碳纳米管
碳纳米管定义
碳纳米管定义
碳纳米管是一种由碳原子构成的纳米材料,具有管状结构。
它的直径通常在纳米尺度(纳米级别为1100纳米)范围内,
长度可以从纳米到微米级别。
碳纳米管的结构可以分为单壁碳
纳米管和多壁碳纳米管两种。
单壁碳纳米管由一个原子薄的石墨单层卷曲而成,形成一个
管状结构。
单壁碳纳米管的墙壁由碳原子构成,以六边形的芳
香环排列。
其典型特点是具有高强度、高导电性、高热导率和
良好的力学性能。
多壁碳纳米管由多个同心圆层组成,每个层均由碳原子六边
形结构构成,层与层之间的间距一般为0.34纳米。
多壁碳纳米管具有类似于单壁碳纳米管的特性,但其力学性能和导电性能
相对较差。
碳纳米管具有独特的物理和化学性质,广泛应用于材料科学、电子学、能源储存和传感器等领域。
由于其独特的结构和性能,碳纳米管在电子器件中可以用作纳米导线、场发射器件、纳米
传感器等。
此外,碳纳米管还被研究用于制备高性能锂离子电池、超级电容器和光催化材料等。
相信随着科学技术的不断发展,碳纳米管将在更多领域发挥重要作用。
碳纳米管的亲疏
碳纳米管的亲疏碳纳米管是一种具有特殊结构和性质的纳米材料,因其独特的亲疏性在许多领域都有广泛应用。
本文将介绍碳纳米管的亲疏性及其在不同领域的应用。
一、什么是碳纳米管碳纳米管是由碳原子构成的纳米管状结构,具有直径纳米级别、长度可达微米级别的特点。
根据结构形式的不同,碳纳米管可分为单壁碳纳米管和多壁碳纳米管。
在碳纳米管的结构中,碳原子以六角形方式连接,形成了稳定的管状结构。
二、碳纳米管的亲性1. 疏水性碳纳米管表面由于碳纳米管内部和外部的原子结构,其表面呈现出疏水性。
由于其表面的疏水性,碳纳米管对于水分子有排斥作用。
2. 亲水性碳纳米管的亲水性主要表现在其内部的通道结构中,通道的内部可以与水分子形成氢键,使得碳纳米管对于水分子有亲和力。
三、碳纳米管的应用领域1. 生物医学领域由于碳纳米管的独特结构和良好的生物相容性,它被广泛应用于生物医学领域。
碳纳米管可以用作生物传感器、药物运输载体、组织工程等方面。
在药物传递方面,由于碳纳米管具有良好的载药能力和温敏性,可以实现药物的定向释放和靶向治疗。
2. 环境治理碳纳米管在环境治理中也有重要应用。
碳纳米管可以作为吸附剂吸附重金属离子、有机物等污染物质,从而净化水体和土壤环境。
此外,碳纳米管还可以作为催化剂催化有机废气等。
3. 功能材料由于碳纳米管具有优异的电、热、力学性能,它被广泛应用于电子、能源等领域。
碳纳米管可以用于制备电池、超级电容器、导电薄膜等功能材料。
4. 纳米电子器件碳纳米管的亲疏性使其成为制备纳米电子器件的理想材料。
碳纳米管可以用于制备场效应晶体管、光电二极管、柔性显示器等纳米电子器件。
5. 复合材料碳纳米管可以与其他材料进行复合,形成性能优良的复合材料。
碳纳米管被广泛用于制备高性能的复合材料,如碳纳米管增强的高强度塑料、碳纳米管增强的复合导电材料等。
结语碳纳米管的亲疏性使其在多个领域具有广泛应用。
生物医学、环境治理、能源电子等领域都能发挥碳纳米管的独特作用。
碳纳米管
3.热学性能
由于碳管具有非常大的长径比,因而大量热是沿着长 度方向传递的,通过合适的取向,这种管子可以合成高各 向异性材料。 即在管轴平行方向的热交换性能很高,但在其垂直方 向的热交换性能较低。适当排列碳纳米管可得到非常高的 各向异性热传导材料。
四、碳纳米管的制备
CNTs的制备方法有多种,主要有电弧法,激光 蒸发法,化学气象沉积法等方法。这些方法分别在 不同的实验条件下可以得到MWNT和SWNT。
基本原理: 电弧室充惰性气体保护, 两石墨棒电极靠近,拉起 电弧,再拉开,以保持电 弧稳定。放电过程中阳极 温度相对阴极较高,所以 阳极石墨棒不断被消耗, 同时在石墨阴极上沉积出 含有碳纳米管的产物。 理想的工艺条件:氦气为载气,气压 60—50Pa,电 流60A~100A,电压19V~25 V,电极间距1 mm~4mm, 产率50%。Iijima等生产出了半径约1 nm的单层碳管。
五、纳米管结构的表征:
扫描隧道显微镜 X射线衍射
电子显微镜
拉曼光谱
1.电子显微术
利用不同的电子显微术,可以非常详细地研究碳 纳米管结构,确定其生长机制,反过来又可以帮助人 们改进碳管的生长过程,或者去修饰他们的结构。 利用扫描电子显微镜(SEM)可以获得单壁碳纳 米管管束的图像。透射电子显微镜(TEM)对于碳纳 米管结构的研究更为有用。TEM是一种强有力的技术, 可以确定碳纳米管管壁的层数,还可以准确测量管径 和确定碳管结构中的缺陷。
饭岛澄男 S.Iijima
将这些针状产物在高分辨电子显微镜下观察, 发现该针状物是直径为4~30纳米,长约1微米,由 2个到50个同心管构成,相邻同心管之间平均距离 为0.34纳米。
单壁碳纳米管
多壁碳纳米管
进一步实验研究表明,这些纳米量级的微小管状结构是由碳 原子六边形网格按照一定方式排列而形成,或者可以将其想象成 是由一个六边形碳原子形成的平面卷成的中空管体,而在这些管 体的两端可能是由富勒烯形成帽子。这就是多壁纳米碳管。 在石墨电极中添加一定的催化剂,可以得到仅仅具有一层管壁的 纳米碳管,即单壁碳纳米管产物。
碳纳米管
(B)热解法:这种方法也很简单,将一块基板放 进加热炉里加热至600℃,然后慢慢充入甲烷 一类的含碳气体。气体分解时产生自由的碳原 子,碳原子重新结合可能形成碳纳米管。
优点:最容易实现产业化,也可能制备很长的 碳纳米管。
缺点:制得的碳纳米管是多壁的,常常有许多 缺陷。与电弧放点法制备的碳纳米管相比,这 种碳纳米管抗张强度只有前者的十分之一。
初步估算,碳纳米管的强度大概是钢的100倍。 Lieber运用STM技术测试了碳纳米管的弯曲强度, 证明碳纳米管具有理想的弹性和很高的硬度。因此 用碳纳米管作为金属表面上的复合镀层,可以获得 超强的耐磨性和自润滑性,其耐磨性要比轴承钢高 100倍,摩擦系数为0.06~0.1,且还发现该复合镀层 还具有高的热稳定性和耐腐蚀性等性能。
(C)浓硝酸氧化法
将碳纳米管加入到浓硝酸中搅拌,超声波分散 后加热回流处理。自然冷却后用蒸馏水稀释、 洗涤至中性,经真空干燥、研磨后既得到纯化 处理的碳纳米管[14]。
优点:经过适当浓度硝酸氧化处理一定时间的 CNTs,其基本结构未发生本质变化,而表面 活性基团显著增加,在乙醇中分散浓度、均匀 性、稳定性得到提高,在复合材料中的分散均 匀性及与树脂的结合性能也得到相应提高。硝 酸氧化处理是CNTs表面活化的有效方法。
中美科学家在研究中对合成碳纳米管常用的化 学气相淀积方法进行了改进。改进结果显示,在化 学气相淀积过程中加入氢和另外一种含硫化合物后, 不仅能制造出更长的碳纳米管束,而且这些碳纳米 管束可由单层碳纳米管通过自我组装而有规律地排 列组成。
研究人员认为,他们的新方法作为一种更为简便 的替代工艺,也许还可以用来生产高纯度的单层碳 纳米管材料。
碳纳米管简介
应用前景
蜘蛛衣”的吸附力取决于与固体表面接触处 的碳纳米管数量。这种材料的外部直径只有几 到几十纳米,相当于头发丝的1/10万,因此一 片手掌大小的纤维中可容纳数十亿的碳纳米管, 由此产生的单位面积吸附力是壁虎脚的200倍。 把一双用这种材料制成、手掌面积为200平方 厘米的高粘力手套粘在屋顶上,可以同时吊起 14个重量为83公斤的壮汉。当然,要移动也很 简单,只要沿着表面稍微上下左右挪动一下, 粘结处就会一点点断开。
比碳纤维高一个数量级,约为钢的100
倍, 而密度仅为钢的1/6
拉伸强度 10~150GPa,石墨片层为36.5GPa,是
高强钢的20倍
韧性
拉伸形变至40%无明显脆性行为、塑性
形变和断裂
SWNT tensile test
before test
after test
before test
after test
利用纳米尺度的过渡金属或其氧化物为催化剂,在相对较低的温度 (500-1200℃)下热解 碳源气体(甲烷、乙炔、乙烯、丙烯、苯和一氧化碳等)来合成碳纳米管 可生产SWNT和MWNT 成本低,收率高,可大量生产 碳纳米管的管径在很大程度上依赖于催化剂颗粒的成分和尺寸,分布较宽;较多的结晶
缺陷,石墨化程度较低,常发生弯曲和变形,管端和管壁上包有催化剂颗粒
可用于制备高性能化和多功能性兼备的纳米复合材料 小尺寸特点决定了其聚合物复合材料可通过通用型聚合物加工设备进行生产
➢ 生物、医药领域
利用其高强度和柔韧性制备人造肌肉、人造骨骼等 药物输运(drug delivery)
应用前景
应用前景
碳纳米制造“太空电梯”
或许有一天我们会沿着超轻超强的碳纳米管 电缆,搭乘太空电梯上太空观光旅行。
CNTs-碳纳米管简介
简介
碳纳米管(carbon nanotubes, CNTs) 于1991年由NEC(日本电气)筑波研 究所的饭岛澄男(Sumio Iijima)首次 以论文的形式报道出来的
文献一
单壁碳纳米管的首次介绍
文献二
图示
图片来源:刘剑洪,吴双泉,碳纳 米管结构及其应用,深圳大学理工 学报,2013
分析
1 、 碳纳米管可看成是由石墨片层绕管轴 ( tube axis )卷曲而成 , 不同的卷曲方式所 得的结构不同,其性质也会不同。 2 、卷曲时石墨片层中保持不变的六边形网 格与碳纳米管轴向之间可能会出现夹角即螺 旋角。 3 、螺旋角不同代表其旋转程度的不同,一 个纳米管的旋转由管轴和螺旋角两者决定。 4 、碳纳米管的封口通常有曲面、多边形或 锥型面所完成。(一般为五边形与七边形的 组合)
图9 展开的碳纳米管
分析
1、作者不认为是蛋卷型结构,理由如下: 如果是这种蛋卷结构,那么这种细管会有覆盖边缘存在(edge overlaps on their surfaces),但实验中并没有观察到)。 2、在不同的管形貌观察中,作者提出了一个纳米管生长的模型,即:每个纳米 管在根部开始各自独立的螺旋生长,但其具体的生长机理是未知的,但可肯定的 是它与传统的螺旋位错是不一样的,因为它有圆柱状的点阵。 3、目前也还无法得到具有清晰横截面的多壁碳纳米管试样。
分析
图9 通过电子显微镜看到的图像 (图中黑色为Fe3C等杂质) 由图可知纳米管通常聚集一起呈捆状(由于范德华力的作用),但孤立、单独的 纳米管同样存在。
分析
图10 纳米管直径大小统计
1 、在电子显微镜下挑选了 60 根纳米管,对他们的直径进行了了统计,发现在 0.8nm和1.05nm周围的数量较多; 2、右图对一根直径为1.37nm的纳米管进行电子衍射。
碳纳米管简介
加强基础研究和创新能力
深入研究结构与性能关系
进一步揭示碳纳米管的微观结构和性 能之间的关联,为新应用提供理论支 持。
探索新的合成方法
加强跨学科合作
与化学、物理、生物等学科进行交叉 合作,拓展碳纳米管的应用领域。
开展新合成方法的研究,实现碳纳米 管的绿色合成和可控合成。
建立产业联盟和创新平台
促进产学研合作
导电材料
碳纳米管具有优异的导电性能,可作为复合材料的导电填料,提高材料的导电性能。
半导体领域
晶体管
碳纳米管具有优异的半导体性能,可 用于制造高性能晶体管,提高集成电 路的性能和集成度。
传感器
碳纳米管具有较高的化学敏感性和光 电响应性,可用于制造高性能传感器 ,用于环境监测、生物医学等领域。
纳米电子领域
碳纳米管的应用领域
电池领域
电池电极材料
碳纳米管具有优异的导电性能和比表 面积,可作为高性能电池电极材料, 提高电池的能量密度和充放电效率。
电池隔膜材料
碳纳米管具有较高的机械强度和化学 稳定性,可用于制造高性能电池隔膜 ,提高电池的安全性和稳定性。
复合材料领域
增强材料
碳纳米管具有优异的力学性能和化学稳定性,可作为复合材料的增强剂,提高材料的强度和韧性。
化学反应性
碳纳米管具有较高的化学反应性,可以在高温下与多种氧化剂反应,也可以在催化剂的作 用下进行加氢反应。此外,碳纳米管还可以通过表面修饰改性来提高其化学反应性和相容 性。
表面基团
碳纳米管的表面可以含有多种基团,如羧基、羟基、羰基和环氧基等。这些基团的存在会 影响碳纳米管的化学反应性和相容性。
稳定性
碳纳米管简介
汇报人: 2023-12-15
碳纳米管
e) Picture of a CNT and a polymeric sponge placed in a water bath. The CNT sponge is floating on the top while the polyurethane sponge absorbed water and sank to below the surface level. f) A CNT sponge bent to arch-shape at a large-angle by finger tips. g) A 5.5cm1 cm0.18cm sponge twisted by three round turns at the ends without breaking. h) Densification of two cubic-shaped sponges into small pellets (a flat carpet and a spherical particle, respectively) and full recovery to original structure upon ethanol absorption.
范守善院士
清华大学物理系
研究领域:近十余年的研究方向集中在纳米尺度材料的 科学与技术,主要研究方向为碳纳米管的生长机理、可 控制合成与应用探索。在深入揭示和理解碳纳米管生长 机理的基础上,实现了超顺排碳纳米管阵列、薄膜和线 材的可控制与规模化制备,研究并发现了碳纳米管材料 独特的物理化学性质,基于这些性质发展出了碳纳米管 发光和显示器件、透明柔性碳纳米管薄膜扬声器、碳纳 米管薄膜触摸屏等多种纳米产品,部分应用产品已具有 产业化前景,实现了从源头创新到产业化的转换。
低维材料之碳纳米管
五、碳纳米管复合材料
可以与金属,无机陶瓷材料,有机 高聚物复合,应用广泛
理想的工艺条件:氦气为载气,气压 60—50Pa,电流60A~ 100A,电压19V~25 V,电极间距1 mm~4mm,产率50%。 Iijima等生产出了半径约1 nm的单层碳管。
• 使用这一方法制备碳纳米管技术上比较简单,但是生成的碳纳米管与C60 等产物混杂在一起,很难得到纯度较高的碳纳米管,并且得到的往往都是 多层碳纳米管,而实际研究中人们往往需要的是单层的碳纳米管。此外该 方法反应消耗能量太大。有些研究人员发现,如果采用熔融的氯化锂作为 阳极,可以有效地降低反应中消耗的能量,产物纯化也比较容易。
结构复合材料:碳纳米管复合材料基于 纳米碳管的优良力学性能可将其作为结 构复合材料的增强剂。 研究表明,与无机复合明显提高韧性, 有机聚合物复合提高强 度。环氧树脂和 纳米管之间可形成数百MPa 的界面强度。 功能复合材料:基于碳纳米管优良的导 电,导热,吸波,介电,储氢功能
六、碳纳米管应用
• 碳纳米管可以制成透明导电的薄膜,用以代替ITO(氧化铟锡)作为触摸屏的材料。先前的技术中, 科学家利用粉状的碳纳米管配成溶液,直接涂布在PET或玻璃衬底上,但是这样的技术至今没有进 入量产阶段;目前可成功量产的是利用超顺排碳纳米管技术;该技术是从一超顺排碳纳米管阵列中 直接抽出薄膜,铺在衬底上做成透明导电膜,就像从棉条中抽出纱线一样。
碳纳米管
碳纳米管的分类
• 碳纳米管可以看做是石墨烯片层卷曲而成,因此按照石墨烯片的层数可分为:单壁碳纳 米管和多壁碳纳米管,多壁管在开始形成的时候,层与层之间很容易成为陷阱中心而捕获 各种缺陷,因而多壁管的管壁上通常布满小洞样的缺陷。与多壁管相比,单壁管直径大小 的分布范围小,缺陷少,具有更高的均匀一致性。单壁管典型直径在0.6-2nm,多壁管最 内层可达0.4nm,最粗可达数百纳米,但典型管径为2-100nm。
碳纳米管简介
5) 催化剂载体 纳米材料比表面积大,表面原子比率 大(约占总原子数的50%),使体系的电子 结构和晶体结构明显改变,表现出特殊 的电子效应和表面效应。如气体通过碳 纳米管的扩散速度为通过常规催化剂颗 粒 的上千倍,担载催化剂后极大提高催 化剂的活性和选择性。
谢谢!
1.碳纳米管的发现 碳纳米管是在1991年1月由日本筑波 NEC实验室的物理学家饭岛澄男使用 高分辨率分析电镜从电弧法生产的碳 纤维中发现的。
2.碳纳米管的结构
与金刚石、石墨、富勒烯一样,是碳的一种同素异形体 。它 是一种管状的碳分子,管上每个碳原子采取sp2杂化,相互之 间以碳-碳σ键结合起来,形成由六边形组成的蜂窝状结构作 为碳纳米管的骨架。
3)激光蒸发法. 这种方法是制备单壁纳米碳管的一种有效 方法。用高能CO2激光或Nd/YAG激光蒸发掺 有Fe、Co、Ni或其他合金的碳靶制备单壁纳 米碳管。用这种CO2激光蒸发法,在室温下 就可以得到单壁碳纳米管。
缺点: 单壁碳纳米管的纯度较低、易粘 结。
5.碳纳米管的独特性质
1)力学性能 碳纳米管的抗拉强度达到50~200GPa,是钢的100倍 ,密度却只有钢的1/6,至少比常规石墨纤维高一 个数量级。它是最强的纤维,在强度与重量之比 方面,这种纤维是最理想的。
2) 电学性能 由于碳纳米管的结构与石墨的片层结构相 同,所以具有很好的电学性能。理论预测 其导电性能取决于其管径和管壁的螺旋角。 当CNTs(碳纳米管 )的管径大于6mm时, 导电性能下降;当管径小于6mm时,CNTs 可以被看成具有良好导电性能的一维量子 导线。
碳纳米管简介讲解
一、五、碳纳米管的制备 六、碳纳米管的应用 七、碳纳米管的挑战与展望 八、对复合材料课程建议
一、碳纳米管定义
二、碳纳米管的发展史
1857年,法拉第制备出金纳米颗粒
1985年 柯尔、克罗托和斯莫利在模拟宇宙长链碳分子的生长研究中,发现了与金刚石、石墨的 无限结构不同的,具有封闭球状结构的分子C60。(1996年获得诺贝尔化学奖)
2000年,北大彭练矛研究组用电子束轰击单壁碳纳米管,发现了Ф0.33 nm的碳纳 米管,稳定性稍差;
2003年5月,日本信州大学和三井物产下属的公司研制成功Ф 0.4 nm的碳纳米管。
2004年3月下旬, 中国科学院高能物理研究所赵宇亮、陈振玲、柴之芳等研究人员, 利用一定能量的中子与C70分子相互作用,首次成功合成、分离、表征了单原子数 目富勒烯分子C141。
由量子限域效应带来的金属性和半导体性
根据卷起的方向矢量 (n,m)不同, 单壁纳米管(大致)可以呈现金属性 (metallic, 无能隙(band gap))或半导体 性(semiconducting, 有能隙)。
根据折起的外部形态上可以分为A 椅式(armchair)、B交错式(zigzag)、C手 性(chiral)。所以椅式管一定是金属性管, 而交错式和手性则既有可能是金属性管, 也有可能是半导体性管。
6.吸附性能
硝酸氧化处理后的碳纳米管对铅,铜和镉离子显示出了良好 的吸附效果,单一金属离子的吸附研究结果表明,碳纳米管 对铅、铜和镉离子的最大吸附容量分别为97.08,28.49和 10.86mg/g;
碳纳米管对Pb2+的亲合性最强,Cu2+次之,Cd2+最弱;
碳纳米管 电极材料
碳纳米管电极材料
碳纳米管是一种由碳原子组成的纳米材料,其直径通常在纳米级别,长度则可达数十微米甚至数厘米。
由于其独特的结构和性质,碳纳米管在材料科学、电子学和能源领域中得到了广泛的应用。
在锂离子电池中,碳纳米管可以用作电极材料的导电剂,能够提高电极的电导率和电子传输速率,从而提高电池的充放电速率和能量密度。
此外,碳纳米管还具有较高的机械强度和耐腐蚀性,能够提高电池的循环寿命和安全性。
除了作为导电剂,碳纳米管还可以直接用作电极材料。
例如,碳纳米管纤维可以用于制备柔性电池和超级电容器,而碳纳米管阵列则可以用于制备高能量密度的锂离子电池电极材料。
此外,碳纳米管还可以与其他纳米材料如石墨烯、金属氧化物等结合使用,以进一步提高电池的性能和效率。
总之,碳纳米管作为一种优秀的纳米材料,在锂离子电池和其他能源领域中有着广泛的应用前景,有望为未来的能源技术和可持续发展作出重要贡献。
碳纳米管简介
碳纳米管简介
碳纳米管(CNTs)是一种新型的石墨材料,它是由石墨片层卷曲而成的圆柱形结构,其直径范围一般为一纳米至几百纳米。
这些管状纤维的长度变化范围也很大,一般为几微米到几千微米;因此碳纳米管的长径比(长度与直径的比值)范围为一千~十万。
这么大的长径比以及独特的结构使得碳纳米管与众多其他材料有很大差别。
碳纳米管有很多独特的性质,例如,其强度是不锈钢的16倍,热导率为铜的5倍。
由于碳纳米管自身为粉末状态,它可能是构筑新型复合材料的最合适的添加剂。
将碳纳米管加入到聚合物、陶瓷或金属基体中后,可以显著提高主体材料的物理性质(如导电性、导热性和其他物理性质),其效果远远优于炭黑、碳纤维或玻璃纤维等传统添加剂。
碳纳米管可以分为单壁、双壁和多壁碳纳米管,其主要差别在于碳纳米管结构中石墨片层的数目。
为方便参考,这里列出了一些碳纳米管的常见性能参数:
1. 电阻率:10 -4 Ω-cm
2. 电流密度:107 amps/cm2
3.热导率:3,000 W/mK
4. 抗拉强度:30 GPa
1。
碳纳米管概述
碳纳米管概述1、碳纳米管的结构1991年日本NEC公司基础研究实验室的电子显微镜专家Iijima[22]在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了由管状的同轴纳米管组成的碳分子,这就是现在被称作的“Carbon Nanotubes”,即碳纳米管(CNTs),又名巴基管碳.纳米管是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸可达微米量级)的一维量子材料,具有典型的层状中空结构特征,一般管的两端有端帽封口.碳纳米管的管身是准圆管结构,由六边型碳环结构单元组成,端帽部分为含五边形和六边形的碳环组成的多边形结构[23].碳纳米管可以只有一层也可以有多层,分别称为单层碳纳米管和多层碳纳米管.由于其独特的结构,碳纳米管的研究具有重大的理论意义和潜在的应用价值,如:其独特的结构是理想的一维模型材料;巨大的长径比使其有望用作坚韧的碳纤维,其强度为钢的100倍,重量则只有钢的1/6;同时它还有望用作为分子导线,纳米半导体材料,催化剂载体,分子吸收剂和近场发射材料等.科学家们还预测碳纳米管将成为21世纪最有前途的纳米材料,以碳纳米管为材料的显示器将是很薄的,可以像招贴画那样挂在墙上.碳纳米管依其结构特征可以分为三种类型:扶手椅型纳米管,锯齿型纳米管和手性纳米管.按照是否含有管壁缺陷可以分为:完善碳纳米管和含缺陷碳纳米管.按照外形的均匀性和整体形态,可分为:直管型,碳纳米管束,Y型等.2、碳纳米管的性能由于碳纳米管中碳原子采取SP2杂化,相比SP3杂化,SP2杂化中S轨道成分比较大,使碳纳米管具有高模量和高强度.碳纳米管具有良好的力学性能,CNTs抗拉强度达到50~200GPa,是钢的100倍,密度却只有钢的1/6,至少比常规石墨纤维高一个数量级;它的弹性模量可达1TPa,与金刚石的弹性模量相当,约为钢的5倍.对于具有理想结构的单层壁的碳纳米管,其抗拉强度约800GPa.碳纳米管的结构虽然与高分子材料的结构相似,但其结构却比高分子材料稳定得多.碳纳米管是目前可制备出的具有最高比强度的材料.若以其他工程材料为基体与碳纳米管制成复合材料,可使复合材料表现出良好的强度、弹性、抗疲劳性及各向同性,给复合材料的性能带来极大的改善.碳纳米管上碳原子的P电子形成大范围的离域π键,由于共轭效应显著,碳纳米管具有一些特殊的电学性质.碳纳米管具有良好的导电性能,由于碳纳米管的结构与石墨的片层结构相同,所以具有很好的电学性能.理论预测其导电性能取决于其管径和管壁的螺旋角.当CNTs的管径大于6nm时,导电性能下降;当管径小于6nm时,CNTs可以被看成具有良好导电性能的一维量子导线.有报道说Huang通过计算认为直径为0.7nm的碳纳米管具有超导性,尽管其超导转变温度只有1.5×10-4K,但是预示着碳纳米管在超导领域的应用前景[24].碳纳米管具有良好的传热性能,CNTs具有非常大的长径比,因而其沿着长度方向的热交换性能很高,相对的其垂直方向的热交换性能较低,通过合适的取向,碳纳米管可以合成高各向异性的热传导材料.另外,碳纳米管有着较高的热导率,只要在复合材料中掺杂微量的碳纳米管,该复合材料的热导率将会可能得到很大的改善.3、碳纳米管的改性方法尽管碳纳米管有其优异的综合性能,但是因为碳纳米管具有较大的比表面积及表面自由能,管与管之间易团聚形成带有若干弱连接界面且尺寸较大的团聚体,从而在有机溶剂中的分散性较差,这些缺点限制了它的进一步广泛应用.特别是对于聚合物/碳纳米管复合材料而言,这些团聚体很难被分散开,容易形成应力集中点,从而导致材料的性能下降.同时碳纳米管与大多数聚合物相比,亲和性比较差,而且界面结合较弱.为了解决这些问题,我们必须对碳纳米管进行改性.改性的主要目的是降低它的表面能,提高它与有机相的亲和力.目前碳纳米管改性的方法通常分为两大类:一类是共价键改性,另一类是非共价键改性.本课题中共价键合CNT修饰一般是在CNT表面进行ATRP、NMP、RAFT及离子聚合等活性聚合、自由基聚合或化学改性以获得聚合物共价修饰的碳纳米管.非共价修饰CNT则主要基于聚合物和CNT间的三种不同相互作用方法展开研究:π-π作用,静电作用,物理包覆.聚合物修饰不仅改善了碳纳米管的分散性能,还赋予碳纳米管新的性能.3.1 碳纳米管表面共价键改性碳纳米管表面的共价功能化修饰的其中一种方法是对其侧壁进行氟化研究.被功能化的碳纳米管表面的氟原子可以通过亲核取代反应被取代,开辟了一条将不同的官能团引入到碳纳米管两端和表面的新路径.在碳纳米管修饰过程中的另一个突破性的发现就是浓酸氧化法,其方法是利用超声条件,在一定量浓度硝酸和硫酸的混合溶液中,使碳纳米管上修饰了羧基.这样剧烈的条件可以使碳纳米管的顶端以及管壁氧化开环,伴随着开环过程的发生,最终所得碳纳米管产物长度在100到300nm范围,管壁和顶端都修饰了一定密度的官能团,其中主要以羧基为主.在稍微弱一点的酸性环境中,比如在稀硝酸中回流,可以减少碳纳米管的断裂,开环主要发生在具有缺陷的位置,修饰后的碳纳米管依旧保持原有的电学和机械性质.对碳纳米管进行共价修饰通常可以利用碳纳米管表面的羧基.3.2 碳纳米管表面非共价改性碳纳米管管壁由SP2碳原子构成,具有高度离域的π电子体系,这些二电子可以与含有π电子的其他化合物通过π-π键作用来形成功能化的碳纳米管,同时疏水部分的相互作用及超分子包合作用也是非共价功能化的主要机理.通常碳纳米管的物理改性是在超声作用下,表面活性剂或聚合物等分子的疏水部分与疏水的管壁相互作用,而亲水部分与水等极性溶剂相互作用,从而阻止了碳纳米管在溶剂中的团聚.非共价功能化碳纳米管有其独特的优点:①不损伤碳纳米管的π电子体系;②有望将碳纳米管组装成有序网络.3.2.1 表面活性剂法在两性分子表面活性剂存在的条件下,可以制备出水溶性的碳纳米管.表面活性剂的憎水基团会在碳纳米管表面按一定的方向排列,而极性亲水性基团会在碳纳米管外表面与溶剂分子相互作用.M.F.Islam等发现通过十二烷基苯磺酸钠(NADDBS)、辛基苯磺酸钠(NAOBS)、苯甲酸钠(NABBS)、十二烷基硫酸钠(SDS)等表面活性剂物理吸附作用可以制备出水溶性碳纳米管.而且发现苯环和碳纳米管间的π-π配位作用可以增加表面活性剂在碳纳米管中的物理吸附能力;当端基相同时,烷基链较长的表面活性剂具有更好的吸附能力.范凌云等采用阴离子改性剂十二烷基苯磺酸钠、十二烷基硫酸钠在乙醇溶液中对碳纳米管表面进行改性处理,考察了不同表面改性剂对.PMMA/MWCNTs复合材料电性能的影响.研究发现经表面改性处理后的MWCNTs团聚体有了较大的改善,改性后的MWCNTs在复合材料中分散比较均匀,较大地改善了聚合物的电性能.3.2.2 聚合物包裹法通过π键作用,许多大分子质量的高聚物分子链能够缠绕、包覆碳纳米管表面,降低碳纳米管的范德华力,从而增加碳纳米管在溶剂中的溶解度.Curran等[25]测量了通过π-π相互作用的PmPv-MWCNTs复合材料的发光和光致导电性质.结果表明,其导电性较碳纳米管高8-10个数量级,并能提高发光二极管在空气中的稳定性.Connel等[26]通过非共价连接聚乙烯毗咯烷酮(PVP)和聚苯乙烯磺酸盐(PSS)于SWCNT上,实现了线型聚合物功能化,使其可溶于水.这类聚合物可紧密均匀的缠绕在SWCNT侧壁.实验证明,这种功能化的热力学推动力在于聚合物破坏了碳纳米管的疏水界面,消除了SWCNT集合体中管与管间的作用,通过改变溶剂系统还可以实现去功能化操作.因此线型聚合物的SWCNT 功能化方法可用于它的纯化分散,并可把SWCNT引入生物等相关体系.Star等制备了聚间苯亚乙烯衍生物,并用其对SWCNT进行非共价功能化修饰,然后用紫外-可见光(UV-Vis)、核磁(NMR)进行了表征,UV-Vis谱图表明,PmPv己经缠绕在碳纳米管表面,NMR谱图的共振位置也更加明确地解释了功能化的结合位置.他们进一步用原子力显微镜(AFM)对单根功能化SWCNT束进行了光电导及双光子荧光实验,结果表面,PmPV衍生物与碳纳米管表面之间接触紧密,功能化产物是聚合物缠绕的SWCNT束,而不是聚合物包覆的单根SWCNT后聚集成的束.3.2.3 双亲性聚合物改性碳纳米管两亲性聚合物是指在一个大分子中同时含有亲水基团和疏水基团的聚合物.两亲性聚合物具有独特的性能,如pH温度响应,自组装特性等,因此在众多领域具有潜在的应用前景.利用两亲性共聚物的自组装特性,将其与碳纳米管(CNT)结合,可赋予碳纳米管更加优异的性能.这些材料将在信息、生物医学、催化等领域得到重要应用.4、碳纳米管研究现状及发展前景谢续明等[27]利用苯乙烯类聚合物对分散碳纳米管进行了研究,如果以响应性聚合物修饰CNT则可以赋予CNT特定功和响应性.通常聚合物分散碳纳米管都在有机溶剂体系进行,溶剂的挥发性对人有伤害,且分散CNT长期稳定性欠佳.Hudson等[28]人制备了水溶性的碳纳米管,使得碳纳米管在水中分散稳定性得到明显提高.美国明尼苏达大学的Kang 和Taton等人[29]尝试在水溶液中设计新的方法分散CNT,用双亲性嵌段大分子PSt-b-PAA组装胶束来稳定碳纳米管,随后在胶束稳定的CNT溶液中加入交联剂使胶束发生交联进一步稳定CNT.这些研究解决了CNT 在水相的分散稳定问题,但在CNT外围富集的水溶性聚合物链使其电性能下降[30-31],影响其进一步的应用;而嵌段共聚物规模化制备较困难,外加交联剂使得体系复杂化.碳纳米管具有两个优异的电学性能即场发射性质和二重电性质.由于碳纳米管顶端可以做得极为尖锐,因此可以在比其它材料更低的激发电场作用下发射电子,并且由于强的碳碳结合键使碳纳米管可以长时间工作而不损坏,具有极好的场致电子发射性能,这一性能可用于制作平面显示装置使之更薄、更省电来取代笨重和低效的电视和计算机显示器,碳纳米管的优异场发射性能还可使其应用于微波放大器真空电源开关和制版技术上,单层碳纳米管还可以用作传感器.当半导体性的单层碳纳米管暴露于含有NO2或NH3的气氛中时其导电性会发生急剧变化,通过这种效应可以探测这些气体在某些环境中的含量,这种传感器的灵敏度要远远高于现有室温下的探测器.总之,碳纳米管在电子材料领域有广阔的应用前景.。
碳纳米管介绍
此法特点:操作简单, 工艺参数更易控制,生长温度相对较低,成本低,产量大,可规模化生产。但由于其制备的碳纳米管含有许多杂质,且碳纳米管缠绕成微米级大团,需要进一步纯化和分散处理。
二.碳纳米管材料的性能
热学性能
碳纳米管具有良好的传热性能,由于是一维材料,其在径向上的导热性能优越,我们甚至可以在复合材料中掺杂微量的碳纳米管 ,使得复合材料的热导率得到很大的改善。
碳纳米管材料的性能
储氢性能
碳纳米管具有比较大的表面积,且具有大量的微孔,其储氢量远远大于传统材料的储氢量,因此被认为是良好的存储材料。
激光蒸发法是一种简单有效的制备碳纳米管的新方法。与电弧法相比,前者用电弧放电的方式产生高温,后者则用激光蒸发产生高温。得到的碳纳米管的形态与电弧法得到的相似,但碳纳米管质量更高,并无无定形碳出现。这种方法易于连续生产,但制备出的碳纳米管的纯度低,易缠结,且需要昂贵的激光器,耗费大。
3.化学气相沉积法(CVD)
碳纳米管对红外和电磁波有隐身作用:一方面由于纳米微粒尺寸远小于红外及雷达波波长,因此纳米微粒材料对这种波的透过率比常规材料要强得多,大大减少波的反射率;另一方面,纳米微粒材料的比表面积比常规粗粉大3-4 个数量级,对红外光和电磁波的吸收率也比常规材料大得多,也使得红外探测器及雷达得到的反射信号强度大大降低,起到了隐身作用。可用于隐形材料、电磁屏蔽材料或暗室吸波材料。
在一长条石英管中间放置一根金属催化剂/石墨混合的石墨靶,该管则置于一加热炉内。当炉温升至一定温度时,将惰性气体充入管内,并将一束激光聚焦于石墨靶上。在激光照射下生成气态碳,这些气态碳和催化剂粒子被气流从高温区带向低温区时,在催化剂的作用下生长成碳纳米管。
2024年碳纳米管(CNT)市场前景分析
2024年碳纳米管(CNT)市场前景分析引言碳纳米管(Carbon Nanotubes, CNT)作为一种新兴的纳米材料,在过去几十年中引起了广泛的关注。
其独特的性质和广泛的应用前景,使得碳纳米管在众多领域中成为研究的热点。
本文将对碳纳米管的市场前景进行分析,并探讨其在未来的发展潜力。
碳纳米管的基本特性碳纳米管是由碳原子构成的纳米管状结构,具有以下基本特性:1.高强度和刚度:碳纳米管比钢材还要强硬,是已知最强的材料之一。
2.优异的导电性:碳纳米管具有优秀的导电性能,可应用于电子器件领域。
3.良好的热导性:碳纳米管具有良好的热导性能,可以用于制备高效的散热材料。
4.巨大的比表面积:碳纳米管具有巨大的比表面积,可应用于催化剂和吸附材料等领域。
碳纳米管市场应用前景1. 电子器件碳纳米管具有优异的导电性能,可以用于制造高性能的电子器件。
例如,碳纳米管场效应晶体管(CNTFET)在高频电子器件和柔性显示器件等领域具有广阔的应用前景。
此外,碳纳米管还可以用于制备导电性能更好的电极材料,提高电池和超级电容器的性能。
2. 新能源领域碳纳米管在新能源领域中有着广泛的应用前景。
其优异的导电性能和热导性能,使得碳纳米管成为高效催化剂的理想载体材料。
碳纳米管还可以应用于太阳能电池、燃料电池和储能设备等领域,提高能量转换效率和储存容量。
3. 材料强化与增韧碳纳米管具有高强度和刚度的特性,可以应用于材料强化和增韧领域。
将碳纳米管添加到复合材料中,可以显著提高材料的强度和刚性,同时减轻材料的重量。
碳纳米管还可以在纤维增强复合材料中起到桥连接作用,有效防止开裂,提高材料的断裂韧性。
4. 生物医学应用碳纳米管在生物医学领域具有广泛的应用潜力。
其高比表面积和良好的生物相容性,使得碳纳米管可以用作药物传递载体、基因传递载体和组织工程支架等。
此外,碳纳米管还可以用于生物传感器和生物成像等领域,为生物医学研究和临床诊断提供新的工具和方法。
碳纳米管的物理性质和应用
碳纳米管的物理性质和应用碳纳米管是一种由一层或多层碳原子组成的管状结构。
它的直径只有几纳米,但却可以达到几毫米长。
由于碳纳米管具有独特的结构和物理性质,因此它被广泛应用于电子、化学、生物和医学等领域。
本文将重点介绍碳纳米管的物理性质和应用。
一、物理性质碳纳米管是一种具有高度强度和刚度的材料。
它的强度是钢的百倍以上,而其弹性模量则是钢的两倍以上。
此外,碳纳米管还具有优异的导电、导热和光学性质。
它的导电性能比铜好,而其导热性能则比铜好几倍。
碳纳米管还可用于制备透明电极和红外传感器等。
碳纳米管还具有独特的磁性和光学性质。
它可以表现出金属、半导体或半金属等不同的电子结构,并在不同颜色的光下呈现出不同的吸收和发射现象。
这些特性为研究碳纳米管的物理性质提供了更多的可能。
二、应用领域1. 电子领域由于碳纳米管的导电性能好,因此它已被广泛应用于电子领域。
碳纳米管可以被用作晶体管管道、热发电装置、场发射器、高频电子器件和电磁屏蔽材料等。
此外,碳纳米管还具有较高的电化学反应活性,可用于电化学传感器和电池。
2. 化学领域碳纳米管还可用于催化反应。
碳纳米管可以作为高效催化剂,可用于水的分解、制备氢气或是催化有机反应等。
同时,碳纳米管还可以用于填充或包装小分子,制备新型纳米材料。
3. 生物和医学领域由于碳纳米管的直径趋近于细胞和大分子水平,因此它可以作为纳米生物材料应用于生物学和医学研究中。
碳纳米管可以用于药物的传递和释放、生物成像、基因测序、组织修复和细胞治疗等领域。
4. 环境领域碳纳米管还可用于环境领域。
在废水处理中,碳纳米管可用于吸附或催化降解废水中的化学物质。
在环境检测中,碳纳米管可用于传感器的制备,用于检测有机和无机污染物质。
结论通过对碳纳米管的物理性质和应用领域的介绍,可以发现碳纳米管是一种相当特殊的材料。
尽管随着研究的深入,我们对碳纳米管的了解还有很大的提升空间,但通过不断地研究和开发,相信碳纳米管将在更多领域得到应用。
碳纳米管CNTS
碳纳米管的独特工能及应用1985年,Kroto和Smalley[1]发现了一种直径仅为0.7nm的球状分子,被称为C60,亦称富勒烯(fullerene)。
这是继石墨和金刚石之后,碳的另一种同素异形体。
随后,日本NEC公司的Sumio.Iijima[2]在合成C60中,首次利用电子显微镜发现了CNTs(Carbon nanotubes),又称巴基管(Bucktube)。
CNTs是一种类似石墨结构的六边形网格卷绕而成的、两端为半球形端帽、具有典型层状中空结构的材料。
根据石墨片层数的不同,CNTs可分为多壁碳纳米管(MWNTs)和单壁碳纳米(SWNTs)。
研究表明,CNTs的密度只有钢的1/6,强度却是钢的100倍,模量可达1.8 TPa。
CNTs是典型的一维纳米结构,其超强的力学性能、超大的长径比(一般大于1000)、极好的化学和热稳定性、良好的光电性能,使其具有广泛应用于生物传感器、储氢容器、超容量电容器、机电激励器、结构增强材料等方面的应用前景[3-4]。
CNTs长径比高、比表面大、比强度高、电导率高、界面效应强,因而具有优异的力学、电学、热学、光学性能.成为世界范围内的研究热点之一。
近几年来.随着CNTs合成技术的日益成熟.低成本批量生产CNTs已成为可能,并在场发射、分子电子器件、复合材料、储氢、吸附、催化诸多领域已经展现出其广阔的应用前景。
一、碳纳米管的结构CNTs是一种主要由碳六边形(弯曲处为碳五边形或碳七边形)组成的单层或多层石墨片卷曲而成的无缝纳米管状壳层结构,相邻层间距与石墨的层间距相当,约为0.34nm。
碳纳米管的直径为零点几纳米至几十纳米,长度一般为几十纳米至微米级,也有超长CNTs,长度达2mm。
按照石墨烯片的层数,可分为单壁CNTs和多壁CNTs。
(1)单壁CNTs(Single-walled nanotubes,SWNTs):由一层石墨烯片组成。
单壁管典型的直径和长度分别为0.75~3nm和1~50μm,又称富勒管(Fullerenes tubes)。
单壁管碳纳米管
单壁管碳纳米管
碳纳米管(Carbon Nanotubes,CNTs)又名巴基管,是由单层或多层石墨片围绕中心轴按一定的螺旋角卷曲而成的无缝碳纳米管。
按碳原子层数可分为单壁和多壁碳纳米管,其制备方法主要有电弧放电法、催化裂解法、激光蒸发法、化学气相沉积法,其中裂化催解法是目前应用最广泛的方法。
碳纳米管具有优异的力学、电学和热学性能,已应用于电子、材料、航空、催化、医疗等领域。
单壁碳纳米管直径在0.6-2nm之间,最小的直径可达到0.4nm左右,其独特的结构,使其具备了超强的力学性能、极高的载流子迁移率、可调节的带隙、优异的热学性能、光电特性、稳定的化学特性等。
碳纳米管集各种优异性质于一身,使其在工程材料、电子器件、储能领域、光探测器、生物医药等方面具备了广阔前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FTIR studies of nitrogen doped carbon nanotubesAbha Misra,Pawan K.Tyagi,M.K.Singh,D.S.Misra*Department of Physics,Indian Institute of Technology,Bombay,Mumbai-400076,IndiaAbstractPurified and defect free carbon nanotubes have great potential for applications in electronic,polymer composites and biological sciences.The removal of impurities(carbon nanoparticles and amorphous carbon)is an important step before the CNT applications can be realized.We report the results of FTIR and TGA/DTA studies of the impurities present in the carbon nanotubes.The multiwalled CNTs were grown using Microwave Plasma Chemical Vapor Deposition(MPCVD)technique.Fourier transform infrared(FTIR)spectroscopy was carried out in the range of400–4000cmÀ1to study the attachment of the impurities on carbon nanotubes.FTIR spectra of the as-grown MWCNTs show dominant peaks at1026,1250,1372,1445,1736,2362,2851,2925cmÀ1that are identified as Si–O,C–N,N–CH3,CNT,C–O,and C–H x respectively.The peaks are sharp and intense showing the chemisorption nature of the dipole bond.The intensity of the peaks due to N–CH3,C–N and C–H reduces after annealing and the peaks vanish on annealing at high temperature(900 -C).The presence of C–N peak may imply the doping of the CNTs with N in substitution mode.TGA/DTA measurements,carried out under argon flow,show that the dominant weight loss of the sample occurs in the temperature range400–600-C corresponding to the removal of the impurities and amorphous carbon.Keywords:MWCNTs;FTIR spectroscopy;TGA/DTA1.IntroductionCarbon nanotubes[1](CNTs)are found attractive on account of their potential for applications in hydrogen storage,nanoscale devices and sensor[2–6].High quality and well-aligned carbon nanotubes are essential for the applications in the field of nanoelectronics and many of these applications are dependent upon the chirality and diameter of CNTs[7].The nanotubes can be either metallic or semiconducting depending upon their diameter and chirality.The presence of defects and impurities that are electronically and chemically active can change these properties.Therefore,the control of the defects and impurities has become important for many applications of CNTs.Doping is a practical way to tailor the electrical properties of the CNTs.The nitrogen doped CNT shows n-type semiconducting behavior regardless of tube chirality [8].A great deal of attention has been devoted to the N-doped CNTs.Several groups have produced carbon nanotubes containing nitrogen or nitrogen and boron.The specific interest in CN x tubes is due to the fact that substituted N makes exclusively semiconducting tubes.Many groups have proposed that the electronic structure of N doped pyridine-like,pyrolic,and graphite like structure(Carbon atom has been replaced by N atom in graphite layers)is similar to triple-bonded CN[9–11].Another group has proposed that N atoms might exist mainly inside the inner core of CNTs[12]. In this paper we investigate the nitrogen doped multiwalled carbon nanotubes using Fourier transform infrared(FTIR) spectroscopy and thermo gravimetric analysis(TGA).2.ExperimentalCNTs were grown onto nickel electroplated copper foil substrates.The commercial grade copper foils(purity,98%), polycrystalline in nature,were used without any special pre-treatment to improve their smoothness.The electroplating ofNi on copper foil was performed in an electroplating bath. The copper substrate(1cmÂ1cmÂ0.1mm)was used as cathode and a thin platinum wire was used as the anode. Commercial grade nickel sulfate(NiSO4I7H2O)(275g/l) and nickel chloride(NiCl2I6H2O)(60g/l)were used as electrolytes in a dc electroplating process.The bath temperature and current were maintained at60-C and80 mA,respectively.The nickel layers having a thickness of 5–10A m were treated in the plasma of ammonia(NH3)gas for10s.Ammonia plasma treatment was performed for10s in the temperature range of300–750-C at10Torr for the formation of nano-sized nickel catalyst,which was the precursor for subsequent CNTs growth using chemical vapor deposition(CVD).The flow rate of ammonia was kept at180sccm.Methane(CH4)and hydrogen(H2)were used with respective flow rates of6and40sccm.The temperature of the substrate was maintained at820T20-C at deposition pressure;40Torr.The deposition time was5 min.Nitrogen doping was achieved by adding ammonia gas with flow rate of180sccm in the gas mixture at the time of deposition.Thermal Gravimetric Analysis(TGA)were carried out on Mettler–Toledo(TGA/SDTA851)thermal analyzer under argon flow at the heating rate of5-/min to obtain information on the decomposition and the burning proper-ties of carbon nanotubes and impurities present in it.The temperature of the sample was varied from room temper-ature to900-C.The Fourier transform infrared(FTIR) spectrometer were recorded on Nicolet Magna550FT-IR Spectrum.The samples for FTIR studies were prepared by suspending approximately6mg of MWCNT materials in ¨15ml isopropyl alcohol by sonication with an ultra sonic probe for several minutes.One drop of this solution was sprayed onto silicon wafer and a uniform thin MWNT film on the IR transparent silicon substrate was thus obtained. FTIR studies were carried out in the range of400–4000 cmÀ1in the absorbance mode.The FTIR results with the support of TGA results give a reasonably good picture of the attachment on the carbon nanotubes.3.Results and discussionFig.1(a)shows the SEM micrograph of high density MWCNTs grown on nickel electroplated copper substrate after ammonia plasma treatment for2min.The average length and diameter of the tubes are100A m and20nm respectively.Fig.1(b–c)show TEM images of the multiwalled carbon nanotubes free of encapsulated and with encapsulated catalytic nickel particles,respectively.The inset in Fig.1(c)shows that the inner and outer diameter of the CNT is12.84and18.43nm respectively and the tips of the CNTs are closed.Fig.1(d)is the High-Resolution Transmission Electron Microscopy(HRTEM)imageof Fig.1.(a)SEM micrograph of a sample of multiwalled carbon nanotubes deposited on a copper substrate.The high density of tubes is noteworthy.(b)–(c) TEM images of the multiwalled carbon nanotubes free of encapsulated and with encapsulated catalytic nickel particles,respectively.(d)High-Resolution Transmission Electron Microscopy(HRTEM)image of graphitic walls of a typical MWCNT.386graphitic walls of a MWCNT.The separation between twoconsecutive walls is 3.22A˚.FTIR is used to characterize the functional elements absorbed by carbon nanotubes.Fig.2(a–d)shows the FTIR spectra in the range of 400–4000cm À1a)of as-grown tubes,b)of the tubes collected after TGA at 400-C,c)of the tubes annealed at 600-C,and d)of the tubes collected after TGA at 900-C.FTIR of a)shows dominant peaks at 1026,1250,1372,1445,1736,2362,2851,2925cm À1which corresponds to Si–O,C–N,N–CH 3,CNT,C–O,C–H x respectively.The infra-red absorbance at 1026cm À1is consistent with Si–O stretching vibrations due to slightly different concentrations in the native oxide layer of the silicon before and after coating with MWCNTs film [13].Out of the above identified bonds,the presence of C–N and N–CH 3bonds at 1250and 1372cm À1is most interesting.The strong peaks at 1250and 1372cm À1are consistent with C–N and N–CH 3stretching vibrations attributed by Choi et al.[14]to the presence of intercalated N atoms between the graphite layers at the inner part of the nanotube walls.However,in our opinion the intercalated nitrogen atoms in between the graphite walls may not be strongly IR active.The halfwidths of the C–N and N–CH 3peaks are 36.72and 18.53cm À1respectively,and suggest that the chemisorption process may be dominant implying chemical bonding between carbon and nitrogen atoms.It has been pointed out [15–18]that substituting a N atom in place of a C atom in a sp 2bonded carbon network will induce strong IR activity;consequently the absorption in the 1200–1600cm À1region is expected if the N atoms are bonded into the carbon network.We therefore strongly believe that N doping of graphene sheets may be taking place and a C–N bond identical to the sp3bonded carbon nitride sample may be forming.Features at 1445and 1736cm À1attributed to MWCNT vibrational modes are also apparent [19].The peak at 2362cm À1corresponds to the C–O bonds and the features between 2851and 2925cm À1are consistent withC–H x stretching vibrations of chemisorbed hydrogen of various types presents in all carbon films [20,21].The intensity of the peaks due to N–CH 3,C–N and C–H are gradually suppressed,after annealing at 400-C.The suppression of the peaks would be related to the gradual removal of nitrogen and hydrogen bonded species as impurity.The bonding of N to carbon atom in graphene sheet will give rise to a defect in structure,which would get annealed,at high temperature.This results in the reduction of the intensity of the IR peaks with annealing.Further annealing of the sample at 600-C does not induce any appreciable change.It is interesting to note that these peaks vanish on annealing at higher temperature (900-C)implying that at high temperature the defects inside the tubes are getting strongly mobile leading to the destruction of the attachments along with the tubes.TGA/DTA curve in Fig.3reveals a small weight loss due to water removal around 80-C.The dominant weight loss steps are due to the removal of carbon materials and also due to the decomposition of nanotubes [22–24]taking place in the temperature range between 400and 600-C.The weight loss starts near 400-C and the process completes by 600-C.This result agrees with the FTIR spectra in Fig.1(b–c)discussed above where we have shown a significant decrease in the intensity of IR peaks upon annealing to 400-C.The MWCNTs are completely destroyed at 900-C,suggesting that at this temperature amorphous carbon as well as MWCNTs converts to gaseous form.The complete removal of all the dominant peaks from the FTIR spectra in Fig.1(d)confirms the burning of MWCNTs at 900-C resulting in the change of the color of the sample.4.ConclusionFTIR technique gives information about gaseous ele-ments attached to the tube.Nitrogen attachment is evident from strong and intense IR peaks at 1250and 1372cm À1.From the intensity and halfwidth of these peaks we conclude that the N atom is incorporated at substitutional500100015002000250030003500A b s o r b a n c e (a r b . u n i t s )Wave number (cm -1)Fig.2.FTIR spectra of (a)as-grown MWNTs,(b)after TGA at 400-C,(c)after annealing at 600-C,and (d)after TGA at 900-C.-20020040060080010001200-20020406080100120DTATGATemperature (0C)W e i g h t P e r c e n t0Fig.3.TG-DTA results for MWNTs.387sites in the carbon network.TGA/DTA has been used to study the weight loss of carbon nanotube as a function of temperature.We found that the dominant weight loss occurs the between400and600-C range and agrees well with disappearance of IR peaks corresponding to N-attachment.TGA can be used to get the information about the weight loss of the sample.AcknowledgementsThe authors would like to thank Dr.P.V.Satyam of Institute of Physics Sachivalaya Marg,Bhubaneshawar for high-resolution transmission electron microscopy(HRTEM) measurements.References[1]S.Ijima,Nature(London)354(1991)56.[2]S.J.Tans,C.Dekker,Nature(London)404(2000)834.[3]J.T.Hu,O.Y.Min,P.D.Yang,iber,Nature(London)399(1999)48.[4]R.D.Antonov, A.T.Johnson,Phys.Rev.Lett.83(1999)3274.[5]M.S.Fuhrer,J.Nygard,L.Shih,M.Forero,Y.-G.Yoon,M.S.C.Mazzoni,H.J.Choi,J.Ihm,S.G.Louie, A.Zettl,P.L.Mceuen, Science288(2000)494.[6]J.Kong,N.R.Franklin,C.Zhou,M.G.Chapline,S.Peng,K.Cho,H.Dai,Science287(2000)622.[7]A.Hassanien,M.Tokumoto,Y.Kumazawa,H.Kataura,Y.Maniwa,S.Suzuki,Y.Achida,Appl.Phys.Lett.73(1998)3839.[8]R.Czerw,et al.,Nano Lett.1(2001)457.[9]J.Casanovas,J.M.Ricart,J.Rubio,F.Illas,J.M.Jime´nez-Mateos,J.Am.Chem.Soc.118(1996)8071.[10]M.C.dos Santos,F.Alvarez,Phys.Rev.,B58(1998)13918.[11]I.Shimoyama,G.Wu,T.Sekiguchi,Y.Baba,Phys.Rev.,B62(2000)R605.[12]M.Terrones,R.Kamalakaran,T.Seeger,M.Ru¨hle,mun.(Cambridge)(2000)2335.[13]S.L.Sung,C.H.Tseng,F.K.Chiang,X.J.Guo,X.W.Liu,Thin SolidFilms340(1999)169.[14]Hyun Chul Choi,Seung Yong Bae,Jeunghee Park,Appl.Phys.Lett.85(2004)5742.[15]M.R.Wixom,J.Am.Ceram.Soc.73(1990)1973.[16]J.H.Kaufman,S.Metin,D.D.Saperstein,Phys.Rev.,B39(1989)13053.[17]Y.K.Yap,S.Kida,T.Aoyama,Y.Mori,T.Sasaki,Appl.Phys.Lett.73(1998)915.[18]i,et al.,Thin Solid Films444(2003)38.[19]A.C.Dillon,T.Gennett,J.L.Alleman,K.M.Jones,Proceedings of the2000DOE/NREL Hydrogen Program Review,2000(May8–10).[20]G.-Q.Yu,et al.,Diamond Relat.Mater.11(2002)1633.[21]J.Ristein,R.T.Stief,L.Ley,W.Beyer,JAP84(1998)3836.[22]D.G.McCulloch,E.G.Gerstner,D.R.McKenzie,S.Prawer,lish,Phys.Rev.,B52(1995)850.[23]M.Zhang,M.Yudasaka,S.Iijima,Chem.Phys.Lett.364(2002)42.[24]M.Zhang,M.Yudasaka,S.Bandow,S.Iijima,Chem.Phys.Lett.369(2003)680.388。