析;(II )平面11C D M 和平面ABCD所成角(锐角)的余弦值为5. 【解析】 试题解析:(I )证明:因为四边形ABCD 是等腰梯形, 且2AB CD =,所以//AB CD ,又由M 是AB 的中点, 因此//CD MA 且CD MA =. 连接1AD ,在四棱柱1111ABCD A B C D −中, 因为1111//,CD C D CD C D =, 可得1111//,C D MA C D MA =, 所以,四边形11AMC D 为平行四边形, 因此11//C M D A ,又1C M ⊄平面11A ADD , 1D A ⊂平面11A ADD , 所以1//C M 平面11A ADD .(II )解法一: 连接AC ,MC ,由(I )知CD//AM 且CD=AM , 所以四边形AMCD 为平行四边形, 可得BC AD MC ==, 由题意060ABC DAB ∠=∠=, 所以MBC ∆为正三角形,因此22,AB BC CA ===因此CA CB ⊥.以C 为坐标原点,建立直角坐标系C xyz −.所以)()(1,0,1,0,AB D .因此1,,022M ⎛⎫⎪ ⎪⎝⎭,所以112MD ⎛=−⎝,111,02D C MB ⎛⎫== ⎪ ⎪⎝⎭,设平面11C D M 的一个法向量(),,n x y z =, 由111•0{•0n D C n MD ==,得0 0y y −=+−=,可得平面11C D M 的一个法向量()1,3,1n =.又(1CD =为平面ABCD 的一个法向量,因此111•5cos ,5CD n CD n CD n==. 所以平面11C D M 和平面ABCD 所成角(锐角)的余弦值为5. 18.(I )小明两次回球的落点中恰有1次的落点在乙上的概率为310.(II )机变量ξ的分布列为:z数学期望9130E ξ=【解析】试题解析:(I )记1A 为事件“小明对落点在A 上的来球的得分为i 分”( 0,1,3i =) 则31011111(),(),()123236P A P A P A ===−−=, 记i B 为事件“小明对落点在B 上的来球的得分为i 分” ( 0,1,3i =) 则31013131(),(),()155555P B P B P B ===−−=, 记D 为事件“小明两次回球的落点中恰有1次的落点在乙上”, 由题意,30100103D A B A B A B A B =+++,由事件的独立性和互斥性,30100103()()P D P A B A B A B A B =+++30100103()()()()P A B P A B P A B P A B =+++30100103()()()()()()()()P A P B P A P B P A P B P A P B =+++1111131132535656510=⨯+⨯+⨯+⨯=,所以小明两次回球的落点中恰有1次的落点在乙上的概率为310.(II )由题意,随机变量ξ可能的取值为0,1,2,3,4,6,由事件的独立性和互斥性,得00111(0)()6530P P A B ξ===⨯=, 1001100111131(1)()()()35656P P A B A B P A B P A B ξ==+=+=⨯+⨯=,11131(2)()355P P A B ξ===⨯=,3003300311112(3)()()()255615P P A B A B P A B P A B ξ==+=+=⨯+⨯=,31133113131111(4)()()()253530P P A B A B P A B P A B ξ==+=+=⨯+⨯=,33111(6)()2510P P A B ξ===⨯=,ξ所以数学期望111211191012346306515301030E ξ=⨯+⨯+⨯+⨯+⨯+⨯=19.(1)a n =2n −1;(2)T n ={2n2n+1,n 为偶数2n+22n+1,n 为奇数【详解】(1)∵等差数列{a n }的公差为2,前n 项和为S n ,且S 1、S 2、S 4成等比数列.∴S n =na 1+n (n ﹣1) (2a 1+2)2=a 1(4a 1+12),a 1=1,∴a n =2n ﹣1; (2)∵由(1)可得b n =(−1)n−14nan a n+1=(−1)n−1(12n−1+12n+1),当n 为偶数时,T n =(1+13)−(13+15)+(15+17)−⋯⋯+(12n−3+12n−1)−(12n−1+12n+1) =1−12n+1=2n2n+1.当n 为奇数时,T n =(1+13)−(13+15)+(15+17)−⋯⋯−(12n−3+12n−1)+(12n−1+12n+1) =1+12n+1=2n+22n+1 . ∴T n ={2n 2n+1,n 为偶数2n+22n+1,n 为奇数 . 20.(1)单调递减区间为(0,2),单调递增区间为(2,)+∞;(2)2(,)2e e . 【详解】试题解析:(I )函数()yf x =的定义域为(0,)+∞,242221()()x x x e xe f x k x x x −=−−+'322(2)x x xe e k x x x −−=−3(2)()x x e kx x−−= 由0k ≤可得0x e kx −>,所以当(0,2)x ∈时,()0f x '<,函数()y f x =单调递减, 当(2,)x ∈+∞时,()0f x '>,函数()y f x =单调递增.所以()f x 的单调递减区间为(0,2),单调递增区间为(2,)+∞.(II )由(I )知,0k ≤时,函数()f x 在(0,2)内单调递减,故()f x 在(0,2)内不存在极值点;当0k >时,设函数(),[0,)x g x e kx x =−∈+∞,因为ln ()x x k g x e k e e '=−=−,当01k <≤时,当(0,2)x ∈时,()0x g x e k '=−>,()y g x =单调递增,故()f x 在(0,2)内不存在两个极值点; 当1k >时,得(0,ln )x k ∈时,()0g x '<,函数()y g x =单调递减,(ln ,)x k ∈+∞时,()0g x '>,函数()y g x =单调递增,所以函数()y g x =的最小值为(ln )(1ln )g k k k =−,函数()f x 在(0,2)内存在两个极值点;当且仅当(0)0(1)0(2)00ln 2g g nk g k >⎧⎪<⎪⎨>⎪⎪<<⎩,解得22e e k <<, 综上所述,函数在(0,2)内存在两个极值点时,k 的取值范围为2(,)2e e . 21.(I )24y x =.(II )(ⅰ)直线AE 过定点(1,0)F .(ⅱ)ABE ∆的面积的最小值为16.【解析】试题解析:(I )由题意知(,0)2P F 设(,0)(0)D t t >,则FD 的中点为2(,0)4p t +, 因为FA FD =,由抛物线的定义知:322p p t +=−, 解得3t p =+或3t =−(舍去).由234p t +=,解得2p =.所以抛物线C 的方程为24y x =. (II )(ⅰ)由(I )知(1,0)F ,设0000(,)(0),(,0)(0)D D A x y x y D x x ≠>,因为FA FD =,则011D x x −=+, 由0D x >得02D x x =+,故0(2,0)D x +,故直线AB 的斜率为02AB y k =−, 因为直线1l 和直线AB 平行,设直线1l 的方程为02y y x b =−+, 代入抛物线方程得200880b y y y y +−=,由题意20064320b y y ∆=+=,得02b y =−. 设(,)E E E x y ,则04E y y =−,204E x y =.当204y ≠时,0000220002044444E AB E y y y y y k y x x y y +−==−=−−−, 可得直线AE 的方程为000204()4y y y x x y −=−−,由2004y x =,整理可得0204(1)4y y x y =−−, 直线AE 恒过点(1,0)F .当204y =时,直线AE 的方程为1x =,过点(1,0)F ,所以直线AE 过定点(1,0)F .(ⅱ)由(ⅰ)知,直线AE 过焦点(1,0)F ,所以000011(1)(1)2AE AF FE x x x x =+=+++=++, 设直线AE 的方程为+1x my =,因为点00(,)A x y 在直线AE 上,故001x m y −=, 设11(,)B x y ,直线AB 的方程为000()2y y y x x −=−−,由于00y ≠,可得0022x y x y =−++, 代入抛物线方程得2008840y y x y +−−=,所以0108y y y +=−, 可求得1008y y y =−−,10044x x x =++,所以点B 到直线AE的距离为d ===.则ABE ∆的面积00112)162S x x =⨯++≥, 当且仅当001x x =即01x =时等号成立.所以ABE ∆的面积的最小值为16.。
数学文卷·2014届山东省日照市(日照一中等)高三12月校际联考(2013.12)
文科数学参考答案及评分标准说明:本标准中的解答题只给出一种解法,考生若用其它方法解答,只要步骤合理,结果正确,准应参照本标准相应评分。
一、选择题:每小题5分,共60分.1-5 BCDCB 6-10 BCAAD 11-12 CD (1)解析:答案B.因为21{|2},{|1}{|11}2A x xB x x x x =<<=<=-<<,所以, A B ={|12}x x -<<.(2)解析:答案C.因为e>1,所以(e)ln e=1f =,所以2((e))(1)11 2.f f f ==+= (3)解析:答案:D.因为α为第二象限角,所以4cos ,5α==-所以tan()tan ααπ+=sin 3.cos 4αα==- (4)解析:答案:C .当0c =时,220ac bc ==,所以①为假命题;当a 与b 异号时,0a b <,0ba<,所以②为假命题;因为||0a b >≥,所以22||a b >,③为真命题. (5)解析:答案:B.因为π2sin(2)2cos 22y x x =-=,所以函数是最小正周期为π的偶函数.(6)解析:答案:B.设此数列的公比为(0)q q >,由已知241a a =,得231,a =所以31a =,由37S =,知33327,a a a q q++=即2610,q q --=解得12q =,进而14a =,所以 5514[1()]3121412S -==-. (7)解析:答案:C.由函数2||()2x f x x =-为偶函数,排除答案B 与D ;又由(0)10f =-<,知选(C ).(8)解析:答案:A.设()()2F x f x =-,则23111()log log F a b x x x =+=2(log a x -+3log )()b x F x =-,所以1(2013)()(42)22013F F =-=--=-,(2013)(2013+2=0.f F =)(9)解析:答案:A.由三视图可得该几何体的上部分是一个三 棱锥,下部分是半球,所以根据三视图中的数据可得61621112131)22(34213+=⨯⨯⨯⨯+⨯⨯=ππV . (10)解析:答案:D.函数()xf x a =在R 上是增函数,即1a >;但当2a =时,函数2()g x x =在R 上不是增函数. 函数()ag x x =在R 上是增函数时,可有13a =,此时函数()x f x a =在R 上不是增函数.(11)解析:答案:C.若131()02x f x x =-=,则1312x x =,得1()8x x =,令1()()8x g x x =-,(1,4)A 220x y -+=21-840x y --=4-12可得11111()0,()033222g g =-<=>,因此f (x )零点所在的区间是11(,)32. (12)解析:答案:D.因为20OA AB AC ++= ,所以()()0OA AB OA AC +++=,所以0OB OC +=,O 为BC 的中点,故ABC ∆是直角三角形,角A 为直角.又||||=,故有AOB ∆为正三角形,||AC =,||1AB = ,CA 与CB 的夹角为30 ,由数量积公式可得选D.二、填空题:本大题共4小题,每小题4分,共16分.(13)9;(14)2(2)2n n f +>;(15)4;(16)①②⑤. (13)解析:答案:9. 因为-a b (1,4)x =-,又()⊥-a a b ,所以()⋅-=a a b 180x -+=,解得9.x =(14)解析:答案:2(2).2n n f +>因为234456(2),(2),(2),222f f f >>>57(2)2f >,所以当2n ≥时,有2(2).2n n f +>(15)解析:答案:4.满足约束条件的平面区域如图,由z abx y =+,得y abx z =-+,由0,0a b >>,知0ab -<,所以,当直线y abx z =-+经过点(1,4)A时,z abx y =+取得最大值,这时48ab +=,即 4ab =,所以a b +≥4==,当且仅当2a b ==时,上式等号成立.所以a b +的最小值为4.(16)解析:答案:①②⑤. 由面面平行的性质,不难判断①和②都为真命题;对于③,由αβ⊥及l β⊥,知//l α或l ⊂α;命题④中,由m αβ= 且//l m ,得//l α或l ⊂α;对于⑤,如图,因为//l α, 过l 的作平面γ和平面δ,且,a b == γαδβ所以,//l a ,//l b ,因此//a b ,又m αβ= ,a ⊂α,所以//a m ,进而//l m . 三、解答题:本大题共6小题,共74分.(17)解析:(Ⅰ)因为A ,B ,C 成等差数列,所以2B =A +C ,因为A +B +C =π,所以B =π3. ………………3分因为b =13,a =3,b 2=a 2+c 2-2ac cos B , 所以c 2-3c -4=0.所以c =4或c =-1(舍去). ………………6分(Ⅱ)因为A +C =23π,所以sin A sin C =sin A sin ⎝⎛⎭⎫2π3-A =sin A ⎝⎛⎭⎫32cos A +12sin A =34sin 2A +11cos 2()22A -=14+12sin ⎝⎛⎭⎫2A -π6. ………………9分 由sin A sin C =34,得sin ⎝⎛⎭⎫2A -π6=1, 因为0<A <2π3,所以-π6<2A -π6<7π6.m所以2A -π6=π2,即A =π3. ………………12分 (18)解析:(Ⅰ)因为x x k x f -⋅+=22)(是奇函数,所以()(),f x f x x -=-∈R ,即22(22),x x x x k k --+⋅=-+⋅所以02)1()1(2=⋅+++x k k ,对一切x ∈R 恒成立, 所以.1-=k …………………………4分 (Ⅱ)因为[),,0+∞∈x 均有xx f ->2)(,即x x x k -->⋅+222成立,所以x k 221<-对0≥x 恒成立, ………………………………8分 所以min 2)2(1xk <-.因为xy 22=在[),,0+∞上单调递增,所以.1)2(min 2=x所以.0>k ………………………………12分 (19)解:(Ⅰ)因为F E ,分别为,PA PD 中点,所以AD ∥EF , 因为BC ∥AD ,所以BC ∥EF , ……2分因为BC ⊄平面,EFG EF ⊂平面EFG , …4分所以BC ∥平面EFG . ………………6分 (Ⅱ)因为PA ⊥平面ABCD ,所以PA ⊥DH ,即AE ⊥DH , ………………8分 因为△ADG ≌△DCH , 所以∠HDC =∠DAG , ∠AGD +∠DAG =90°,所以∠AGD +∠HDC =90°, 所以DH ⊥AG ,又因为AE ∩AG =A ,所以DH ⊥平面AEG . ………………12分(20)解析:(Ⅰ)由已知,12)1(21-=-+=n n b n . …………2分所以n n S n -=22.从而111;a S ==当2n ≥时,2212[2(1)(1)]43n n n a S S n n n n n -=-=-----=-,又11a =也适合上式,所以43n a n =-. ……………6分 (Ⅱ)由(Ⅰ))141341(41)14)(34(1+--=+-=n n n n c n , …………8分所以⎥⎦⎤⎢⎣⎡+--+⋅⋅⋅+-+-=+⋅⋅⋅+++=)141341()9151()511(41321n n c c c c T n n14)1411(41+=+-=n nn . …………12分 (21)解析:(Ⅰ)如图,BM =AO sin θ=100sin θ,AB =MO +AO cos θ=100+100cos θ,θ∈(0,π). ……………………3分则S =12MB ·AB =12×100sin θ×(100+100cos θ)=5000(sin θ+sin θcos θ),θ∈(0,π).……6分 (Ⅱ)S ′=5000(2cos 2θ+cos θ-1)=5000(2cos θ-1)(cos θ+1).令S ′=0,得cos θ=12或cos θ=-1(舍去),此时θ=π3. …………8分 当θ北京路ANOlBM所以,当θ=π3时,S 取得最大值S max =37503m 2,此时AB =150m ,即点A 到北京路一边l 的距离为150m. …………0x >,所以 …………………4分(0,e]上恒成立, )(x f 在区间(0,e]上为增函数,max ()e ln e=e+1=-3f x a a =+,∴40ea =-<,舍去;时,∵(0,e]x ∈,∴10,()0,ax f x '+≥∴≥)(x f 在区间(0,e]上为增函数,max ()e ln e=e+1=-3f x a a =+,∴40ea =-<,舍去;………………………9分有最大值,最大值为(1)1f =-,即1)(-≤x f , 10分12分即ln 1|()|2x f x x >+. …………………………13分。
2014年高考山东卷文科数学真题及参考答案.doc
2014年高考山东卷文科数学真题及参考答案举国瞩目的2014高考数学科目的考试已结束,新东方在线高考名师团队第一时间对2014高考数学真题进行了解析,希望能对考生、家长有所帮助,也希望对2015高考考生提供借鉴。
以下是济南新东方高考名师团队老师提供的2014高考山东卷文科数学真题及参考答案,供广大考生参考。
一.选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,选择符合题目要求的选项。
(1)已知i R b a ,,∈是虚数单位,若i a +bi -=2,则=+2)(bi a (A )i 43-(B )i 43+(C )i 34-(D )i 34+【解析】由i a +bi -=2得,12-==b a ,,=+2)(bi a i i i i 4344)2(22-=+-=- 故答案选A(2)设集合},41{,}02{2≤≤=<-=x x B x x x A 则=B A (A )(0,2](B ) (1,2)(C ) [1,2)(D )(1,4)【解析】[]4,1)20(==B A ,,,数轴上表示出来得到=B A [1,2) 故答案为C (3)函数1log 1)(2-=x x f 的定义域为(A ))20(, (B )]2,0((C )),2(+∞(D ))2[∞+,【解析】01log 2>-x 故2>x 。
选D(4)用反证法证明命题“设,,R b a ∈则方程02=++b ax x 至少有一个实根”时要做的假设是(A )方程02=++b ax x 没有实根 (B )方程02=++b ax x 至多有一个实根 (C )方程02=++b ax x 至多有两个实根 (D )方程02=++b ax x 恰好有两个实根 【解析】答案选A ,解析略。
(5)已知实数y x ,满足)10(<<<a a a yx ,则下列关系式恒成龙的是(A )33y x >(B )y x sin sin >(C ))1ln()1ln(22+>+y x(D )111122+>+y x 【解析】由)10(<<<a a a yx得,y x >,但是不可以确定2x 与2y 的大小关系,故C 、D排除,而x y sin =本身是一个周期函数,故B 也不对,33y x >正确。
2014年普通高等学校招生全国统一考试(山东卷)_数学(理)-推荐下载
z=ax+by(a>0,b>0)在该约束条件下取到最小值 2 5 时,a2+b2 的最小值为( ).
A.5
答案:B
B.4
C. 5
D.2
x y 1 0, 解析:约束条件 2x y 3 0 满足的可行域如图中的阴影部分所示.由图可知,目标
函数 z=ax+by(a>0,b>0)取最小值时,最优解为(2,1).
0
4.
7.(2014 山东,理 7)为了研究某药品的疗效,选取若干名志愿者进行临床试验.所有 志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17], 将其按从左到右的顺序分别编号为第一组,第二组,……,第五组.下图是根据试验数据制
所以第三组中有疗效的人数为 18-6=12.
D.18
8.(2014 山东,理 8)已知函数 f(x)=|x-2|+1,g(x)=kx.若方程 f(x)=g(x)有两个不相等
的实根,则实数 k 的取值范围是( ).
A.
C.(1,2)
答案:B
0,
1 2
B.
1 2
D.(2,+∞)
A.[0,2]
C.[1(1,4)
解析:由题意,得 A={x||x-1|<2}={x|-1<x<3}, B={y|y=2x,x∈[0,2]}={y|1≤y≤4},
所以 A∩B=[1,3).
3.(2014 山东,理 3)函数 f x
A.
C.
答案:C
A. 2 2
答案:D
解析:由
y 4x,
y
B. 4 2
山东省2008-2014年普通高中学生学业水平考试数学试题(含答案)
山东省2008年普通高中学生学业水平考试数学试题第Ⅰ卷(选择题 共45分)一、选择题(本答题共15个小题,每小题3分,共45分,在每小题给出的四个选项中,只有一个符合题目要求)1.若全集U={1.,2,3,4},集合M={1,2},N={2,3},则集合C U (M N)= ( ) A.{1,2,3} B.{2} C.{1,3,4} D.{4}2.若一个几何体的三视图都是三角形,则这个集合体是 ( ) A. 圆锥 B.四棱锥 C.三棱锥 D.三棱台3.若点P(-1,2)在角θ的终边上,则tan θ等于 ( ) A. -2 B. 55-C. 21-D. 5524.下列函数中,定义域为R 的是 ( ) A. y=x B. y=log 2X C. y=x 3D. y=x15.设a >1,函数f (x )=a |x|的图像大致是 ( )6.为了得到函数y=sin (2x-3π)(X ∈R )的图像,只需把函数 y=sin2x 的图像上所有的点 ( )A.向右平移3π个单位长度B.向右平移6π个单位长度 C.向左平移3π个单位长度 D.向左平移6π个单位长度7.若一个菱长为a 的正方形的个顶点都在半径为R 的球面上,则a 与R 的关系是( )A. R=aB. R=a 23C. R=2aD. R=a 3 8.从1,2,3,4,5这五个数字中任取两数,则所取两数均为偶数,则所取两数均为偶数的概率是 ( ) A.101 B. 51 C. 52 D. 53 9.若点A (-2,-3)、B (0,y )、C (2,5)共线,则y 的值等于 ( )A. -4B. -1C. 1D. 410.在数列{a n }中,a n+1=2a n ,a 1=3,则a 6为 ( )A. 24B. 48C. 96D. 19211.在知点P (5a+1,12a )在圆(x-1)2+y 2=1的内部,则实数a 的取值范围是 ( )A. -1<a <1B. a <131C.51-<a <51D. 131-<a <13112.设a ,b ,c ,d ∈R ,给出下列命题: ①若ac >bc ,则a >b ; ②若a >b ,c >d ,则a+b >b+d ; ③若a >b ,c >d ,则ac >bd ; ④若ac 2>bc 2,则a >b ;其中真命题的序号是 ( ) A. ①② B. ②④ C. ①②④ D. ②③④13.已知某学校高二年级的一班和二班分别有m 人和n 人(m ≠n )。
2014年普通高等学校招生全国统一考试(山东卷)数学试题(文科)解析版
(C) ln(x2 1) ln( y2 1)
(D)
11 x2 1 y2 1
5.【答案】A
【解析】由 a x a y (0 a 1) 得, x y ,但是不可以确定 x2 与 y2 的大小关系,故 C、D 排
除,而 y sin x 本身是一个周期函数,故 B 也不对, x3 y3 正确。
如果事件 A,B 互斥,那么 P( A B) P( A) P(B)
第I卷(共 50 分)
一、选择题:本大题共 10 小题,每小题 5 分,共 50 分. 在每小题给出的四个选项中,只有 一项是符合题目要求的。
(1) 已知 a, b R, i 是虚数单位. 若 ai= 2 bi ,则 (a bi)2
(A) 3 4i
(B) 3 4i
(C) 4 3i
1.【答案】A
【解析】 a i 2 bi, a 2, b 1 , a 2, b 1
(D) 4 3i
(a bi)2 (2 i)2 4 4i i2 3 4i .
(2) 设集合 A {x | x2 2x 0}, B {x |1 x 4} ,则 A B
(C) 方程 x3 ax b 0 至多有两个实根 (D) 方程 x3 ax b 0 恰好有两个实根
4.【答案】A 【解析】“至少有一个”的对立面应是“没有”,故选 A
(5) 已知实数 x, y 满足 ax a y (0 a 1) ,则下列关系式恒成立的是
(A) x3 y3
(B) sin x sin y
(10)
x y 1 0, 已知 x, y 满足约束条件 2x y 3 0, 当目标函数 z
ax by
(a
0,b
0) 在该约束
条件下取到最小值 2 5 时, a2 b2 的最小值为
2014年普通高等学校招生全国统一考试(山东卷)数学(理)试卷及解析
6.【答案】D
【解析】联立 ,且在第一象限,得
所求面积
(7)为研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单 位: )的分组区间为 , , , , ,将其按从左到右的顺序分别编号为第一组,第二组,......,第五组.右图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为
19.解:(I)
解得
(II)
(20)(本小题满分13分)
设函数 ( 为常数, 是自然对数的底数).
(Ⅰ)当 时,求函数 的单调区间;
(Ⅱ)若函数 在 内存在两个极值点,求 的取值范围.
20.解:(I)函数 的定义域为
由 可得 ,
所以 当 时, ,函数 单调递减,
当 时, ,函数 单调递增,
所以, 的单调递减区间为 ,单调递增区间为 .
(A)1 (B)8(C)12 (D)18
7.【答案】C
【解析】第一组与第二组频率之和为0.24+0.16=0.4,
(8)已知函数 , ,若 有两个不相等的实根,则实数 的取值范围是
(A) (B) (C) (D)
8.【答案】B
【解析】画出 的图像,最低点是 , 过原点和 时斜率最小为 ;斜率最大时 的斜率与 的斜率一致.
(A) (B) (C) (D)
10.【答案】A
【解析】
二、填空题:本大题共5小题,每小题5分,共25分
(11)执行右面的程序框图,若输入的 的值为1,则输出的 的值为.
11.【答案】3
【解析】根据判断条件 ,得
输入
第一次判断后循环,
第二次判断后循环,
2014年高考理数真题试卷(山东卷)
第1页,总21页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………2014年高考理数真题试卷(山东卷)考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 总分 核分人 得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共10题)1. (2014•山东)设集合A={x 丨丨x ﹣1丨<2},B={y 丨y=2x , x∈[0,2]},则A∩B=( ) A . [0,2] B . (1,3) C . [1,3) D . (1,4)2. (2014•山东)函数f (x )= 的定义域为( )A . (0, )B . (2,+∞)C . (0, )∈(2,+∞)D . (0, ]∈[2,+∞)3. (2014•山东)已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( ) A .>B . ln (x 2+1)>ln (y 2+1)C . sinx >sinyD . x 3>y 34. (2014•山东)已知函数f (x )=丨x ﹣2丨+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是( )A . (0, )B . ( ,1)C . (1,2)D . (2,+∞)5. (2014•山东)为了研究某药品的疗效,选取若干名志愿者进行临床试验.所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )答案第2页,总21页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………A . 6B . 8C . 12D . 186. (2014•山东)已知x ,y 满足约束条件 ,当目标函数z=ax+by (a >0,b >0)在该约束条件下取到最小值2 时,a 2+b 2的最小值为( ) A . 5 B . 4 C . D . 27. (2014•山东)已知a >b >0,椭圆C 1的方程为=1,双曲线C 2的方程为 =1,C 1与C 2的离心率之积为 ,则C 2的渐近线方程为( )A . x± y=0B .x±y=0 C . x±2y=0 D . 2x±y=08. (2014•山东)已知a ,b∈R ,i 是虚数单位,若a ﹣i 与2+bi 互为共轭复数,则(a+bi )2=( ) A . 5﹣4i B . 5+4i C . 3﹣4i D . 3+4i9. (2014•山东)直线y=4x 与曲线y=x 3在第一象限内围成的封闭图形的面积为( ) A . 2 B . 4C . 2D . 410. (2014•山东)用反证法证明命题“设a ,b 为实数,则方程x 3+ax+b=0至少有一个实根”时,要做的假设是( )A . 方程x 3+ax+b=0没有实根B . 方程x 3+ax+b=0至多有一个实根C . 方程x 3+ax+b=0至多有两个实根D . 方程x 3+ax+b=0恰好有两个实根第Ⅱ卷 主观题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学生姓名: 满分: 100分 时间: 90分钟
山东省2014年12月普通高中学业水平考试
数学试题
第Ⅰ卷
一、选择题(本大题共20个小题,每小题3分,共60分.每题只有一个选项是符合题目要求的.)
1、已知集合A={1,2}B={2,3},,则B A 等于
A 、∅
B 、{2}
C 、{1,3}
D 、{1,2,3}
2、120︒角的终边在
A 、第一象限
B 、第二象限
C 、第三象限
D 、第四象限
3、函数cos y x =的最小正周期是
A 、2π
B 、π
C 、32
π D 、2π 4、在平行四边形ABCD 中,AD AB +等于
A 、AC
B 、BD
C 、CA
D 、DB
5、从96名数学教师,24名化学教师,16名地理教师,用分层抽样的方法抽取一个容量为17的样 本,则应抽取的数学教师人数是
A 、2
B 、3
C 、12
D 、15
6、已知向量()1,1=a ,则a 等于
A 、1
B 、2
C 、3
D 、2
7、从7名高一学生和3名高二学生中任选4人,则下列事件中的必然事件是
A 、4人都是高一学生
B 、4人都是高二学生
C 、至少有1人是高二学生
D 、至少有1人是高一学生
8、过(4,2)A ,(2,2)B -两点的直线斜率等于
A 、-2
B 、-1
C 、2
D 、4
9、不等式(1)0x x -<的解集是
A 、{|01}x x <<
B 、{|1}x x <
C 、{|0}x x <
D 、{|01}x x x <>或
10、圆心在点(1,5),并且和y 轴相切的圆的标准方程为
A 、22(1)(5)1x y +++=
B 、22
(1)(5)1x y -+-=
C 、22(1)(5)25x y +++=
D 、22(-1)(-5)25x y +=
11、已知4sin 5
α=
,且α是第二象限角,则cos α等于 A 、45- B 、35- C 、45 D 、35 12、在等差数列{}n a 中,153,11a a ==,则3a =
A 、5
B 、6
C 、7
D 、9
13、若二次函数21y x mx =++有两个不同的零点,则m 的取值范围是 A 、(,2)-∞- B 、(2,)+∞ C 、-(2,2) D 、--+∞∞U (,2)(2,) 14、一个底面是正三角形的直三棱柱的正(主)视图如图所示,则其侧面积等于
A 、6
B 、8
C 、12
D 、24
15、已知4cos 5
α=-
,则cos 2α= A 、2425- B 、2425 C 、725- D 、725 16、在等比数列{}n a 中,11,2a q ==,则数列的前5项和等于
A 、31
B 、32
C 、63
D 、64
17、在ABC ∆中,角A 、B 、C 所对的边分别是a,b,c ,若a=5,b=4,c=21,则C 等于
A 、300
B 、450
C 、600
D 、1200
18、已知34155
2,3,3,,,a b c a b c -===则的大小关系是
A 、a b c <<
B 、b c a <<
C 、c a b <<
D 、a c b << 19、当x ,y 满足约束条件01260x y x y ≥⎧⎪≥⎨⎪+-≤⎩
时,
目标函数z x y =+的最大值是
A 、1
B 、2
C 、3
D 、5
20、如图所示的程序框图,运行相应的程序,输出的结果是
A 、25
B 、35
C 、45
D 、55
第Ⅱ卷
二、填空题(本大题共5个小题,每小题3分,满分15分.)
21、0sin150的值是 .
22、已知函数2,[0,2](),(2,4]
x x f x x x -∈⎧=⎨∈⎩,则(1)(3)f f -等于 .
23、两条直线x+2y+1=0,x-2y+3=0的交点坐标是 .
24、已知x>0,y>0,且x+y=4,则xy 的最大值是 .
25、一个正方形及其内切圆,在正方形内随机取一点,则所取的点在圆内的概率是 .
2
1
1
F D C B A P E 三、解答题(本大题共3个小题,共25分)
26、(本小题满分8分)
有5张卡片,上面分别标有数字1,2,3,4,5.从中任取2张,求:
(1)卡片上数字全是奇数的概率;
(2)卡片上数字之积是偶数的概率.
27、(本小题满分8分)
如图,四棱锥P-ABCD 的底面是平行四边形,E ,F 分别是棱PB,PC 的中点. 求证:EF//平面PAD.
28、(本小题满分9分)
已知函数()lg(),(,,0)1
mx f x n m n R m x =+∈>+的图象关于原点对称。
(1)求m,n 的值; (2)若120x x >,试比较12121(
)[()()]22x x f f x f x ++与的大小,并说明理由.。