直流电动机双闭环调速系统的设计
双闭环直流调速系统特性与原理
双闭环直流调速系统特性与原理双闭环直流调速系统是一种用于控制直流电动机转速的调速系统。
它由两个闭环控制回路组成,分别是转速外环和电流内环。
其中,转速外环控制直流电机的转速,通过调节电压来控制直流电机的转矩;而电流内环则控制直流电机的电流,通过调节电压来控制直流电机的转矩。
1.稳定性:双闭环控制系统能够有效地控制直流电动机的转速和电流,使其在运行过程中保持稳定的转矩输出。
通过转速外环对转速进行控制,可以实现精确的转速调节;而电流内环则能够控制电机的电流,防止过载和短路等故障。
2.响应速度:双闭环控制系统的转速外环具有较快的响应速度,能够实现快速的转速调节。
而电流内环的响应速度则相对较慢,主要起到电机保护的作用。
3.鲁棒性:双闭环控制系统具有较好的鲁棒性,能够对外部干扰和参数变化具有一定的抗干扰能力。
通过合理的控制策略和参数调整,可以提高系统的鲁棒性。
1.转速外环控制原理:转速外环将输出电压与给定的转速进行比较,得到转速误差,并通过调节电压反馈回内环控制器中。
转速外环控制器通常采用PI控制器,根据转速误差和积分项来控制输出电压。
通过不断调节输出电压,使得转速误差趋于零,从而实现对直流电机转速的调节。
2.电流内环控制原理:电流内环控制器将输出电压与给定的电流进行比较,得到电流误差,并通过调节输出电压来控制电流。
电流内环控制器通常也采用PI控制器,根据电流误差和积分项来控制输出电压。
通过不断调节输出电压,使得电流误差趋于零,从而实现对直流电机电流的调节。
3.反馈信号处理:双闭环直流调速系统中,转速和电流测量信号需要经过滤波和放大等处理,以便传递给控制器进行计算。
滤波器通常采用低通滤波器,用于去除高频噪声,放大器则用于放大信号强度。
4.控制指令处理:由上位机或人机界面输入的控制指令需要经过处理,包括限幅、线性化等,以确保输入信号符合控制系统的要求。
处理后的指令将送入控制器,进行计算和控制输出电压。
通过双闭环直流调速系统的控制,可以实现对直流电机的转速和电流的精确调节,并具有较好的稳定性、响应速度和鲁棒性,广泛应用于工业自动化领域。
双闭环直流调速系统的课程设计(MATLAB仿真)
(a)带电流截止负反馈的单闭环调速系统起动过程(b)理想快速起动过程
图1 调速系统起动过程的电流和转速波形
在实际工作中,我们希望在电机最大电流(转矩)受限的条件下,充分利用电机的允许过载能力,最好是在过渡过程中始终保持电流(转矩)为允许最大值,使电力拖动系统尽可能用最大的加速度起动,到达稳定转速后,又让电流立即降下来,使转矩马上与负载相平衡,从而转入稳态运行。这样的理想起动过程波形如图1-(b)所示,这时,启动电流成方波形,而转速是线性增长的。这是在最大电流(转矩)受限的条件下调速系统所能得到的最快的起动过程。
第三阶段是转速调节阶段。转速调节器在这个阶段中起作用。开始时转速已经上升到给定值,ASR的给定电压 与转速负反馈电压 相平衡,输入偏差 等于零。但其输出却由于积分作用还维持在限幅值 ,所以电动机仍在以最大电流 下加速,使转速超调。超调后, ,使ASR退出饱和,其输出电压(也就是ACR的给定电压) 才从限幅值降下来, 也随之降了下来,但是,由于 仍大于负载电流 ,在开始一段时间内转速仍继续上升。到 时,电动机才开始在负载的阻力下减速,知道稳定(如果系统的动态品质不够好,可能振荡几次以后才稳定)。在这个阶段中ASR与ACR同时发挥作用,由于转速调节器在外环,ASR处于主导地位,而ACR的作用则力图使 尽快地跟随ASR输出 的变化。
(3)准时间最优控制:在设备允许条件下实现最短时间的控制称作“时间最优控制”,对于电力拖动系统,在电动机允许过载能力限制下的恒流起动,就是时间最优控制。但由于在起动过程Ⅰ、Ⅱ两个阶段中电流不能突变,实际起动过程与理想启动过程相比还有一些差距,不过这两段时间只占全部起动时间中很小的成分,无伤大局,可称作“准时间最优控制”。采用饱和非线性控制的方法实现准时间最优控制是一种很有实用价值的控制策略,在各种多环控制中得到普遍应用。
V-M双闭环直流可逆调速系统设计
1.2设计要求....................................................2 (3)3主电路的设计....................................................5 .. (3)3.4晶闸管元件参数的计算........................................7 (3)4电流调节器的设计................................................9 .. (3)5转速调节器的设计...............................................13 .. (3)1.2设计要求 (5)2双闭环调速系统的总体设计 (5)3主电路的设计 (8)3.1主电路电气原理图及其说明 (8)3.5保护电路的设计 (11)4.1电流环结构框图的化简 (12)T∑i = T s + T oi (13)4.2.1确定时间常数 (13)3)电流环小时间常数之和T∑=T s+T oi=0.0037s (13)4.2.5计算调节器电阻和电容 (15)5.1转速环结构框图的化简 (16)5.2.1确定时间常数 (17)5.2.5计算调节器电阻和电容 (19)V-M双闭环直流可逆调速系统设计初始条件:1.技术数据及技术指标:直流电动机:P N=3KW , U N=220V , I N=17.5A , n N=1500r/min , R a=1.25Ω堵转电流I dbl=2I N, 截止电流I dcr=1.5I N,GD2=3.53N.m2三相全控整流装置:K s=40 , R rec=1. 3Ω平波电抗器:R L=0. 3Ω电枢回路总电阻R=2.85Ω,总电感L=200mH ,滤波时间常数:T oi=0.002s , T on=0.01s,其他参数:U nm*=10V ,U im*=10V , U cm=10Vσi≤5% , σn≤10要求完成的主要任务:1.技术要求:(1) 该调速系统能进行平滑的速度调节,负载电机可逆运行,具有较宽的调速范围(D≥10),系统在工作范围内能稳定工作(2) 系统在5%负载以上变化的运行范围内电流连续2.设计内容:(1) 根据题目的技术要求,分析论证并确定主电路的结构型式和闭环调速系统的组成,画出系统组成的原理框图(2) 调速系统主电路元部件的确定及其参数计算(包括有变压器、电力电子器件、平波电抗器与保护电路等)(3) 动态设计计算:根据技术要求,对系统进行动态校正,确定ASR调节器与ACR调节器的结构型式及进行参数计算,使调速系统工作稳定,并满足动态性能指标的要求(4) 绘制V-M双闭环直流可逆调速系统的电气原理总图(要求计算机绘图)(5) 整理设计数据资料,课程设计总结,撰写设计计算说明书时间安排:课程设计时间为一周半,共分为三个阶段:(1)复习有关知识,查阅有关资料,确定设计方案。
双闭环直流电动机调速系统
04
系统软件设计
控制算法设计
算法选择
算法实现
根据系统需求,选择合适的控制算法, 如PID控制、模糊控制等。
将控制算法用编程语言实现,并集成 到系统中。
算法参数整定
根据系统性能指标,对控制算法的参 数进行整定,以实现最优控制效果。
调节器设计
调节器类型选择
根据系统需求,选择合适 的调节器类型,如PI调节 器、PID调节器等。
在不同负载和干扰条件下测试系统的性能, 验证系统的鲁棒性。
06
结论与展望
工作总结
针对系统中的关键问题,如电流和速度的动态 调节、超调抑制等,进行了深入研究和改进。
针对实际应用中可能出现的各种干扰和不确定性因素 ,进行了充分的考虑和实验验证,提高了系统的鲁棒
性和适应性。
实现了双闭环直流电动机调速系统的优化设计 ,提高了系统的稳定性和动态响应性能。
通过对实验数据的分析和比较,验证了所设计的 双闭环直流电动机调速系统的可行性和优越性。
研究展望
进一步研究双闭环直流电动机 调速系统的控制策略,提高系
统的动态性能和稳定性。
针对实际应用中的复杂环境和 工况,开展更为广泛和深入的 实验研究,验证系统的可靠性
和实用性。
探索双闭环直流电动机调速系 统在智能制造、机器人等领域 的应用前景,为相关领域的发 展提供技术支持和解决方案。
功率驱动模块
总结词
控制直流电动机的启动、停止和方向。
详细描述
功率驱动模块是双闭环直流电动机调速系统的核心部分,负责控制直流电动机的启动、停止和方向。它通常 由电力电子器件(如晶体管、可控硅等)组成,通过控制电动机的输入电压或电流来实现对电动机的速度和 方向的控制。功率驱动模块还需要具备过流保护、过压保护和欠压保护等功能,以确保电动机和整个系统的
双闭环直流调速系统介绍
电流环的设计:采用PI控制器,实现对电机电流的精确控 制。
双闭环调速系统的参数整定:根据系统特性和实际需求,对 速度环和电流环的参数进行整定,以实现最佳的调速性能。
双闭环直流调速 系统的应用
双闭环调速系统在工业控制中的应用
01 电机控制:用于控制电机 的转速、位置和扭矩等参 数,实现精确控制
04
够抵抗各种干扰和故障,保持正常运行
双闭环调速系统的设计步骤
01
确定系统需求:分 析系统需求,确定 调速系统的性能指
标
02
设计调速系统结构: 选择合适的调速系 统结构,如双闭环
调速系统
03
设计控制器:设计 控制器参数,包括 比例、积分、微分
等参数
05
设计驱动电路:设 计驱动电路,包括 功率放大器和驱动
双闭环调速系统的特点
速度闭环控制:通过速度传
感器检测电机转速,实现速
01
度的精确控制
响应速度快:双闭环调速系
统能够快速响应负载变化, 03
提高系统的动态性能
精度高:双闭环调速系统能
够实现高精度的速度和位置 05
控制,满足各种应用需求
位置闭环控制:通过位置传
02 感器检测电机位置,实现位
置的精确控制
双闭环直流调速系统介 绍
演讲人
目录
01. 双闭环直流调速系统的基本 概念
02. 双闭环直流调速系统的设计 03. 双闭环直流调速系统的应用 04. 双闭环直流调速系统的发展
趋势
双闭环直流调速 系统的基本概念
双闭环调速系统的组成
01
速度环:用于控 制电机转速,实
现速度调节
V-M双闭环不可逆直流调速系统设计
V-M双闭环不可逆直流调速系统设计⼀主电路选型和闭环系统的组成1.1双闭环直流调速系统的组成与原理双闭环直流调速系统的组成和原理如图2.1所⽰其中包括了三相全空整流电路、调节器、(ASR、ACR)和电动机等。
该⽅案主要由给定环节、ASR、ACR、触发器和整流装置环节、速度检测环节以及电流检测环节组成。
为了使转速负反馈和电流负反馈分别起作⽤,系统设置了电流调节器ACR和转速调节器ASR。
电流调节器ACR和电流检测反馈回路构成了电流环;转速调节器ASR和转速检测反馈回路构成转速环,称为双闭环调速系统。
因转速换包围电流环,故称电流环为内环,转速环为外环。
在电路中,ASR 和ACR 串联,即把ASR 的输出当做ACR 的输⼊,再由ACR 得输出去控制晶闸管整流器的触发器。
为了获得良好的静、动态性能,转速和电流两个调节器⼀般都采⽤具有输⼊输出限幅功能的PI 调节器,且转速和电流都采⽤负反馈闭环。
该⽅案的原理框图如图所⽰。
1.2设计要求1.直流他励电动机:功率Pe =22KW ,额定电压Ue=220V ,额定电流Ie=116A,磁极对数P=2,Ne=1500r/min,励磁电压220V,电枢绕组电阻Re=0.112Ω,主电路总电阻R =0.32Ω,L ∑=37.22mH(电枢电感、平波电感和变压器电感之和),电磁系数Ce=0.138 Vmin /r ,K s =22,电磁时间常数T L =0.116s ,机电时间常数Tm=0.157s ,滤波时间常数T on =Tci=0.00235s ,β=0.67V/A ,α=0.007Vmin/v ,过载倍数λ=1.5,速度给定最⼤值 10V U n =*电流给定最⼤电压值10V ,速度给定最⼤电压值10V 。
2.稳态⽆静差,电流超调量σi %≤5%;空载起动到额定转速时的转速超调σe %≤10%。
振荡次数N<2次。
并绘制相关原理图及程序框图。
⼆调速系统主电路元部件的确定2.1转速给定电路设计此电路主要由滑动变阻器构成,调节滑动变阻器即可获得相应⼤⼩的给定信号。
直流电机的PWM电流速度双闭环调速系统课程设计
电力拖动课程设计题目:直流电机的PWM电流速度双闭环调速系统姓名:学号:班级:指导老师:课程评分:日期目录一、设计目标与技术参数二、设计基本原理(一)调速系统的总体设计(二)桥式可逆PWM变换器的工作原理(三)双闭环调速系统的静特性分析(四)双闭环调速系统的稳态框图(五)双闭环调速系统的硬件电路(六)泵升电压限制(七)主电路参数计算和元件选择(八)调节器参数计算三、仿真(一)仿真原理(含建模及参数)(二)重要仿真结果(目的为验证设计参数的正确性)四、结论参考文献附录1:调速系统总图附录2:调速系统仿真图一、设计目标与技术参数直流电机的PWM电流速度双闭环调速系统的设计目标如下:额定电压:U N=220V;额定电流:I N=136A;额定转速:n N:=1460r/min;电枢回路总电阻:R=0.45Ω;电磁时间常数:T l=0.076s;机电时间常数:T m=0.161s;电动势系数:C e=0.132V*min/r;转速过滤时间常数:T on=0.01s;转速反馈系数α=0.01V*min/r;允许电流过载倍数:λ=1.5;电流反馈系数:β=0.07V/A;电流超调量:σi≤5%;转速超调量:σi≤10%;运算放大器:R0=4KΩ;晶体管PWM功率放大器:工作频率:2KHz;工作方式:H型双极性。
PWM变换器的放大系数:K S=20。
二、设计基本原理(一)调速系统的总体设计在电力拖动控制系统的理论课学习中已经知道,采用PI调节的单个转速闭环直流调速系统可以保证系统稳定的前提下实现转速无静差。
但是,如果对系统的动态性能要求较高,例如要求快速起制动,突加负载动态速降小等等,单闭环调速系统就难以满足需要。
这主要是因为在单闭环调速系统中不能随心所欲的控制电流和转矩的动态过程。
如图2-1所示。
图2-1 直流调速系统启动过程的电流和转速波形用双闭环转速电流调节方法,虽然相对成本较高,但保证了系统的可靠性能,保证了对生产工艺的要求的满足,既保证了稳态后速度的稳定,同时也兼顾了启动时启动电流的动态过程。
双闭环直流调速系统(课程设计)
4•仿真实验95•仿真波形分析13三、心得体会14四、参考文献161•课题研究的意义从七十年代开始,由于晶闸管直流调速系统的高效、无噪音和快速响应等优点而得到广泛应用。
双闭环直流调速系统就是一个典型的系统,该系统一般含晶闸管可控整流主电路、移相控制电路、转速电流双闭环调速控制电路、以及缺相和过流保护电路等。
直流调速是现代电力拖动自动控制系统中发展较早的技术。
就目前而言,直流调速系统仍然是自动调速系统的主要形式,在许多工业部门,如轧钢、矿山采掘、纺织、造纸等需要高性能调速的场合得到广泛的应用。
且直流电动机具有良好的起、制动性能,宜于在大范围内平滑调速,在许多需要调速和快速正反向的电力拖动领域中得到了广泛的应用。
由于直流拖动控制系统在理论上和实践上都比较成熟,而且从控制的角度来看,它又是交流拖动控制系统的基础。
所以加深直流电机控制原理理解有很重要的意义。
2•课题研究的背景电力电子技术是电机控制技术发展的最重要的助推器,电力电机技术的迅猛发展,促使了电机控制技术水平有了突破性的提高。
从20世纪60年代第一代电力电子器件-晶闸管(SCR)发明至今,已经历了第二代有自关断能力的电力电子器件-GTR、GTO、MOSFET,第三代复合场控器件-IGBT、MCT等,如今正蓬勃发展的第四代产品-功率集成电路(PIC)。
每一代的电力电子元件也未停顿,多年来其结构、工艺不断改进,性能有了飞速提高,在不同应用领域它们在互相竞争,新的应用不断出现。
同时电机控制技术的发展得力于微电子技术、电力电子技术、传感器技术、永磁材料技术、自动控制技术和微机应用技术的最新发展成就。
正是这些技术的进步使电动机控制技术在近二十多年内发生了天翻地覆的变化。
(3-16) 取:(3-17) ◎i=4.3%<5%,满足课题所给要求。
3.3速度调节器设计电流环等效时间常数1/K。
取KT乙=0.5,贝IJ:1二2X0.0067二0.0134K(3-15)转速滤波时间常数T on。
双闭环直流调速系统
第一章 调速系统的方案选择直流电动机具有良好的起动、制动性能,宜于在宽范I 韦I 内平滑调速,在许女调速和快速」E 反向的电力 拖动领域中得到了广泛的的应用。
近年来,虽然高性能的交流调速技术发展很快,交流调速系统已逐步取 代直流调速系统。
然而直流拖动控制系统不仅在理论匕和实找上都比较成熟,目前还在应用;而R 从控制 规律的角度來看,直流拖动控制系统又是交流拖动控制系统的基础。
II 流电动机的稳态转速可以表示为U-IR n _ K e 0式中:n ------ 转速(r/min );U ——电枢电乐(V ): I ——电枢电流(A ); R —电枢回路总电阴(Q ): 0 ----- 励磁磁通(Wb );K e ——由电机结构决定的电动势常数。
由上式可以看出,有三种调速电动机的方法:1. 调节电枢供电电压U :2. 减弱励磁磁通0:3.改变电枢回路电阻R 。
对于要求在一定范圉内无级平滑调速系统來说, 级调速;减弱磁通虽然能够调速,但调速范闱不大, 弱磁升速。
因此,采用变压调速来控制直流电动机。
1.1直流电动机的选择直流电动机的额定参数为:额定功率P N = 67KW ,额定电压U N =230V,额定电流I N =291A,额定转速^=1450^^, 电动机的过载系数2 = 2,电枢电阻R. = 0.2Q(1-1)以调节电枢供电电压的方式为谥好。
改变电阻只能仃 往往只是配合调压方案,在额定转速以卜.作小范I 韦I 的1.2电动机供电方案的选择电动机采用三相桥式全控整流电路供电,三相桥式全控幣流电路输出的电压脉动较小,带负载容最较人,其原理图如图1所示。
三相桥式全控整流电路的特点:-•般变压器一次侧接成三角形,二次侧接成星型,晶闸管分为共阴极和共阳极。
1)有两个晶闸管同时导通形成供电回路,其中共阴极组和共阳极组齐有一个晶闸管,且不能为同一相的晶闸管。
2)对触发脉冲的要求:按VT1—VT2—VT3—VT4—VT5-VT6的顺序,相位依次差60・;共阴极组VT1、VT3、VT5的脉冲依次差120 ,共阳极组VT4、VT6、VT2也依次差120* :同相的上下两个桥臂,即VT1与VT4, VT3 与VT6, VT5 与VT2,脉冲相差180。
直流电动机双闭环调速系统MATLAB仿真实验报告
直流电动机双闭环调速系统MATLAB仿真实验报告
实验目的:
本实验旨在设计并实现直流电动机的双闭环调速系统,并使用MATLAB进行仿真实验,验证系统的性能和稳定性。
实验原理:
直流电动机调速系统是通过改变电机的输入电压来实现调速的。
双闭环调速系统采用了速度环和电流环两个闭环控制器,其中速度环的输入为期望转速和实际转速的误差,输出为电机的电流设定值;电流环的输入为速度环输出的电流设定值和实际电流的误差,输出为电机的输入电压。
实验步骤:
1.建立直流电动机的数学模型。
2.设计速度环控制器。
3.设计电流环控制器。
4.进行系统仿真实验。
实验结果:
经过仿真实验,得到了直流电动机双闭环调速系统的性能指标,包括上升时间、峰值过渡性能和稳态误差等。
同时,还绘制了调速曲线和相应的控制输入曲线,分析了调速系统的性能和稳定性。
实验结论:
通过对直流电动机双闭环调速系统的仿真实验,验证了系统的性能和
稳定性。
实验结果表明,所设计的双闭环控制器能够实现快速且稳定的直
流电动机调速,满足了实际工程应用的需求。
实验心得:
本实验通过使用MATLAB进行仿真实验,深入理解了直流电动机的双
闭环调速系统原理和实现方式。
通过实验,我不仅熟悉了MATLAB的使用,还掌握了直流电动机的调速方法和控制器设计的原则。
同时,实验中遇到
了一些问题,比如系统的超调过大等,通过调整控制器参数和优化系统结
构等方法,最终解决了这些问题。
通过本次实验,我对直流电动机调速系
统有了更加深入的理解,为之后的工程应用打下了坚实的基础。
双闭环直流调速系统
双闭环直流调速系统姓名:学号:专业:电气工程及其自动化日期:2015年12月23日摘要直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。
该系统中设置了电流检测环节、电流调节器以及转速检测环节、转速调节器,构成了电流环和转速环,前者通过电流元件的反馈作用稳定电流,后者通过转速检测元件的反馈作用保持转速稳定,最终消除转速偏差,从而使系统达到调节电流和转速的目的。
该系统起动时,转速外环饱和不起作用,电流内环起主要作用,调节起动电流保持最大值,使转速线性变化,迅速达到给定值;稳态运行时,转速负反馈外环起主要作用,使转速随转速给定电压的变化而变化,电流内环跟随转速外环调节电机的电枢电流以平衡负载电流。
关键词:双闭环,转速调节器,电流调节器双闭环直流调速系统的设计双闭环直流调速系统中设置了两个调节器, 即转速调节器(ASR)和电流调节器(ACR), 分别调节转速和电流, 即分别引入转速负反馈和电流负反馈。
两者之间实行嵌套连接,且都带有输出限幅电路。
转速调节器ASR 的输出限幅电压*im U 决定了电流给定电压的最大值;电流调节器ACR 的输出限幅电压cm U 限制了电力电子变换器的最大输出电压dm U 。
由于调速系统的主要被控量是转速, 故把转速负反馈组成的环作为外环, 以保证电动机的转速准确跟随给定电压, 把由电流负反馈组成的环作为内环, 把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE ,这就形成了转速、电流双闭环调速系统。
双闭环直流调速系统框图双闭环直流调速系统电路原理图一.本设计预设的参数直流电动机:220V,136A, 1500r/min, Ce=0.136Vmin/r晶闸管装置放大系数:K s=40电枢回路总电阻:R=0.5欧时间常数:T l=0.015s, T m=0.2s, 转速滤波环节时间常数T on取0.01s 电压调节和电流调节器的给定电压为8V系统稳态无静差,电流超调量σi≤5%; 空载启动到额定转速时的转速超调量σn≤10%。
直流电机双闭环调速系统设计
直流电机双闭环调速系统设计(总44页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--存档日期:存档编号:本科生毕业设计(论文)论文题目:直流电机双闭环调速系统设计姓名:徐震杰学院:电气工程及自动化专业:自动化班级、学号: 10电51 指导教师:甘良志江苏师范大学教务处印制摘要直流调速系统的控制一般都是由转速、电流反馈来完成的,它的静态性能和动态性能都是十分杰出的,正是由于它的这些优点使其使用范围也很广泛。
其主要通过晶闸管可控整流电源来调节电源的大小。
根据题目的设计要求,调速系统一共有两个控制器,它们分别是转速控制器(ASR)和电流控制器(ACR)。
速度控制系统的电源电路的设计是使用三相全控桥整流电路实现的。
在设计中,首先对总体规划的设计图进行了确定。
之后又对主电路的结构形式以及各个元器件进行了确定和设计。
与此同时,对包括晶闸管、电抗器等元件的参数进行了计算。
在本文的最后一个部分,主要围绕本设计最重要的部分,直流调速系统的转速环和电流环进行设计。
为了使速度和电流两个负反馈可以发挥一定的作用,因此,应该使其嵌套连接在速度和电流负反馈之间。
单纯的从布局上来看的话,电流环在转速环的内部,因此电流环被叫做内环,相应的转速环就被称为外环。
这样设计之后,以电流负反馈、转速负反馈为核心的调速系统就这样形成了。
在对所有部分设计都完成了之后,采用MATLAB对整个系统进行仿真实验,并对数据进行分析,得出结论。
关键词:直流电动机双闭环调速系统转速负反馈电流负反馈AbstractThe speed and current feedback control of dc speed control system has excellent static and dynamic performance and the most widely application scope. It through thyristor controlled rectifying power supply to adjust the size of the power supply mainly. According to the design requirements of the title, it uses ASR and ACR as the controller of speed control system in the control circuit. The power supply circuit of the speed control system of design uses the Sedan fully-controlled bridge rectifier circuit. Firstly, we need determine the overall plan and diagram of this design before the design. Secondly, we need identify and design the structure of main circuit and the various components. At the same time, including the parameters of thyristor, reactor, etc. Finally, focus on the design of the most important two parts which are speed loop and current loop dc speed control system in the design. In the system were introduced speed negative feedback and current feedback and the implementation of a nested connection can realize the speed and current two kind of negative feedback effect between the two respectively. On the layout of it simply, current loop is referred to as the inner ring, because it is in the inside. Speed ring is called the outer ring, because current loop is in the interior of the speed loop. Through this design, the core of the double closed loop speed regulation system: speed negative feedback and current feedback is formed. After all parts of the design is done, using MATLAB simulation to do the experiments to the whole system and analyze the data, we can safely draw the conclusion.Keywords: DC motor; double closed loop; speed ring; current loop目录摘要 ..................................................................... 错误!未定义书签。
基于S7-200的直流电动机双闭环调速系统设计
基于S7-200的直流电动机双闭环调速系统设计摘要:本文基于S7-200 PLC控制器,设计了一个直流电动机双闭环调速系统。
该系统分为速度控制回路和电流控制回路两个部分。
在速度控制回路中,本文采用基于PID算法的控制方法,通过测量电动机的速度并与设定值进行比较,控制电动机的输出轴转速,达到调节电动机转速的目的。
在电流控制回路中,使用同样的PID算法控制电机的电流输出,并对电机进行保护措施,以避免过载。
实验结果表明,该系统能够可靠地完成电机的双闭环调速控制,使电机运行平稳、可靠。
关键词:S7-200 PLC;直流电动机;双闭环调速系统;PID算法前言直流电动机是工业中常见的驱动装置之一。
在实际应用中,需要对电动机转速进行调节以满足不同的控制需求。
其中,传统的开环调速容易受到负载变化和环境变化的影响,导致控制精度差。
因此,双闭环调速控制系统逐渐得到广泛应用。
本文基于S7-200 PLC控制器,设计了一个直流电动机双闭环调速系统,并对其进行了实验验证。
系统设计系统组成该电动机双闭环调速系统主要由S7-200 PLC控制器、PID控制器、DAC转换器、电源变量电流源和直流电动机等组成。
系统原理系统采用双闭环调速控制,其中速度控制回路和电流控制回路分别对应于如图1所示。
其中,速度控制回路广泛采用PID算法完成闭环控制,电流控制回路中同样采用PID算法控制电机的输出电流,以保护电机避免过载。
速度控制回路速度控制回路主要完成电机的转速调节。
系统首先读取电机的转速信号,然后根据设定值和实际转速的偏差计算出PID控制器的控制量,对输出信号进行控制,从而调节电机的输出轴转速。
图2 速度控制回路实现图电流控制回路电流控制回路主要是对电机输出电流进行控制并对电机进行保护,避免过载。
系统通过测量电动机输出电流,计算电机输出电流与设定值的偏差,然后根据PID算法计算出调节量,并将控制量和偏差信号进行控制,以达到调节电机电流输出的目的。
双闭环直流调速系统
双闭环直流调速系统双闭环直流调速系统是一种电力电子变换器设计用于控制直流电机转速的重要方法。
它使用两个控制循环,内环控制电机转速,外环控制负载的速度变化。
其中一般采用PI控制器,理论上能够在滞后角度及相位裕量方面提供相应的保障。
本文将对双闭环直流调速系统进行详细讲解。
系统结构双闭环直流调速系统包含两个主要部分:电机和电力电子变换器。
电机是系统的执行部分,它将电能转化为机械能。
电力电子变换器则是将电源接通到电机的途径。
其包含整流器/变频器、PWM控制器和功率放大器等组成部分。
在系统中,电力电子变换器通过对电流、电压和功率方面的控制,实现对电机的控制。
双闭环直流调速系统包含两个控制环路,内环和外环。
内环用于控制电机的转速,外环用于控制负载的变化速度。
内环控制器与电机直接耦合,接受电机转速控制信号,并控制电机驱动电压或电流。
外环控制器将负载反馈信号与期望速度信号进行比较,并计算出负载期望机械功率。
内环控制器为外环控制器提供实时电机转速,以便自动调整期望速度。
内部控制环路内环是双闭环直流调速系统的核心部分,它使用反馈控制技术控制电机转速。
内环控制器接受来自电机的反馈信号,并根据电机实际转速和期望转速之间的差异来控制驱动电压或电流。
转速反馈可以使用反电动势(EMF)或霍尔传感器来实现。
最常用的电机控制器是基于PI型控制器。
此控制器将PID控制(比例、积分、微分控制)的K值设定为0(因为在直流电机控制中微分控制几乎不可行),并针对不同比例和积分控制来为电机控制提供所需的响应特性。
反馈中的延迟和其他因素会导致偏差,因此比例控制器通常用于加速响应。
积分控制器用于使系统更加稳定,以响应慢速变化。
这些控制器参数通常是根据预期转速、电压和电流范围进行调整。
系统优缺点优点1.与传统的直流调速系统相比,双闭环直流调速系统能够更好地控制直流电机的转速。
内外环的设计使得控制速度响应更快,同时提高了系统的稳定性。
2.内环和外环控制器,使用的是速度反馈,可实时监测直流电机的转速,以控制电压和电流从而实现所需功率/MN的输出。
(完整word版)双闭环直流调速系统(精)
直流双闭环调速系统设计1设计任务说明书某晶闸管供电的转速电流双闭环直流调速系统,整流装置采用三相桥式电路,基本数据为: 直流电动机:V U N 750=,A I N 780=,min375rn N =,04.0=a R ,电枢电路总电阻R=0.1Ω,电枢电路总电感mH L 0.3=,电流允许过载倍数5.1=λ,折算到电动机轴的飞轮惯量224.11094Nm GD =. 晶闸管整流装置放大倍数75=s K ,滞后时间常数s T s 0017.0= 电流反馈系数⎪⎭⎫ ⎝⎛≈=N I V A V5.11201.0β 电压反馈系数⎪⎭⎫ ⎝⎛=N n V r V 12min 032.0α 滤波时间常数.02.0,002.0s T s T on oi ==V U U U cm im nm12===**;调节器输入电阻Ω=K R O 40。
设计要求: 稳态指标:无静差动态指标:电流超调量005≤i σ;空载起动到额定转速时的转速超调量0010≤n σ。
目 录1设计任务与分析 ....................................................................................................................................... 2调速系统总体设计 ................................................................................................................................... 3直流双闭环调速系统电路设计 .............................................................................................................. 3。
双闭环直流调速系统_毕业设计论文
毕业设计(论文)双闭环直流调速系统设计双闭环直流调速系统设计摘要本文对微机控制的直流调速系统进行了较深入的研究,从直流调速系统的原理出发,建立了双闭环直流调速系统的数学模型,用MATLAB进行系统仿真,实现了控制器参数整定。
在此基础上以数字信号处理器(DSP)为控制器,通过对系统硬件和软件的设计实现了直流电动机双闭环调速系统的设计。
结果表明,此调速系统具有较强的鲁棒性。
关键词:微机控制,双闭环,直流调速,数字信号处理器The Design of the Double Closed LoopsDC Timing System ControllerAbstractIn this paper, DC timing system controlled by microcomputer had been researched deeply. Beginning with the theory of the DC timing system, the math model of the double closed loops DC timing system had been build up, the controller parameter had been adjusted after the system had been simulated with MATLAB,Based on the result of the simulation, digital signal processor (DSP) is taken as the controller, the design of the double closed loops timing system of the DC motor has been realized through the design of the system’s hardware and software. The result shows that this timing system has strong robust.Keywords: microcomputer control, double closed loops, DC timing, DSP第一章绪论1.1 研究背景和意义1.2 国内外研究现状和应用前景1.3 本研究课题的主要研究内容1.4 本章小结第二章课程的设计和要求2.1主要技术指标(1)静态:无静差(2)动态:电流超调量≤5%2.2设计要求(1)选择可控硅直流电动机调速系统的方案。
双闭环直流调速系统(精)
双闭环直流调速系统(精)前言双闭环直流调速系统是一种常见的电机调速系统,通过控制直流电动机的电压和电流来实现电机转速的控制。
本文将介绍双闭环直流调速系统的工作原理和应用场景,并讨论其在工业控制中的优势和局限性。
工作原理双闭环直流调速系统由速度环和电流环组成。
其中,速度环用于测量电机转速,电流环用于测量电机电流。
系统的控制器通过比较输出信号和目标值来控制电压和电流的大小,从而实现电机的调速。
具体来说,当电机转速低于设定值时,速度环会向控制器发出信号,控制器会增加电机的电压和电流来提高转速;当电机转速高于设定值时,速度环会发送信号告诉控制器减小电机的电压和电流。
另一方面,电流环负责调节电机的电流,以确保电机能够稳定地运行。
应用场景双闭环直流调速系统在工业控制中广泛应用,其主要优势在于能够实现精确的速度控制和较大的负载能力。
因此,它常用于要求高速度精度的场合,如纺织、印刷、食品加工等行业中的转子式机械设备。
此外,双闭环直流调速系统还常用于需要频繁启停或需要反向运转的设备中,如工厂输送带、电梯、卷扬机、空调等设备。
它能够更加精细地控制电机的转速和运行过程,从而提高设备的使用寿命和运行效率。
优势和局限性在工业控制中,双闭环直流调速系统具有以下优势:•稳定性好:双闭环控制能够准确地控制电机的转速和电流,从而保持电机的稳定性。
•精度高:系统能够实现高精度的速度控制和电流控制,可以满足高精度的控制需求。
•可靠性高:系统能够减小电机的损耗和轴承磨损,从而提高设备的可靠性。
但是,双闭环直流调速系统也存在一定的局限性:•成本较高:相对于其他调速系统,双闭环直流调速系统的成本较高,需要较高的技术成本和维护成本。
•系统响应较慢:由于双闭环控制需要进行多次计算和处理,系统响应速度较慢,可能对一些对速度响应时间要求较高的应用不够适合。
双闭环直流调速系统是一种精密、稳定、可靠的电机调速系统,广泛应用于工业控制中。
虽然该系统具有一定的局限性,但在要求高精度、高负载、操作频繁的场合中,仍然是一种值得推荐的方案。
双闭环直流调速系统设计
双闭环直流调速系统姓名:学号:专业:电气工程及其自动化日期:2015年12月23日摘要直流电动机具有良好的起动、制动性能,宜于在大围平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。
该系统中设置了电流检测环节、电流调节器以及转速检测环节、转速调节器,构成了电流环和转速环,前者通过电流元件的反馈作用稳定电流,后者通过转速检测元件的反馈作用保持转速稳定,最终消除转速偏差,从而使系统达到调节电流和转速的目的。
该系统起动时,转速外环饱和不起作用,电流环起主要作用,调节起动电流保持最大值,使转速线性变化,迅速达到给定值;稳态运行时,转速负反馈外环起主要作用,使转速随转速给定电压的变化而变化,电流环跟随转速外环调节电机的电枢电流以平衡负载电流。
关键词:双闭环,转速调节器,电流调节器双闭环直流调速系统的设计双闭环直流调速系统中设置了两个调节器, 即转速调节器(ASR)和电流调节器(ACR), 分别调节转速和电流, 即分别引入转速负反馈和电流负反馈。
两者之间实行嵌套连接,且都带有输出限幅电路。
转速调节器ASR 的输出限幅电压*im U 决定了电流给定电压的最大值;电流调节器ACR 的输出限幅电压cm U 限制了电力电子变换器的最大输出电压dm U 。
由于调速系统的主要被控量是转速, 故把转速负反馈组成的环作为外环, 以保证电动机的转速准确跟随给定电压, 把由电流负反馈组成的环作为环, 把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE ,这就形成了转速、电流双闭环调速系统。
给定电压速度调节器电流调节器三相集成触发器三相全控桥直流电动机电流检测转速检测Un*Un+-ΔUnUi*Ui+-UcnUd双闭环直流调速系统框图双闭环直流调速系统电路原理图一.本设计预设的参数直流电动机:220V,136A, 1500r/min, Ce=0.136Vmin/r晶闸管装置放大系数:K s =40电枢回路总电阻:R=0.5欧时间常数:T l=0.015s, T m=0.2s, 转速滤波环节时间常数T on取0.01s 电压调节和电流调节器的给定电压为8V系统稳态无静差,电流超调量σi≤5%; 空载启动到额定转速时的转速超调量σn≤10%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16/33
二、数学模型和动态性能分析
ASR输出特性曲线
ACR输出特性曲线
17/33
二、数学模型和动态性能分析
电动机电流输出特性曲线
18/33
二、数学模型和动态性能分析
抗扰性能测试曲线:
突加负载抗扰特性
电网电压突变曲线
19/33
三、晶闸管-电动机调速系统
利用MATLAB中SimPowerSystems工具箱对V-M
通过调节脉宽调整输出电压,从而调节电动机转速。
输出电压
27/33
四、直流脉宽调速系统
利用MATLAB中SimPowerSystems工具箱对直流调
速系统进行仿真:
28/33
四、直流脉宽调速系统
PWM信号控制电压:
29/33
四、直流脉宽调速系统
10 9 8 7 2000 1800 1600
电 动 机 电 流 Ia/A
单闭环系统中由电流截止负反馈来控制电流,只
能在超过临界电流值 Idcr 以后,靠强烈的负反馈作用
限制电流的冲击。
6/33
一、双闭环调速系统的提出
a) 带电流截止负反馈的单闭环调速系统
b) 理想的快速起动过程
7/33
二、数学模型和动态性能分析
额定励磁下的直流电动机的数学模型:
8/33
二、数学模型和动态性能分析
23/33
三、晶闸管-电动机调速系统
单独对Thyristor模块进行波形仿真:
输入相位角为90度:
24/33Biblioteka 三、晶闸管-电动机调速系统
单独对Thyristor模块进行波形仿真:
输入相位角为0度:
25/33
三、晶闸管-电动机调速系统
电动机电流输出曲线
26/33
四、直流脉宽调速系统
直流脉宽调速原理:
axet = axes('Position',get(gca,'Position'),... 'XAxisLocation','bottom',... 'YAxisLocation','right','Color','None',... 'XColor','k','Ycolor','k'); h2 = line(t,y2,'color','k','parent',axet); ylabel(‘转速n r/min') axis([0 0.7 0 2000]) title(‘ACR输出特性与转速'); gtext(‘\leftarrow转速’),gtext(‘\leftarrowACR输出')
直流电动机双闭环调速系统的设计
1/33
目录
一、直流电动机双闭环调速系统的提出 二、数学模型和动态性能分析 三、晶闸管-电动机调速系统 四、直流脉宽调速系统 五、小结 六、附录
2/33
一、双闭环调速系统的提出
为实现转速和电流两种负反馈分别起作用,在
系统中设置两个调节器,分别调节转速和电流。
ASR—转速调节器 ACR—电流调节器 TG—测速发电机 TA—电流互感器 UPE—电力电子变换器
3/33
一、双闭环调速系统的提出
单闭环调速系统,采用转速负反馈和PI调节器,
实现转速无静差调节。
TG—测速发电机 UPE—电力电子变换器 4/33
一、双闭环调速系统的提出
相对于双闭环系统来说,单闭环系统有如下
优点:
起制动较慢
正反转转换不灵敏
抗干扰能力差
5/33
一、双闭环调速系统的提出
系统进行仿真:
20/33
三、晶闸管-电动机调速系统
V-M系统中存在的问题:
(1)ACR控制器的设计
0 = 8k+b
k=-5.625 b=45
21/33
三、晶闸管-电动机调速系统
V-M系统中存在的问题:
(2)触发脉冲相位控制
22/33
三、晶闸管-电动机调速系统
V-M系统中存在的问题:
(3)系统可逆运行
31/33
六、附录
数学模型中ACR仿真曲线“.m文件”源程序:
clf load adjustACR.mat t = signals(1,:); y1 = signals(2,:); y2 = signals(3,:); h1 = line(t,y1(:)); grid on; xlabel('t/s') ylabel(‘ACR输出/V') axis([0 0.7 0 5])
晶闸管触发和整流装置的动态数学模型:
9/33
二、数学模型和动态性能分析
比例放大器:
测速发电机:
电流互感器:
10/33
二、数学模型和动态性能分析
双闭环控制系统的动态数学模型:
11/33
二、数学模型和动态性能分析
电流环通常按典型Ⅰ型系统来设计,应该采用PI 调节器
转速环通常按典型Ⅱ型系统来设计,应该采用PI 调节器
12/33
二、数学模型和动态性能分析
当ASR输出达到限幅值U*im,转速外环呈开环状态, 转速的变化对系统不再产生影响。
稳态时:
13/33
二、数学模型和动态性能分析
双闭环调速系统的动态结构图:
14/33
二、数学模型和动态性能分析
转速仿真结果图:
15/33
二、数学模型和动态性能分析
调整后双闭环调速系统的动态结构图:
实验仿真环境中MATLAB为7.11.0(R2010b),操作系统为W7
32/33
谢
谢!
33/33
电 动 机 电 流
1400
5
1000
转 速
4 3 2 1 0 0 0.5 1 1.5 t/s 2 2.5 3 800 600 400 200 0 3.5
电动机电流输出特性
30/33
转 速 n r/min
6
1200
五、小结
1.利用Matlab/simulink工具箱基于数学模型对直流 电动机双闭环PID控制进行仿真实验 2.利用SimPowerSystems工具箱对晶闸管与PWM调 速系统进行仿真实验