2019-2020年高考数学二轮复习(15)圆锥曲线方程教案

合集下载

2019-2020学年高考数学-圆锥曲线的标准方程与几何性质(2)复习教学案

2019-2020学年高考数学-圆锥曲线的标准方程与几何性质(2)复习教学案

2019-2020学年高考数学 圆锥曲线的标准方程与几何性质(2)复习教学案教学内容:圆锥曲线的标准方程与几何性质(2) 教学目标:1. 掌握椭圆的标准方程与几何性质;2. 理解双曲线、抛物线的标准方程与几何性质。

3. 掌握建立直角坐标系求解轨迹方程 教学重点:逻辑联结词、全称量词和存在量词椭圆的标准方程和几何性质。

教学难点: 轨迹的求解教学过程:一、 基础训练:1.已知动圆0264222=-+--+m my mx y x 恒过一个定点,这个定点的坐标2.圆2210100x y x y +++=与圆22(3)(3)x y m -+-=相切,求实数m 的值3、求与两条平行直线210x y +-=和2x y +50-=相切,且圆心在直线310x y ++=上的圆的方程. 4.已知圆C 过点(2,3)A -和(1,4)B ,它与圆227100x y y +-+=相交,它们的公共弦平行于直线2310x y --=,求圆的方程二、例题教学:例1、(2014·扬州中学调研)已知F 1(-1,0),F 2(1,0)为椭圆C 的左右焦点,且点P (1,233)在椭圆C 上.(1) 求椭圆C 的方程;(2) 过F 1的直线l 交椭圆C 于A ,B 两点,则三角形F 2AB 的内切圆的面积是否存在最大值?若存在,求其最大值及此时的直线方程;若不存在,请说明理由.解:(1)椭圆C 的方程为x 23+y 22=1(由2a =|PF 1|+|PF 2|=23且c =1,b 2=2).(2)当直线l 斜率存在时,设直线l :y =k (x +1),由⎩⎪⎨⎪⎧x 23+y 22=1y =k x +1得(2+3k 2)x 2+6k 2x +3k 2-6=0,设A (x 1,y 1),B (x 2,y 2),x 1x 2=3k 2-62+3k 2,x 1+x 2=-6k22+3k 2,所以|x 1-x 2|=x 1+x 22-4x 1x 2=43k 2+12+3k2, 设内切圆半径为r ,因为△ABF 2的周长为4a =43(定值),S △ABF 2=12×4a ×r =复备栏23r ,所以当△ABF 2的面积最大时,内切圆面积最大,又S △ABF 2=12F 1F 2·|y 1-y 2|=|y 1-y 2|=|k ||x 1-x 2|=43k 2k 2+12+3k2, 令t =2+3k 2≥2,则k 2=t -23,所以S △ABF 2=43k 2k 2+12+3k 2=4t -2t +13t2=43-2t 2-1t +1<43. 又当k 不存在时,|y 1-y 2|=43,此时r =S 23=23, S 圆=49π,故当k 不存在时圆面积最大,S 圆=49π ,此时直线方程为x =-1.变式训练:1、 (2014·广州质检) 设F 1、F 2分别是椭圆x 2a 2+y 2b2=1(a >b >0)的左、右两个焦点,若在其右准线上存在点P ,使线段PF 1的中垂线过点F 2,则该椭圆的离心率的取值范围是________.解析:如图,设右准线与x 轴的交点为H ,则PF 2≥HF 2. 又∵F 1F 2=PF 2,∴F 1F 2≥HF 2,即2c ≥a 2c -c .∴3c 2≥a 2.∴e 2≥13,即e ≥33.又∵e <1,∴e ∈[33,1).答案:[33,1) 例2、 (2014·无锡模拟)设椭圆x 2a 2+y 2b2=1(a >b >0)的左、右两个焦点分别为F 1,F 2,短轴的上端点为B ,短轴上的两个三等分点为P ,Q ,且F 1PF 2Q 为正方形.(1)求椭圆的离心率;(2)若过点B 作此正方形的外接圆的切线在x 轴上的一个截距为-324,求此椭圆方程.解:(1)由题意知:P (0,b3),设F 1(-c,0),因为F 1PF 2Q 为正方形,所以PQ =F 1F 2,课后反思:即23b =2c ,所以b 2=9c 2,即a 2=10c 2,所以离心率e =1010. (2)因为B (0,3c ),设切线为y =kx +3c ,由圆心(0,0)到切线之距等于圆半径c 得3c k 2+1=c ⇒k 2=8,求得一条切线的斜率为2 2.所以切线方程为y =22x +3c ,因为在x 轴上的截距为-324,所以c =1, 所求椭圆方程为x 210+y 29=1.变式训练:2.已知椭圆x 2+y 2b2=1(0<b <1)的左焦点为F ,左、右顶点分别为A 、C ,上顶点为B .过F 、B 、C 作圆P ,其中圆心P 的坐标为(m ,n ).当m +n >0时,则椭圆离心率的取值范围是________.解析:设F 、B 、C 的坐标分别为(-c,0),(0,b ),(1,0),则FC 、BC 的中垂线分别为x =1-c 2,y -b 2=1b (x -12).联立方程组⎩⎪⎨⎪⎧x =1-c 2,y -b 2=1b x -12,解出⎩⎪⎨⎪⎧x =1-c2,y =b 2-c2b .m +n =1-c 2+b 2-c2b>0,即b -bc +b 2-c >0,即(1+b )(b -c )>0,∴b >c .从而b 2>c 2,即有a 2>2c 2,∴e 2<12.又e >0,∴0<e <22. 答案:0<e <22巩固练习:1.椭圆x 225+y 29=1的离心率是________.解析:由椭圆方程可得a =5,b =3,c =4,e =45.答案:452.(2014·徐州调研)双曲线x 24-y 29=1的渐近线方程是__________.解析:由双曲线方程可得焦点在x 轴上,a =2,b =3.∴渐近线方程为y =±32x .答案: y =±32x3.过点P (-2,-4)的抛物线的标准方程为__________.解析:注意两种情况.答案:x 2=-y ,y 2=-8x。

2019-2020年高考数学 圆锥曲线复习课

2019-2020年高考数学 圆锥曲线复习课

2019-2020年高考数学 圆锥曲线复习课1. 一定要重视椭圆、双曲线、抛物线(注:抛物线只有一个定义)第一定义,有很多题可以转化为定义去做。

例如:(1) 求与圆和圆相切的点的轨迹方程(2) 求与圆相切且过点(5,0)的点的轨迹方程(3) 是双曲线)0,0(12222>>=-b a by a x 的左、右焦点,M ,N 是左、右顶点,P 是双曲线上的一点,且的内切圆与切于点T.求T 的坐标(4) 试在抛物线上找一点P ,使其到焦点F 的距离与到A (2,1)的距离之和最小。

求该点坐标2. 一定要重视椭圆、双曲线、抛物线(注:抛物线只有一个定义)第二定义:(1)已知椭圆内有一点A (1,1),分别是椭圆的左、右焦点,点P 是椭圆上一点.(1)求的最大值、最小值及对应的点P 坐标(2)求的最小值及对应的点P 的坐标(2)推导椭圆、双曲线、抛物线的焦半径公式非常方便(3)特别重视抛物线的定义:①(1)AB 为抛物线上的动弦,且|AB|=a(a 为常数,且),求弦AB 中点M 离准线最近的距离(2)在(1)中如把改成0<a<1,问问题有如何解答?② 一条直线l 经过抛物线的焦点F 与抛物线交于P 、Q 两点,过P 、Q 点分别向准线引垂线PR 、QS ,垂足为R 、S ,如果|PF|=a ,|QF|=b ,M 为RS 的中点.求||MF|的值3. 圆锥曲线的标准方程及其性质:(1) 圆锥曲线的标准方程及其简单的几何性质一定要非常的熟悉.一般方程、椭圆系方程、(,(0,0,022>->->>k b k a b a )焦点相同)共轭双曲线()、以直线为渐近线的双曲线系方程()(2) 要会描述非标准位置的圆锥曲线:①给你一个非标准位置的圆锥曲线,你能说出它的焦点、顶点坐标,准线方程,以及能进一步地求出它的离心率(曲线013683422=+---y x y x的焦点、顶点坐标、准线方程)②能写出平移后的非标准位置圆锥曲线方程(把抛物线按向量平移,使其焦点与椭圆的右焦点重合,求向量)(3) 圆锥曲线的参数方程在解决最值方面有独特的应用(4) 求圆锥曲线方程是经常考查的一个很重要的方面(推广一下就是求点的轨迹方程问题),方法:选形式、定系数4. 直线与圆锥曲线的位置关系:(在这里我们把圆包括进来)1. 首先会判断直线与圆锥曲线是相交、相切、还是相离的①直线与圆:一般用点到直线的距离跟圆的半径相比②直线与椭圆、双曲线、抛物线一般联立方程,判断相交、相切、相离③直线与双曲线、抛物线有自己的特殊性2. ①求弦所在的直线方程②根据其它条件求圆锥曲线方程3. 已知一点A 坐标,一直线与圆锥曲线交于两点P 、Q ,且中点为A ,求P 、Q 所在的直线方程4. 已知一直线方程,某圆锥曲线上存在两点关于直线对称,求某个值的取值范围(或者是圆锥曲线上否存在两点关于直线对称)● 椭圆、双曲线、抛物线着三种曲线有许多共性,也有许多不同之处,既要记住它们的共同指出也要分清它们各自的特点● 抛物线独有的性质:例1:过抛物线焦点F 的直线与抛物线交于两点,且A 、B 在准线上的射影分别为C 、D ,则2212214p y y p x x -=⋅=⋅,p DF CF CFD 21||190=+=∠ 例2:过抛物线的顶点,任意作两条相互垂直的弦0A 、0B (1)求证:AB 交抛物线对称轴上一定点(2)求A 、B 中点轨迹方程 ●求椭圆、双曲线的离心率是经常考查的知识点 ●注重基础知识、基本方法、基本技能,看书本把笔记、质量监测弄懂、弄透即可 ●●●2019-2020年高考数学 基本初等函数-二次函数导学案 新人教版(学生)一、学习目标:掌握二次函数的概念、图象及性质;能利用二次函数研究一元二次方程的实根分布条件;能求二次函数的区间最值.二、自主学习:1.函数2([0,))y x bx c x =++∈+∞是单调函数的充要条件是 ( )分析:对称轴,∵函数2([0,)y x bx c x =++∈+∞是单调函数,∴对称轴在区间的左边,即,得.2.已知二次函数的对称轴为,截轴上的弦长为,且过点,函数的解析式 . 解:∵二次函数的对称轴为,设所求函数为,又∵截轴上的弦长为,∴过点,又过点, ∴, 122a b ⎧=⎪⎨⎪=-⎩,∴.3.(课时训练10 T9)已知t 为常数,函数在区间上的最大值为2,则t= 1三、合作探究:例1.已知函数21sin sin 42a y x a x =-+-+的最大值为,求的值 . 分析:令,问题就转二次函数的区间最值问题.解:令,, ∴221()(2)24ay t a a =--+-+,对称轴为, (1)当,即时,,得或(舍去). (2)当,即时,函数221()(2)24ay t a a =--+-+在单调递增, 由max 111242y a a =-+-+=,得. (3)当,即时,函数221()(2)24a y t a a =--+-+在单调递减, 由max 111242y a a =---+=,得(舍去). 综上可得:的值为或.反馈练习:(课时训练9T12)已知奇函数f(x)的定义域为R ,且f(x)在上是增函数,是否存在实m ,使(cos 23)(42cos )(0)f f m m f θθ-+->对所有都成立?若存在,求出符合条件的所有实数m 的范围,若不存在,说明理由。

2019-2020年高中数学 会考复习 圆锥曲线教案

2019-2020年高中数学 会考复习 圆锥曲线教案

2019-2020年高中数学会考复习圆锥曲线教案知识提要椭圆、双曲线、抛物线知识点复习典例解读1.已知方程表示焦点y轴上的椭圆,则m的取值范围是( )(A)m<2 (B)1<m<2(C)m<-1或1<m<2 (D)m<-1或1<m<3/22.如果方程表示双曲线,则实数m的取值范围是( )(A)m>2 (B)m<1或m>2(C)-1<m<2 (D)-1<m<1或m>23.已知双曲线中心在原点且一个焦点为F( ,0)直线y=x-1与其相交于M、N两点,MN中点的横坐标为,则此双曲线的方程是( )(A) (B) (C) (D)4.椭圆 16x2+25y2=1600 上一点P到左焦点F1的距离为6,Q是PF1的中点,O是坐标原点,则|OQ|= _____5. 求与双曲线x2-2y2=2有公共渐近线,且过点M(2,-2)的双曲线的共轭双曲线的方程6.已知抛物线x2=4y的焦点F和点A(-1,8),P为抛物线上一点,则|PA|+|PF|的最小值是( )(A)16 (B)6 (C)12 (D)97.直线y=kx-k+1与椭圆x2/9+y2/4=1的位置关系为( )(A) 相交 (B) 相切(C) 相离 (D) 不确定8.已知双曲线方程x2-y2/4=1,过P(1,1)点的直线l与双曲线只有一个公共点,则l的条数为( )(A)4 (B)3 (C)2 (D)19.顶点在坐标原点,焦点在x轴上的抛物线被直线y=2x+1截得的弦长为,则此抛物线的方程为_________________6、已知椭圆C以坐标轴为对称轴,一个焦点为F(0,1),离心率为,(1)求椭圆的方程;(2)若椭圆C有不同两点关于直线y=4x+m 对称,求m的取值范围7、过抛物线 y=x2 的顶点任作两条互相垂直的弦OA、OB(1)证明直线AB恒过一定点(2)求弦AB中点的轨迹方程10.△ABC的顶点为A(0,-2),C(0,2),三边长a、b、c成等差数列,公差d<0,则动点B 的轨迹方程为_____________11.过原点的动椭圆的一个焦点为F(1,0),长轴长为4,则动椭圆中心的轨迹方程为________12.已知点,F是椭圆的左焦点,一动点M在椭圆上移动,则|AM|+2|MF|的最小值为_____13.若动点P在直线2x+y+10=0上运动,直线PA、PB与圆x2+y2=4分别切于点A、B,则四边形PAOB面积的最小值为__________14.椭圆且满足,若离心率为e,则的最小值为( )(A)2 (B) (C) (D)14.双曲线的焦点距为2c,直线过点(a,0)和(0,b),且点(1,0)到直线的距离与点(-1,0)到直线的距离之和求双曲线的离心率e的取值范围.123111222331(1)3nx nA A AOA B A A B A A Bn∆∆=∆+123123n15.如图,、、、…顺次在x轴上,B、B、B、…顺次在曲线、、求:(1)、A、A、A的横坐标;(2)、证明A…都是正三角形标,的横坐是16.已知抛物线C:y2=4x(1)若椭圆左焦点及相应的准线与抛物线C的焦点F及准线l分别重合,试求椭圆短轴端点B 与焦点F连线中点P的轨迹方程;(2)若M(m,0)是x轴上的一定点,Q是(1)所求轨迹上任一点,试问|MQ|有无最小值?若有,求出其值;若没有,说明理由2019-2020年高中数学 会考复习 平面向量教案知识点提要一、向量的概念1、既有又有的量叫做向量。

高考数学二轮复习(15)圆锥曲线方程教案

高考数学二轮复习(15)圆锥曲线方程教案
【解析】由题意可知过焦点的直线方程为 ,
联立有 ,根据 ,得
2.与圆锥曲线有关的轨迹类问题
解析几何主要研究两大类问题:一是根据题设条件,求出表示平面曲线的方程;二是通过方程,研究平面曲线的性质.求曲线的轨迹方程是解析几何的两个基本问题之一.求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点.解答轨迹问题时,若能充分挖掘几何关系,则往往可以简化解题过程.
15.圆锥曲线与方程
【专题要点】
1.考查圆锥曲线的基本概念、标准方程及几何性质等知识及基本技能、基本方法,常以选择题与填空题的形式出现.
2.直线与二次曲线的位置关系、圆锥曲线的综合问题:常以压轴题的形式出现,这类问题视角新颖,常见的性质、基本概念、基础知识等被附以新的背景,以考查学生的应变能力和解决问题的灵活程度.
【解析】 考查椭圆的基本性质,如顶点、焦点坐标,离心率的计算等。以及直线的方程
直线 的方程为: ;
直线 的方程为: 。二者联立解得: ,
则 在椭圆 上,

解得:
例3.(2009辽宁,16)。以知F是双曲线 的左焦点, 是双曲线右支上的动点,则 的最小值为
【答案】9
【解析】注意到P点在双曲线的两只之间,且双曲线右焦点为F’(4,0),
将①②两式的两边分别相加,得 ,
即 ③
移项再两边分别平方得:

两边再平方得: ,
整理得 ,
所以,动圆圆心的轨迹方程是 ,轨迹是椭圆。
(法二)由解法一可得方程 ,

2019届高考数学二轮复习圆锥曲线综合应用学案(全国通用)

2019届高考数学二轮复习圆锥曲线综合应用学案(全国通用)

一、考纲要求:1.掌握解决直线与椭圆、抛物线的位置关系的思想方法;2.了解圆锥曲线的简单应用;3.理解数形结合的思想. 二、概念掌握和解题上注意点:1.判断直线与圆锥曲线的位置关系,一般是将直线与圆锥曲线方程联立,消去x 或y ,判断该方程组解的个数,方程组有几组解,直线与圆锥曲线就有几个交点.但应注意两点: ).消元后需要讨论含x2或y2项的系数是否为0.).重视“判别式Δ”起的限制作用.2.对于选择题、填空题,要充分利用几何条件,借助数形结合的思想方法直观求解,优化解题过程.3.处理中点弦问题的常用方法).点差法:即设出弦的两端点坐标后,代入圆锥曲线方程,并将两式相减,式中含有x 1+x 2,y 1+y 2,y 1-y 2x 1-x 2三个未知量,这样就直接联系了中点和直线的斜率,借用中点公式即可求得斜率.).根与系数的关系:即联立直线与圆锥曲线的方程,将其转化为一元二次方程后由根与系数的关系求解. 三、高考考题题例分析例1.(2017·全国卷Ⅰ)设A ,B 为曲线C :y =x 24上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率,(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.【答案】(1)1;(2) y =x +7.(2)由 y =x 24,得y ′=x2.例2. (2017浙江高考)如图,已知抛物线x 2=y ,点A ⎝⎛⎭⎫-12,14,B ⎝⎛⎭⎫32,94,抛物线上的点P (x ,y )-12<x <32.过点B 作直线AP 的垂线,垂足为Q .(1)求直线AP 斜率的取值范围; (2)求|P A |·|PQ |的最大值. 【答案】(1) (-1,1);(2)2716【解析】(1)设直线AP 的斜率为k ,k =x 2-14x +12=x -12,因为-12<x <32,所以直线AP 斜率的取值范围是(-1,1).(2)联立直线AP 与BQ 的方程⎩⎨⎧kx -y +12k +14=0,x +ky -94k -32=0,解得点Q 的横坐标是x Q =-k 2+4k +32(k 2+1).因为|P A |=1+k 2⎝⎛⎭⎫x +12=1+k 2(k +1),|PQ |=1+k 2(x Q -x )=-(k -1)(k +1)2k 2+1,所以|P A |·|PQ |=-(k -1)(k +1)3. 令f (k )=-(k -1)(k +1)3, 因为f ′(k )=-(4k -2)(k +1)2,所以f (k )在区间⎝⎛⎭⎫-1,12上单调递增,⎝⎛⎭⎫12,1上单调递减,因此当k =12时, |P A |·|PQ |取得最大值2716.学例3.(2017·全国卷Ⅱ)过抛物线C :y 2=4x 的焦点F ,且斜率为3的直线交C 于点M (M 在x 轴的上方),l 为C 的准线,点N 在l 上,且MN ⊥l ,则M 到直线NF 的距离为( ) A . 5 B .2 2 C .2 3 D .3 3【答案】C∵点M 在x 轴的上方, ∴M (3,23). ∵MN ⊥l , ∴N (-1,23). ∴|NF |=(1+1)2+(0-23)2=4,|MF |=|MN |=(3+1)2+(23-23)2=4.∴△MNF 是边长为4的等边三角形. ∴点M 到直线NF 的距离为2 3. 故选C .例4.(2016全国卷Ⅱ)已知椭圆E :x 2t +y 23=1的焦点在x 轴上,A 是E 的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA .(1)当t =4,|AM |=|AN |时,求△AMN 的面积; (2)当2|AM |=|AN |时,求k 的取值范围. 【答案】(1)14449;(2) (32,2). 【解析】设M (x 1,y 1),则由题意知y 1>0.(2)由题意t >3,k >0,A (-t ,0).将直线AM 的方程y =k (x +t )代入x 2t +y 23=1得(3+tk 2)x 2+2t ·tk 2x +t 2k 2-3t =0. 由x 1·(-t )=t 2k 2-3t 3+tk 2得x 1=t (3-tk 2)3+tk 2,故|AM |=|x 1+t |1+k 2=6t (1+k 2)3+tk2.由题设,直线AN 的方程为y =-1k(x +t ),故同理可得|AN |=6kt (1+k 2)3k 2+t.由2|AM |=|AN |得23+tk 2=k 3k 2+t, 即(k 3-2)t =3k (2k -1).当k =32时上式不成立,因此t =3k (2k -1)k 3-2.t >3等价于k 3-2k 2+k -2k 3-2=(k -2)(k 2+1)k 3-2<0, 即k -2k 3-2<0.由此得⎩⎪⎨⎪⎧ k -2>0,k 3-2<0,或⎩⎪⎨⎪⎧k -2<0,k 3-2>0,解得32<k <2.因此k 的取值范围是(32,2).例5.(2017·全国卷Ⅲ)在直角坐标系xOy 中,曲线y =x 2+mx -2与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 【答案】见解析(2)证明:BC 的中点坐标为⎝⎛⎭⎫x 22,12,可得BC 的中垂线方程为y -12=x 2⎝⎛⎭⎫x -x 22. 由(1)可得x 1+x 2=-m , 所以AB 的中垂线方程为x =-m2.联立⎩⎨⎧x =-m2,y -12=x 2⎝⎛⎭⎫x -x 22,又x 22+mx 2-2=0,可得⎩⎨⎧x =-m 2,y =-12.所以过A ,B ,C 三点的圆的圆心坐标为⎝⎛⎭⎫-m 2,-12,半径r =m 2+92. 故圆在y 轴上截得的弦长为2r 2-⎝⎛⎭⎫m 22=3,即过A ,B ,C 三点的圆在y 轴上截得的弦长为定值圆锥曲线综合应用练习题一、选择题1.若直线y =kx 与双曲线x 29-y 24=1相交,则k 的取值范围是 ( )A .⎝⎛⎭⎫0,23 B .⎝⎛⎭⎫-23,0 C .⎝⎛⎭⎫-23,23 D .⎝⎛⎭⎫-∞,-23∪⎝⎛⎭⎫23,+∞ 【答案】C【解析】 双曲线x 29-y 24=1的渐近线方程为y =±23x ,若直线与双曲线相交,数形结合,得k ∈⎝⎛⎭⎫-23,23. 2.已知直线y =22(x -1)与抛物线C :y 2=4x 交于A ,B 两点,点M (-1,m ),若MA →·MB →=0,则m = ( )A . 2B .22 C .12D .03.直线y =kx +2与抛物线y 2=8x 有且只有一个公共点,则k 的值为 ( )A .1B .1或3C .0D .1或0【答案】D【解析】由⎩⎪⎨⎪⎧y =kx +2,y 2=8x ,得k 2x 2+(4k -8)x +4=0,若k =0,则y =2,符合题意.若k ≠0,则Δ=0, 即64-64k =0,解得k =1,所以直线y =kx +2与抛物线y 2=8x 有且只有一个共公点时,k =0或1.4.方程x =1-4y 2所表示的曲线是 ( )A .双曲线的一部分B .椭圆的一部分C .圆的一部分D .直线的一部分【答案】B 【解析】x =1-4y 2两边平方,可变为x 2+4y 2=1(x ≥0),表示的曲线为椭圆的一部分.5.已知点P 是直线2x -y +3=0上的一个动点,定点M (-1,2),Q 是线段PM 延长线上的一点,且|PM |=|MQ |,则Q 点的轨迹方程是 ( )A .2x +y +1=0B .2x -y -5=0C .2x -y -1=0D .2x -y +5=0【答案】D【解析】由题意知,M 为PQ 中点,设Q (x ,y ),则P 为(-2-x,4-y ),代入2x -y +3=0,得2x -y +5=0.6.已知动圆Q 过定点A (2,0)且与y 轴截得的弦MN 的长为4,则动圆圆心Q 的轨迹C 的方程为 ( )A .y 2=2xB .y 2=4xC .x 2=2yD .x 2=4y【答案】B7.设圆(x +1)2+y 2=25的圆心为C ,A (1,0)是圆内一定点,Q 为圆周上任一点.线段AQ 的垂直平分线与CQ 的连线交于点M ,则M 的轨迹方程为 ( )A .4x 221-4y 225=1B .4x 221+4y 225=1C .4x 225-4y 221=1D .4x 225+4y 221=1【答案】D【解析】因为M 为AQ 垂直平分线上一点,则|AM |=|MQ |,所以|MC |+|MA |=|MC |+|MQ |=|CQ |=5,故M 的轨迹为以点C ,A 为焦点的椭圆,所以a =52,c =1,则b 2=a 2-c 2=214, 所以椭圆的方程为4x 225+4y 221=1. 学8.设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A ,B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点.若BP →=2P A →,且OQ →·AB →=1,则点P 的轨迹方程是 ( )A .32x 2+3y 2=1(x >0,y >0)B .32x 2-3y 2=1(x >0,y >0)C .3x 2-32y 2=1(x >0,y >0)D .3x 2+32y 2=1(x >0,y >0)【答案】A9.已知直线l :y =2x +3被椭圆C :x 2a 2+y 2b 2=1(a >b >0)截得的弦长为7,则下列直线中被椭圆C 截得的弦长一定为7的有 ( )①y =2x -3;②y =2x +1;③y =-2x -3;④y =-2x +3. A .1条 B .2条 C .3条 D .4条【答案】C【解析】直线y =2x -3与直线l 关于原点对称,直线y =-2x -3与直线l 关于x 轴对称,直线y =-2x +3与直线l 关于y 轴对称,故有3条直线被椭圆C 截得的弦长一定为7. 10.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为 ( )A .x 218+y 29=1B .x 227+y 218=1C .x 236+y 227=1D .x 245+y 236=1【答案】A【解析】因为直线AB 过点F (3,0)和点(1,-1),所以直线AB 的方程为y =12(x -3),代入椭圆方程x 2a 2+y 2b 2=1消去y ,得⎝⎛⎭⎫a 24+b 2x 2-32a 2x +94a 2-a 2b 2=0, 所以AB 的中点的横坐标为32a 22⎝⎛⎭⎫a24+b 2=1,即a 2=2b 2.又a 2=b 2+c 2,所以b =c =3,a=32,所以E 的方程为x 218+y 29=1.11.已知两定点A (0,-2),B (0,2),点P 在椭圆x 212+y 216=1上,且满足|AP →|-|BP →|=2,则AP →·BP→为 ( )A .-12B .12C .-9D .9【答案】D12.抛物线C 的顶点为原点,焦点在x 轴上,直线x -y =0与抛物线C 交于A ,B 两点.若P (1,1)为线段AB 的中点,则抛物线C 的方程为 ( )A .y =2x 2B .y 2=2xC .x 2=2yD .y 2=-2x【答案】B【解析】设A (x 1,y 1),B (x 2,y 2),抛物线方程为y 2=2px ,则⎩⎪⎨⎪⎧y 21=2px 1,y 22=2px 2,两式相减可得2p=y 1-y 2x 1-x 2·(y 1+y 2)=k AB ·2=2,即可得p =1,∴抛物线C 的方程为y 2=2x . 二、填空题13.已知倾斜角为60°的直线l 通过抛物线x 2=4y 的焦点,且与抛物线相交于A ,B 两点,则弦AB 的长为 . 【答案】16【解析】直线l 的方程为y =3x +1,由⎩⎪⎨⎪⎧y =3x +1,x 2=4y ,得y 2-14y +1=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=14, ∴|AB |=y 1+y 2+p =14+2=16.14.已知(4,2)是直线l 被椭圆x 236+y 29=1所截得的线段的中点,则l 的方程是 .【答案】x +2y -8=015.已知椭圆x 24+y 2b 2=1(0<b <2)与y 轴交于A ,B 两点,点F 为该椭圆的一个焦点,则△ABF的面积的最大值为 . 【答案】2【解析】不妨设点F 的坐标为(4-b 2,0),而|AB |=2b ,∴S △ABF =12×2b ×4-b 2=b4-b 2=b 2(4-b 2)≤b 2+4-b 22=2(当且仅当b 2=4-b 2,即b 2=2时取等号),故△ABF 面积的最大值为2.16.过双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点作一条与其渐近线平行的直线,交C 于点P .若点P 的横坐标为2a ,则C 的离心率为 .【答案】2+3【解析】如图所示,不妨设与渐近线平行的直线l 的斜率为ba ,又直线l 过右焦点F (c,0),则直线l 的方程为y =ba(x -c ).因为点P 的横坐标为2a ,代入双曲线方程得4a 2a 2-y 2b 2=1,化简得y =-3b 或y =3b (点P 在x 轴下方,故舍去). 故点P 的坐标为(2a ,-3b ), 代入直线方程得-3b =ba(2a -c ),化简可得离心率e =ca =2+ 3.学三、解答题17.已知椭圆与抛物线y 2=42x 有一个相同的焦点,且该椭圆的离心率为22. (1)求椭圆的标准方程;(2)过点P (0,1)的直线与该椭圆交于A 、B 两点,O 为坐标原点,若AP →=2PB →,求△AOB 的面积.【答案】(1) x 24+y 22=1;(2) 126818.如图,在平面直角坐标系xOy 中,已知直线l :x -y -2=0,抛物线C :y 2=2px (p >0).(1)若直线l 过抛物线C 的焦点,求抛物线C 的方程;(2)当p =1时,若抛物线C 上存在关于直线l 对称的相异两点P 和Q .求线段PQ 的中点M 的坐标.【答案】(1) y 2=8x ;(2) (1,-1).【解析】 (1)抛物线C :y 2=2px (p >0)的焦点为⎝⎛⎭⎫p 2,0. 由点⎝⎛⎭⎫p 2,0在直线l :x -y -2=0上, 得p2-0-2=0,即p =4. 所以抛物线C 的方程为y 2=8x .19.已知定点F (0,1),定直线l :y =-1,动圆M 过点F ,且与直线l 相切. (1)求动圆M 的圆心轨迹C 的方程;(2)过点F 的直线与曲线C 相交于A ,B 两点,分别过点A ,B 作曲线C 的切线l 1,l 2两条切线相交于点P ,求△P AB 外接圆面积的最小值. 【答案】(1) x 2=4y ;(2) 4π.【解析】 (1)法一:设圆心M 到直线l 的距离为d , 由题意|MF |=d . 设圆心M (x ,y ),则有x 2+(y -1)2=|y +1|.化简得x 2=4y .所以点M 的轨迹C 的方程为x 2=4y .法二:设圆心M 到直线l 的距离为d , 由题意|MF |=d .根据抛物线的定义可知,点M 的轨迹为抛物线, 焦点为F (0,1),准线为y =-1. 所以点M 的轨迹C 的方程为x 2=4y .法二:设l AB :y =kx +1, 代入x 2=4y 中,得x 2-4kx -4=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=4k ,x 1x 2=-4. 所以|AB |=1+k 2·|x 1-x 2|=4(k 2+1).因为曲线C :x 2=4y ,即y =x 24,所以y ′=x2.所以直线l 1的方程为y -y 1=x 12(x -x 1),即y =x 12x -x 214.①同理可得直线l 2的方程为y =x 22x -x 224.②联立①②,解得⎩⎪⎨⎪⎧x =x 1+x22,y =x 1x 24,即P (2k ,-1).因为P A →·PB →=(x 1-2k ,y 1+1)·(x 2-2k ,y 2+1) =x 1x 2-2k (x 1+x 2)+4k 2+y 1y 2+(y 1+y 2)+1=0, 所以P A ⊥PB ,即△P AB 为直角三角形.所以△P AB 的外接圆的圆心为线段AB 的中点,线段AB 是外接圆的直径.因为|AB |=4(k 2+1),所以当k =0时,线段AB 最短,最短长度为4,此时圆的面积最小,最小面积为4π.因为AB 的中点M 的坐标为(2k,2k 2+1),所以AB 的中垂线方程为y -(2k 2+1)=-1k (x -2k ),因为P A 的中垂线方程为y -(k 2-kk 2+1)=(k +k 2+1)[x -(2k -k 2+1)],联立上述两个方程,解得其交点坐标为N (2k,2k 2+1). 因为点M ,N 的坐标相同,所以AB 的中点M 为△P AB 的外接圆的圆心. 所以△P AB 是直角三角形,且P A ⊥PB , 所以线段AB 是△P AB 外接圆的直径.学 因为|AB |=4(k 2+1),所以当k =0时,线段AB 最短,最短长度为4,此时圆的面积最小,最小面积为4π.20.已知椭圆C :x 2a 2+y 2=1(a >0),过椭圆C 的右顶点和上顶点的直线与圆x 2+y 2=23相切.(1)求椭圆C 的方程;(2)设M 是椭圆C 的上顶点,过点M 分别作直线MA ,MB 交椭圆C 于A ,B 两点,设这两条直线的斜率分别为k 1,k 2,且k 1+k 2=2,证明:直线AB 过定点. 【答案】(1) x 22+y 2=1;(2)见解析由⎩⎪⎨⎪⎧x 22+y 2=1y =kx +m ⇒(1+2k 2)x 2+4kmx +2m 2-2=0,得x 1+x 2=-4km 1+2k 2,x 1·x 2=2m 2-21+2k 2,由k 1+k 2=2⇒y 1-1x 1+y 2-1x 2=2⇒(kx 2+m -1)x 1+(kx 1+m -1)x 2x 1x 2=2,即(2-2k )x 1x 2=(m -1)(x 1+x 2)⇒(2-2k )(2m 2-2)=(m -1)(-4km ),即(1-k )(m 2-1)=-km (m -1),由m ≠1,得(1-k )(m +1)=-km ⇒k =m +1,即y =kx +m =(m +1)x +m ⇒m (x +1)=y -x ,故直线AB 过定点(-1,-1). 综上,直线AB 过定点(-1,-1).21.已知点A ,B 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点,F 为左焦点,点P 是椭圆上异于A ,B 的任意一点.直线AP 与过点B 且垂直于x 轴的直线l 交于点M ,直线MN ⊥BP 于点N .(1)求证:直线AP 与直线BP 的斜率之积为定值; (2)若直线MN 过焦点F ,AF →=λFB →(λ∈R ),求实数λ的值. 【答案】(1)见解析;(2) λ=13.(2)设直线AP 与BP 的斜率分别为k 1,k 2,由已知F (-c,0),直线AP 的方程为y =k 1(x +a ),直线l 的方程为x =a ,则M (a,2ak 1). ∵MN ⊥BP ,∴k MN ·k 2=-1. 由(1)知k 1·k 2=-b 2a 2,∴k MN =a 2b 2·k 1.又F ,N ,M 三点共线,得k MF =k MN , 即2ak 1a +c =a 2b 2k 1,得2b 2=a (a +c ).∵b 2=a 2-c 2,∴2(a 2-c 2)=a 2+ac ,化简整理得2c 2+ac -a 2=0, 即2⎝⎛⎭⎫c a 2+c a -1=0, 解得c a =12或ca =-1(舍去).∴a =2c .由AF →=λFB →,得(a -c,0)=λ(a +c,0), 将a =2c 代入,得(c,0)=λ(3c,0),即c =3λc , ∴λ=13.22.已知抛物线C 1的方程为y 2=4x ,椭圆C 2与抛物线C 1有公共的焦点,且C 2的中心在坐标原点,过点M (4,0)的直线l 与抛物线C 1分别交于A ,B 两点.(1)若AM →=12MB →,求直线l 的方程;(2)若坐标原点O 关于直线l 的对称点P 在抛物线C 1上,直线l 与椭圆C 2有公共点,求椭圆C 2的长轴长的最小值.【答案】(1) y =2x -42或y =-2x +42;(2) 34(2)设P (m ,n ),则OP 的中点为⎝⎛⎭⎫m 2,n 2. 因为O ,P 两点关于直线y =k (x -4)对称,所以⎩⎨⎧n 2=k ⎝⎛⎭⎫m2-4,nm ·k =-1,解得⎩⎪⎨⎪⎧m =8k 21+k2,n =-8k1+k2.将其代入抛物线方程,得⎝ ⎛⎭⎪⎫-8k 1+k 22=4·8k 21+k 2. 所以k 2=1.。

2019-2020学年高三数学二轮专题复习《圆锥曲线与方程》导学案.doc

2019-2020学年高三数学二轮专题复习《圆锥曲线与方程》导学案.doc

2019-2020学年高三数学二轮专题复习《圆锥曲线与方程》导学案1. 已知抛物线2:2(0)C x py p =>,其焦点F 到准线l 的距离是12。

(1)求抛物线的方程;(2)设抛物线上的一点P 的横坐标是(0)t t >,过P 的直线交抛物线于另一点Q ,过点Q 作PQ 的垂线交抛物线于另一点N ,若MN 为抛物线的切线,求t 的最小值。

2. 已知222:(1)(1)C x y r r -+=>,设M 为圆C 与x 轴负半轴的交点,过点M 作圆C 的弦MN ,并使它的中点P 恰好落在y 轴上。

(1)求点N 的轨迹E 的方程;(2)若12200(,2),(,),(,)A x B x y C x y 是E 上不同的点,且AB BC ⊥,求0y 的取值范围。

3. 如图,设抛物线方程为22(0)x py p =>,M 为直线2y p =-上任意一点,过M 引抛物线的切线,切点分别为A B ,.(Ⅰ)求证:A M B ,,三点的横坐标成等差数列;(Ⅱ)已知当M 点的坐标为(22)p -,时,AB =求此时抛物线的方程;(Ⅲ)是否存在点M ,使得点C 关于直线AB 的对称点D在抛物线22(0)x py p =>上,其中点C 满足OC OA OB =+(O 为坐标原点).若存在,求出所有适合题意的点M 的坐标;若不存在,请说明理由.4.已知过点(0,1)P -的直线l 与抛物线24x y =相交于点1122(,),(,)A x y B x y 两点,12,l l 分别是抛物线24x y =在,A B 两点处的切线,,M N 分别是12,l l 与直线1y =-的交点。

(1)求直线l 的斜率的取值范围;(2)试比较||,||PM PN 的大小,并说明理由。

复合函数1.设函数ln ()ln ln(1)1x f x x x x=-+++. ⑴求()f x 的单调区间和极值;⑵是否存在实数a ,使得关于x 的不等式()f x a …的解集为(0,)+∞?若存在,求a 的取值范围;若不存在,试说明理由.2.已知函数22()ln(1).1xf x xx=+-+(I) 求函数()f x的单调区间;(Ⅱ)若不等式1(1)n a en++≤对任意的N*n∈都成立(其中e是自然对数的底数).求a的最大值.3.已知函数222()2()21x x f x e t e x x t =-++++,/1()()2g x f x =.(I )证明:当t <时,()g x 在R 上是增函数;(II )对于给定的闭区间[]a b ,,试说明存在实数k ,当t k >时,()g x 在闭区间[]a b ,上是减函数; (III )证明:3()2f x ≥.4.设函数2()ln(1)f x x b x =++,其中0b ≠. (Ⅰ)当12b >时,判断函数()f x 在定义域上的单调性; (Ⅱ)求函数()f x 的极值点;(Ⅲ)证明对任意的正整数n ,不等式23111ln 1n n n ⎛⎫+>- ⎪⎝⎭都成立.。

2019-2020年高中数学 2.2 圆锥曲线的参数方程教案 新人教A版选修4-4

2019-2020年高中数学 2.2 圆锥曲线的参数方程教案 新人教A版选修4-4

2019-2020年高中数学 2.2 圆锥曲线的参数方程教案 新人教A 版选修4-41.椭圆的参数方程(1)抛物线y 2=2px 的参数方程是⎩⎪⎨⎪⎧x =2pt 2y =2pt (t ∈R ,t 为参数).(2)参数t 表示抛物线上除顶点外的任意一点与原点连线的斜率的倒数.1.椭圆的参数方程中,参数φ是OM 的旋转角吗?【提示】 椭圆的参数方程⎩⎪⎨⎪⎧x =a cos φy =b sin φ(φ为参数)中的参数φ不是动点M (x ,y )的旋转角,它是点M 所对应的圆的半径OA (或OB )的旋转角,称为离心角,不是OM 的旋转角.2.双曲线的参数方程中,参数φ的三角函数sec φ的意义是什么?【提示】 sec φ=1cos φ,其中φ∈[0,2π)且φ≠π2,φ≠32π.3.类比y 2=2px (p >0),你能得到x 2=2py (p >0)的参数方程吗?【提示】⎩⎪⎨⎪⎧x =2pt ,y =2pt 2.(p >0,t 为参数,t ∈R )椭圆的参数方程及应用将参数方程⎩⎪⎨⎪⎧x =5cos θy =3sin θ(θ为参数)化为普通方程,并判断方程表示曲线的焦点坐标.【思路探究】 根据同角三角函数的平方关系,消去参数,化为普通方程,进而研究曲线形状和几何性质.【自主解答】 由⎩⎪⎨⎪⎧x =5cos θy =3sin θ得⎩⎨⎧cos θ=x 5,sin θ=y 3,两式平方相加,得x 252+y 232=1.∴a =5,b =3,c =4.因此方程表示焦点在x 轴上的椭圆,焦点坐标为F 1(4,0)和F 2(-4,0).椭圆的参数方程⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ,(θ为参数,a ,b 为常数,且a >b >0)中,常数a 、b 分别是椭圆的长半轴长和短半轴长,焦点在长轴上.若本例的参数方程为⎩⎪⎨⎪⎧x =3cos θy =5sin θ,(θ为参数),则如何求椭圆的普通方程和焦点坐标?【解】 将⎩⎪⎨⎪⎧x =3cos θy =5sin θ,化为⎩⎨⎧x3=cos θ,y5=sin θ,两式平方相加,得x 232+y 252=1.其中a =5,b =3,c =4.所以方程的曲线表示焦点在y 轴上的椭圆,焦点坐标为F 1(0,-4)与F 2(0,4).已知曲线C 1:⎩⎪⎨⎪⎧x =-4+cos t y =3+sin t ,(t 为参数),曲线C 2:x 264+y 29=1.(1)化C 1为普通方程,C 2为参数方程;并说明它们分别表示什么曲线?(2)若C 1上的点P 对应的参数为t =π2,Q 为C 2上的动点,求PQ 中点M 到直线C 3:x -2y -7=0距离的最小值.【思路探究】 (1)参数方程与普通方程互化;(2)由中点坐标公式,用参数θ表示出点M 的坐标,根据点到直线的距离公式得到关于θ的函数,转化为求函数的最值.【自主解答】 (1)由⎩⎪⎨⎪⎧x =-4+cos t ,y =3+sin t ,得⎩⎪⎨⎪⎧cos t =x +4,sin t =y -3. ∴曲线C 1:(x +4)2+(y -3)2=1,C 1表示圆心是(-4,3),半径是1的圆.曲线C 2:x 264+y 29=1表示中心是坐标原点,焦点在x 轴上,长半轴长是8,短半轴长是3的椭圆.其参数方程为⎩⎪⎨⎪⎧x =8cos θ,y =3sin θ,(θ为参数)(2)依题设,当t =π2时,P (-4,4);且Q (8cos θ,3sin θ),故M (-2+4cos θ,2+32sin θ).又C 3为直线x -2y -7=0,M 到C 3的距离d =55|4cos θ-3sin θ-13|=55|5cos(θ+φ)-13|, 从而当cos θ=45,sin θ=-35时,(其中φ由sin φ=35,cos φ=45确定)cos(θ+φ)=1,d 取得最小值855.1.从第(2)问可以看出椭圆的参数方程在解题中的优越性.2.第(2)问设计十分新颖,题目的要求就是求动点M 的轨迹上的点到直线C 3距离的最小值,这个最小值归结为求关于参数θ的函数的最小值.(xx·开封质检)已知点P 是椭圆x 24+y 2=1上任意一点,求点P 到直线l :x +2y =0的距离的最大值.【解】 因为P 为椭圆x 24+y 2=1上任意一点,故可设P (2cos θ,sin θ),其中θ∈[0,2π). 又直线l :x +2y =0.因此点P 到直线l 的距离d =|2cos θ+2sin θ|12+22=22|sin θ+π4|5.所以,当sin(θ+π4)=1,即θ=π4时,d 取得最大值2105.双曲线参数方程的应用 求证:双曲线x 2a 2-y2b2=1(a >0,b >0)上任意一点到两渐近线的距离的乘积是一个定值.【思路探究】 设出双曲线上任一点的坐标,可利用双曲线的参数方程简化运算.【自主解答】 由双曲线x 2a 2-y 2b2=1,得两条渐近线的方程是:bx +ay =0,bx -ay =0, 设双曲线上任一点的坐标为(a sec φ,b tan φ), 它到两渐近线的距离分别是d 1和d 2,则d 1·d 2=|ab sec φ+ab tan φ|b 2+a 2·|ab sec φ-ab tan φ|b 2+-a 2=|a 2b 2sec 2 φ-tan 2 φ|a 2+b 2=a 2b 2a 2+b2(定值).在研究有关圆锥曲线的最值和定值问题时,使用曲线的参数方程非常简捷方便,其中点到直线的距离公式对参数形式的点的坐标仍适用,另外本题要注意公式sec 2 φ-tan 2 φ=1的应用.如图2-2-1,设P 为等轴双曲线x 2-y 2=1上的一点,F 1、F 2是两个焦点,证明:|PF 1|·|PF 2|=|OP |2.图2-2-1【证明】 设P (sec φ,tan φ),∵F 1(-2,0),F 2(2,0), ∴|PF 1|=sec φ+22+tan 2φ=2sec 2φ+22sec φ+1,|PF 2|=sec φ-22+tan 2φ=2sec 2φ-22sec φ+1, |PF 1|·|PF 2|=2sec 2φ+12-8sec 2φ=2sec 2φ-1. ∵|OP |2=sec 2φ+tan 2φ=2sec 2φ-1, ∴|PF 1|·|PF 2|=|OP |2.抛物线的参数方程设抛物线y 2=2px 的准线为l ,焦点为F ,顶点为O ,P 为抛物线上任一点,PQ ⊥l 于Q ,求QF 与OP 的交点M 的轨迹方程.【思路探究】 解答本题只要解两条直线方程组成的方程组得到交点的参数方程,然后化为普通方程即可.【自主解答】 设P 点的坐标为(2pt 2,2pt )(t 为参数),当t ≠0时,直线OP 的方程为y =1tx ,QF 的方程为y =-2t (x -p2),它们的交点M (x ,y )由方程组⎩⎨⎧y =1txy =-2t x -p2确定, 两式相乘,消去t ,得y 2=-2x (x -p2),∴点M 的轨迹方程为2x 2-px +y 2=0(x ≠0).当t =0时,M (0,0)满足题意,且适合方程2x 2-px +y 2=0. 故所求的轨迹方程为2x 2-px +y 2=0.1.抛物线y 2=2px (p >0)的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数),参数t 为任意实数,它表示抛物线上除顶点外的任意一点与原点连线的斜率的倒数.2.用参数法求动点的轨迹方程,其基本思想是选取适当的参数作为中间变量,使动点的坐标分别与参数有关,从而得到动点的参数方程,然后再消去参数,化为普通方程.(xx·天津高考)已知抛物线的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数),其中p >0,焦点为F ,准线为l .过抛物线上一点M 作l 的垂线,垂足为E ,若|EF |=|MF |,点M 的横坐标是3,则p =________.【解析】 根据抛物线的参数方程可知抛物线的标准方程是y 2=2px ,所以y 2M =6p ,所以E (-p 2,±6p ),F (p 2,0),所以p2+3=p 2+6p ,所以p 2+4p -12=0,解得p =2(负值舍去).【答案】 2(教材第34页习题2.2,第5题)已知椭圆x 2a 2+y 2b2=1上任意一点M (除短轴端点外)与短轴两端点B 1,B 2的连线分别与x轴交于P 、Q 两点,O 为椭圆的中心.求证:|OP |·|OQ |为定值.(xx·徐州模拟)如图2-2-2,已知椭圆x24+y 2=1上任一点M (除短轴端点外)与短轴两端点B1、B2的连线分别交x轴于P、Q两点.图2-2-2求证:|OP |·|OQ |为定值. 【命题意图】 本题主要考查椭圆的参数方程的简单应用,考查学生推理与数学计算能力.【证明】 设M (2cos φ,sin φ)(φ为参数), B 1(0,-1),B 2(0,1).则MB 1的方程:y +1=sin φ+12cos φ·x ,令y =0,则x =2cos φsin φ+1,即|OP |=|2cos φ1+sin φ|.MB 2的方程:y -1=sin φ-12cos φx ,∴|OQ |=|2cos φ1-sin φ|.∴|OP |·|OQ |=|2cos φ1+sin φ|·|2cos φ1-sin φ|=4.因此|OP |·|OQ |=4(定值).1.参数方程⎩⎪⎨⎪⎧x =cos θy =2sin θ,(θ为参数)化为普通方程为( )A .x 2+y 24=1 B .x 2+y 22=1C .y 2+x 24=1D .y 2+x24=1【解析】 易知cos θ=x ,sin θ=y2,∴x 2+y24=1,故选A.【答案】 A2.方程⎩⎪⎨⎪⎧x cos θ=a ,y =b cos θ,(θ为参数,ab ≠0)表示的曲线是( )A .圆B .椭圆C .双曲线D .双曲线的一部分【解析】 由x cos θ=a ,∴cos θ=ax,代入y =b cos θ,得xy =ab ,又由y =b cos θ知,y ∈[-|b |,|b |], ∴曲线应为双曲线的一部分. 【答案】 D3.(xx·陕西高考)圆锥曲线⎩⎪⎨⎪⎧x =t 2,y =2t (t 为参数)的焦点坐标是________.【解析】 将参数方程化为普通方程为y 2=4x ,表示开口向右,焦点在x 轴正半轴上的抛物线,由2p =4⇒p =2,则焦点坐标为(1,0).【答案】 (1,0)4.(xx·湖南高考)在直角坐标系xOy 中,已知曲线C 1:⎩⎪⎨⎪⎧x =t +1,y =1-2t (t 为参数)与曲线C 2:⎩⎪⎨⎪⎧x =a sin θ,y =3cos θ(θ为参数,a >0)有一个公共点在x 轴上,则a =________. 【解析】 将曲线C 1与C 2的方程化为普通方程求解.∵⎩⎪⎨⎪⎧ x =t +1,y =1-2t ,消去参数t 得2x +y -3=0. 又⎩⎪⎨⎪⎧x =a sin θ,y =3cos θ,消去参数θ得x 2a 2+y 29=1.方程2x +y -3=0中,令y =0得x =32,将(32,0)代入x 2a 2+y 29=1,得94a 2=1.又a >0,∴a=32. 【答案】32(时间40分钟,满分60分)一、选择题(每小题5分,共20分)1.曲线C :⎩⎨⎧x =3cos φy =5sin φ,(φ为参数)的离心率为( )A.23B.35C.32D.53【解析】 由题设,得x 29+y 25=1,∴a 2=9,b 2=5,c 2=4,因此e =c a =23.【答案】 A2.参数方程⎩⎪⎨⎪⎧x =sin α2+cos α2y =2+sin α,(α为参数)的普通方程是( )A .y 2-x 2=1B .x 2-y 2=1C .y 2-x 2=1(1≤y ≤3)D .y 2-x 2=1(|x |≤2)【解析】 因为x 2=1+sin α,所以sin α=x 2-1. 又因为y 2=2+sin α=2+(x 2-1), 所以y 2-x 2=1.∵-1≤sin α≤1,y =2+sin α, ∴1≤y ≤ 3.∴普通方程为y 2-x 2=1,y ∈[1,3]. 【答案】 C3.点P (1,0)到曲线⎩⎪⎨⎪⎧x =t2y =2t (参数t ∈R )上的点的最短距离为( )A .0B .1 C. 2 D .2【解析】 d 2=(x -1)2+y 2=(t 2-1)2+4t 2=(t 2+1)2, 由t 2≥0得d 2≥1,故d min =1. 【答案】 B4.已知曲线⎩⎪⎨⎪⎧x =3cos θy =4sin θ,(θ为参数,0≤θ≤π)上的一点P ,原点为O ,直线PO 的倾斜角为π4,则P 点的坐标是( ) A .(3,4) B .(322,22) C .(-3,-4) D .(125,125) 【解析】 由题意知,3cos θ=4sin θ, ∴tan θ=34,又0≤θ≤π,则sin θ=35,cos θ=45,∴x =3×cos θ=3×45=125, y =4sin θ=4×35=125, 因此点P 的坐标为(125,125). 【答案】 D二、填空题(每小题5分,共10分)5.已知椭圆的参数方程⎩⎪⎨⎪⎧ x =2cos t y =4sin t(t 为参数),点M 在椭圆上,对应参数t =π3,点O 为原点,则直线OM 的斜率为________.【解析】 由⎩⎨⎧x =2cos π3=1,y =4sin π3=2 3. 得点M 的坐标为(1,23).直线OM 的斜率k =231=2 3. 【答案】 236.(xx·江西高考)设曲线C 的参数方程为⎩⎪⎨⎪⎧x =t ,y =t 2(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________.【解析】 ⎩⎪⎨⎪⎧x =t ,y =t 2化为普通方程为y =x 2,由于ρcos θ=x ,ρsin θ=y ,所以化为极坐标方程为ρsin θ=ρ2cos 2θ,即ρcos 2θ-sin θ=0.【答案】 ρcos 2θ-sin θ=0三、解答题(每小题10分,共30分)7.(xx·平顶山质检)如图2-2-3所示,连接原点O 和抛物线y =12x 2上的动点M ,延长OM 到点P ,使|OM |=|MP |,求P 点的轨迹方程,并说明是什么曲线?图2-2-3【解】 抛物线标准方程为x 2=2y ,其参数方程为⎩⎪⎨⎪⎧ x =2t ,y =2t 2.得M (2t,2t 2).设P (x ,y ),则M 是OP 中点.∴⎩⎨⎧2t =x +02,2t 2=y +02,∴⎩⎪⎨⎪⎧x =4t y =4t 2(t 为参数), 消去t 得y =14x 2,是以y 轴对称轴,焦点为(0,1)的抛物线.8.(xx·龙岩模拟)已知直线l 的极坐标方程是ρcos θ+ρsin θ-1=0.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,椭圆C 的参数方程是⎩⎪⎨⎪⎧x =2cos θy =sin θ(θ为参数),求直线l 和椭圆C 相交所成弦的弦长.【解】 由题意知直线和椭圆方程可化为:x +y -1=0,①x 24+y 2=1,② ①②联立,消去y 得:5x 2-8x =0,解得x 1=0,x 2=85. 设直线与椭圆交于A 、B 两点,则A 、B 两点直角坐标分别为(0,1),(85,-35),则|AB |=-35-12+852=825. 故所求的弦长为825. 9.(xx·漯河调研)在直角坐标系xOy 中,直线l 的方程为x -y +4=0,曲线C 的参数方程为⎩⎨⎧ x =3cos αy =sin α (α为参数). (1)已知在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为(4,π2),判断点P 与直线l 的位置关系; (2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值.【解】 (1)把极坐标系下的点P (4,π2)化为直角坐标,得点(0,4).因为点P 的直角坐标(0,4)满足直线l 的方程x -y +4=0,所以点P 在直线l 上.(2)因为点Q 在曲线C 上,故可设点Q 的坐标为(3cos α,sin α),从而点Q 到直线l 的距离为d =|3cos α-sin α+4|2=2cos α+π6+42=2cos(α+π6)+22,由此得,当cos(α+π6)=-1时,d 取得最小值,且最小值为 2. 教师备选10.设椭圆的中心是坐标原点,长轴在x 轴上,离心率e =32,已知点P (0,32)到这个椭圆上的点的最远距离是7,求这个椭圆的方程,并求椭圆上到点P 的距离等于7的点的坐标.【解】 设椭圆的参数方程是⎩⎪⎨⎪⎧x =a cos θy =b sin θ,其中,a >b >0,0≤θ<2π. 由e 2=c 2a 2=a 2-b 2a 2=1-(b a )2可得b a =1-e 2=12即a =2b . 设椭圆上的点(x ,y )到点P 的距离为d ,则d 2=x 2+(y -32)2=a 2cos 2θ+(b sin θ-32)2 =a 2-(a 2-b 2)sin 2θ-3b sin θ+94=4b 2-3b 2sin 2θ-3b sin θ+94=-3b 2(sin θ+12b)2+4b 2+3, 如果12b >1即b <12,即当sin θ=-1时,d 2有最大值,由题设得(7)2=(b +32)2,由此得b =7-32>12,与b <12矛盾. 因此必有12b≤1成立, 于是当sin θ=-12b时,d 2有最大值, 由题设得(7)2=4b 2+3,由此可得b =1,a =2.所求椭圆的参数方程是⎩⎪⎨⎪⎧x =2cos θ,y =sin θ.由sin θ=-12,cos θ=±32可得,椭圆上的点(-3,-12),点(3,-12)到点P 的距离都是7..。

高三二轮复习:圆锥曲线(教师)

高三二轮复习:圆锥曲线(教师)

高三数学二轮复习——圆锥曲线的综合一、直线与圆锥曲线的位置关系(1)直线与椭圆的位置关系的判定方法:将直线方程与椭圆方程联立,消去一个未知数,得到一个一元二次方程.若Δ>0,则直线与椭圆相交;若Δ=0,则直线与椭圆相切;若Δ<0,则直线与椭圆相离.(2)直线与双曲线的位置关系的判定方法:将直线方程与双曲线方程联立,消去y(或x),得到一个一元方程ax2+bx+c=0(或ay2+by+c=0).①若a≠0,当Δ>0时,直线与双曲线相交;当Δ=0时,直线与双曲线相切;当Δ<0时,直线与双曲线相离.②若a=0时,直线与渐近线平行,与双曲线有一个交点.(3)直线与抛物线的位置关系的判定方法:将直线方程与抛物线方程联立,消去y(或x),得到一个一元方程ax2+bx+c=0(或ay2+by+c=0).①当a≠0时,用Δ判定,方法同上.②当a=0时,直线与抛物线的对称轴平行,只有一个交点.二、有关弦的问题(1)有关弦长问题,应注意运用弦长公式及根与系数的关系,“设而不求”;有关焦点弦长问题,要重视圆锥曲线定义的运用,以简化运算.①斜率为k的直线与圆锥曲线交于两点P1(x1,y1),P2(x2,y2),则所得弦长|P1P2|=1+k2|x2-x1|或|P1P2|=1+1k2|y2-y1|,其中求|x2-x1|与|y2-y1|时通常使用根与系数的关系,即作如下变形:|x2-x1|=x1+x22-4x1x2,|y2-y1|=y1+y22-4y1y2.②当斜率k不存在时,可求出交点坐标,直接运算(利用两点间距离公式).(2)弦的中点问题有关弦的中点问题,应灵活运用“点差法”,“设而不求法”来简化运算.三、圆锥曲线中的最值(1)椭圆中的最值F1、F2为椭圆x2a2+y2b2=1(a>b>0)的左、右焦点,P为椭圆的任意一点,B为短轴的一个端点,O 为坐标原点,则有 ①|OP |∈[b ,a ]. ②|PF 1|∈[a -c ,a +c ]. ③|PF 1|·|PF 2|∈[b 2,a 2]. ④∠F 1PF 2≤∠F 1BF 2. (2)双曲线中的最值F 1、F 2为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,P 为双曲线上的任一点,O 为坐标原点,则有 ①|OP |≥a . ②|PF 1|≥c -a . (3)抛物线中的最值点P 为抛物线y 2=2px (p >0)上的任一点,F 为焦点,则有: ①|PF |≥p2.②A (m ,n )为一定点,则|PA |+|PF |有最小值. 小题一览例1、(2013·课标全国Ⅰ)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A 、B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ) A.x 245+y 236=1 B.x 236+y 227=1 C.x 227+y 218=1D.x 218+y 29=1 答案 D 解析 设A (x 1,y 1)、B (x 2,y 2),所以⎩⎪⎨⎪⎧x 21a 2+y 21b2=1x 22a 2+y22b 2=1运用点差法,所以直线AB 的斜率为k =b 2a 2,设直线方程为y =b 2a 2(x -3),联立直线与椭圆的方程得(a 2+b 2)x 2-6b 2x +9b 2-a 4=0, 所以x 1+x 2=6b 2a 2+b 2=2;又因为a 2-b 2=9,解得b 2=9,a 2=18. 例2、 (2013·江西)过点(2,0)引直线l 与曲线y =1-x 2相交于A 、B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于( ) A.33B .-33C .±33D .-3答案 B解析 ∵S △AOB =12|OA ||OB |sin ∠AOB=12sin ∠AOB ≤12. 当∠AOB =π2时,S △AOB 面积最大.此时O 到AB 的距离d =22.设AB 方程为y =k (x -2)(k <0),即kx -y -2k =0. 由d =|2k |k 2+1=22得k =-33. (也可k =-tan ∠OPH =-33).例3、 (2013·大纲全国)椭圆C :x 24+y 23=1的左、右顶点分别为A 1、A 2,点P 在C 上且直线PA 2斜率的取值范围是[-2,-1],那么直线PA 1斜率的取值范围是( )A .[12,34]B .[38,34]C .[12,1]D .[34,1]答案 B解析 利用直线PA 2斜率的取值范围确定点P 变化范围的边界点,再利用斜率公式计算直线PA 1斜率的边界值. 由题意可得A 1(-2,0),A 2(2,0), 当PA 2的斜率为-2时,直线PA 2的方程式为y =-2(x -2),代入椭圆方程,消去y 化简得19x 2-64x +52=0,解得x =2或x =2619.由点P 在椭圆上得点P ⎝ ⎛⎭⎪⎫2619,2419,此时直线PA 1的斜率k =38. 同理,当直线PA 2的斜率为-1时,直线PA 2方程为y =-(x -2), 代入椭圆方程, 消去y 化简得7x 2-16x +4=0,解得x =2或x =27.由点P 在椭圆上得点P ⎝ ⎛⎭⎪⎫27,127,此时直线PA 1的斜率k =34.数形结合可知,直线PA 1斜率的取值范围是⎣⎢⎡⎦⎥⎤38,34.例4、 (2012·四川)椭圆x 24+y 23=1的左焦点为F ,直线x =m 与椭圆相交于点A 、B ,当△FAB的周长最大时,△FAB 的面积是________.答案 3解析 直线x =m 过右焦点(1,0)时,△FAB 的周长最大,由椭圆定义知,其周长为4a =8,此时,|AB |=2×b 2a =2×32=3,∴S △FAB =12×2×3=3.例5、(2012·北京)在直角坐标系xOy 中,直线l 过抛物线y 2=4x 的焦点F ,且与该抛物线相交于A ,B 两点.其中点A 在x 轴上方,若直线l 的倾斜角为60°,则△OAF 的面积为______.答案3解析 ∵y 2=4x 的焦点F (1,0), 又直线l 过焦点F 且倾斜角为60°, 故直线l 的方程为y =3(x -1),将其代入y 2=4x 得3x 2-6x +3-4x =0, 即3x 2-10x +3=0.∴x =13或x =3. 又点A 在x 轴上方,∴x A =3.∴y A =2 3.∴S △OAF =12×1×23= 3.综合题演练:题型一 圆锥曲线中的范围、最值问题例6、已知中心在原点的双曲线C 的右焦点为(2,0),实半轴长为3.(1)求双曲线C 的方程; (2)若直线l :y =kx +2与双曲线C 的左支交于A ,B 两点,求k 的取值范围;(3)在(2)的条件下,线段AB 的垂直平分线l 0与y 轴交于M (0,b ),求b 的取值范围. 审题破题 (2)直接利用判别式和根与系数的关系确定k 的范围;(3)寻找b 和k 的关系,利用(2)中k 的范围求解.解 (1)设双曲线方程为x 2a 2-y 2b 2=1 (a >0,b >0),由已知,得a =3,c =2,b 2=c 2-a 2=1,故双曲线方程为x 23-y 2=1.(2)设A (x A ,y A ),B (x B ,y B ),将y =kx +2代入x 23-y 2=1,得(1-3k 2)x 2-62kx -9=0.由题意,知⎩⎪⎪⎨⎪⎪⎧1-3k 2≠0,Δ=361-k 2>0,x A +x B=62k1-3k2<0,x A x B=-91-3k 2>0,解得33<k <1.所以当33<k <1时,直线l 与双曲线的左支有两个交点.(3)由(2),得x A +x B =62k1-3k 2,所以y A +y B =(kx A +2)+(kx B +2)=k (x A +x B )+22=221-3k 2,所以AB 中点P 的坐标为⎝ ⎛⎭⎪⎪⎫32k 1-3k 2,21-3k 2.设l 0的方程为y =-1k x +b ,将P 点的坐标代入l 0的方程,得b =421-3k 2,∵33<k <1,∴-2<1-3k 2<0,∴b <-22.∴b 的取值范围是(-∞,-22).反思归纳 求最值或求范围问题常见的解法有两种:(1)几何法.若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决,这就是几何法.(2)代数法.若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值,这就是代数法.变式训练(2013·广东)已知抛物线C 的顶点为原点,其焦点F (0,c )(c >0)到直线l :x -y -2=0的距离为322.设P 为直线l 上的点,过点P 作抛物线C 的两条切线PA ,PB ,其中A ,B 为切点. (1)求抛物线C 的方程;(2)当点P (x 0,y 0)为直线l 上的定点时,求直线AB 的方程; (3)当点P 在直线l 上移动时,求|AF |·|BF |的最小值. 解 (1)依题意知|c +2|2=322,c >0,解得c =1.所以抛物线C 的方程为x 2=4y . (2)由y =14x 2得y ′=12x , 设A (x 1,y 1),B (x 2,y 2),则切线PA ,PB 的斜率分别为12x 1,12x 2,所以切线PA 的方程为y -y 1=x 12(x -x 1),即y =x 12x -x 212+y 1,即x 1x -2y -2y 1=0.同理可得切线PB 的方程为x 2x -2y -2y 2=0, 又点P (x 0,y 0)在切线PA 和PB 上,所以x 1x 0-2y 0-2y 1=0,x 2x 0-2y 0-2y 2=0,所以(x 1,y 1),(x 2,y 2)为方程x 0x -2y 0-2y =0 的两组解, 所以直线AB 的方程为x 0x -2y -2y 0=0. (3)由抛物线定义知|AF |=y 1+1,|BF |=y 2+1, 所以|AF |·|BF |=(y 1+1)(y 2+1)=y 1y 2+(y 1+y 2)+1,联立方程⎩⎪⎨⎪⎧x 0x -2y -2y 0=0,x 2=4y ,消去x 整理得y 2+(2y 0-x 20)y +y 20=0, ∴y 1+y 2=x 20-2y 0,y 1y 2=y 20,∴|AF |·|BF |=y 1y 2+(y 1+y 2)+1=y 20+x 20-2y 0+1=y 20+(y 0+2)2-2y 0+1=2y 20+2y 0+5 =2⎝⎛⎭⎪⎫y 0+122+92,∴当y 0=-12时,|AF |·|BF |取得最小值,且最小值为92.题型二 圆锥曲线中的定点、定值问题例7、(2012·福建)如图,等边三角形OAB 的边长为83,且其三个顶点均在抛物线E :x 2=2py (p >0)上. (1)求抛物线E 的方程;(2)设动直线l 与抛物线E 相切于点P ,与直线y =-1相交于点Q , 证明以PQ 为直径的圆恒过y 轴上某定点.审题破题 (1)先求出B 点坐标,代入抛物线方程,可得p 的值;(2)假设在y 轴上存在定点M ,使得以线段PQ 为直径的圆经过点M ,转化为MP →·MQ →=0,从而判断点M 是否存在.(1)解 依题意,|OB |=83,∠BOy =30°.设B (x ,y ),则x =|OB |sin 30°=43,y =|OB |cos 30°=12.因为点B (43,12)在x 2=2py 上,所以(43)2=2p ×12,解得p =2.故抛物线E 的方程为x 2=4y .(2)证明 方法一 由(1)知y =14x 2,y ′=12x . 设P (x 0,y 0),则x 0≠0,y 0=14x 20,且l 的方程为 y -y 0=12x 0(x -x 0),即y =12x 0x -14x 20. 由⎩⎪⎨⎪⎧y =12x 0x -14x 20,y =-1得⎩⎪⎨⎪⎧x =x 2-42x 0,y =-1.所以Q 为⎝ ⎛⎭⎪⎫x 20-42x 0,-1. 设M (0,y 1),令MP →·MQ →=0对满足y 0=14x 20(x 0≠0)的x 0,y 0恒成立.由于MP →=(x 0,y 0-y 1),MQ →=⎝ ⎛⎭⎪⎫x 20-42x 0,-1-y 1, 由MP →·MQ →=0,得x 20-42-y 0-y 0y 1+y 1+y 21=0,即(y 21+y 1-2)+(1-y 1)y 0=0.(*) 由于(*)式对满足y 0=14x 20(x 0≠0)的y 0恒成立, 所以⎩⎪⎨⎪⎧1-y 1=0,y 21+y 1-2=0,解得y 1=1.故以PQ 为直径的圆恒过y 轴上的定点M (0,1). 方法二 由(1)知y =14x 2,y ′=12x . 设P (x 0,y 0),则x 0≠0,y 0=14x 20, 且l 的方程为y -y 0=12x 0(x -x 0),即y =12x 0x -14x 20. 由⎩⎪⎨⎪⎧y =12x 0x -14x 2,y =-1得⎩⎪⎨⎪⎧x =x 20-42x 0,y =-1.所以Q 为⎝ ⎛⎭⎪⎫x 20-42x 0,-1. 取x 0=2,此时P (2,1),Q (0,-1), 以PQ 为直径的圆为(x -1)2+y 2=2, 交y 轴于点M 1(0,1)、M 2(0,-1);取x 0=1,此时P ⎝ ⎛⎭⎪⎫1,14,Q ⎝ ⎛⎭⎪⎫-32,-1,以PQ 为直径的圆为⎝ ⎛⎭⎪⎫x +142+⎝ ⎛⎭⎪⎫y +382=12564,交y 轴于点M 3(0,1)、M 4⎝⎛⎭⎪⎫0,-74.故若满足条件的点M 存在,只能是M (0,1).以下证明点M (0,1)就是所要求的点.因为MP →=(x 0,y 0-1),MQ →=⎝ ⎛⎭⎪⎫x 20-42x 0,-2, 所以MP →·MQ →=x 20-42-2y 0+2=2y 0-2-2y 0+2=0.故以PQ 为直径的圆恒过y 轴上的定点M (0,1).反思归纳 定点、定值问题必然是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化的量所影响的一个点、一个值,就是要求的定点、定值.化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量. 变式训练 已知直线l :y =x +6,圆O :x 2+y 2=5,椭圆E :y 2a 2+x 2b 2=1(a >b >0)的离心率e =33,直线l 被圆O 截得的弦长与椭圆的短轴长相等.(1)求椭圆E 的方程;(2)过圆O 上任意一点P 作椭圆E 的两条切线,若切线都存在斜率,求证:两切线的斜率之积为定值.(1)解 设椭圆的半焦距为c , 圆心O 到直线l 的距离d =61+1=3,∴b =5-3=2.由题意得⎩⎪⎨⎪⎧ca =33a 2=b 2+c2b =2,∴a 2=3,b 2=2.∴椭圆E 的方程为y 23+x 22=1.(2)证明 设点P (x 0,y 0),过点P 的椭圆E 的切线l 0的方程为y -y 0=k (x -x 0),联立直线l 0与椭圆E 的方程得⎩⎪⎨⎪⎧y =k x -x 0+y 0y 23+x22=1,消去y 得(3+2k 2)x 2+4k (y 0-kx 0)x +2(kx 0-y 0)2-6=0, ∴Δ=[4k (y 0-kx 0)]2-4(3+2k 2)[2(kx 0-y 0)2-6]=0, 整理得,(2-x 20)k 2+2kx 0y 0-(y 20-3)=0,设满足题意的椭圆E 的两条切线的斜率分别为k 1,k 2, 则k 1·k 2=-y 20-32-x 20,∵点P 在圆O 上,∴x 20+y 20=5,∴k 1·k 2=-5-x 20-32-x 20=-1.∴两条切线的斜率之积为常数-1. 题型三 圆锥曲线中的存在性问题例8、如图,椭圆的中心为原点O ,离心率e =22,且a 2c=22.(1)求该椭圆的标准方程;(2)设动点P 满足OP →=OM →+2ON →,其中M 、N 是椭圆上的点,直线OM 与ON 的斜率之积为-12.问:是否存在两个定点F 1,F 2,使得|PF 1|+|PF 2|为定值?若存在,求F 1,F 2的坐标;若不存在,说明理由.审题破题 (1)列方程组求出a 、c 即可;(2)由k OM ·k ON =-12先确定点M 、N 坐标满足条件,再根据OP →=OM →+2ON →寻找点P 满足条件:点P 在F 1、F 2为焦点的椭圆上. 解 (1)由e =c a=22,a 2c=22,解得a =2,c =2,b 2=a 2-c 2=2,故椭圆的标准方程为x 24+y 22=1.(2)设P (x ,y ),M (x 1,y 1),N (x 2,y 2), 则由OP →=OM →+2ON →,得(x ,y )=(x 1,y 1)+2(x 2,y 2)=(x 1+2x 2,y 1+2y 2), 即x =x 1+2x 2,y =y 1+2y 2.因为点M 、N 在椭圆x 2+2y 2=4上,所以x 21+2y 21=4,x 22+2y 22=4, 故x 2+2y 2=(x 21+4x 22+4x 1x 2)+2(y 21+4y 22+4y 1y 2) =(x 21+2y 21)+4(x 22+2y 22)+4(x 1x 2+2y 1y 2)=20+4(x 1x 2+2y 1y 2).设k OM ,k ON 分别为直线OM ,ON 的斜率, 由题设条件知k OM ·k ON =y 1y 2x 1x 2=-12,因此x 1x 2+2y 1y 2=0,所以x 2+2y 2=20. 所以P 点是椭圆x 2252+y 2102=1上的点,设该椭圆的左、右焦点为F 1、F 2,则由椭圆的定义|PF 1|+|PF 2|为定值,又因c =252-102=10,因此两焦点的坐标为F 1(-10,0),F 2(10,0).反思归纳 探究是否存在的问题,一般均是先假设存在,然后寻找理由去确定结论,如果真的存在,则能得出相应结论,如果不存在,则会由条件得出相互矛盾的结论. 变式训练 已知点P 是圆O :x 2+y 2=9上的任意一点,过P 作PD 垂直x 轴于D ,动点Q满足DQ →=23DP →.(1)求动点Q 的轨迹方程;(2)已知点E (1,1),在动点Q 的轨迹上是否存在两个不重合的两点M 、N ,使OE →=12(OM→+ON →)(O 是坐标原点),若存在,求出直线MN 的方程,若不存在,请说明理由. 解 (1)设P (x 0,y 0),Q (x ,y ),依题意,点D 的坐标为D (x 0,0), 所以DQ →=(x -x 0,y ),DP →=(0,y 0), 又DQ →=23DP →,故⎩⎪⎨⎪⎧x -x 0=0,y =23y 0,即⎩⎪⎨⎪⎧x 0=x ,y 0=32y ,因为P 在圆O 上,故有x 20+y 20=9, 所以x 2+⎝ ⎛⎭⎪⎫3y 22=9,即x 29+y 24=1,所以点Q 的轨迹方程为x 29+y 24=1. (2)假设椭圆x 29+y 24=1上存在不重合的两点M (x 1,y 1),N (x 2,y 2)满足OE →=12(OM →+ON →),则E (1,1)是线段MN 的中点,且有⎩⎪⎨⎪⎧ x 1+x 22=1,y 1+y22=1,即⎩⎪⎨⎪⎧x 1+x 2=2,y 1+y 2=2.又M (x 1,y 1),N (x 2,y 2)在椭圆x 29+y 24=1上,所以⎩⎪⎨⎪⎧x 219+y 214=1,x 229+y224=1,两式相减,得x 1-x 2x 1+x 29+y 1-y 2y 1+y 24=0,所以k MN =y 1-y 2x 1-x 2=-49,故直线MN 的方程为4x +9y -13=0.所以椭圆上存在点M ,N 满足OE →=12(OM →+ON →),此时直线MN 的方程为4x +9y -13=0.例9、抛物线的顶点O 在坐标原点,焦点在y 轴负半轴上,过点M (0,-2)作直线l 与抛物线相交于A ,B 两点,且满足OA →+OB →=(-4,-12).(1)求直线l 和抛物线的方程;(2)当抛物线上一动点P 从点A 运动到点B 时,求△ABP 面积的最大值. 规范解答解 (1)根据题意可设直线l 的方程为y =kx -2,抛物线的方程为x 2=-2py (p >0).由⎩⎪⎨⎪⎧y =kx -2,x 2=-2py ,得x 2+2pkx -4p =0.[2分] 设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2pk ,y 1+y 2=k (x 1+x 2)-4=-2pk 2-4.所以OA →+OB →=(-4,-12),所以⎩⎪⎨⎪⎧-2pk =-4,-2pk 2-4=-12,解得⎩⎪⎨⎪⎧p =1,k =2.故直线l 的方程为y =2x -2,抛物线的方程为x 2=-2y .[6分](2)设P (x 0,y 0),依题意,知当抛物线过点P 的切线与l 平行时,△ABP 的面积最大. 对y =-12x 2求导,得y ′=-x ,所以-x 0=2,即x 0=-2, y 0=-12x 20=-2,即P (-2,-2).此时点P 到直线l 的距离d =|2·-2--2-2|22+-12=45=455.[9分]由⎩⎪⎨⎪⎧y =2x -2,x 2=-2y ,得x 2+4x -4=0,则x 1+x 2=-4,x 1x 2=-4, |AB |=1+k 2·x 1+x 22-4x 1x 2=1+22·-42-4·-4=410. 于是,△ABP 面积的最大值为12×410×455=82.[12分]评分细则 (1)由OA →+OB →=(-4,-12)得到关于p ,k 的方程组得2分;解出p 、k 的值给1分;(2)确定△ABP 面积最大的条件给1分;(3)得到方程x 2+4x -4=0给1分. 阅卷老师提醒 最值问题解法有几何法和代数法两种,本题中的曲线上一点到直线的距离的最值可以转化为两条平行线的距离;代数法求最值的基本思路是转化为函数的最值. 课后练习:1. 已知抛物线C :y 2=2px (p >0)的准线为l ,过M (1,0)且斜率为3的直线与l 相交于点A ,与C 的一个交点为B ,若AM →=M B →,则p 等于( )A .1B .2C .3D .4 答案 B解析 如图,由AB 的斜率为3,知α=60°,又AM →=M B →,∴M 为AB 的中点.过点B 作BP 垂直准线l 于点P ,则∠ABP =60°,∴∠BAP =30°. ∴||BP =12||AB =||BM . ∴M 为焦点,即p 2=1,∴p =2.2. 已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则PA 1→·PF 2→的最小值为 ( ) A .-2B .-8116C .1D .0 答案 A解析 由已知得A 1(-1,0),F 2(2,0).设P (x ,y ) (x ≥1),则PA 1→·PF 2→=(-1-x ,-y )·(2-x ,-y )=4x 2-x -5.令f (x )=4x 2-x -5,则f (x )在[1,+∞)上单调递增,所以当x =1时,函数f (x )取最小值,即PA 1→·PF 2→取最小值,最小值为-2.3. 设AB 是过椭圆x 2a 2+y 2b 2(a >b >0)中心的弦,椭圆的左焦点为F 1(-c,0),则△F 1AB 的面积最大为 ( ) A .bcB .abC .acD .b 2答案 A解析 如图,由椭圆对称性知O 为AB 的中点,则△F 1OB 的面积为△F 1AB 面积的一半.又OF 1=c ,△F 1OB 边OF 1上的高为y B ,而y B 的最大值为b .所以△F 1OB 的面积最大值为12cb .所以△F 1AB 的面积最大值为bc .4. 已知点A (-1,0),B (1,0)及抛物线y 2=2x ,若抛物线上点P 满足|PA |=m |PB |,则m 的最大值为( ) A .3B .2C.3D.2答案 C解析 据已知设P (x ,y ), 则有m =|PA ||PB |=x +12+y 2x -12+y 2=x +12+2x x -12+2x=x 2+4x +1x 2+1=1+4xx 2+1=1+4x +1x,据基本不等式有m = 1+4x +1x≤ 1+42x ×1x=3,即m 的最大值为 3.故选C.5. 直线3x -4y +4=0与抛物线x 2=4y 和圆x 2+(y -1)2=1从左到右的交点依次为A 、B 、C 、D ,则|AB ||CD |的值为( )A .16B .116C .4D .14答案 B解析 由⎩⎪⎨⎪⎧3x -4y +4=0,x 2=4y得x 2-3x -4=0,∴x A =-1,x D =4,直线3x -4y +4=0恰过抛物线的焦点F (0,1),∴|AF |=y A +1=54,|DF |=y D +1=5,∴|AB ||CD |=|AF |-1|DF |-1=116.故选B. 6. 过椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点A 的斜率为k 的直线交椭圆C 于另一个点B ,且点B 在x 轴上的射影恰好为右焦点F ,若13<k <12,则椭圆离心率的取值范围是A .(14,94)B .(23,1)C .(12,23)D .(0,12)答案 C解析 点B 的横坐标是c ,故B 的坐标(c ,±b 2a),已知k ∈(13,12),∴B (c ,b 2a).又A (-a,0),则斜率k =b 2a c +a =b 2ac +a 2=a 2-c 2ac +a 2=1-e 2e +1.由13<k <12,解得12<e <23. 7. 已知抛物线y 2=4x ,圆F :(x -1)2+y 2=1,过点F 作直线l ,自上而下顺次与上述两曲线交于点A ,B ,C ,D (如图所示),则|AB |·|CD |的值( )A .等于1B .最小值是1C .等于4D .最大值是4 答案 A解析 设直线l :x =ty +1,代入抛物线方程, 得y 2-4ty -4=0. 设A (x 1,y 1),D (x 2,y 2),根据抛物线定义|AF |=x 1+1,|DF |=x 2+1, 故|AB |=x 1,|CD |=x 2, 所以|AB |·|CD |=x 1x 2=y 214·y 224=y 1y 2216,而y 1y 2=-4,代入上式,得|AB |·|CD |=1.故选A.8. 设F 1,F 2分别是椭圆x 2a 2+y 2b 2=1 (a >b >0)的左,右焦点,若在直线x =a 2c上存在P 使线段PF 1的中垂线过点F 2,则此椭圆离心率的取值范围是( )A.⎝ ⎛⎦⎥⎥⎤0,22B.⎝ ⎛⎦⎥⎥⎤0,33C.⎣⎢⎢⎡⎭⎪⎪⎫22,1D.⎣⎢⎢⎡⎭⎪⎪⎫33,1解析 设P ⎝ ⎛⎭⎪⎫a 2c ,y ,F 1P 的中点Q 的坐标为⎝ ⎛⎭⎪⎫b 22c ,y 2,当kQF 2存在时,则kF 1P =cya 2+c 2,kQF 2=cyb 2-2c 2,由kF 1P ·kQF 2=-1,得y 2=a 2+c 2·2c 2-b 2c 2,y 2≥0,但注意到b 2-2c 2≠0,即2c 2-b 2>0, 即3c 2-a 2>0,即e 2>13,故33<e <1.当kQF 2不存在时,b 2-2c 2=0,y =0, 此时F 2为中点,即a 2c-c =2c ,得e =33,综上,得33≤e <1,即所求的椭圆离心率的范围是⎣⎢⎢⎡⎭⎪⎪⎫33,1.9. 已知椭圆的焦点是F 1(-22,0)和F 2(22,0),长轴长是6,直线y =x +2与此椭圆交于A 、B 两点,则线段AB 的中点坐标是________.答案 ⎝ ⎛⎭⎪⎫-95,15解析 由已知得椭圆方程是x 29+y 2=1,直线与椭圆相交有⎩⎪⎨⎪⎧x 2+9y 2=9,y =x +2,则10x 2+36x +27=0,AB 中点(x 0,y 0)有x 0=12(x A +x B )=-95,y 0=x 0+2=15,所以,AB 中点坐标是⎝ ⎛⎭⎪⎫-95,15.10.点P 在抛物线x 2=4y 的图象上,F 为其焦点,点A (-1,3),若使|PF |+|PA |最小,则相应P 的坐标为________.答案 ⎝⎛⎭⎪⎫-1,14解析 由抛物线定义可知PF 的长等于点P 到抛物线准线的距离,所以过点A 作抛物线准线的垂线,与抛物线的交点⎝ ⎛⎭⎪⎫-1,14即为所求点P 的坐标,此时|PF |+|PA |最小.11. 斜率为3的直线l 过抛物线y 2=4x 的焦点且与该抛物线交于A ,B 两点,则|AB |=_______.答案 163解析 如图,过A 作AA1⊥l ′,l ′为抛物线的准线.过B 作BB 1⊥l ′, 抛物线y 2=4x 的焦点为F (1,0),过焦点F 作FM ⊥A 1A 交 A 1A 于M 点,直线l 的倾斜角为60°,所以|AF |=|AA 1|=|A 1M |+|AM |=2+|AF |·cos 60°,所以|AF |=4,同理得|BF |=43,故|AB |=|AF |+|BF |=163.12.已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A (x 1,y 1),B (x 2,y 2)两点,则y 21+y 22的最小值是________.答案 32 解析 (1)当直线的斜率不存在时,直线方程为x =4,代入y 2=4x ,得交点为(4,4),(4,-4),∴y 21+y 22=16+16=32.(2)当直线的斜率存在时,设直线方程为y =k (x -4),与y 2=4x 联立,消去x 得ky 2-4y -16k =0,由题意知k ≠0,则y 1+y 2=4k ,y 1y 2=-16.∴y 21+y 22=(y 1+y 2)2-2y 1y 2=16k 2+32>32.综合(1)(2)知(y 21+y 22)min =32.13.(2013·天津)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,离心率为33,过点F 且与x 轴垂直的直线被椭圆截得的线段长为433.(1)求椭圆的方程;(2)设A 、B 分别为椭圆的左、右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点.若AC →·DB →+AD →·CB →=8,求k 的值. 解 (1)设F (-c,0),由c a=33,知a =3c .过点F 且与x 轴垂直的直线为x =-c , 代入椭圆方程有-c 2a 2+y 2b 2=1,解得y =±6b3, 于是26b 3=433,解得b =2,又a 2-c 2=b 2,从而a =3,c =1,所以椭圆的方程为x 23+y 22=1.(2)设点C (x 1,y 1),D (x 2,y 2),由F (-1,0)得直线CD 的方程为y =k (x +1),由方程组⎩⎪⎨⎪⎧y =k x +1,x 23+y22=1消去y ,整理得(2+3k 2)x 2+6k 2x +3k 2-6=0.求解可得x 1+x 2=-6k 22+3k 2,x 1x 2=3k 2-62+3k 2.因为A (-3,0),B (3,0),所以AC →·DB →+AD →·CB →=(x 1+3,y 1)·(3-x 2,-y 2)+(x 2+3,y 2)·(3-x 1,-y 1)=6-2x 1x 2-2y 1y 2=6-2x 1x 2-2k 2(x 1+1)(x 2+1) =6-(2+2k 2)x 1x 2-2k 2(x 1+x 2)-2k 2 =6+2k 2+122+3k 2.由已知得6+2k 2+122+3k 2=8,解得k =±2.14.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =23,且椭圆C 上的点到点Q (0,2)的距离的最大值为3. (1)求椭圆C 的方程.(2)在椭圆C 上,是否存在点M (m ,n ),使得直线l :mx +ny =1与圆O :x 2+y 2=1相交于不同的两点A 、B ,且△OAB 的面积最大?若存在,求出点M 的坐标及对应的△OAB 的面积;若不存在,请说明理由. 解 (1)∵e 2=c 2a 2=a 2-b 2a 2=23,∴a 2=3b 2,∴椭圆方程为x 23b 2+y 2b 2=1,即x 2+3y 2=3b 2.设椭圆上的点到点Q (0,2)的距离为d ,则d =x -02+y -22=x 2+y -22=3b 2-3y 2+y -22=-2y +12+3b 2+6,∴当y =-1时,d 取得最大值,d max =3b 2+6=3,解得b 2=1,∴a 2=3. ∴椭圆C 的方程为x 23+y 2=1.(2)假设存在点M (m ,n )满足题意,则m 23+n 2=1,即m 2=3-3n 2.设圆心到直线l 的距离为d ′,则d ′<1, d ′=|m ·0+n ·0-1|m 2+n 2=1m 2+n 2.∴|AB |=212-d ′2=21-1m 2+n 2.∴S △OAB =12|AB |d ′=12·21-1m 2+n 2·1m 2+n 2=1m 2+n 2⎝ ⎛⎭⎪⎫1-1m 2+n 2.∵d ′<1,∴m 2+n 2>1,∴0<1m 2+n 2<1,∴1-1m 2+n 2>0.∴S △OAB =1m 2+n 2⎝ ⎛⎭⎪⎫1-1m 2+n 2≤⎝ ⎛⎭⎪⎫1m 2+n2+1-1m 2+n 222=12, 当且仅当1m 2+n 2=1-1m 2+n 2,即m 2+n 2=2>1时,S △OAB 取得最大值12.由⎩⎪⎨⎪⎧m 2+n 2=2,m 2=3-3n 2得⎩⎪⎨⎪⎧m 2=32,n 2=12,∴存在点M 满足题意,M 点坐标为 ⎝ ⎛⎭⎪⎪⎫62,22,⎝ ⎛⎭⎪⎪⎫62,-22,⎝ ⎛⎭⎪⎪⎫-62,22或⎝ ⎛⎭⎪⎪⎫-62,-22,此时△OAB 的面积为12.。

圆锥曲线复习教学案

圆锥曲线复习教学案

圆锥曲线复习一、基础知识梳理注意:椭圆类型的判断方法是 ,当焦点位置不明确而无法确定其标准方程时,可设221(0,0,)x y m n m n m n+=>>≠以避免讨论和繁杂的计算,也可设为221(0,0,)Ax By A B A B +=>>≠。

注意:双曲线类型的判断方法是 ,当焦点位置不明确而无法确定其标准方程时,可设221(0)x y mn m n+=<以避免讨论和繁杂的计算,也可设为221(0)Ax By AB +=<这种形式在解题中更简便。

二、典型例题1、根据下列条件分别求椭圆的标准方程(1)和椭圆229436x y +=有相同的焦点,且经过点(2,3)Q -; (2)长轴长是短轴长的3倍,且经过点(3,2)P 。

2、根据下列条件分别求双曲线的标准方程(1)离心率为2,且与椭圆224936x y +=有公共焦点;(2)过(3)3--两点(3)与221916x y -=有相同的渐近线,且过点(A - (4)一条渐近线是34y x =,实轴长为123、动圆M 与定圆C :224320x y y +--=相内切且经过圆C 内的一定点A (0,-2),求动圆圆心M 的轨迹方程。

4、已知12,F F 是椭圆的两个焦点,点P 是椭圆上一点,123F PF π∠=(1)求椭圆的离心率;(2)求证:12PF F 的面积只与椭圆的短轴长有关。

5、若点P 是椭圆221259x y +=上的任意一点,12,F F 是椭圆的两个焦点 (1)求12PF PF ⋅的取值范围;(2)求12PF PF ⋅的取值范围6、已知点A (1,1),1F 是椭圆225945x y +=的左焦点,点P 是此椭圆上的动点,(1)求1PA PF +的最值;(2)求132PA PF +的最小值。

7、已知椭圆具有性质:若M 、N 是椭圆C 上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM 、PN 的斜率,PM PN k k 都存在时,那么,PM PNk k 的积是与点P 的位置无关的定值。

《圆锥曲线与方程》复习课教案

《圆锥曲线与方程》复习课教案

一、课题:《圆锥曲线与方程》的复习二、教学目的:1、通过小结与复习,使同学们完整准确地理解和掌握三种曲线的特点以及它们之间的区别与联系。

2、通过本节教学使学生较全面地掌握本章所教的各种方法与技巧,尤其是解析几何的基本方法――坐标法;并在教学中进一步培养他们形与数结合的思想、化归的思想以及“应用数学”的意识3、结合教学内容对学生进行运动变化、自我总结和对立统一的观点的教育 三、教学方法:讲授法、练习法四、教学重点:自我总结并引导学生对三种曲线的标准方程和图形、性质的总结 五、教学难点:做好思路分析,引导学生找到解题的落足点,使学生能够自己独立对知识进行总结 六、教学过程: (一)知识梳理: 1.曲线与方程⑴曲线C 上的点与二元方程()0,=y x f 的实数解建立如下关系: ①曲线上的点的坐标都是这个方程的解; ②以上这个方程的解为坐标的点都是曲线上的点.⑵求曲线的方程的一般步骤①建系;②设点;③列方程;④化简;⑤检查. 2.圆锥曲线的定义⑴平面内满足()212122F F a a PF PF >=+的点P 的轨迹叫做椭圆,定义可实现椭圆上的点到两焦点的距离的相互转化.⑵平面内满足()212122F F a a PF PF <=-的点P 的轨迹叫做双曲线,()212122F F a a PF PF <=-表示焦点2F 对应的一支,定义可实现双曲线上的点到两焦点的距离的相互转化.⑶平面内与一个顶点F 与一条定直线l (不经过点F )距离相等的点的轨迹叫做抛物线,定义可实现抛物线上的点到焦点与到准线距离的相互转化. 3.圆锥曲线的标准方程椭圆、双曲线有两种形式的标准方程,抛物线有四种形式的标准方程.根据曲线方程的形式来确定焦点的位置,根据焦点的位置选择恰当的方程形式. 4.圆锥曲线的简单几何性质⑴圆锥曲线的范围往往作为解题的隐含条件. ⑵双曲线焦点位置不同,渐近线方程不同.⑶椭圆有四个顶点,双曲线有两个顶点,抛物线有一个顶点⑷椭圆、双曲线有两条对称轴和一个对称中心,抛物线只有一条对称轴. ⑸圆锥曲线中基本量p e c b a ,,,,的几何意义及相互转化. 6.直线与圆锥曲线的位置关系⑴直线与圆锥曲线的公共点个数等于由它们的方程构成的方程组解的个数. ⑵直线与椭圆有一个公共点,直线与椭圆相切,但直线与双曲线、抛物线不一定相切,双曲线与平行于渐近线的直线,抛物线与平行(重合)于轴的直线,都只有一个公共点但不相切.7.直线与圆锥曲线相交的弦长⑴求弦长的方法是将直线与圆锥曲线的方程联立后,求出两点坐标,利用两点间距离公式,常用的方法是结合韦达定理,如直线b kx y +=与圆锥曲线相交于()()2211,,,y x B y x A 两点,弦长()21221241x x x x k AB -++=.⑵过抛物线焦点的弦长问题结合定义来解决能化简计算. 8.元圆锥曲线有关的“中点弦”弦的中点坐标与斜率可由曲线方程得到关系,此法称为“点差法”,灵活运用科简化计算,但要以直线与曲线相交为前提,即消元后的方程判别式大于零. 9.当直线过x 轴上的点()0,m M 时,设直线方程为m ty x +=与抛物线方程()022>=p px y 联立消元后的方程较简。

2019-2020学年高考数学总复习(圆锥曲线综合)教学案 苏教版.doc

2019-2020学年高考数学总复习(圆锥曲线综合)教学案 苏教版.doc

2019-2020学年高考数学总复习(圆锥曲线综合)教学案 苏教版【知识与方法】1、若直线mx +ny =4和⊙O :x 2+y 2=4没有交点,则过点(m ,n )的直线与椭圆x 29+y 24=1的交点个数( )A .至多一个B .2个C .1个D .0个2、抛物线y 2=4x 的焦点是F ,准线是l ,点M (4,4)是抛物线上一点,则经过点F 、M 且与l 相切的圆共有 ( )A .0个B .1个C .2个D .4个3、斜率为1的直线l 与椭圆x 24+y 2=1相交于A 、B 两点,则|AB |的最大值为 ( )A .2B.455C.4105D.81054、已知抛物线y =-x 2+3上存在关于直线x +y =0对称的相异两点A 、B ,则|AB |等于 ( )A .3B .4C .3 2D .4 25、已知对∀k ∈R ,直线y -kx -1=0与椭圆x 25+y 2m=1恒有公共点,则实数m 的取值范围是6、已知F 为抛物线C :y 2=4x 的焦点,过F 且斜率为1的直线交C 于A 、B 两点.设|FA |>|FB |,则|FA |与|FB |的比值等于________.7、已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则双曲线离心率e 的最大值为________. 【理解与应用】8、已知动圆过定点(2,0),且与直线x =-2相切. (1)求动圆的圆心轨迹C 的方程;(2)是否存在直线l ,使l 过点(0,2),并与轨迹C 交于P ,Q 两点,且满足OP ·OQ =0?若存在,求出直线l 的方程;若不存在,说明理由.9、如图,设抛物线方程为x 2=2py (p >0),M 为直线y =-2p 上任意一点,过M 引抛物线的切线,切点分别为A ,B .(1)求证:A ,M ,B 三点的横坐标成等差数列;(2)已知当M 点的坐标为(2,-2p )时,|AB |=410.求此时抛物线的方程;10、已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,短轴一个端点到右焦点的距离为 3.(1)求椭圆C 的方程;(2)设直线l 与椭圆C 交于A 、B 两点,坐标原点O 到直线l 的距离为32,求△AOB 面积的最大值.华侨城中学2011年高考数学总复习教学案(教师版)复习内容:圆锥曲线综合【知识与方法】1、若直线mx +ny =4和⊙O :x 2+y 2=4没有交点,则过点(m ,n )的直线与椭圆x 29+y 24=1的交点个数( )A .至多一个B .2个C .1个D .0个 解析:由直线mx +ny =4和⊙O :x 2+y 2=4没有交点得4m 2+n2>2,m 2+n 2<4,点(m ,n )表示的区域在椭圆x 29+y 24=1的内部,则过点(m ,n )的直线与椭圆x 29+y 24=1的交点个数为2个.答案:B 2、抛物线y 2=4x 的焦点是F ,准线是l ,点M (4,4)是抛物线上一点,则经过点F 、M 且与l 相切的圆共有 ( )A .0个B .1个C .2个D .4个解析:由于圆经过焦点F 且与准线l 相切,由抛物线的定义知圆心在抛物线上,又因为圆经过抛物线上的点M ,所以圆心在线段FM 的垂直平分线上,即圆心是线段FM 的垂直平分线与抛物线的交点,结合图形易知有两个交点,因此一共有2个满足条件的圆. 答案:C3、斜率为1的直线l 与椭圆x 24+y 2=1相交于A 、B 两点,则|AB |的最大值为 ( )A .2B.455C.4105D.8105解析:设椭圆截直线于A (x 1,y 1),B (x 2,y 2)两点,⎩⎪⎨⎪⎧x 2+4y 2=4,y =x +t ,消去y ,得5x 2+8tx +4(t 2-1)=0.则有x 1+x 2=-85t ,x 1x 2=4(t 2-1)5.∴|AB |= 1+k 2|x 1-x 2|=2·(-85t )2-4×4(t 2-1)5=425 5-t 2,当t =0时,|AB |max =4105.答案:C 4、已知抛物线y =-x 2+3上存在关于直线x +y =0对称的相异两点A 、B ,则|AB |等于 ( )A .3B .4C .3 2D .4 2解析:设直线AB 的方程为y =x +b ,由⎩⎪⎨⎪⎧y =-x 2+3y =x +b⇒x 2+x +b -3=0⇒x 1+x 2=-1,得AB 的中点M (-12,-12+b ),又M (-12,-12+b )在直线x +y =0上可求出b =1,∴x 2+x -2=0,则|AB |=1+12(-1)2-4×(-2)=3 2.答案:C5、已知对∀k ∈R ,直线y -kx -1=0与椭圆x 25+y 2m=1恒有公共点,则实数m 的取值范围是 ( )A .(0,1)B .(0,5)C .[1,5)∪(5,+∞)D .[1,5) 解析:直线恒过定点(0,1),若直线与椭圆恒有公共点,只需点(0,1)在椭圆上或内部,∴1m≤1,又m >0且m ≠5,∴m ≥1且m ≠5.答案:C6、已知F 为抛物线C :y 2=4x 的焦点,过F 且斜率为1的直线交C 于A 、B 两点.设|FA |>|FB |,则|FA |与|FB |的比值等于________.解析:F (1,0),∴直线AB 的方程为y =x -1.⎩⎪⎨⎪⎧y =x -1,y 2=4x⇒x 2-6x +1=0⇒x =3±2 2.∵|FA |>|FB |,由抛物线定义知A 点的横坐标为3+22,B 点的横坐标为3-2 2.|FA ||FB |=x A +1x B +1=4+224-22=2+22-2=6+422=3+2 2.答案:3+2 2 7、已知双曲线x 2a -y 2b=1(a >0,b >0)的左、右焦点分别为F 1、F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则双曲线离心率e 的最大值为________.解析:设∠F 1PF 2=θ,由⎩⎪⎨⎪⎧|PF 1|-|PF 2|=2a ,|PF 1|=4|PF 2|得⎩⎪⎨⎪⎧|PF 1|=83a ,|PF 2|=23a ,∴cos θ=17a 2-9c 28a 2=178-98e 2. ∵cos θ∈[-1,1),∴1<e ≤53.答案:538、已知动圆过定点(2,0),且与直线x =-2相切. (1)求动圆的圆心轨迹C 的方程;(2)是否存在直线l ,使l 过点(0,2),并与轨迹C 交于P ,Q 两点,且满足OP ·OQ =0?若存在,求出直线l 的方程;若不存在,说明理由.解:(1)如图,设M 为动圆圆心,F (2,0),过点M 作直线x =-2的垂线,垂足为N ,由题意知:|MF |=|MN |,即动点M 到定点F 与到定直线x =-2的距离相等,由抛物线的定义知,点M 的轨迹为抛物线,其中F (2,0)为焦点,x =-2为准线, 所以动圆圆心轨迹C 的方程为y 2=8x .(2)由题可设直线l 的方程为x =k (y -2)(k ≠0), 由⎩⎪⎨⎪⎧x =k (y -2)y 2=8x,得y 2-8ky +16k =0,Δ=(-8k )2-4×16k >0,解得k <0或k >1.设P (x 1,y 1),Q (x 2,y 2),则y 1+y 2=8k ,y 1y 2=16k ,由OP ·OQ =0,得x 1x 2+y 1y 2=0,即k 2(y 1-2)(y 2-2)+y 1y 2=0,整理得:(k 2+1)y 1y 2-2k 2(y 1+y 2)+4k 2=0,代入得16k (k 2+1)-2k 2·8k +4k 2=0,即16k +4k 2=0, 解得k =-4或k =0(舍去),所以直线l 存在,其方程为x +4y -8=0.9、如图,设抛物线方程为x 2=2py (p >0),M 为直线y =-2p 上任意一点,过M 引抛物线的切线,切点分别为A ,B .(1)求证:A ,M ,B 三点的横坐标成等差数列;(2)已知当M 点的坐标为(2,-2p )时,|AB |=410.求此时抛物线的方程;解答:(1)证明:由题意设A (x 1,x 212p ),B (x 2,x 222p ),x 1<x 2,M (x 0,-2p ).由x 2=2py 得y =x 22p ,得y ′=x p ,所以k MA =x 1p ,k MB =x 2p.直线MA 的方程为y +2p =x 1p (x -x 0),直线MB 的方程为y +2p =x 2p (x -x 0).所以x 212p +2p =x 1p(x 1-x 0) ①x 222p +2p x 2p (x 2-x 0).②由①、②得x 1+x 22=x 1+x 2-x 0,因此x 0=x 1+x 22,即2x 0=x 1+x 2. 所以A ,M ,B 三点的横坐标成等差数列.(2)由(1)知,当x 0=2时,将其代入①、②并整理得:x 21-4x 1-4p 2=0,x 22-4x 2-4p 2=0, 所以x 1,x 2是方程x 2-4x -4p 2=0的两根,因此x 1+x 2=4,x 1x 2=-4p 2,又k AB =x 222p -x 212p x 2-x 1=x 1+x 22p =x 0p ,所以k AB =2p.由弦长公式得|AB |=1+k 2(x 1+x 2)2-4x 1x 2=1+4p216+16p 2.又|AB |=410,所以p =1或p =2,因此所求抛物线方程为x 2=2y 或x 2=4y . 10、已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,短轴一个端点到右焦点的距离为 3.(1)求椭圆C 的方程;(2)设直线l 与椭圆C 交于A 、B 两点,坐标原点O 到直线l 的距离为32,求△AOB 面积的最大值. 解:(1)设椭圆的半焦距为c ,依题意⎩⎪⎨⎪⎧ca =63,a =3,∴b =1,∴所求椭圆方程为x 23+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2).①当AB ⊥x 轴时,|AB |= 3.②当AB 与x 轴不垂直时, 设直线AB 的方程为y =kx +m .由已知|m |1+k2=32,得m 2=34(k 2+1). 把y =kx +m 代入椭圆方程,整理得(3k 2+1)x 2+6kmx +3m 2-3=0,∴x 1+x 2=-6km 3k 2+1,x 1x 2=3(m 2-1)3k 2+1.∴|AB |2=(1+k 2)⎣⎢⎡⎦⎥⎤36k 2m 2(3k 2+1)2-12(m 2-1)3k 2+1 =12(k 2+1)(3k 2+1-m 2)(3k 2+1)2=3(k 2+1)(9k 2+1)(3k 2+1)2=3+12k29k 4+6k 2+1=3+129k 2+1k2+6(k ≠0) ≤3+122×3+6=4.当且仅当9k 2=1k 2,即k =±33时等号成立.当k =0时,|AB |= 3.综上所述,|AB |max =2.∴当|AB |最大时,△AOB 面积取最大值:S max =12×|AB |max ×32=32.11、直线y =kx -2与抛物线y 2=8x 交于A 、B 不同两点,且AB 的中点横坐标为2,则k 的值是________.解析:设A (x 1,y 1)、B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx -2,y 2=8x ,消去y 得k 2x 2-4(k +2)x +4=0,由题意得⎩⎪⎨⎪⎧Δ=[-4(k +2)]2-4×k 2×4>0,x 1+x 2=4(k +2)k 2=2×2,∴⎩⎪⎨⎪⎧k >-1,k =-1或k =2,即k =2.答案: 212、倾斜角为π4的直线交椭圆x 24+y 2=1于A 、B 两点,则线段AB 的中点M 的轨迹方程是________.解析:设M (x ,y ),A (x 1,y 1),B (x 2,y 2),则有x 214+y 21=1,①x 224+y 22=1,②①-②得14(x 1+x 2)(x 1-x 2)+(y 1+y 2)(y 1-y 2)=0.③又直线AB 的斜率k =tan π4=y 1-y 2x 1-x 2=1,∴y 1-y 2=x 1-x 2.④由中点坐标公式得x 1+x 22=x ,y 1+y 22=y ,即x 1+x 2=2x ,y 1+y 2=2y .⑤把④⑤代入到③中得x =-4y ,∴直线方程为x +4y =0,由⎩⎪⎨⎪⎧x 24+y 2=1,x +4y =0,得x 2=165.∴x 1=-455,x 2=455.∴点M 的轨迹方程为x +4y =0(-455<x <455).答案:x +4y =0(-455<x <455)。

2019-2020年高二数学圆锥曲线方程复习教案 苏教版

2019-2020年高二数学圆锥曲线方程复习教案 苏教版

一、本讲进度《圆锥曲线方程》复习二、本讲主要内容1、三种圆锥曲线:椭圆、双曲线、抛物线的定义、标准方程、几何性质等。

2、直线和圆锥曲线位置关系。

3、求轨迹方程的常规方法。

三、复习指导1、解析几何的基本问题之一:如何求曲线(点的轨迹)方程。

它一般分为两类基本题型:一是已知轨迹类型求其方程,常用待定系数法,如求直线及圆的方程就是典型例题;二是未知轨迹类型,此时除了用代入法、交轨法、参数法等求轨迹的方法外,通常设法利用已知轨迹的定义解题,化归为求已知轨迹类型的轨迹方程。

因此在求动点轨迹方程的过程中,一是寻找与动点坐标有关的方程(等量关系),侧重于数的运算,一是寻找与动点有关的几何条件,侧重于形,重视图形几何性质的运用。

在基本轨迹中,除了直线、圆外,还有三种圆锥曲线:椭圆、双曲线、抛物线。

2、三种圆锥曲线的研究(1)统一定义,三种圆锥曲线均可看成是这样的点集:,其中F为定点,d为P到定直线的距离,F,如图。

因为三者有统一定义,所以,它们的一些性质,研究它们的一些方法都具有规律性。

当0<e<1时,点P轨迹是椭圆;当e>1时,点P轨迹是双曲线;当e=1时,点P轨迹是抛物线。

(2)椭圆及双曲线几何定义:椭圆:{P||PF1|+|PF2|=2a,2a>|F1F2|>0,F1、F2为定点},双曲线{P|||PF1|-|PF2||=2a,|F1F2|>2a>0,F1,F2为定点}。

(3)圆锥曲线的几何性质:几何性质是圆锥曲线内在的,固有的性质,不因为位置的改变而改变。

①定性:焦点在与准线垂直的对称轴上椭圆及双曲线中:中心为两焦点中点,两准线关于中心对称;椭圆及双曲线关于长轴、短轴或实轴、虚轴成轴对称,关于中心成中心对称。

②定量:举焦点在x轴上的方程如下:既熟练掌握方程组理论,又关注图形的几何性质,以简化运算。

3、直线和圆锥曲线位置关系(1)位置关系判断:△法(△适用对象是二次方程,二次项系数不为0)。

高三理科数学复习教案:圆锥曲线与方程总复习教案

高三理科数学复习教案:圆锥曲线与方程总复习教案

高三理科数学复习教案:圆锥曲线与方程总复习教案【】欢迎来到查字典数学网高三数学教案栏目,教案逻辑思路清晰,符合认识规律,培养学生自主学习适应和能力。

因此小编在此为您编辑了此文:高三理科数学复习教案:圆锥曲线与方程总复习教案期望能为您的提供到关心。

本文题目:高三理科数学复习教案:圆锥曲线与方程总复习教案高考导航考试要求重难点击命题展望1.了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用;2.把握椭圆、抛物线的定义、几何图形、标准方程及简单性质;3.了解双曲线的定义、几何图形和标准方程,明白它的简单几何性质;4.了解圆锥曲线的简单应用;5.明白得数形结合的思想;6.了解方程的曲线与曲线的方程的对应关系. 本章重点:1.椭圆、双曲线、抛物线的定义、几何图形、标准方程及简单性质;2.直线与圆锥曲线的位置关系问题;3.求曲线的方程或曲线的轨迹;4.数形结合的思想,方程的思想,函数的思想,坐标法.本章难点:1.对圆锥曲线的定义及性质的明白得和应用;2.直线与圆锥曲线的位置关系问题;3.曲线与方程的对应关系. 圆锥曲线与函数、方程、不等式、三角形、平面向量等知识结合是高考常考题型.极有可能以一小一大的形式显现,小题要紧考查圆锥曲线的标准方程及几何性质等基础知识、差不多技能和差不多方法运用;解答题常作为数学高考的把关题或压轴题,综合考查学生在数形结合、等价转换、分类讨论、逻辑推理等方面的能力.知识网络9.1 椭圆典例精析题型一求椭圆的标准方程【例1】已知点P在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为453和253,过P作长轴的垂线恰好过椭圆的一个焦点,求椭圆的方程.【解析】由椭圆的定义知,2a=453+253=25,故a=5,由勾股定理得,(453)2-(253)2=4c2,因此c2=53,b2=a2-c2=103,故所求方程为x25+3y210=1或3x210+y25=1.【点拨】(1)在求椭圆的标准方程时,常用待定系数法,然而当焦点所在坐标轴不确定时,需要考虑两种情形,有时也可设椭圆的统一方程形式:mx2+ny2=1(m0,n0且m(2)在求椭圆中的a、b、c时,经常用到椭圆的定义及解三角形的知识.【变式训练1】已知椭圆C1的中心在原点、焦点在x轴上,抛物线C 2的顶点在原点、焦点在x轴上.小明从曲线C1,C2上各取若干个点(每条曲线上至少取两个点),并记录其坐标(x,y).由于记录失误,使得其中恰有一个点既不在椭圆C1上,也不在抛物线C2上.小明的记录如下:据此,可推断椭圆C1的方程为.【解析】方法一:先将题目中的点描出来,如图,A(-2,2),B(-2,0),C(0,6),D(2,-22),E(22,2),F(3,-23).通过观看可明白点F,O,D可能是抛物线上的点.而A,C,E是椭圆上的点,这时正好点B既不在椭圆上,也不在抛物线上.明显半焦距b=6,则不妨设椭圆的方程是x2m+y26=1,则将点A(-2,2)代入可得m=12,故该椭圆的方程是x212+y26=1.方法二:欲求椭圆的解析式,我们应先求出抛物线的解析式,因为抛物线的解析式形式比椭圆简单一些.不妨设有两点y21=2px1,①y22=2px2,②y21y22=x1x2,则可知B(-2,0),C(0,6)不是抛物线上的点.而D(2,-22),F(3,-23)正好符合.又因为椭圆的交点在x轴上,故B(-2,0),C(0,6)不可能同时显现.故选用A(-2,2),E(22,2)这两个点代入,可得椭圆的方程是x212+y26=1.题型二椭圆的几何性质的运用【例2】已知F1、F2是椭圆的两个焦点,P为椭圆上一点,F1PF2=60.(1)求椭圆离心率的范畴;(2)求证:△F1PF2的面积只与椭圆的短轴长有关.【解析】(1)设椭圆的方程为x2a2+y2b2=1(a0),|PF1|=m,|PF2|=n,在△F1PF2中,由余弦定理可知4c2=m2+n2-2mncos 60,因为m+n=2a,因此m2+n2=(m+n)2-2mn=4a2-2mn,因此4c2=4a2-3mn,即3mn=4a2-4c2.又mn(m+n2)2=a2(当且仅当m=n时取等号),因此4a2-4c23a2,因此c2a214,即e12,因此e的取值范畴是[12,1).(2)由(1)知mn=43b2,因此=12mnsin 60=33b2,即△F1PF2的面积只与椭圆的短轴长有关.【点拨】椭圆中△F1PF2往往称为焦点三角形,求解有关问题时,要注意正、余弦定理,面积公式的使用;求范畴时,要专门注意椭圆定义(或性质)与不等式的联合使用,如|PF1||PF2|(|PF1|+|PF2|2)2,|PF1|a-c.【变式训练2】已知P是椭圆x225+y29=1上的一点,Q,R分别是圆(x +4)2+y2=14和圆(x-4)2+y2=14上的点,则|PQ|+|PR|的最小值是.【解析】设F1,F2为椭圆左、右焦点,则F1,F2分别为两已知圆的圆心,则|PQ|+|PR|(|PF1|-12)+(|PF2|-12)=|PF1|+|PF2|-1=9.因此|PQ|+|PR|的最小值为9.题型三有关椭圆的综合问题【例3】(2021全国新课标)设F1,F2分别是椭圆E:x2a2+y2b2=1(a0)的左、右焦点,过F1斜率为1的直线l与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求E的离心率;(2)设点P(0,-1)满足|PA|=|PB|,求E的方程.【解析】(1)由椭圆定义知|AF2|+|BF2|+|AB|=4a,又2|AB|=|AF2|+|BF2|,得|AB|=43a.l的方程为y=x+c,其中c=a2-b2.设A(x1,y1),B(x2,y2),则A,B两点坐标满足方程组化简得(a2+b2)x2+2a2cx+a2(c2-b2)=0,则x1+x2=-2a2ca2+b2,x1x2=a2(c2-b2)a2+b2.因为直线AB斜率为1,因此|AB|=2|x2-x1|=2[(x1+x2)2-4x1x2],即43a=4ab2a2+b2,故a2=2b2,因此E的离心率e=ca=a2-b2a=22.(2 )设AB的中点为N(x0,y0),由(1)知x0=x1+x22=-a2ca2+b2=-23c,y 0=x0+c=c3.由|PA|=|PB|kPN=-1,即y0+1x0=-1c=3.从而a=32,b=3,故E的方程为x218+y29=1.【变式训练3】已知椭圆x2a2+y2b2=1(a0)的离心率为e,两焦点为F1,F2,抛物线以F1为顶点,F2为焦点,P为两曲线的一个交点,若|PF1||PF2 |=e,则e的值是()A.32B.33C.22D.63【解析】设F1(-c,0),F2(c,0),P(x0,y0),则椭圆左准线x=-a2c,抛物线准线为x=-3c,x0-(-a2c)=x0-(-3c)c2a2=13e=33.故选B.总结提高1.椭圆的标准方程有两种形式,其结构简单,形式对称且系数的几何意义明确,在解题时要防止遗漏.确定椭圆需要三个条件,要确定焦点在哪条坐标轴上(即定位),还要确定a、b的值(即定量),若定位条件不足应分类讨论,或设方程为mx2+ny2=1(m0,n0,mn)求解.2.充分利用定义解题,一方面,会依照定义判定动点的轨迹是椭圆,另一方面,会利用椭圆上的点到两焦点的距离和为常数进行运算推理.3.焦点三角形包含着专门多关系,解题时要多从椭圆定义和三角形的几何条件入手,且不可顾此失彼,另外一定要注意椭圆离心率的范畴.9.2 双曲线典例精析题型一双曲线的定义与标准方程【例1】已知动圆E与圆A:(x+4)2+y2=2外切,与圆B:( x-4)2+y2= 2内切,求动圆圆心E的轨迹方程.【解析】设动圆E的半径为r,则由已知|AE|=r+2,|BE|=r-2,因此|AE|-|BE|=22,又A(-4,0),B(4,0),因此|AB|=8,22|AB|.依照双曲线定义知,点E的轨迹是以A、B为焦点的双曲线的右支.因为a=2,c=4,因此b2=c2-a2=14,故点E的轨迹方程是x22-y214=1(x2).【点拨】利用两圆内、外切圆心距与两圆半径的关系找出E点满足的几何条件,结合双曲线定义求解,要专门注意轨迹是否为双曲线的两支.【变式训练1】P为双曲线x29-y216=1的右支上一点,M,N分别是圆(x+5)2+y2=4和(x-5)2+y2=1上的点,则|PM|-|PN|的最大值为()A.6B.7C.8D.9【解析】选D.题型二双曲线几何性质的运用【例2】双曲线C:x2a2-y2b2=1(a0,b0)的右顶点为A,x轴上有一点Q(2a,0),若C上存在一点P,使=0,求此双曲线离心率的取值范畴.【解析】设P(x,y),则由=0,得APPQ,则P在以AQ为直径的圆上,即(x-3a2)2+y2=(a2)2,①又P在双曲线上,得x2a2-y2b2=1,②由①②消去y,得(a2+b2)x2-3a3x+2a4-a2b2=0,即[(a2+b2)x-(2a3-ab2)](x-a)=0,当x=a时,P与A重合,不符合题意,舍去;当x=2a3-ab2a2+b2时,满足题意的点P存在,需x=2a3-ab2a2+b2a,化简得a22b2,即3a22c2,ca62,因此离心率的取值范畴是(1,62).【点拨】依照双曲线上的点的范畴或者焦半径的最小值建立不等式,是求离心率的取值范畴的常用方法.【变式训练2】设离心率为e的双曲线C:x2a2-y2b2=1(a0,b0)的右焦点为F,直线l过焦点F,且斜率为k,则直线l与双曲线C的左、右两支都相交的充要条件是()A.k2-e21B.k2-e21C.e2-k21D.e2-k21【解析】由双曲线的图象和渐近线的几何意义,可知直线的斜率k只需满足-ba题型三有关双曲线的综合问题【例3】(2021广东)已知双曲线x22-y2=1的左、右顶点分别为A1、A 2,点P(x1,y1),Q(x1,-y1)是双曲线上不同的两个动点.(1)求直线A1P与A2Q交点的轨迹E的方程;(2)若过点H(0,h)(h1)的两条直线l1和l2与轨迹E都只有一个交点,且l1l2,求h的值.【解析】(1)由题意知|x1|2,A1(-2,0),A2(2,0),则有直线A1P的方程为y=y1x1+2(x+2),①直线A2Q的方程为y=-y1x1-2(x-2).②方法一:联立①②解得交点坐标为x=2x1,y=2y1x1,即x1=2x,y1=2 yx,③则x0,|x|2.而点P(x1,y1)在双曲线x22-y2=1上,因此x212-y21=1.将③代入上式,整理得所求轨迹E的方程为x22+y2=1,x0且x2.方法二:设点M(x,y)是A1P与A2Q的交点,①②得y2=-y21x21-2(x 2-2).③又点P(x1,y1)在双曲线上,因此x212-y21=1,即y21=x212-1.代入③式整理得x22+y2=1.因为点P,Q是双曲线上的不同两点,因此它们与点A1,A2均不重合.故点A1和A2均不在轨迹E上.过点(0,1)及A2(2,0)的直线l的方程为x+2 y-2=0.解方程组得x=2,y=0.因此直线l与双曲线只有唯独交点A2.故轨迹E只是点(0,1).同理轨迹E也只是点(0,-1).综上分析,轨迹E的方程为x22+y2=1,x0且x2.(2)设过点H(0,h)的直线为y=kx+h(h1),联立x22+y2=1得(1+2k2)x2+4khx+2h2-2=0.令=16k2h2-4(1+2k2)(2h2-2)=0,得h2-1-2k2=0,解得k1=h2-12,k2=-h2-12.由于l1l2,则k1k2=-h2-12=-1,故h=3.过点A1,A2分别引直线l1,l2通过y轴上的点H(0,h),且使l1l2,因此A1HA2H,由h2(-h2)=-1,得h=2.现在,l1,l2的方程分别为y=x+2与y=-x+2,它们与轨迹E分别仅有一个交点(-23,223)与(23,223).因此,符合条件的h的值为3或2.【变式训练3】双曲线x2a2-y2b2=1(a0,b0)的左、右焦点分别为F1,F 2,离心率为e,过F2的直线与双曲线的右支交于A,B两点,若△F1AB 是以A为直角顶点的等腰直角三角形,则e2等于()A.1+22B.3+22C.4-22D.5-22【解析】本题考查双曲线定义的应用及差不多量的求解.据题意设|AF1|=x,则|AB|=x,|BF1|=2x.由双曲线定义有|AF1|-|AF2|=2a,|BF1|-|BF2|=2a(|AF1|+|BF1|)-(|AF2|+|BF2|)=(2+1)x-x=4a,即x=22a=|AF1|.故在Rt△AF1F2中可求得|AF2|=|F1F2|2-|AF1|2=4c2-8a2.又由定义可得|AF2|=|AF1|-2a=22a-2a,即4c2-8a2=22-2a,两边平方整理得c2=a2(5-22)c2a2=e2=5-22,故选D.总结提高1.要与椭圆类比来明白得、把握双曲线的定义、标准方程和几何性质,但应专门注意不同点,如a,b,c的关系、渐近线等.2.要深刻明白得双曲线的定义,注意其中的隐含条件.当||PF1|-|PF2||=2a| F1F2|时,P的轨迹是双曲线;当||PF1|-|PF2||=2a=|F1F2|时,P的轨迹是以F1或F2为端点的射线;当||PF1|-|PF2||=2a|F1F2|时,P无轨迹.3.双曲线是具有渐近线的曲线,画双曲线草图时,一样先画出渐近线,要把握以下两个问题:(1)已知双曲线方程,求它的渐近线;(2)求已知渐近线的双曲线的方程.如已知双曲线渐近线y=bax,可将双曲线方程设为x2a2-y2b2=(0),再利用其他条件确定的值,求法的实质是待定系数法.9.3 抛物线典例精析题型一抛物线定义的运用【例1】依照下列条件,求抛物线的标准方程.(1)抛物线过点P(2,-4);(2)抛物线焦点F在x轴上,直线y=-3与抛物线交于点A,|AF|=5.【解析】(1)设方程为y2=mx或x2=ny.将点P坐标代入得y2=8x或x2=-y.(2)设A(m,-3),所求焦点在x轴上的抛物线为y2=2px(p0),由定义得5=|AF|=|m+p2|,又(-3)2=2pm,因此p=1或9,所求方程为y2=2x或y2=18x.【变式训练1】已知P是抛物线y2=2x上的一点,另一点A(a,0) (a0)满足|P A|=d,试求d的最小值.【解析】设P(x0,y0) (x00),则y20=2x0,因此d=|PA|=(x0-a)2+y20=(x0-a)2+2x0=[x0+(1-a)]2+2a-1.因为a0,x00,因此当0当a1时,现在有x0=a-1,dmin=2a-1.题型二直线与抛物线位置讨论【例2】(2021湖北)已知一条曲线C在y轴右侧,C上每一点到点F(1,0)的距离减去它到y轴距离的差差不多上1.(1)求曲线C的方程;(2)是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B 的任一直线,都有0?若存在,求出m的取值范畴;若不存在,请说明理由.【解析】(1)设P(x,y)是曲线C上任意一点,那么点P(x,y)满足:(x-1)2+y2-x=1(x0).化简得y2=4x(x0).(2)设过点M(m,0)(m0)的直线l与曲线C的交点为A(x1,y1),B(x2,y 2).设l的方程为x=ty+m,由得y2-4ty-4m=0,=16(t2+m)0,因此①又=(x1-1,y1),=(x2-1,y2).(x1-1)(x2-1)+y1y2=x1x2-(x1+x2)+1+y1y20.②又x=y24,因此不等式②等价于y214y224+y1y2-(y214+y224)+10(y1y2)216+y1y2-14[(y1+y2)2-2y1y2]+10.③由①式,不等式③等价于m2-6m+14t2.④对任意实数t,4t2的最小值为0,因此不等式④关于一切t成立等价于m 2-6m+10,即3-22由此可知,存在正数m,关于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有0,且m的取值范畴是(3-22,3+22).【变式训练2】已知抛物线y2=4x的一条弦AB,A(x1,y1),B(x2,y 2),AB所在直线与y轴的交点坐标为(0,2),则1y1+1y2= .【解析】y2-4my+8m=0,因此1y1+1y2=y1+y2y1y2=12.题型三有关抛物线的综合问题【例3】已知抛物线C:y =2x2,直线y=kx+2交C于A,B两点,M 是线段AB的中点,过M作x轴的垂线交C于点N.(1)求证:抛物线C在点N处的切线与AB平行;(2)是否存在实数k使=0?若存在,求k的值;若不存在,说明理由.【解析】(1)证明:如图,设A(x1,2x21),B(x2,2x22),把y=kx+2代入y=2x2,得2x2-kx-2=0,由韦达定理得x1+x2=k2,x1x2=-1,因此xN=xM=x1+x22=k4,因此点N的坐标为(k4,k28).设抛物线在点N处的切线l的方程为y-k28=m(x-k4),将y=2x2代入上式,得2x2-mx+mk4 -k28=0,因为直线l与抛物线C相切,因此=m2-8(mk4-k28)=m2-2mk+k2=(m-k)2=0,因此m=k,即l∥AB.(2)假设存在实数k,使=0,则NANB,又因为M是AB的中点,因此|MN|= |AB|.由(1)知yM=12(y1+y2)=12(kx1+2+kx2+2)=12[k(x1+x2)+4]=12(k22+4)=k 24+2.因为MNx轴,因此|MN|=|yM-yN|=k24+2-k28=k2+168.又|AB|=1+k2|x1-x2|=1+k2(x1+x2)2-4x1x2=1+k2(k2)2-4(-1)=12k2+1k2+16.因此k2+168=14k2+1k2+16,解得k=2.即存在k=2,使=0.【点拨】直线与抛物线的位置关系,一样要用到根与系数的关系;有关抛物线的弦长问题,要注意弦是否过焦点,若过抛物线的焦点,可直截了当使用公式|AB|=x1+x2+p,若只是焦点,则必须使用一样弦长公式.【变式训练3】已知P是抛物线y2=2x上的一个动点,过点P作圆(x-3)2+y2=1的切线,切点分别为M、N,则|MN|的最小值是.【解析】455.总结提高1.在抛物线定义中,焦点F不在准线l上,这是一个重要的隐含条件,若F在l上,则抛物线退化为一条直线.2.把握抛物线本身固有的一些性质:(1)顶点、焦点在对称轴上;(2)准线垂直于对称轴;(3)焦点到准线的距离为p;(4)过焦点垂直于对称轴的弦(通径)长为2p.3.抛物线的标准方程有四种形式,要把握抛物线的方程与图形的对应关系.求抛物线方程时,若由已知条件可知曲线的类型,可采纳待定系数法.4.抛物线的几何性质,只要与椭圆、双曲线加以对比,专门容易把握.但由于抛物线的离心率为1,因此抛物线的焦点有专门多重要性质,而且应用广泛,例如:已知过抛物线y2=2px(p0)的焦点的直线交抛物线于A、B 两点,设A(x1,y1),B(x2,y2),则有下列性质:|AB|=x1+x2+p或|AB|=2p sin2(为AB的倾斜角),y1y2=-p2,x1x2=p24等.9.4 直线与圆锥曲线的位置关系典例精析题型一直线与圆锥曲线交点问题【例1】若曲线y2=ax与直线y=(a+1)x-1恰有一个公共点,求实数a 的值.【解析】联立方程组(1)当a=0时,方程组恰有一组解为(2)当a0时,消去x得a+1ay2-y-1=0,①若a+1a=0,即a=-1,方程变为一元一次方程-y-1=0,方程组恰有一组解②若a+1a0,即a-1,令=0,即1+4(a+1)a=0,解得a= -45,这时直线与曲线相切,只有一个公共点.综上所述,a=0或a=-1或a=-45.【点拨】本题设计了一个思维陷阱,即审题中误认为a0,解答过程中的失误确实是不讨论二次项系数=0,即a=-1的可能性,从而漏掉两解.本题用代数方法解完后,应从几何上验证一下:①当a=0时,曲线y2=ax,即直线y=0,现在与已知直线y=x-1 恰有交点(1,0);②当a=-1时,直线y=-1与抛物线的对称轴平行,恰有一个交点(代数特点是消元后得到的一元二次方程中二次项系数为零);③当a=-45时直线与抛物线相切.【变式训练1】若直线y=kx-1与双曲线x2-y2=4有且只有一个公共点,则实数k的取值范畴为()A.{1,-1,52,-52}B.(-,-52][52,+)C.(-,-1][1,+)D.(-,-1)[52,+)【解析】由(1-k2)x2-2kx-5=0,k=52,结合直线过定点(0,-1),且渐近线斜率为1,可知答案为A.题型二直线与圆锥曲线的相交弦问题【例2】(2021辽宁)设椭圆C:x2a2+y2b2=1(a0)的右焦点为F,过F的直线l与椭圆C相交于A,B两点,直线l的倾斜角为60,=2 .(1)求椭圆C的离心率;(2)假如|AB|=154,求椭圆C的方程.【解析】设A(x1,y1),B(x2,y2),由题意知y10,y20.(1)直线l的方程为y=3(x-c),其中c=a2-b2.联立得(3a2+b2)y2+23b2cy-3b4=0.解得y1=-3b2(c+2a)3a2+b2,y2=-3b2(c-2a)3a2+b2.因为=2 ,因此-y1=2y2,即3b2(c+2a)3a2+b2=2-3b2(c-2a)3a2+b2.解得离心率e=ca=23.(2)因为|AB|=1+13|y2-y1|,因此2343ab23a2+b2=154.由ca=23得b=53a,因此54a=154,即a=3,b=5.因此椭圆的方程为x29+y25=1.【点拨】本题考查直线与圆锥曲线相交及相交弦的弦长问题,以及用待定系数法求椭圆方程.【变式训练2】椭圆ax2+ by2=1与直线y=1-x交于A,B两点,过原点与线段AB中点的直线的斜率为32,则ab的值为.【解析】设直线与椭圆交于A、B两点的坐标分别为(x1,y1),(x2,y 2),弦中点坐标为(x0,y0),代入椭圆方程两式相减得a(x1-x2)(x1+x2)+b(y 1-y2)(y1+y2)=02ax0+2by0y1-y2x1-x2=0ax0-by0=0.故ab=y0x0=32.题型三对称问题【例3】在抛物线y2=4x上存在两个不同的点关于直线l:y=kx+3对称,求k的取值范畴.【解析】设A(x1,y1)、B(x2、y2)是抛物线上关于直线l对称的两点,由题意知k0.设直线AB的方程为y=-1kx+b,联立消去x,得14ky2+y-b=0,由题意有=12+414k0,即bk+10.(*)且y1+y2=-4k.又y1+y22=-1kx1+x22+b.因此x1+x22=k(2k+b).故AB的中点为E(k(2k+b),-2k).因为l过E,因此-2k=k2(2k+b)+3,即b=-2k-3k2-2k.代入(*)式,得-2k-3k3-2+1k3+2k+3k30k(k+1)(k2-k+3)-1【点拨】(1)本题的关键是对称条件的转化.A(x1,y1)、B(x2,y2)关于直线l对称,则满足直线l与AB垂直,且线段AB的中点坐标满足l的方程;(2)关于圆锥曲线上存在两点关于某一直线对称,求有关参数的范畴问题,利用对称条件求出过这两点的直线方程,利用判别式大于零建立不等式求解;或者用参数表示弦中点的坐标,利用中点在曲线内部的条件建立不等式求参数的取值范畴.【变式训练3】已知抛物线y=-x2+3上存在关于x+y=0对称的两点A,B,则|AB|等于()A.3B.4C.32D.42【解析】设AB方程:y=x+b,代入y=-x2+3,得x2+x+b-3=0,因此xA+xB=-1,故AB中点为(-12,-12+b).它又在x+y=0上,因此b=1,因此|AB|=32,故选C.总结提高1.本节内容的重点是研究直线与圆锥曲线位置关系的判别式方法及弦中点问题的处理方法.2.直线与圆锥曲线的位置关系的研究能够转化为相应方程组的解的讨论,即联立方程组通过消去y(也能够消去x)得到x的方程ax2+bx+c=0进行讨论.这时要注意考虑a=0和a0两种情形,对双曲线和抛物线而言,一个公共点的情形除a0,=0外,直线与双曲线的渐近线平行或直线与抛物线的对称轴平行时,都只有一个交点(现在直线与双曲线、抛物线属相交情形).由此可见,直线与圆锥曲线只有一个公共点,并不是直线与圆锥曲线相切的充要条件.3.弦中点问题的处理既能够用判别式法,也能够用点差法;使用点差法时,要专门注意验证相交的情形.9.5 圆锥曲线综合问题典例精析题型一求轨迹方程【例1】已知抛物线的方程为x2=2y,F是抛物线的焦点,过点F的直线l与抛物线交于A、B两点,分别过点A、B作抛物线的两条切线l1和l 2,记l1和l2交于点M.(1)求证:l1(2)求点M的轨迹方程.【解析】(1)依题意,直线l的斜率存在,设直线l的方程为y=kx+12.联立消去y整理得x2-2kx-1=0.设A的坐标为(x1,y1),B的坐标为(x 2,y2),则有x1x2=-1,将抛物线方程改写为y=12x2,求导得y=x.因此过点A的切线l1的斜率是k1=x1,过点B的切线l2的斜率是k2= x2.因为k1k2 =x1x2=-1,因此l1l2.(2)直线l1的方程为y-y1=k1(x-x1),即y-x212=x1(x-x1).同理直线l2的方程为y-x222=x2(x-x2).联立这两个方程消去y得x212-x222=x2(x-x2)-x1(x-x1),整理得(x1-x2)(x-x1+x22)=0,注意到x1x2,因此x=x1+x22.现在y=x212+x1(x-x1)=x212+x1(x1+x22-x1)=x1x22=-12.由(1)知x1+x2=2k,因此x=x1+x22=kR.因此点M的轨迹方程是y=-12.【点拨】直截了当法是求轨迹方程最重要的方法之一,本题用的确实是直截了当法.要注意求轨迹方程和求轨迹是两个不同概念,求轨迹除了第一要求我们求出方程,还要说明方程轨迹的形状,这就需要我们对各种差不多曲线方程和它的形状的对应关系了如指掌.【变式训练1】已知△ABC的顶点为A(-5,0),B(5,0),△ABC的内切圆圆心在直线x=3上,则顶点C的轨迹方程是()A.x29-y216=1B.x216-y29=1C.x29-y216=1(x3)D.x216-y29=1(x4)【解析】如图,|AD|=|AE|=8,|BF|=|BE|=2,|CD|=|CF|,因此|CA|-|CB|=8-2=6,依照双曲线定义,所求轨迹是以A、B为焦点,实轴长为6的双曲线的右支,方程为x29-y216=1(x3),故选C.题型二圆锥曲线的有关最值【例2】已知菱形ABCD的顶点A、C在椭圆x2+3y2=4上,对角线B D所在直线的斜率为1.当ABC=60时,求菱形ABCD面积的最大值.【解析】因为四边形ABCD为菱形,因此ACBD.因此可设直线AC的方程为y=-x+n.由得4x2-6nx+3n2-4=0.因为A,C在椭圆上,因此=-12n2+640,解得-433设A,C两点坐标分别为(x1,y1),(x2,y2),则x1+x2=3n2,x1x2=3 n2-44,y1=-x1+n,y2=-x2+n. 因此y1+y2=n2.因为四边形ABCD为菱形,且ABC=60,因此|AB|=|BC|=|CA|.因此菱形ABCD的面积S=32|AC|2.又|AC|2=(x1-x2)2+(y1-y2)2=-3n2+162,因此S=34(-3n2+16) (-433因此当n=0时,菱形ABCD的面积取得最大值43.【点拨】建立目标函数,借助代数方法求最值,要专门注意自变量的取值范畴.在考试中专门多考生没有利用判别式求出n的取值范畴,尽管也能得出答案,然而得分缺失许多.【变式训练2】已知抛物线y=x2-1上有一定点B(-1,0)和两个动点P、Q,若BPPQ,则点Q横坐标的取值范畴是.【解析】如图,B(-1,0),设P(xP,x2P-1),Q(xQ,x2Q-1),由kBPkPQ=-1,得x2P-1xP+1x2Q-x2PxQ-xP=-1.因此xQ=-xP-1xP-1=-(xP-1)-1xP-1-1.因为|xP-1+1xP-1|2,因此xQ1或xQ-3.题型三求参数的取值范畴及最值的综合题【例3】(2021浙江)已知m1,直线l:x-my-m22=0,椭圆C:x2m2+y 2=1,F1,F2分别为椭圆C的左、右焦点.(1)当直线l过右焦点F2时,求直线l的方程;(2)设直线l与椭圆C交于A,B两点,△AF1F2,△BF1F2的重心分别为G,H.若原点O在以线段GH为直径的圆内,求实数m的取值范畴.【解析】(1)因为直线l:x-my-m22=0通过F2(m2-1,0),因此m2-1=m22,解得m2=2,又因为m1,因此m=2.故直线l的方程为x-2y-1=0.(2)A(x1,y1),B(x2,y2),由消去x得2y2+my+m24-1=0,则由=m2-8(m24-1)=-m2+80知m28,且有y1+y2=-m2,y1y2=m28-12.由于F1(-c,0),F2(c,0),故O为F1F2的中点,由=2 ,=2 ,得G(x13,y13),H(x23,y23),|GH|2=(x1-x2)29+(y1-y2)29.设M是GH的中点,则M(x1+x26,y1+y26),由题意可知,2|MO||GH|,即4[(x1+x26)2+(y1+y26)2](x1-x2)29+(y1-y2) 29,即x1x2+y1y20.而x1x2+y1y2=(my1+m22)(my2+m22)+y1y2=(m2+1)(m28-12).因此m28-120,即m24.又因为m1且0,因此1因此m的取值范畴是(1,2).【点拨】本题要紧考查椭圆的几何性质,直线与椭圆、点与圆的位置关系等基础知识,同时考查解析几何的差不多思想方法和综合解题能力.【变式训练3】若双曲线x2-ay2=1的右支上存在三点A、B、C使△A BC为正三角形,其中一个顶点A与双曲线右顶点重合,则a的取值范畴为.【解析】设B(m,m2-1a),则C(m,-m2-1a)(m1),又A(1,0),由AB=BC得(m-1)2+m2-1a=(2m2-1a)2,因此a=3m+1m-1=3(1+2m-1)3,即a的取值范畴为(3,+).总结提高事实上,任何一门学科都离不开死记硬背,关键是经历有技巧,“死记”之后会“活用”。

高考数学第二轮专题复习圆锥曲线教案

高考数学第二轮专题复习圆锥曲线教案

高考数学第二轮专题复习圆锥曲线教案一、知识结构 1.方程的曲线在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程;这条曲线叫 做方程的曲线.点与曲线的关系 若曲线C 的方程是f(x,y)=0,则点P 0(x 0,y 0)在曲线C 上⇔f(x 0,y)=0;点P 0(x 0,y 0)不在曲线C 上⇔f(x 0,y 0)≠0两条曲线的交点 若曲线C 1,C 2的方程分别为f 1(x,y)=0,f 2(x,y)=0,则 f 1(x 0,y 0)=0 点P 0(x 0,y 0)是C 1,C 2的交点⇔f 2(x 0,y 0) =0方程组有n 个不同的实数解,两条曲线就有n 个不同的交点;方程组没有实数解,曲线就没有 交点.2.圆 圆的定义点集:{M ||OM |=r },其中定点O 为圆心,定长r 为半径. 圆的方程 (1)标准方程圆心在c(a,b),半径为r 的圆方程是(x-a)2+(y-b)2=r 2圆心在坐标原点,半径为r 的圆方程是x 2+y 2=r 2(2)一般方程当D 2+E 2-4F >0时,一元二次方程x 2+y 2+Dx+Ey+F=0叫做圆的一般方程,圆心为(-2D ,-2E ,半径是24F-E D 22+.配方,将方程x 2+y 2+Dx+Ey+F=0化为(x+2D )2+(y+2E )2=44F -E D 22+当D 2+E 2-4F=0时,方程表示一个点(-2D ,-2E); 当D 2+E 2-4F <0时,方程不表示任何图形.点与圆的位置关系 已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则|MC |<r ⇔点M 在圆C 内, |MC |=r ⇔点M 在圆C 上, |MC |>r ⇔点M 在圆C 内,其中|MC |=2020b)-(y a)-(x +. (3)直线和圆的位置关系①直线和圆有相交、相切、相离三种位置关系 直线与圆相交⇔有两个公共点 直线与圆相切⇔有一个公共点 直线与圆相离⇔没有公共点 ②直线和圆的位置关系的判定 (i)判别式法(ii)利用圆心C(a,b)到直线Ax+By+C=0的距离d=22C Bb Aa BA +++与半径r 的大小关系来判定.3.椭圆、双曲线和抛物线椭圆、双曲线和抛物线的基本知识见下表.椭 圆 双曲线 抛物线轨迹条件 点集:({M ||MF 1+|MF 2|=2a,|F 1F 2|<2a = 点集:{M ||MF 1|-|MF 2|.=±2a,|F 2F 2|>2a}. 点集{M | |MF |=点M 到直线l 的距离}. 圆 形标准方程 22a x +22b y =1(a >b >0)22a x -22b y =1(a >0,b >0)y 2=2px(p >0)顶 点 A 1(-a,0),A 2(a,0); B 1(0,-b),B 2(0,b)A 1(0,-a),A 2(0,a) O(0,0)轴对称轴x=0,y=0长轴长:2a 短轴长:2b对称轴x=0,y=0 实轴长:2a 虚轴长:2b 对称轴y=焦 点F 1(-c,0),F 2(c,0) 焦点在长轴上F 1(-c,0),F 2(c,0) 焦点在实轴上F(2P,0) 曲 线 性 质焦点对称轴上焦 距|F 1F 2|=2c ,c=b2-a2|F 1F 2|=2c, c=b2a2准 线x=±ca 2准线垂直于长轴,且在椭圆外.x=±ca 2准线垂直于实轴,且在两顶点的内侧.x=-2p 准线与焦点位于顶点两侧,且到顶点的距离相等.离心率e=a c,0<e <1 e=ac,e >1 e=14.圆锥曲线的统一定义平面内的动点P(x,y)到一个定点F(c,0)的距离与到不通过这个定点的一条定直线l 的距离之 比是一个常数e(e >0),则动点的轨迹叫做圆锥曲线.其中定点F(c,0)称为焦点,定直线l 称为准线,正常数e 称为离心率. 当0<e <1时,轨迹为椭圆 当e=1时,轨迹为抛物线 当e >1时,轨迹为双曲线 5.坐标变换坐标变换 在解析几何中,把坐标系的变换(如改变坐标系原点的位置或坐标轴的方向)叫做 坐标变换.实施坐标变换时,点的位置,曲线的形状、大小、位置都不改变,仅仅只改变点 的坐标与曲线的方程.坐标轴的平移 坐标轴的方向和长度单位不改变,只改变原点的位置,这种坐标系的变换叫 做坐标轴的平移,简称移轴.坐标轴的平移公式 设平面内任意一点M ,它在原坐标系xOy 中的坐标是9x,y),在新坐标系x ′O ′y ′中的坐标是(x ′,y ′).设新坐标系的原点O ′在原坐标系xOy 中的坐标是(h,k),则x=x ′+h x ′=x-h (1) 或(2)y=y ′+k y ′=y-k 公式(1)或(2)叫做平移(或移轴)公式. 中心或顶点在(h,k)的圆锥曲线方程 中心或顶点在(h,k)的圆锥曲线方程见下表. 方 程焦 点 焦 线对称轴 椭圆22h)-(x a +22k)-(y b=1 (±c+h,k)x=±c a 2+hx=h y=k 22h)-(x b +22k)-(y a=1 (h,±c+k) y=±ca 2+kx=h y=k二、知识点、能力点提示(一)曲线和方程,由已知条件列出曲线的方程,曲线的交点说明在求曲线方程之前必须建立坐标系,然后根据条件列出等式进行化简 .特别是在求出方程后要考虑化简的过程是否是同解变形,是否满足已知条件,只有这样求出的曲线方程才能准确无误.另外,要求会判断曲线间有无交点,会求曲线的交点坐标.三、考纲中对圆锥曲线的要求:考试内容:. 椭圆及其标准方程.椭圆的简单几何性质.椭圆的参数方程;. 双曲线及其标准方程.双曲线的简单几何性质;. 抛物线及其标准方程.抛物线的简单几何性质;考试要求:. (1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,理解椭圆的参数方程;. (2)掌握双曲线的定义、标准方程和双曲线的简单几何性质;. (3)掌握抛物线的定义、标准方程和抛物线的简单几何性质;. (4)了解圆锥曲线的初步应用。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)圆锥曲线的有关元素计算.关系证明或范围的确定;
(2)涉及与圆锥曲线平移与对称变换、最值或位置关系的问题;
(3)求平面曲线(整体或部分)的方程或轨迹.
近年来,高考中解析几何综合题的难度有所下降.随着高考的逐步完善,结合上述考题特点分析,预测今后高考的命题趋势是:将加强对于圆锥曲线的基本概念和性质的考查,加强对于分析和解决问题能力的考查.因此,教学中要注重对圆锥曲线定义、性质、以及圆锥曲线基本量之间关系的掌握和灵活应用.
【典例精析】
1.圆锥曲线概念、性质类问题
例1.(xx广东,11).巳知椭圆的中心在坐标原点,长轴在轴上,离心率为,且上一点到的两个焦点的距离之和为12,则椭圆的方程为.
【解析】,,,,则所求椭圆方程为.
例2.(xx江苏 13.)如图,在平面直角坐标系中,为椭圆
的四个顶点,为其右焦点,直线与直线相交于点T,线段与椭圆的交点恰为线段的中点,则该椭圆的离心率为.
【知识纵横】
【教法指引】
高考试题中,解析几何试题的分值一般占20%左右,而圆锥曲线的内容在试卷中所占比例又一直稳定在14%左右,选择、填空、解答三种题型均有.选择、填空题主要考查圆锥曲线的标准方程及几何性质等基础知识、基本技能和基本方法的运用;以圆锥曲线为载体的解答题设计中,重点是求曲线的方程和直线与圆锥曲线的位置关系讨论,它们是热中之热.解答题的题型设计主要有三类:
2019-2020年高考数学二轮复习(15)圆锥曲线方程教案
【专题要点】
1.考查圆锥曲线的基本概念、标准方程及几何性质等知识及基本技能、基本方法,常以选择题与填空题的形式出现.
2.直线与二次曲线的位置关系、圆锥曲线的综合问题:常以压轴题的形式出现,这类问题视角新颖,常见的性质、基本概念、基础知识等被附以新的背景,以考查学生的应变能力和解决问题的灵活程度.
∴已知双曲线两焦点为,
∵存在,∴
由三角形重心坐标公式有 ,即 。
∵,∴。
已知点在双曲线上,将上面结果代入已知曲线方程,有
即所求重心的轨迹方程为:
点评:定义法求轨迹方程的一般方法、步骤;“转移法”求轨迹方程的方法。
例6(xx广东卷理)已知曲线与直线交于两点和,且.记曲线在点和点之间那一段与线段所围成的平面区域(含边界)为.设点是上的任一点,且点与点和点均不重合.
即 ③
移项再两边分别平方得:

两边再平方得:,
整理得,
所以,动圆圆心的轨迹方程是,轨迹是椭圆。
(法二)由解法一可得方程 ,
由以上方程知,动圆圆心到点和的距离和是常数,所以点的轨迹是焦点为、,长轴长等于的椭圆,并且椭圆的中心在坐标原点,焦点在轴上,
∴,,∴,,
∴,
∴圆心轨迹方程为。
(2)如图,设点坐标各为,∴在已知双曲线方程中,∴
例5.(1)一动圆与圆外切,同时与圆内切,求动圆圆心的轨迹方程,并说明它是什么样的曲线。
(2)双曲线有动点,是曲线的两个焦点,求的重心的轨迹方程。
解析:(1)(法一)设动圆圆心为,半径为,设已知ቤተ መጻሕፍቲ ባይዱ的圆心分别为、,
将圆方程分别配方得:,,
当与相切时,有 ①
当与相切时,有 ②
将①②两式的两边分别相加,得,
【解析】 考查椭圆的基本性质,如顶点、焦点坐标,离心率的计算等。以及直线的方程
直线的方程为:;
直线的方程为:。二者联立解得:,
则在椭圆上,

解得:
例3.(xx辽宁,16)。以知F是双曲线的左焦点,是双曲线右支上的动点,则的最小值为
【答案】9
【解析】注意到P点在双曲线的两只之间,且双曲线右焦点为F’(4,0),
于是由双曲线性质|PF|-|PF’|=2a=4,而|PA|+|PF’|≥|AF’|=5,
两式相加得|PF|+|PA|≥9,当且仅当A、P、F’三点共线时等号成立.
点评:在运用双曲线的定义时,应特别注意定义中的条件“差的绝对值”,弄清是整条双曲线,还是双曲线的一支。
例4.(xx福建13).过抛物线的焦点F作倾斜角为的直线交抛物线于A、B两点,若线段AB的长为8,则________________
高考第二阶段的复习,应在继续作好知识结构调整的同时,抓好数学基本思想、数学基本方法的提炼,进行专题复习;做好“五个转化”,即从单一到综合、从分割到整体、从记忆到应用、从慢速摸仿到快速灵活、从纵向知识到横向方法.这一复习过程,要充分体现分类指导、分类要求的原则,内容的选取一定要有明确的目的性和针对性,要充分发挥教师的创造性,更要充分考虑学生的实际,要密切注意学生的信息反馈,防止过分拔高,加重负担.因此,在圆锥曲线这一章的复习中,设计了分类复习、分层复习、层层递进的复习步骤.
(1)若点是线段的中点,试求线段的中点的轨迹方程;
(2)若曲线 与有公共点,试求的最小值.
解:(1)联立与得,则中点,设线段的中点坐标为,则,即,又点在曲线上,
【解析】由题意可知过焦点的直线方程为,
联立有 ,根据,得
2.与圆锥曲线有关的轨迹类问题
解析几何主要研究两大类问题:一是根据题设条件,求出表示平面曲线的方程;二是通过方程,研究平面曲线的性质.求曲线的轨迹方程是解析几何的两个基本问题之一.求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点.解答轨迹问题时,若能充分挖掘几何关系,则往往可以简化解题过程.
【考纲要求】
(1)圆锥曲线
①了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.
②掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质.
③了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质.
④了解圆锥曲线的简单应用.
⑤理解数形结合的思想.
(2)曲线与方程
了解方程的曲线与曲线的方程的对应关系.
3.在考查基础知识的基础上,注意对数学思想与方法的考查,注重对数学能力的考查,强调探究性、综合性、应用性,注重试题的层次性,坚持多角度、多层次的考查,合理调控综合程度.
4.对称问题、轨迹问题、多变量的范围问题、位置问题及最值问题也是本章的几个热点问题,但从最近几年的高考试题本看,难度有所降低,有逐步趋向稳定的趋势.
相关文档
最新文档