机械设计基础ppt第二章

合集下载

机械设计基础第二章 摩擦、磨损及润滑

机械设计基础第二章 摩擦、磨损及润滑

化学吸附膜 中等载荷、速度和温度
化学反应膜 重载、高速和高温 三、混合摩擦(润滑) 膜厚比
(a)
hlim /( Ra1 Ra 2 )
(b)
λ越大,油膜承载比例大,,f越小
四、流体摩擦(润滑) 膜厚比λ >5 全液体摩擦
§2—2 磨损
一、典型的磨损过程 1、跑合磨损过程 在一定载荷作用下形成 一个稳定的表面粗糙度, 且在以后过程中,此粗糙 度不会继续改变,所占时 间比率较小
2、磨粒磨损
由于摩擦表面上的硬质突出物或从外部进入摩擦表面 的硬质颗粒,对摩擦表面起到切削或刮擦作用,从而引起 表层材料脱落的现象,称为磨粒磨损。这种磨损是最常见 的一种磨损形式,应设法减轻这种磨损。 为减轻磨粒磨损,除注意满足润滑条件外,还应合理 地选择摩擦副的材料、降低表面粗糙度值以及加装防护密 封装置等。
1、润滑油 有机油、矿物油、合成油 性能指标: 1)粘度 2)油性 4)闪点和燃点 5)极压性能
3)凝点
6)氧化稳定性
2、润滑脂 钙基润滑脂、钠基润滑脂、锂基润滑脂 性能指标: 1)针入度 3、固体润滑剂 2)滴点 3)安定性
石墨、二硫化钼、氮化硼 、蜡、 聚氟乙烯、 酚醛树脂
4、润滑剂的添加 二、粘性定律与润滑油的粘度
合理地选择材料及材料的硬度(硬度高则抗疲劳磨 损能力强),选择粘度高的润滑油,加入极压添加剂或 MoS2及减小摩擦面的粗糙度值等,可以提高抗疲劳磨 损的能力。
8
2018/11/12 机械设计基础
4、腐蚀磨损
在摩擦过程中,摩擦面与周围介质发生化学或电化学反应而 产生物质损失的现象,称为腐蚀磨损。腐蚀磨损可分为氧化 磨损、特殊介质腐蚀磨损、气蚀磨损等。腐蚀也可以在没有 摩擦的条件下形成,这种情况常发生于钢铁类零件,如化工 管道、泵类零件、柴油机缸套等。

机械设计基础第二章--常用机构介绍

机械设计基础第二章--常用机构介绍

4—机架 1,3—连架杆→定轴转动 2—连杆→平面运动 整转副:二构件相对运动为
整周转动。
摆动副:二构件相对运动不 为整周转动。
曲柄:作整周转动的连架杆
摇杆:非整周转动的连架杆
C
2
B
3
1
A
D
4
二、平面四杆机构的常用形式
1、曲柄摇杆机构
(构件4为机架、构件2为机架)
2、双曲柄机构
}全回转副四杆机构
(二)曲柄为最短杆。 ▲铰链四杆机构存在曲柄的条件是:
(一)最短杆与最长杆长度之和小于或等于其 余两杆长度之和。
(二)机架或连架杆为最短杆。
4、曲柄滑块机构 二、平面四杆机构的内部演化:
第二节 凸轮机构
一、凸轮机构的组成与分类: 运动方式:将主动凸轮的连续转动或
移动转换成为从动件的移动或摆动。 分类:1、形状
①盘形凸轮机构——平面凸轮 机构
②移动凸轮机构——平面凸轮 机构
③圆柱凸轮机构——空间凸轮 机构
2、运动形式
按从动件的运动型式:
①尖底从动件:用于 低速;
②滚子从动件:应用 最普遍;
③平底从动件:用于 高速
O
r0
1 2 3
4
5
6 7 8
二、从动件的常用运动规律
从动件的运动规律——从动件在工作过程中, 其位移(角位移)、速度(角速度)和加 速度(角加速度)随时间(或凸轮转角) 变化的规律。
长 几何形状简单——便于加工,成本低。 3、缺点: ①只能近似实现给定的运动规律; ②设计复杂;
③只用于速度较低的场合。
由转动副联接四个构
件而形成的机构,称为铰 链四杆机构,如图所示。 图中固定不动的构件是机 架;与机架相连的构件称 为连架杆;不与机架直接 相连的构件称为连杆。连 架杆中,能作整周回转的 称为曲柄,只能作往复摆 动的称为摇杆。根据两连 架杆中曲柄(或摇杆)的数 目,铰链四杆机构可分为 曲柄摇杆机构、双曲柄机 构和双摇杆机构。

机械设计基础第2章 机械传动装置的总体设计PPT课件

机械设计基础第2章 机械传动装置的总体设计PPT课件

表2-3 机械传动的效率概略值
滑动轴承
润滑不良
润滑正常
润滑特好 (压力润滑)
液体摩擦
0.94(一对) 0.97(一对) 0.98(一对)
0.99(一对)
带传动 链传动
平带无压 紧轮的开式
平带有压 紧轮的开式
平带交叉 式 滚动轴承
滚子链
0.98
0.97
类型 一级圆柱齿轮减速器
2.1 传动方案分析
表2-1 常用减速器的类型和特点
简图及特点
传动比一般小于5,使用直齿、斜齿或人字 齿轮,传递功率可达数万千瓦,效率较高、 工艺简单、精度易于保证,一般工厂均能制 造,应用广泛。轴线可作水平布置、上下布 置或铅垂布置
二级圆柱齿轮减速器
2.1 传动方案分析
≤25~30 ≤20
外廓尺寸



大 (最大达50 000)
圆柱齿轮 锥齿轮
3~5
2~3
8
5
小 (≤50) 10~40
80
6级精度直齿≤18m ≤15~35 /s,非直齿≤36m/s; 5级精度达100


2.1 传动方案分析
表2-2 常用传动机构的性能及适用范围
传动精度

工作平稳性

自锁能力

过载保护作用
类型 一级锥齿轮减速器
一级蜗杆减速器
2.1 传动方案分析
表2-1 常用减速器的类型和特点
简图及特点
传动比一般小于3,使用直齿、斜齿或曲齿 齿轮
结构简单,尺寸紧凑,但效率较低,适用 于载荷较小、间歇工作的场合。蜗杆圆周速 度≤4~5m/s时采用蜗杆下置式,蜗杆圆周速 度>4~5m/s时采用蜗杆上置式。采用立轴布 置时密封要求高

机械设计基础第五版(高等教育出版)第2章

机械设计基础第五版(高等教育出版)第2章

将以上三式两两相加得: l1≤ l2,l1≤ l3,l1≤ l4
铰链四杆机构整转副存在条件
综上,得到整转副存在条件: 最长杆与最短杆的长度之和≤其他两杆长度之和 ——杆长条件 若取BC为机架,结论相同,即:铰链B也是整转副。 结论:当满足杆长条件时,最短杆参与构成的转动 副都是整转副。 C
l2 B A l1 l4 D l3
4
平面四杆机构的基本型式和特性
2. 双曲柄机构 组成:两个曲柄+连杆+机架 等速回转 作用:等速回转⇔ 变速回转 应用实例:叶片泵、惯性 筛等。
2 1 4 3 1
3 2 4
摇杆主动
缝纫机踏板机构
平面四杆机构的基本型式和特性
A B D 2 C 3 4 6 C 2 3 B 1 4 D A E
1
惯性筛机构
4 C 曲柄滑块机构 C 3
这种通过选择不同构件作为机架以获得不同机构的 方法称为:机构倒置
铰链四杆机构的演化
例:选择双滑块机构中的不同构件 作为机架可得不同的机构
2 1 3 正弦机构 4 3 椭圆仪机构 4
2 1
§2-4 平面四杆机构的设计
设计主要目的 根据给定运动条件,确定机构类型和运动尺寸;有时 还需满足辅助条件(如γmin)。 两类主要设计问题 ①按照给定从动件运动规律(位移、速度、加速度) 设计四杆机构; ②按照给定点的运动轨迹设计四杆机构。 设计方法 解析法、图解法、实验法。
第2章 平面连杆机构
§2-1 平面四杆机构的基本型式和特性 §2-2 铰链四杆机构整转副存在条件 §2-3 铰链四杆机构的演化 §2-4 平面四杆机构的设计
§2-1 平面四杆机构的基本型式和特性
连杆机构—机构中所有的运动副均为低副。 连杆—机构中做一般平面运动(非简单的转动或直 线移动)的构件。 应用实例 内燃机、起重机变幅机构、牛头刨床、翻箱机、椭圆仪、 机械手爪等。 优点: ①低副为面接触,承载能力大、便于润滑、耐磨性好、 容易获得较高的制造精度; ②改变杆长,即可实现不同的从动件运动规律; ③连杆曲线丰富,可满足不同要求。

《机械设计基础》第2章_平面连杆机构解析

《机械设计基础》第2章_平面连杆机构解析
0 0
由上式可知,机构的急回程度取决于极位夹
角θ的大小。θ角越大,K值越大,机构的急回程
度也越高,但机构运动的平稳性就越差。反之反 然。 一般机械中1≤K≤2。
5.连杆机构具有急回特性的条件
⑴ 输入件等速整周转动;
⑵ 输出件往复运动;
⑶ 极位夹角
。 0
6.常见具有急回特性的四杆机构
二、平面连杆机构的特点及应用
1.平面连杆机构的特点
⑴寿命长 低副联接,接触表面为平面或圆柱面,
压力小;便于润滑,磨损较小。
⑵易于制造 连杆机构以杆件为主,结构简单。 ⑶可实现远距离操纵控制 因连杆易于作成较长
的构件。
⑷可实现比较复杂的运动规律 ⑸设计计算较繁复,当机构复杂时累计误差较大,
2、双曲柄机构
具有两个曲柄的铰链四杆机构。
⑴平行四边形机构:连杆与机架的长度相等,且曲
柄的转向相同长度也相等的双曲柄机构。 这种机构两曲柄的角速度始终保持相等,且连杆 始终做平动,故应用较广。
运动的不确定性
有辅助构件的重复机构
有辅助构件的错列机构
⑵逆平行四边形机构:连杆与机架的长度相等,两
含有两个移动副的四杆机构应用实例
2.3 平面四杆机构的基本特性
一、铰链四杆机构存在曲柄的条件
设 AB 为曲柄,
由 △BCD :
且 a <d .
b+c>f 、 b+f >c 、 c+f >b
以 fmax = a + d , fmin = d - a b+c >a+d 、 b+d >a+c 、 c+d >a+b 化简后得: a<b 、 a<c 、 a< d 若 d <a d<a、d<b、d<c 代入并整理得:

机械设计基础第四版第2章

机械设计基础第四版第2章
动画演示
例题:
例题 1)如果该机构能成为曲柄摇杆机构,且AB是曲柄,求AB的取值 范围;
2)如果该机构能成为双曲柄机构,求AB的最小值;
3)如果该机构能成为双摇杆机构,求AB的取值范围。
50
C
(1) AB为最短
B
35
l AB
l AB 50
30 35 30
l AB
15
(2) AAD为30最短 D
(lAB )max 15mm
503030lABl
AB
50 35
45
l AB
50

lAB
l AB 30
50 50
35
50
l AB
55
lAB 50 30 35 115mm
(lAB )min 45mm
(3)只能考虑不满足杆长和条件下的机构
AB为最短
lAB
l AB 50
30 35
50
C
35
A 30
D
§2-2 铰链四杆机构的演化
一、曲柄滑块机构 广泛用与内燃机、冲床等,将回转 运动转变为直线运动或反之。
e=0 时,对心;e≠0时,偏置。
对心没急回特性, 滑块为原动件时有死点,
铰链四杆机构的演化
二、曲柄滑块机构的演化(取不同构件为机架或改变杆长)
1.导杆机构
小型刨床应用实例
t1 / t2
180 180
2)压力角与传动角 压力角——从动件受力方向与受力 点绝对速度方向的夹角
铰链四杆机构
Psin----有害分力
P
Pcos-----有效分力
希望小好,不便度量,用其余角来度量, 称为传动角, 所以大,传力性能好. 是变化的, min≧ 40°

机械设计第二章优秀课件

机械设计第二章优秀课件
在作用于刚体的任一力系上,加上或者 减去任意一个平衡力系,不改变原力系 对刚体的作用效果。
该公理对变形体只是必要条件,而 非充分条件。
(力系的等效代换条件)
静力学基本概念与受力图
基本公理与定理
*只适用于刚体,
由此可得如下推论:(力的可传性)
作用于刚体的力可沿其作用线移至刚体的任一点, 而不改变此力对刚体的效应。
机械设计第二章课件
静力学基本概念与受力图
力的概念
力是物体间相互的机械作用,其结果是使 物体的运动状态发生改变(外效应)或使 物体产生变形(内效应)。
力对物体的作用效果与力的大小、方 向、作用点相关,其称为力的三要素 。因此,力是矢量。
静力学基本概念与受力图 集中力
力的概念
用黑体大写字母表示是矢量,如F,Q,W
1)力在坐标轴上的投影
y
X F cos Y F sin
b1 Fy Y
a1 A
B
F
Fx
a
O
X
bx
1、平面汇交力系合成的解析法 2)合力投影定理
合力在任意轴上的投影,等于各分力在同一轴上投 影的代数和。
Rx X Ry Y
RR R 2 2( X)2( Y)2 xy
tg Ry Y Rx X
3)平面汇交力系平衡方程及其应用
为研究平衡规律
进行力系简化
力系简化:
用一个简单且与之等效的力系代替一 个复杂力系
等效力系: 两力系对同一物体作用效果相同,则此二 力系等效
合力: 若一个力与一个力系等效,则该力称 为力系的合力
分力: 力系中各个力称为分力
静力学基本概念与受力图
基本公理与定理
公理一、力的平行四边形法则 作用在物体上同一点的两个力可以合成为一个 合力,合力的作用点也在该点,其大小和方向 由以这两个力为边的平行四边形的对角线所确 定。

机械设计基础ppt第二章

机械设计基础ppt第二章
主要内容
用速度瞬心法作机构的速度分析
速度瞬心及其求法
速度瞬心(瞬心)的概念
• 速度瞬心(瞬心)——作相对平
面运动的两构件(刚体)瞬时相 对速度为零的重合点,即瞬时 绝对速度相等的重合点(即同速 点)。如右图所示。
• 如果两构件都是运动的,则其瞬心称为相对速度瞬心;如 果两构件中有一个是静止的,则其瞬心称为绝对速度瞬心。 因静止构件的绝对速度为零,所以绝对瞬心是运动刚体上 瞬时绝对速度等于零的点。 • 在机构分析中,瞬心概念适用于任意两个构件(运动构件 或固定构件)间的运动关系。 2. 机构瞬心的数目 • 由于作相对运动的任意两个构件都有一个瞬心,如果一个 机构中含有 K个构件,则其瞬心数目N为
A、铰链四杆机构
4、速度瞬心在机构速度分析中的应用
例1:图示机构中,已知 lAB, lBC φ,构件1以 ω逆 时针方向转动。 求:①机构的全部瞬心位置;②从动件3的速度。
P24
P34 P13 B(P12 ) 1 A (P14 ) 4 3 1 2 C(P23 )
例2:凸轮以匀速逆时 针转动,求该位置时从 动件2的速度V2。
3 2
P23
B
P13 P12
1
注意:1.速度瞬心法只能对机构进行速 度分析,不能加速度分析。2.构件数目 较少时用。
A
p13 1 P12 2 p23 3
v p12 1 p13 p12 2 p23 p12 p23 p12 1 2 p13 p12
N K ( K 1) 2 (1 2)
3、机构中瞬心位置的确定
A、两直接接触构件的瞬心 ⑴、通过转动副直接接触,瞬心为其转动中心
⑵、通过移动副直接接触,瞬心在垂直导路的 无穷远处。
⑶、通过高副直接接触,

机械设计基础教学课件 - 第二部分

机械设计基础教学课件 - 第二部分

为了便于制造、检验和互换使用,国标 GB1357-87规定了标准模数系列。 标准模数系列表(GB1357-87)
0.1 0.12 0.15 0.2 0.25 0.3 0.4 0.5 0.6 0.8 第一系列 1 10 1.25 12 1.5 16 2 20 2.5 25 3 32 4 40 5 50 6 8
二、凸轮压力角的校核 (1)、凸轮机构的压力角定义 凸轮机构从动件作用力的方向线与从动 件上力作用点的速度方向之间所夹的锐角, 用α表示。 (2)、压力角与作用力以及机构尺寸的关系 将凸轮对从动件的作用力F分解为F1和F2 。F2为有效分力,F1为有害分力,当压力角 α越大,有害分力F1越大,如果压力角增大 ,有害分力所引起的摩擦阻力也将增大,摩 擦功耗增大,效率降低。
如果压力角大到一定值时,有害分力所引起 的摩擦阻力将大于有效分力F2 ,这时无论 凸轮对从动件的作用力F有多大,都不能使 从动件运动,机构将发生自锁。
(3)、许用压力角 为了提高机构的效率、改善其受力情况,通常 规 定 一 许 用 压 力 角 [α] , 使 。 推 程 : 直 动 推 杆 取 [α] = 300 ; 摆 动 推 杆 [α] = 400 ~ 500 ; 回程:通常不会引起自锁问题,但为了使推杆不至产生过大的加速 度从而引起不良后果,通常取 [α]= 700~800。 (4)、压力角校核 αmax一般出现在 1)从动件的起点位臵 2)从动件最大速度位臵 3)凸轮轮廓向径变化最大部分 滚子从动件按理论轮廓校核 平底从动件一般α=0,不需校核 若αmax > [α]: 增大基圆半径 偏臵从动件
一、渐开线的形成和及渐开线性质
1.形成
发生线 L 沿半径为 rb 的基圆作纯滚动 时,直线 L 上任意点的轨迹称为该圆的渐开线。 2.性质 (1) KN = ΑN (2)渐开线上任意一点的法线必是基圆的切线。 (3)KN是渐开线在K点的曲率半径。 (4)渐开线的形状取决于基圆的大小。 3.渐开线方程

机械设计基础课件——第二章联接

机械设计基础课件——第二章联接
2.半圆键联接(图2-4)
▪ 轴槽用与半圆键形状相同的铣刀加工,键能在槽中绕几何中心摆动, 键的侧面为工作面,工作时靠其侧面的挤压来传递扭矩。其特点是工 艺性好,装配方便,尤其适用于锥形轴与轮毂的联接,但是轴槽对轴 的强度削弱较大,只适宜轻载静联接。
▪ 3.楔键联接(图2-5)
▪ 键的上、下面为工作表面,键的上表面和轮毂槽底面均制成1∶100的 斜度(侧面有间隙),工作时打紧,靠上下面摩擦传递扭矩,并可传 递小部分单向轴向力。
第三节 螺纹联接和螺旋传动

一、螺纹的主要参数
▪ 1.大径d
▪ 它是与外螺纹牙顶或内螺纹牙底相重合的假想圆柱面的直径。一般定为螺纹的公称 直径。
▪ 2.小径d1 ▪ 它是与外螺纹牙底或内螺纹牙顶相重合的假想圆柱面的直径。一般为外螺纹危险剖
面的直径。
▪ 3.中径d2 ▪ 它是一个假想圆柱的直径,该圆柱母线上的螺纹牙厚等于牙间宽。

图 2-6
▪ 二、平键联接的选择计算
▪ 1.类型选择
▪ 键的类型应根据键联接的结构、使用特点及工作条件来选择。选择 时应考虑以下方面的情况:联接于轴上的零件是否需要沿轴滑动及滑 动距离的长短;键在轴上的位置等。
▪ 2.尺寸选择
▪ 根据轴的公称直径d,从相关手册中选择平键的尺寸b×h。根据轮毂 长度选择键长:静联接时键长应略小于轮毂长度,动联接时要考虑移 动距离;另外键长还应符合表中的标准长度系列。
▪ 7.牙型角(α)和牙侧角(β)
▪ 在轴向剖面内,螺纹牙型两侧边的夹角,用α表示。牙型侧边与螺纹轴线的垂线间的 夹角称为牙侧角,用β表示。

二、螺纹的类型、特点和应用
▪ 1.三角螺纹
▪ 公制三角形螺纹的牙型角α=60°,其大径d为公称直径。三角形螺纹的当 量摩擦系数大,自锁性能好,螺纹牙根部较厚,牙根强度高,广泛应用于各种 紧固联接。同一公称直径可以有多种螺距,其中螺距最大的称为粗牙螺纹, 其余都称为细牙螺纹。由图2-9a可见,细牙螺纹的螺距小且中径及小径均较 粗牙螺纹的大,故细牙螺纹的升角小,自锁性能好,但牙的工作高度小,不 耐磨、易滑扣,适用于薄壁零件、受振动或变载荷的联接,还可用于微调机 构中。

机械设计基础课件第2章

机械设计基础课件第2章
F=3n-2pL-pH=3×4-2×6-0=0
第2章 平面机构的运动简图及自由度 图2-16 机车车轮联动机构中的虚约束
第2章 平面机构的运动简图及自由度
按照上述计算结果,一般而论,这类机构是不能运动的。 但在某些特定的几何条件下,出现了虚约束,机构就能够产生 运动。
为了便于分析,将构件4及回转副E、F拆除,得图(c)所 示机构运动图。又由题中给定的构件长度关系可知,ABCD为 一平行四边形,BC始终平行于AD,所以连杆BC作平动,其上 任一点的轨迹形状相同,连杆上E点的轨迹是以F为中心,EF为 半径的圆弧。显然,无论构件4及回转副E、F是否存在对整个 机构的运动都不发生影响。也可以说,构件4和回转副E、F引 入的一个约束不起限制作用,是虚约束。
各构件之间的联接方式如下:5和6, 7和8之间构成高副; 1和4,8和4之间构成移动副;7和4, 2和1, 2和3, 3和4之间均 为相对转动, 构成回转副。
第2章 平面机构的运动简图及自由度 图2-9 内燃机及其机构运动简图
第2章 平面机构的运动简图及自由度
2.3 平面机构的自由度
2.3.1 平面运动的自由构件具有三个自由度。当两个构件组成运
第2章 平面机构的运动简图及自由度
2.1 运动副及其分类
图2-1 平面机构的自由度
第2章 平面机构的运动简图及自由度
2.1.1
1.
若组成运动副的两个构件只能在一个平面内作相对转动, 这种运动副称为回转副,或称铰链。如图2-2(a)所示的轴承1与轴 2组成的回转副,它有一个构件是固定的,故称为固定铰链。图 2-2(b)所示构件1与构件2也组成了回转副,它的两个构件都未固 定,故称为活动铰链。例如图1-1中曲轴与气缸体所组成的回转 副是固定铰链,活塞与连杆、连杆与曲轴所组成的回转副是活动 铰链。

机械设计基础第二章平面连杆机构

机械设计基础第二章平面连杆机构
(3)过C1、C2、 P 作圆
(4)AC1=L2-L1, AC2=L2+L1→ L1=1/2(AC2-AC1)
→无数解
以L1为半径作圆,交B1,B2点 →曲柄两位置
M
N
在圆上任选一点A
C1M与C2N交于P点
作∠C1C2N=90-θ,
P
2.导杆机构: P.33
→取决于机构各杆的相对长度
A
D
B
B’
B”
C
C’
C”
三式相加 → ┌ l1≤l2 │ l1≤l3 └ l1≤l4
当杆1处于AB ”位置→ △AC ”D
→ l1+l2≤l3+l4 (2-3)
→┌(l2-l1) +l3 ≥l4 →┌l1+l4≤l2+l3 (2-1) └(l2-l1) +l4 ≥l3 └l1+l3≤l2+l4 (2-2)
图2-4
曲柄摇杆机构
φ1
φ2
ψ
(2-4)
(二)压力角和传动角 P.30
1.压力角α-
2.传动角γ
:BC是二力杆,驱动 力F 沿BC方向
作用在从动件上的驱动力F与该力作用点绝对速度VC之间所夹的锐角。
工作行程: 空回行程:
B2→B1 (φ 2) →摇杆C2→C1 (ψ) ∵ φ 1> φ 2 , 而ψ不变
B1→B2 (φ1) → 摇杆C1→C2 (ψ)
→ 工作行程时间>空回行程时间
曲柄(主)匀速转动(顺) 摇杆(从)变速往复摆动
图2-4
曲柄摇杆机构
φ1
φ2
ψ
极位:
缺点:
2.应用:
优点
1.手动冲床: ← 两个四杆机构组成 (双摇杆~+摇杆滑 块机构)
2.筛料机构: 六杆机构←两个四杆 机构组成(双曲柄~ +曲柄滑块~)

机械设计基础第2章PPT

机械设计基础第2章PPT
●了解棘轮机构槽轮机构、不完全齿轮机构的工作原理、特点、 功能和适用场合
技能训练目标
●能够将实际机构或机构的结构图绘制成机构运动简图;能看懂 各种复杂机构的机构运动简图
●能够设计一对心尖顶直动从动件盘形凸轮机构
4
第2章 常用机构
【生产机器 应用导入例】
颚式破碎机
1一电动机 2、4一带轮 3一v带 5一偏心轴 6一动颚(板) 7一肘板 8一定颚(板) 9一飞轮
的视图平面
⑷ 选择适当的比例,用规 定的构件和运动副的符号, 并正确将同一构件上运动副 连接起来,绘制出机构运动
简图
9
2.1 平面机构的运动简图及其自由度
第2章 常用机构
【实例2-3】 绘 制图2-3的单缸
四冲程内燃机 机构运动简图
10
F
=
3n
2
p1
=
ph
2.1 平面机构的运动简图及其自由度
2.1.3 平面机构自由度
第2章 常用机构
F = 3n 2 p1 ph
1) 复合铰链
2) 局部自由度 2) 局部自由度
转动副C有两个铰链形成复合铰链。实际低副
数Pl=7. F = 3 5 2 7 0 1 n=3, p1 3 ph 1
F 3 2 2 2 1 1
3) 虚约束 F 3 9 2 12 2 1
(2)双曲柄机构 2) 局部自由度
摄影平台升降机构
图2-15 铰链四杆机构
(3)双摇杆机构
图2-21港口起重机构
12
2.2 平面连杆机构的分析和设计
1 .2.铰链四杆机构形式的判
第2章 常用机构
2
别-------存在曲柄的条件
表2-2 铰链四杆机构的 演化及应用

机械设计基础.ppt

机械设计基础.ppt
第二章平面机构简图
1.知道什么是运动副以及运动副的分类。 2.平面运动副自由度计算公式以及计算 平面自由度时都有那些需要注意的问题。 3.知道机构具有运动的条件
F 3n 2PL PH 37 291
2
第三章平面连杆机构
1.平面连杆机构的定义 2.什么是铰链四杆机构以及铰链四杆机构 的基本类型都有那些? 3.什么是铰链四杆机构曲柄存在的条件 4.解释名词:急回特性、压力角、传动角
中的参数
a
1 2
mn
cos
( z1
z2 )
第十章轮系
• 1、轮系的分类(定轴、周转、复合)
• 2、轮系传动比的计算
• 注意:定轴轮系除了 • 计算传动比外,平行
1
3
• 轴还需考虑符号问题
H
O
O
2
2
4
1.如图所示的轮系中,已知z1=20, z2=30, z3=80, z4=40,
z5=20,求传动比i15 ,iH5 。
知道传动角和压力角的关系
5.行程速比系数K,会判断是否有无急回
第四章
1.了解凸轮机构的分类 2.解释名词:基圆、推程、远休止、回 程、近休止,压力角。 3.了解压力角与基圆的关系
第六章 联接
1.联接的分类
固定联接
螺纹联接
可拆联接 键联接、花键联接
销联接
过盈联接 不可拆联接
铆接 焊接
(介于两者之间,过 盈量小可拆,过盈量 大不可拆)
粘接
2.了解螺纹的分类都有哪些?
3.知道螺纹的主要参数:大径、小径、中径、 螺距、导程、牙型角、 线数等。
4.螺纹联接的基本类型和防松的方法都 有哪些?
5.轴向动联接采用什么键 键的界面尺寸的确定依据,键的长度确定标准

机械设计基础第二章

机械设计基础第二章

二、平面机构自由度的计算
1、平面机构的自由度:平面机构能产生的独立运动的数目。
2、平面机构的自由度计算公式 n: 表示可动构件个数
F 3n Biblioteka PL PHPL:低副个数 PH:高副个数
例 题
例题2.3 试计算下列机构的自由度。
解 析
1) F 3n 2PL PH 3 3 2 4 0 1
2、平面机构具有确定运动的条件
F=0,此系统为桁架 F>原动件的个数,运动不确定,只是构件系统,不是机构。 F>0 F<原动件的个数,系统被破坏。 F=原动件的个数,机构具有确定运动。 机构具有确定运动的条件是,机构的自由度大于零且等于原动件的个数。
感谢您的关注
常用机构的运动简图参阅教材表5-1。
疑 问
以下两组图分别表示几个构件几个运动副?
解析
1)上图表示两运动副构件。 2)下图表示三运动副构件。
三、机构运动简图的绘制
1、构件的分类
1)固定构件(机架):用来支承其他活动构件(运动构件)的构件。
2)原动件(主动件):是运动规律已知的活动构件。 3)从动件:是机构中随着原动件的运动而运动的其余活动构件。其中输出预期运动的 从动件称为输出构件,其他从动件则起传递运动的作用。 C 从动件 输出构件 D 机架
用规定的符号和简单的线条来表示构件和运动副,并按一定的比例画出表示各运动副 的相对位置及各构件间相对运动关系的简图,称为机构运动简图。
2、机构示意图定义
表示机构的运动情况,不严格按照比例来绘制的简图。
3、机构运动简图的作用
1)了解机构的组成和类型;2)表达机器的传动原理;3)进行机构的运动和动力分析。
F 3n 2PL PH 3 7 2 9 1 2

机械设计基础教案ppt课件

机械设计基础教案ppt课件

一、平面机构自由度的计算
移动副:约束了沿y轴方向的移动和在xOy平面内的 转动, 只保留沿x轴方向的移动;
转动副:约束了x、 y两个方向的移动, 只保留一个转动;
高副:只约束了沿接触处公法线n-n方向的移动。
单个自由构件的自由度为 3
低副引入两个约束!
高副引入一个约束!
活动构件数 构件总自由度 低副约束数
(1) 转动副连接两构件运动轨迹重合AB、CD、EF平行且相
等 (2)两构件组成多个转动副、且各转动副轴线重合 (3)两构件组成多个移动副、且各转动副导路平行 或者重合 (4)两构件组成多个平面高副、且各高副接触点处公法线重合 (5)对机构运动不起作用的对称部分如:行星轮
B2
E
1
5
A
F4
(a)
CB
学习难点
复合铰链、局部自由度和虚约束的识别和处理
• 作业: 2-6(a), (c), (d), (f)

2-8
• 思考:2-10
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
n
3×n
2 × PL
计算公式: F=3n-(2PL +Ph )
要求:记住上述公式,并能熟练应用。
高副约束数 1 × Ph
F3n2P LP H
n 式中, 为活动构件个数; PL 为低副个数; PH 为高副个数。
n = 3 Pl= 4 F = 3×3–2×4 = 1
n=4
Pl = 5
F = 3×4–2×5 = 2
F=3×4-2×4-2=2
例2-7 图示2-28组合机构中的轴线yy//xx;且齿轮2及凸 轮4固定在同一轴线上,计算其机构的自由度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
速度瞬心及其求法
速度瞬心(瞬心)的概念
速度瞬心(瞬心)——作相对平 面运动的两构件(刚体)瞬时相 对速度为零的重合点,即瞬时 绝对速度相等的重合点(即同速 点)。如右图所示。
如果两构件都是运动的,则其瞬心称为相对速度瞬心;如 果两构件中有一个是静止的,则其瞬心称为绝对速度瞬心。 因静止构件的绝对速度为零,所以绝对瞬心是运动刚体上 瞬时绝对速度等于零的点。
在机构分析中,瞬心概念适用于任意两个构件(运动构件 或固定构件)间的运动关系。
2. 机构瞬心的数目
由于作相对运动的任意两个构件都有一个瞬心,如果一个
机构中含有 K个构件,则其瞬心数目N为
N K (K 1) 2
(1 2)
3、机构中瞬心位置的确定 A、两直接接触构件的瞬心 ⑴、通过转动副直接接触,瞬心为其转动中心
时针方向转动。
φ,构件1以 ω逆
求:①机构的全部瞬心位置;②从动件3的速度。
P34 P13
B(P12 )
P24
例2:凸轮以匀速逆时 针转动,求该位置时从 动件2的速度V2。
1
A
1
(P14 )
4
2 C(P23)
3
3
P23

2
B
注意:1.速度瞬心法只能对机构进行速 度分析,不能加速度分析。2.构件数目 较少时用。
P13
A
P12
1
精品课件!
精品课件!
p13 1
P12 2 p23
3
v p12 1 p13 p12 2 p23 p12
1 p23 p12
2
p13 p12
⑵、通过移动副直接接触,瞬心在垂直导路的 无穷远处。
⑶、通过高副直接接触, 若两构件为纯滚动,瞬心在接触处; 若不是纯滚动,瞬心在过接触点的公法线上。
Hale Waihona Puke 三心定理三心定理:三个彼此做平面运动的构件 的三个瞬心必位于同一条直线上。
A、铰链四杆机构
4、速度瞬心在机构速度分析中的应用
例1:图示机构中,已知 lAB, lBC
相关文档
最新文档