IEEE 802.11e in Industrial Environments a Quality of Service Survey

合集下载

IEEE802.11标准及特点

IEEE802.11标准及特点

IEEE802.11标准及特点IEEE 802.11标准及特点无线局域网和有线网络有机地结合,可灵活实现与有线网络之间的数据交换、移动访问和配置,这使得无线局域网成为一种灵活、方便的组网方案。

然而,由于最初的IEEE 802.11标准支持的数据传输速率较低,一般只有1Mbit/s或2Mbit/s,无法满足现在人们对可移动数据交换的需要,这在一定程度上已影响了无线局域网的发展。

诶了支持更高的数据传输速率,IEEE在802.11的基础上发布了802.11b标准,该标准也称为IEEE 802.11 High Rate,它的数据传输速率高达11Mbit/s,已超过了以太网(10Mbit/s)的数据传输率。

IEEE 802.11b标准的使用,不但使无线局域网在速度上得到了提升,而且还解决了不同厂家产品之间的兼容性等问题,已成为目前无线局域网产品遵循的主要标准。

目前,大量的无线局域网都遵循IEEE 802.11b标准。

除IEEE 802.11b标准之外,还有IEEE 802.11a、IEEE 802.11e和IEEE 802.11g标准等。

1.IEEE 802.11b与IEEE 802.11标准的比较在1997年,IEEE发布了第一个无线局域网标准802.11。

在1999年9月,IEEE批准并以官方的名义发布了IEEE 802.11b标准,该标准对IEEE 802.11标准进行了修改和补充,其中最重要的改进就是在IEEE 802.11a的基础上增加了两种更高速率5.5Mbit/s和11Mbit/s。

有了IEEE 802.11b无线局域网标准,移动用户将可以得到以太网级(10Mbit/s)的无线通信性能、速率和可用性,管理者也可以无缝地将多种局域网技术(如以太网、令牌环网等)集成起来,形成一种能够最大限度满足其商业和普通用户需求的网络,满足了用户对高速增长的数据业务和多媒体业务的通信需要。

同时,像已有的IEEE 802标准一样,IEEE 802.11标准集中在ISO模型的最低两层:物理层和数据链路层。

WLAN无线局域网IEEE802.11系列标准详解!

WLAN无线局域网IEEE802.11系列标准详解!

WLAN无线局域网IEEE802.11系列标准详解!IEEE 802.11系列标准是IEEE制订的无线局域网标准,主要对网络的物理层和媒质访问控制层进行规定,其中重点是对媒质访问控制层的规定。

目前该系列无线局域网标准有:IEEE802.11、IEEE 802.11b、IEEE 802.11a、IEEE 802.11g、IEEE 802.11d、IEEE 802.11e、IEEE802.11f、IEEE 802.11h、IEEE 802.11i、IEEE 802.11j等,其中每个标准都有其自身的优势和缺点。

下面就IEEE已经制订且涉及物理层的4种IEEE 802.11系列标准:IEEE 802.11、IEEE802.11a、IEEE 802.11b和IEEE 802.11g进行简单介绍。

1.IEEE 802.11IEEE 802.11是最早提出的无线局域网网络规范,是IEEE于1997年6月推出的,它工作于2.4GHz的ISM频段。

物理层采用红外、跳频扩频(Frequency Hopsping SpreadSpectrum,FHSS)或直接序列扩频(Direct Sequence Spread Spectrum,DSSS)技术,其数据传输速率最高可达2Mbps,它主要应用于解决办公室局域网和校园网中用户终端等的无线接入问题。

使用FHSS技术时,2.4GHz频道被划分成75个1MHz的子频道,当接收方和发送方协商一个调频的模式,数据则按照这个序列在各个子频道上进行传送,每次在IEEE 802.11网络上进行的会话都可能采用了一种不同的跳频模式。

采用这种跳频方式避免了两个发送端同时采用同一个子频段;而DSSS技术将2.4GHz的频段划分成14个22MHz的子频段,数据就从14个频段中选择一个进行传送而不需要在子频段之间跳跃。

由于临近的频段互相重叠,在这14个子频段中只有3个频段是互不覆盖的。

IEEE 802.11由于数据传输速率上的限制,在2000年也紧跟着推出了改进后的IEEE 802.11b。

IEEE 802.11E标准的发展概况

IEEE 802.11E标准的发展概况

IEEE 802.11E标准的发展概况(2003-12-18 14:38)IEEE 802.11e标准草案是定义了在WLAN应用中为满足支持语音、视频和音频传输的QoS业务需求而提出的MAC层操作机制。

其中定义了众多的机制来保证QoS业务的传输,统称为QoS策略。

其中对协调功能(coordination function)的定义进行了修正,在BSS的DCF的基础上,PCF和HCF可以共存,在QBSS中,将存在一个HCF协调机制。

为适应区分服务的要求,提供端到端的QoS的支持能力,对等应用层、IP层的QoS策略的应用要求在链路层和MAC层提供支持QoS区分服务的策略。

在IEEE 802.11e草案中,定义了一个HCF的接入协调机制,其中包括了基于竞争接入的区分服务接入机制EDCA(增强分布式信道接入机制)和基于无竞争的HCCA(混合协调信道接入机制)。

MAC层提供的服务是按照优先级进行的。

在草案中,定义了4个接入等级(AC),而定义的8个等级的用户优先级(UP)根据802.1D的规范映像到4个接入等级中。

在EDCA中,更具不同的接入等级而具有不同的接入优先级参数,通过调整CSMA/CA接入机制的帧间隔(IFS)长度,竞争窗口(CW)大小来实现不同接入等级的帧的接入优先度。

在EDCA中还可以通过连接的双方通过协商QoS参数的方式来完成QoS的连接保障过程。

定义的TSID和TSPEC单元式完成定义参数QoS的标识和QoS参数的具体要求。

在HCF中,通过QoS –Poll的无竞争过程完成站点帧传送机会的分配,EDCA和HCCA中用户获得发送的机会是通过TXOP来表示,TXOP表示用户在某一时间上拥有发送数据的权利。

通过起始时间和占用的时间来表示。

TXOP中可以完成多个帧的传送。

802.11e的草案中,另外还使用DLP(直接连接协议)机制,BlockACK机制和APSD机制来提高WLAN系统频谱的利用率。

ieee 802.11标准的基本内容

ieee 802.11标准的基本内容

ieee 802.11标准的基本内容
IEEE 802.11标准是一个无线局域网(WLAN)技术标准,它
规定了无线网络设备之间的通信方式和协议。

以下是IEEE 802.11标准的基本内容:
1. 信道带宽:IEEE 80
2.11标准规定了2.4 GHz和5 GHz两个
频段用于信道传输,并规定了20 MHz和40 MHz两种不同的
信道带宽。

2. 传输方式:IEEE 802.11 标准规定了两种传输方式,一种是
基于频分复用技术(OFDM)的11a/g/n/ac 等标准,一种是基
于直接序列扩频技术(DSSS)的11b标准。

3. 传输速率:IEEE 802.11标准规定了最高54Mbps(11a/g 协议)、600Mbps(11ac协议)的传输速率。

4. 安全性:IEEE 802.11标准中有许多协议(如WEP、WPA、WPA2)、加密算法(如AES、TKIP)和认证机制可供用户
选择,以保证无线网络的安全性。

5. MAC协议:IEEE 802.11标准规定了一种分布式协议,即分
布式协作功能(DCF),用以协调多个设备的数据传输。

6. 网络拓扑结构:IEEE 802.11标准支持多种网络拓扑结构,
如基础设施网络和自组网。

7. QoS支持:新版802.11e引入了QoS机制,支持对视频和音
频数据的实时传输和优先处理。

总的来说,IEEE 802.11标准的基本内容包括了无线网络的频段、传输方式、速率、安全性、MAC协议、网络拓扑结构和QoS机制。

这些内容为无线网络设备提供了标准化的通信方式和协议,使得不同厂商的无线设备可以正常互相通信。

IEEE802.11e中动态自适应信道接入机制的设计

IEEE802.11e中动态自适应信道接入机制的设计
a d t e lW ro i l ws p ro m a c . C mp r d t h E n h O p irt f y o e fr n e o a e o t e A DCF m e h ns 。w h n c a n ll a p t c a im e h n e o d u o
8 , t e t r u h u f t e Vi e l w s i c e s d O h h o g p t o h d o fo i n r a e 2 a d t e m e n d l y i e r a e 2 , t e n h a ea s d c e s d 5 h
t e AE F. I ito u e f co hc a e n t ec a n l o dto o t e EDCF. I h h DC t n r d c sP a t rw ih b s d o h h n e n iin t h c n t e DAEDC F
维普资讯
第2 8卷
第1 期
电气 电子 教 学 学 报
. 8 No. I2 1 F b.2 0 e 06
20 0 6年 2月
I E 2 1e中动 态 自适 应 信 道 接 入 机 制 的设 计 E E8 . 0 l
证 高优先 级业 务 流 的基 础 上 , 提高 中、 低优 先级 业务
流 的性 能, l Mal i提 出 了 一 种 自 适 应 E F ] DC ( D F 机 制 。AE C AE C ) D F在 E F中应用 了基 于 自 DC
wec ns et a a e h tDAEDCF f rh re h n e h S p ro ma c n e h i h la u t e n a c d t eQo e f r n eu d rt ehg o d,s e il h d u p cal t eme im y

.简述ieee 802.11标准的基本内容

.简述ieee 802.11标准的基本内容

.简述ieee 802.11标准的基本内容IEEE 802.11标准,也被称为Wi-Fi,是一种用于无线局域网(WLAN)的通信协议。

它定义了一系列规范和技术细节,以便设备之间可以进行无线通信。

本文将简述IEEE 802.11标准的基本内容。

1. 引言IEEE 802.11标准是一项由电气和电子工程师协会(IEEE)制定的国际标准,常用于无线局域网的设计和实施。

该标准从20世纪90年代初开始制定,并经历了多个版本的更新和改进。

2. 标准体系结构IEEE 802.11标准是由多个互相关联的子标准组成的,每个子标准都定义了一些特定的无线通信技术和协议。

其中最常见和广泛使用的子标准包括:a. IEEE 802.11a:使用5GHz频段,在较高的数据速率下提供无线通信;b. IEEE 802.11b:使用2.4GHz频段,提供较低的数据速率但更广泛的覆盖范围;c. IEEE 802.11g:使用2.4GHz频段,并提供了向后兼容性,支持较高的数据速率;d. IEEE 802.11n:引入了MIMO(多输入多输出)技术,提高了数据速率和传输稳定性;e. IEEE 802.11ac:使用更高的频段,提供更快的速率和更大的容量。

3. 媒体访问控制(MAC)层IEEE 802.11标准中的MAC层定义了无线局域网中节点的访问控制机制。

最常见的MAC层协议是CSMA/CA(Carrier Sense Multiple Access with Collision Avoidance),它通过监听信道上的活动来避免数据碰撞。

CSMA/CA协议的基本原理是,当一个节点要发送数据时,它先监听信道的状态。

如果信道空闲,节点就发送数据;如果有其他节点正在发送数据,节点则等待一段随机时间后再次尝试发送。

4. 物理层IEEE 802.11标准中定义了多种不同的物理层规范,用于支持不同的频段和数据速率。

常见的物理层技术包括:a. FHSS(频率跳跃扩频技术):在一段时间内,信号在不同的频率上进行短暂的跳跃;b. DSSS(直接序列扩频技术):通过将信号扩展到更宽的带宽上来提高抗干扰性能;c. OFDM(正交频分复用技术):将信号分成多个子载波,并在不同的频率上进行传输。

IEEE802.11无线局域网非饱和吞吐量分析

IEEE802.11无线局域网非饱和吞吐量分析
nfc n l fetd b o -a u aind g e . iia t a fce yn n s tr t e re y o
Ke wo d I E 0 . 1 W iee sLANs No a u ae hru h u , ak v c an y r s EE 8 2 1 , r ls , ns t rtd t o g p tM r o h i
R S C cs ca i r nlzdadcmp rd tS h wnte h o g p t f aiacs ce i es — T / TSa esmehns ae aye n c ms a o ae .I’ o ru h u s ces hmew lb g s ht ob c s l i
X a i WA G S u oa X hn— hn U Y nY N h— nห้องสมุดไป่ตู้ U C ag u。 Z l C
( fc fS int i s a c Na a ie st fEn i e ig, u a 3 0 3) Ofieo ce i cRee rh, v lUnv riy o gne rn W h n4 0 3 f ( p. o e p n yEn i e rn Na a nv r iyo gn eig, u n 4 0 3 De t fW a o r g n e ig, v lU ie st fEn ie rn W ha 3 0 3)
Abta t Ths p p r p ee t ii n in lM a k v i h i d lt v lae t e t r u h u fI sr c i a e rs ns a bdme so a r o an c an mo e o e au t h h o g p to EEE 8 2 0 .1 1 W ieesLANsi o -au ain c n io s rls n n s t r t o dt n .Th mp c fn n s t rto e reo h ho g p to o h b sca d n o i ei a to o -au a in d g e n tet r u h u fb t a i n

IEEE802.11e的网络性能研究的开题报告

IEEE802.11e的网络性能研究的开题报告

IEEE802.11e的网络性能研究的开题报告论文题目:IEEE802.11e网络性能研究研究背景:IEEE 802.11是一种无线局域网协议,是一种广泛使用的无线网路技术,具有广泛的应用和市场,但在高密度、高速和多媒体应用环境下的网络性能存在不足。

为了解决这些问题,IEEE 802.11e协议被提出来了。

IEEE 802.11e是一种增强的无线局域网协议,可支持多媒体应用,使得无线网络更加高效和可靠。

研究目的:本文旨在研究IEEE802.11e在不同条件下的性能表现,深入分析如何提高网络性能,推广IEEE802.11e协议在实际应用中的应用,为无线网络的高效和可靠提供理论基础和实践指导。

研究内容:本文将从以下几个方面进行研究:1. IEEE 802.11e协议的基本原理和技术特点,包括QoS机制和EDCA算法的原理和实现方式;2. 通过实验测试和仿真分析,比较IEEE 802.11a/b/g和IEEE802.11e协议在不同条件下的网络性能,包括数据吞吐量、延迟、包丢失率等;3. 分析IEEE 802.11e协议在多媒体应用中的性能表现,并讨论其在视频传输应用中的应用;4. 研究多种策略优化QoS机制和EDCA算法,提高网络性能。

研究方法:本文将采用实验测试和仿真分析相结合的方法,对比研究IEEE 802.11a/b/g和IEEE 802.11e协议在不同条件下的性能表现,包括基于ns-3仿真环境的离线仿真和基于真实网络场景的实时测试。

采用实验和仿真相互验证可以更加准确地评估和分析IEEE 802.11e协议的性能,并提高研究结果的可靠性。

预期结果:通过本文的研究,可以深入分析IEEE 802.11e协议的性能表现,并比较其与IEEE 802.11a/b/g协议的表现差异,为无线网络的高效和可靠提供理论基础和实践指导。

本文的研究结果可供无线网络研究、网络规划和设计等有关部门参考。

IEEE 802.11系列标准简介

IEEE 802.11系列标准简介

IEEE 802.11g
2001年11月批准,该标准可以视作对流行的 802.11b标准的提速(速度从802.11b的11 Mb/s提高到54Mb/s,仍然工作在2.4G频段). 802.11g接入点支持802.11b和802.11g客户设 备.同样,采用802.11g网卡的笔记本电脑也能 访问现有的802.11b接入点和新的802.11g接入 点. 802.11g是802.11b在同一频段上的扩展.支持 达到54Mbps的最高速率.兼容802.11b.该标 准已经战胜了802.11a成为下一步无线数据网的 标准.
ieee80211是ieee最初制定的一个无线局域网标准主要用于难于布线的环境或移动环境中的计算机的无线接入由于传输速率最高只能达到2mbps所以业务主要被用于数据的存取
IEEE 802.11系列标准简介
-- Kidd Lee
简介
1990年IEEE 802 标准化委员会成立IEEE 802.11无线局域网标准工作组.该标准定义物 理层和媒体访问控制(MAC)规范.物理层定 义了数据传输的信号特征和调制,工作在 2.4000~2.4835GHz频段.IEEE 802.11是IEEE 最初制定的一个无线局域网标准,主要用于难 于布线的环境或移动环境中的计算机的无线接 入,由于传输速率最高只能达到2Mbps,所以, 业务主要被用于数据的存取.
IEEE 802.11b标准
1999年9月被正式批准,又称Wi-Fi标准.该标准规定无线 局域网工作频段在2.4GHz~2.4835GHz,数据传输速率达 到11 Mbps.该标准是对IEEE 802.11的一个补充,采用 点对点模式和基本模式两种运作模式,在数据传输速率方 面可以根据实际情况在11 Mbps,5.5 Mbps,2 Mbps,1 Mbps的不同速率间自动切换,而且在2 Mbps,1 Mbps速 率时与802.11兼容. 802.11 802.11b使用直接序列(Direct Sequence)DSSS作为协 议.802.11b和工作在5GHz频率上品已经被广泛地投入市场,并 在许多实际工作场所运行. 目前最流行的WLAN协议,使用2.4G赫兹频段.最高速率 11Mbps,实际使用速率根据距离和信号强度可变(150米 内1-2Mbps,50米内可达到11Mbps)802.11b的较低速率 使得无线数据网的使用成本能够被大众接受(目前接入节 点的成本仅为10-30美元).

IEEE 802.11p Towards an International Standard for Wireless Access in Vehicular Environments

IEEE 802.11p Towards an International Standard for Wireless Access in Vehicular Environments

IEEE 802.11p: Towards an International Standard for Wireless Access in Vehicular EnvironmentsDaniel Jiang, Luca DelgrossiMercedes-Benz Research & Development North America, Inc.{daniel.jiang, luca.delgrossi}@ABSTRACTVehicular environments impose a set of new requirements on today’s wireless communication systems. Vehicular safety communications applications cannot tolerate long connection establishment delays before being enabled to communicate with other vehicles encountered on the road. Similarly, non-safety applications also demand efficient connection setup with roadside stations providing services (e.g. digital map update) because of the limited time it takes for a car to drive through the coverage area. Additionally, the rapidly moving vehicles and complex roadway environment present challenges at the PHY level.The IEEE 802.11 standard body is currently working on a new amendment, IEEE 802.11p, to address these concerns. This document is named Wireless Access in Vehicular Environment, also known as WAVE. As of writing, the draft document for IEEE 802.11p is making progress and moving closer towards acceptance by the general IEEE 802.11 working group. It is projected to pass letter ballot in the first half of 2008.This paper provides an overview of the latest draft proposed for IEEE 802.11p. It is intended to provide an insight into the reasoning and approaches behind the document.KeywordsIEEE 802.11, DSRC, WAVE1.INTRODUCTIONThe IEEE 802.11p WAVE standardization process originates from the allocation of the Dedicated Short Range Communications (DSRC) spectrum band in the United States and the effort to define the technology for usage in the DSRC band.This section first provides a brief overview of the DSRC spectrum. The context and history of WAVE standardization is then described.1.1DSRC Spectrum AllocationIn 1999, the U.S. Federal Communication Commission allocated 75MHz of Dedicated Short Range Communications (DSRC) spectrum at 5.9 GHz to be used exclusively for vehicle-to-vehicle and infrastructure-to-vehicle communications.The primary goal is to enable public safety applications that can save lives and improve traffic flow. Two such application scenarios are shown in Figure 1. Private services are also permitted in order to spread the deployment costs and to encourage the quick development and adoption of DSRC technologies and applications.Figure 1, Vehicle safety communication examplesAs shown in Figure 2, the DSRC spectrum is structured into seven 10 MHz wide channels. Channel 178 is the control channel (CCH), which is restricted to safety communications only [1]. The two channels at the ends of the spectrum band are reserved for special uses [2]. The rest are service channels (SCH) available for both safety and non-safety usage.Figure 2, DSRC spectrum band and channels in the U.S. The DSRC band is a free but licensed spectrum. It is free because the FCC does not charge a fee for the spectrum usage. Yet it should not be confused with the unlicensed bands in 900 MHz, 2.4 GHz and 5 GHz that are also free in usage. These unlicensed bands, which are increasingly populated with WiFi, Bluetooth and other devices, place no restrictions on the technologies other than some emission and co-existence rules. The DSRC band, on the other hand, is more restricted in terms of the usages and technologies. FCC rulings regulate usage within certain channels and limit all radios to be compliant to a standard. In other words, one cannot develop a different radio technology (e.g. that uses all 75 MHz of spectrum) for usage in the DSRC band even if it is limited in transmission power as related to the unlicensed band. These DSRC usage rules are referred as “license by rule”.Similar efforts are occurring in other parts of the world to set spectrum aside for vehicular usage. Europe, for example, is getting close to allocating 30 MHz of spectrum band in the 5 GHz range for the express purpose of supporting vehicular communications for safety and mobility applications.1.2 WAVE Standardization HistoryIn the U.S., the initial effort at standardizing DSRC radio technology took place in the ASTM 2313 working group [5]. In particular, the FCC rule and order specifically referenced this document for DSRC spectrum usage rules.In 2004, this effort migrated to the IEEE 802.11 standard group as DSRC radio technology is essentially IEEE 802.11a adjusted for low overhead operations in the DSRC spectrum. Within IEEE 802.11, DSRC is known as IEEE 802.11p WAVE, which stands for Wireless Access in Vehicular Environments [4]. IEEE 802.11p is not a standalone standard. It is intended to amend the overall IEEE 802.11 standard [3].One particular implication of moving the DSRC radio technology standard into the IEEE 802.11 space is that now WAVE is fully intended to serve as an international standard applicable in other parts of the world as well as in the U.S. The IEEE 802.11p standard is meant to:•Describe the functions and services required by WAVE-conformant stations to operate in a rapidly varying environment and exchange messages without having to join a Basic Service Set (BSS), as in the traditional IEEE 802.11 use case.•Define the WAVE signaling technique and interface functions that are controlled by the IEEE 802.11MAC.Figure 3, DSRC standards and communication stack As shown in Figure 3, IEEE 802.11p WAVE is only a part of a group of standards related to all layers of protocols for DSRC-based operations. The IEEE 802.11p standard is limited by the scope of IEEE 802.11, which is strictly a MAC and PHY level standard that is meant to work within a single logical channel. All knowledge and complexities related to the DSRC channel plan and operational concept are taken care of by the upper layer IEEE 1609 standards. In particular, the IEEE 1609.3 standard covers the WAVE connection setup and management [6]. The IEEE 1609.4 standard sits right on top of the IEEE 802.11p and enables operation of upper layers across multiple channels, without requiring knowledge of PHY parameters [7].At the time of writing, the IEEE 802.11p draft version 3.0 had already gone through its third letter ballot in the IEEE 802.11 working group. It failed to reach the critical approval rate of 75% by just 2 votes. The task group is currently resolving the comments received through the letter ballot and updating the draft standard document accordingly. This paper provides an overview of the general direction and technical approach in this draft standard but its content should not be viewed as binding or final.2. MAC AMENDMENT DETAILSIn an overly simplified manner, the IEEE 802.11 MAC is about how to arrange for a set of radios in order to establish and maintain a cooperating group. Radios can freely communicate among themselves within the group but all transmissions from outside are filtered out. Such a group is a Basic Service Set (BSS) and there are many protocol mechanisms designed to provide secure and robust communications within a BSS. The key purpose of the IEEE 802.11p amendment at the MAC level is to enable very efficient communication group setup without much of the overhead typically needed in the current IEEE 802.11 MAC. In other words, the focus is on simplifying the BSS operations in a truly ad hoc manner for vehicular usage. In this section, we first provide an overview of the core mechanism in setting up the IEEE 802.11 connectivity. Then the approach introduced by the IEEE 802.11p amendment is described.2.1 IEEE 802.11 Operations Overview2.1.1 Basic Service SetAn Infrastructural Basic Service Set is a group of IEEE 802.11 stations anchored by an Access Point (AP) and configured to communicate with each other over the air-link. It is usually just referred to as a BSS. The BSS mechanism controls access to an AP’s resources and services, and also allows for a radio to filter out the transmissions from other unrelated radios nearby. A radio first listens for beacons from an AP and then joins the BSS through a number of interactive steps, including authenticationand association.Figure 4, Independent and extended service set concepts As shown in Figure 4, the IEEE 802.11 standard further allows administrators to logically combine a set of one or more interconnected BSSs into one ESS (Extended Service Set) using DS (Distribution Service). An ESS appears as a single BSS to the LLC (Logical Link Control) layer at any station associated with one of those BSSs.The ad-hoc operating mode defined for IEEE 802.11 also follows the similar interactive establishment process of a Infrastructure BSS and is called IBSS (Independent BSS). While the name is “ad hoc”, IBSS still carries too much complexity and overhead to be suitable for vehicular communications in the DSRC use cases.A BSS is known to the users through the Service Set Identification (SSID). This corresponds to the names of WiFi hotspots that people can observe and connect to at home orpublic locations. The SSID information field is between 0 and 32 Bytes.2.1.2 BSSID and received frame filteringThe SSID should not be confused with the BSSID, which stands for Basic Service Set Identification. In contrast to SSID, BSSID is the name of a BSS known to the radios at the MAC level and is a 48-bit long field just like a MAC address. Each BSS must have a unique BSSID shared by all members. This is ensured simply by using the MAC address of the AP.For an IBSS, a locally administered IEEE MAC address is used. This is formed by using a random 46-bit number with the individual/group bit set to 0 and the universal/local bit set to 1. BSSID filtering is the key mechanism to restrict, at the MAC level, all incoming frames to only those received from radiosthat are members in the same BSS.Figure 5, IEEE 802.11 data frame formatAs shown in Figure 5, each IEEE 802.11 data frame includes up to 4 address fields. These address fields are used to carry source address (SA), destination address (DA), transmitting STA address (TA), receiving STA address (RA) and BSSID. The use of the four address fields differ according to the “To DS” (Distribution Service) and “From DS” bits in the frame control field, and is illustrated in Figure 6.To DS From DSAddress 1 Address 2 Address 3 Address 4 0 0 RA = DA TA = SA BSSID N/A 0 1 RA = DA TA = BSSID SA N/A 1RA = BSSIDTA = SADAN/A1 1 RA TA DA SAFigure 6, IEEE 802.11 data frame address field contents The MAC level of a station, upon receiving a frame from the PHY, uses the contents of the Address 1 field to perform address matching for receiving decisions. If the Address 1 field contains a group address (e.g., a broadcast address), the BSSID is compared to ensure that the broadcast or multicast originated from a station in the same BSS.A special case of the BSSID is the wildcard BSSID, which is composed of all “1s”. The current IEEE 802.11 standard limits the usage of the wildcard BSSID to only management frames of subtype probe request.2.2 WAVE Approaches2.2.1 WAVE modeIEEE 802.11 MAC operations, as described above, are too time-consuming to be adopted in IEEE 802.11p. Vehicular safety communications use cases demand instantaneous data exchange capabilities and cannot afford scanning channels for the beacon of a BSS and subsequently executing multiple handshakes to establish the communications.Think, for instance, of a scenario where a vehicle encounters another vehicle on the road coming from the opposite direction: depending on the vehicles dynamics, the time available for the communications may be extremely short.Therefore, it is essential for all IEEE 802.11p radios to be, by default, in the same channel and configured with the same BSSID to enable safety communications.A key amendment introduced by the IEEE 802.11p WAVE is the term “WAVE mode”. A station in WAVE mode is allowed to transmit and receive data frames with the wildcard BSSID value and without the need to belong to a BSS of any kind a priori. This means, two vehicles can immediately communicate with each other upon encounter without any additional overhead as long as they operate in the same channel using the wildcard BSSID.2.2.2 WAVE BSSEven for non-safety communications and services, the overhead of traditional BSS setup may be too expensive. A vehicle approaching a road side station that offers, say digital map download service, can hardly afford the many seconds that are typically needed in a conventional WiFi connection setup because the total time this vehicle would be in the coverage is very short.The WAVE standard introduces a new BSS type: WBSS (WAVE BSS). A station forms a WBSS by first transmitting a on demand beacon. A WAVE station uses the demand beacon, which uses the well known beacon frame and needs not to be periodically repeated, to advertise a WAVE BSS. Such an advertisement is created and consumed by upper layer mechanisms above the IEEE 802.11. It contains all the needed information for receiver stations to understand the services offered in the WBSS in order to decide whether to join, as well as the information needed to configure itself into a member of the WBSS. In other words, a station can decide to join and complete the joining process of a WBSS by only receiving a WAVE advertisement with no further interactions.This approach offers extremely low overhead for WBSS setup by discarding all association and authentication processes. It necessitates further mechanisms at upper layers to manage the WBSS group usage as well as providing security. These mechanisms, however, are out of the scope of the IEEE 802.11.2.2.3 Expanding wildcard BSSID usageGiven the focus of safety as the key usage of WAVE, the use of wildcard BSSID is also supported even for a station already belonging to a WBSS (i.e., configured with a particular BSSID). In other words, a station in WBSS is still in WAVE mode and can still transmit frames with the wildcard BSSID in order to reach all neighboring stations in cases of safety concerns. Similarly, a station already in a WBSS and having configured its BSSID filter accordingly, can still receive frames from others outside the WBSS with the wildcard BSSID.The ability to send and receive data frames with wildcard BSSID benefits not only safety communications. It is also able to support signaling of future upper layer protocols in this ad hoc environment.2.2.4 Distribution ServiceThe DS is still available to WAVE devices. Over the air, this simply means that it is possible for data frames to be transmitted with “To DS” and “From DS” bits set to 1. However, the ability for a radio in a WAVE BSS to send and receive data frames with the wildcard BSSID introduces complications. It is likely that a radio will be restricted to send a data frame with thewildcard BSSID only if the “To DS” and “From DS” bits are set to 0. In other words, radios that are communicating within the context of a WAVE BSS need to send data frames using a known BSSID in order to access DS.2.2.5MAC amendment summaryHere is a quick summary of the changes at MAC for WAVE operations:• A station in WAVE mode can send and receive data frames with the wildcard BSSID with “To DS” and “From DS”fields both set to 0, regardless of whether it is a member ofa WAVE BSS.• A WAVE BSS (WBSS) is a type of BSS consisting of a set of cooperating stations in WAVE mode that communicate using a common BSSID. A WBSS is initialized when a radio in WAVE mode sends a WAVE beacon, which includes all necessary information for a receiver to join. • A radio joins a WBSS when it is configured to send and receive data frames with the BSSID defined for that WBSS.Conversely, it ceases to belong to a WBSS when its MAC stops sending and receiving frames that use the BSSID of that WBSS.• A station shall not be a member of more than one WBSS at one time. A station in WAVE mode shall not join an infrastructure BSS or IBSS, and it shall not use active or passive scanning, and lastly it shall not use MAC authentication or association procedures.• A WBSS ceases to exist when it has no members. The initiating radio is no different from any other member after the establishment of a WBSS. Therefore, a WBSS can continue if the initiating radio ceases to be a member.3.PHY AMENDMENT DETAILSAt PHY level, the philosophy of IEEE 802.11p design is to make the minimum necessary changes to IEEE 802.11 PHY so that WAVE devices can communicate effectively among fast moving vehicles in the roadway environment. This approach is feasible because IEEE 802.11a radios already operate at 5 GHz and it is not difficult to configure the radios to operate in the 5.9 GHz band in the U.S. and similar bands internationally. It is also desirable and sensible because of the technical challenges involved in radically amending a wireless PHY design. While MAC level amendments are fundamentally software updates that are relatively easy to make, PHY level amendment necessarily should be limited in order to avoid designing an entirely new wireless air-link technology. Accordingly, three changes are made and are described in the following subsections.3.1.110 MHz channelIEEE 802.11p is essentially based on the OFDM PHY defined for IEEE 802.11a, with a 10 MHz wide channel instead of the 20 MHz one usually used by 802.11a devices.IEEE 802.11 already defines 10 MHz wide channels, and it is straightforward in implementation since it mainly involves doubling of all OFDM timing parameters used in the regular 20 MHz 802.11a transmissions. The key reason for this scaling of 802.11a is to address the increased RMS delay spread in the vehicular environments. A recent study by CMU and General Motors [8] shows that•Guard interval at 20 MHz is not long enough to offset the worst case RMS delay spread (i.e. the guardinterval is not long enough to prevent inter-symbolinterferences within one radio’s own transmissions inthe vehicular environments).•If choice is simply between scaled versions of 802.11a, then 10 MHz is a reasonable choice.3.1.2Improved receiver performance requirements While there are a number of channels available in the US and (expectedly) internationally for IEEE 802.11p deployment and usage, the nature of closely distributed vehicles on the road creates increased concern for cross channel interferences. The measurements presented in [9] demonstrated the potential for immediate neighboring vehicles (i.e., next to each other in adjacent lanes) to interfere each other if they are operating in two adjacent channels. For example, a vehicle A transmitting in channel 176 (see Figure 2) could interfere and prevent a vehicle B in the next lane (i.e. 2.5 m apart) from receiving safety messages sent by vehicle C that is 200 m away in channel 178. Cross channel interference is a well known and natural physical property of wireless communications. The most effective and proper solution to such concerns is through channel management policies that is completely outside of the scope at IEEE 802.11. Nevertheless, IEEE 802.11p introduces some improved receiver performance requirements in adjacent channel rejections. There are two categories of requirements listed in the proposed standard. Category 1 is mandatory and generally understood to be reachable with today’s chip manufacturers. Category 2 is more stringent and optional. It is likely to be more expensive to realize in the next few years.3.1.3Improved transmission maskSpecific to the usage of IEEE 802.11p radios in the U.S. ITS band (i.e., the 5.9 GHz DSRC spectrum), four spectrum masks are defined that are meant for class A to D operations. These constraints are issued in FCC CFR47 Section 90.377 and Section 95.1509.•For Class A operation using 10 MHz channel spacing, the transmitted spectrum shall have a 0 dBr bandwidthnot exceeding 9 MHz, and shall not exceed -10 dBr at5 MHz frequency offset, -20 dBr at 5.5 MHzfrequency offset, -28 dBr at 10 MHz frequency offset,-40 dBr at 15 MHz frequency offset and above.•For Class B operation using 10 MHz channel spacing, the transmitted spectrum shall have a 0 dBr bandwidthnot exceeding 9 MHz, and shall not exceed -16 dBr at5 MHz frequency offset, -20 dBr at 5.5 MHzfrequency offset, -28 dBr at 10 MHz frequency offset,-40 dBr at 15 MHz frequency offset and above.•For Class C operation using 10 MHz channel spacing, the transmitted spectrum shall have a 0 dBr bandwidthnot exceeding 9 MHz, and shall not exceed -26 dBr at5 MHz frequency offset, -32 dBr at 5.5 MHzfrequency offset, -40 dBr at 10 MHz frequency offset,-50 dBr at 15 MHz frequency offset and above.•For Class D operation using 10 MHz channel spacing, the transmitted spectrum shall have a 0 dBr bandwidthnot exceeding 9 MHz, and shall not exceed -35 dBr at5 MHz frequency offset, -45 dBr at 5.5 MHzfrequency offset, -55 dBr at 10 MHz frequency offset,-65 dBr at 15 MHz frequency offset and above.Generally speaking, these spectrum masks are more stringent than the ones demanded of the current IEEE 802.11 radios. There are debates regarding whether and when chip makers would be able to meet such requirements.4.SUMMARYWireless access in vehicular environment imposes a set of new requirements on the communications system that led to the introduction of the WAVE operating mode and of the WAVE BSS in IEEE 802.11p.When operating in WAVE mode, stations do not need to join a BSS as they can exchange data using a wildcard BSSID that is available at all times. This dramatically reduces the connection setup overhead and suits vehicular safety applications well. Private services offered over the DSRC spectrum service channels benefit from a reduced connection setup overhead through mechanisms defined for a WAVE BSS. Joining a WAVE BSS only requires receiving a single WAVE Advertisement message from the initiating station. A station in a WAVE BSS is further enabled to still send and receive data frames with the wildcard BSSID.While the IEEE 802.11p standardization process is moving closer to pass a letter ballot in the general IEEE 802.11 working group, there are also industry efforts in implementing and field testing such radios. Prototype IEEE 802.11p radios have been developed by the Vehicle Infrastructure Integration Consortium (VII-C) in 2007 both for on-board and roadside units. Likewise, interoperable radios are being built by the Crash Avoidance Metric Partnership (CAMP) for collision avoidance and vehicle-to-vehicle safety applications.It should be noted that while IEEE 802.11p describes how the communications take place over each individual channel of the DSRC spectrum, a complete communications system for WAVE needs to include support for multi-channel operations, security, and other upper layer operations. These are addressed by the IEEE 1609 trial-use standards, which are expected to be substantially updated in the near future.5.REFERENCES[1]“FCC Report and Order 03-324: Amendment of theCommission’s Rules Regarding Dedicated Short-RangeCommunication Services in the 5.850-5.925 GHz Band,”December 17, 2003.[2]“FCC Report and Order 06-110: Amendment of theCommission’s Rules Regarding Dedicated Short-RangeCommunication Services in the 5.850-5.925 GHz Band,”July 20, 2006.[3]“IEEE Std. 802.11-2007, Part 11: Wireless LAN MediumAccess Control (MAC) and Physical Layer (PHY)specifications,” IEEE Std. 802.11, 2007.[4] “IEEE P802.11p/D3.0, Draft Amendment for WirelessAccess in Vehicular Environments (WAVE),” July 2007. [5]“Standard Specification for Telecommunications andInformation Exchange Between Roadside and VehicleSystems - 5 GHz Band Dedicated Short RangeCommunications (DSRC) Medium Access Control (MAC)and Physical Layer (PHY) Specifications”, ASTM DSRCSTD E2313-02, 2002[6]“IEEE 1609.3-2007 WAVE Networking Services”, 2007[7]“IEEE 1609.4-2007 WAVE Multi-Channel Operation”,2007[8] D. Stancil, L. Cheng, B. Henty and F. Bai, “Performance of802.11p Waveforms over the Vehicle-to-Vehicle Channelat 5.9 GHz ”, IEEE 802.11 Task Group p report, September 2007[9]V. Rai, F. Bai, J. Kenney and K. Laberteaux, “Cross-Channel Interference Test Results: A report from the VSC-A project”, IEEE 802.11 Task Group p report, July 2007。

几种IEEE802.11无线局域网协议的比较

几种IEEE802.11无线局域网协议的比较
维普资讯
20 0 7耳第6 期
中图分类号 :P9 T33 文献标识码 : A 文章编号 :(9—25 (0 70 —02 —0 I Y 0 5 22o )6 16 2
几 种 IE 8 2 1 线 局域 网协 议 的 比较 E E 0 . 1无
王 文斌
wie e slc a'3 e o k tn a d wo k u b I rls o a l t t r sa d r r e o t y EEE. Th rdu t a iu ma fcu es c n e l  ̄ n w d e p o cs o v ro s f nua tr r a b o eae o e e n te s n p y ia a e .T u .i m k ste t o man f n to so e w rls o a r a p r td tg t ro a h sc ly r h s ta e i u cin ft ee slc a e h h l h w h i l n t o k,“ o n cin o li l on ’ n “ntme o kn lt e n ts g ns e r w c n e t fmutpe p i t ’a d i e t r i go mu i e e me t”,e se ob a ie o s w f pl a irt rl z d e e i h lw c s .T e b w t o o t h r y, te o d fr te ur e p lrz t n f te w rls l a a e e ok s g t s e h ra f t r p ua iai o e e s o l ra n t r i o o h h o o h i c w
i e n t ok.C mp rd w t e w r ew r .W L^ s e u p d w t n p cf d a v na e .A e w r ew r o ae i t en tok h h i N i q i e h ma y s e i e d a t s i i g st h

802.11e

802.11e

802.11e标准定义了混合协调功能(HCF)。

HCF以新的访问方式取代了DCF和PCF,以便提供改善的访问带宽并且减少了高优先等级通信的延迟。

这称作“增强分布式协调访问”(EDCA)的访问方式扩展了DCF的功能,名为“混合控制信道访问”(HCCA)的访问方式扩展了PCF的功能。

EDCA指定了四种访问类型,每一种类型对应一类数据。

每一个访问类别配置了四个参数:CWmin--最小竞争窗口;CWmax--最大竞争窗口;TXOP--发送机会限制;AIFS--仲裁帧间间隔。

为每一类数据设置这些参数能够让网络管理员根据应用程序组合和通信量调整网络。

在DCF应用中,一个拥有待发送数据的站点要等到媒体空闲时才能发送。

但是,采用802.11e 标准,这个站点等待额外的时间段。

额外时间段的长度根据要发送的数据类型而定。

为这种数据访问类设置的AIFS值定义额外等待时间段。

对于语音访问类的数据,AIFS值应该设置的小一些;对于电子邮件和FTP类的数据,AIFS 值应该设置的大一些。

语音要求延迟时间短。

小的AIFS值意味着语音数据能够比不太敏感的通信更快地开始下一个阶段的网络竞争。

经过AIFS时间段之后,这个站点生成一个在CWmin和CWmax之间的随机数字。

高优先等级的访问类应该设置低的CWmin和低的CWmax。

AIFS、CWmin和CWmax应该结合在一起进行设置。

这样,高优先等级的数据在大多数情况下都可以获得访问网络的权限。

为高优先等级数据设置的AIFS值与CWmax值相加的和应该大于为低优先等级数据设置的AIFS值与CWmin值相加的和,这样,低优先等级的数据就不会完全被封锁。

用于一个访问类的TXOP定义一次发送的最大长度。

如果要发送的数据太大不能在TXOP限制内发送,这个站点就把这个数据分多次发送。

对于语音数据的TXOP限制很小,因为语音数据包很短。

对于FTP、电子邮件和网络数据来说,应该设置较大的TXOP限制,这样,当发送数据的时候,就不需要把数据分多次发送了。

IEEE_802.11协议详细介绍

IEEE_802.11协议详细介绍

协议X档案:IEEE 802.11协议详细介绍作为全球公认的局域网权威,IEEE 802工作组建立的标准在过去二十年内在局域网领域内独领风骚。

这些协议包括了802.3 Ethernet协议、802.5 Token Ring协议、802.3z 100BASE-T快速以太网协议。

在1997年,经过了7年的工作以后,IEEE发布了802.11协议,这也是在无线局域网领域内的第一个国际上被认可的协议。

在1999年9月,他们又提出了802.11b"High Rate"协议,用来对802.11协议进行补充,802.11b在802.11的1Mbps和2Mbps 速率下又增加了 5.5Mbps和11Mbps两个新的网络吞吐速率,后来又演进到802.11g的54Mbps,直至今日802.11n的108Mbps。

802.11a高速WLAN协议,使用5G赫兹频段。

最高速率54Mbps,实际使用速率约为22-26Mbps与802.11b不兼容,是其最大的缺点。

也许会因此而被802.11g淘汰。

802.11b目前最流行的WLAN协议,使用2.4G赫兹频段。

最高速率11Mbps,实际使用速率根据距离和信号强度可变(150米内1-2Mbps,50米内可达到11Mbps)802.11b的较低速率使得无线数据网的使用成本能够被大众接受(目前接入节点的成本仅为10-30美元)。

另外,通过统一的认证机构认证所有厂商的产品,802.11b设备之间的兼容性得到了保证。

兼容性促进了竞争和用户接受程度。

802.11e基于WLAN的QoS协议,通过该协议802.11a,b,g能够进行VoIP。

也就是说,802.11e是通过无线数据网实现语音通话功能的协议。

该协议将是无线数据网与传统移动通信网络进行竞争的强有力武器。

802.11g802.11g是802.11b在同一频段上的扩展。

支持达到54Mbps的最高速率。

兼容802.11b。

IEEE802.11-2020中译版:概述

IEEE802.11-2020中译版:概述

IEEE802.11-2020中译版概述摘要 本系列文章为IEEE802.11-2020标准的中译版,本文原文请参考英文标准的第1章。

本章主要对标准的范围、目的等做了说明,并对标准中出现的单词用法做了说明。

1 范围该标准的范围是为本区域内的固定、便携式和移动站(STA)的无线连接定义一个媒体访问控制(MAC)和多个物理层(PHY)规范。

2 目的该标准的目的是为本地区域内的固定、便携式和移动站提供无线连接。

该标准还为监管机构提供了一种标准化访问一个或多个频段的方法,以便进行局域通信。

3 关于目的的补充资料具体而言,在符合IEEE802.11™标准的设备中,此标准—描述设备在独立、个人和基础结构网络中运行所需的功能和服务,以及这些网络中设备移动性(转换)的各个方面网络。

—描述允许设备与独立网络或基础结构网络外部的另一个此类设备直接通信的功能和服务。

—定义MAC过程以支持MAC服务数据单元(MSDU)传递服务。

—定义了几种由MAC控制的PHY信令技术和接口功能。

—允许在与多个重叠的IEEE802.11WLAN共存的无线局域网(WLAN)中操作设备。

—描述为通过无线介质(WM)传输的用户信息和MAC管理信息提供数据机密性和设备身份验证的要求和过程。

—定义动态频率选择(DFS)和发射功率控制(TPC)的机制,这些机制可用于满足任何频段操作的法规要求。

—定义MAC过程以支持具有服务质量(QoS)要求的局域网(LAN)应用程序,包括语音、音频和视频的传输。

—定义设备的无线网络管理机制和服务,包括BSS转换管理、信道使用和共存、并置干扰报告、诊断、组播诊断和事件报告、灵活的多播、高效的信标机制、代理ARP播发、位置、时序测量、定向多播、扩展休眠模式、流量过滤和管理通知。

—定义帮助设备发现和选择网络的功能和程序,使用QoS映射从外部网络传输信息,以及提供紧急情况的一般机制服务业。

—定义无线多跳通信所需的MAC过程,以支持无线LAN网状拓扑。

IEEE_802.11无线协议中文

IEEE_802.11无线协议中文
802.11
ÿÿÿÿ
符合IEEE的移动通信技术
本地无线网 WLAN 802.11 802.11a WiFi5 802.11b 802.11g 802.11i/e/f/n/s…
WiFi ZigBee
个人无线网 WPAN 802.15 802.15.4 802.15.3 802.15.1
UWB
Bluetooth
2400
2412
2437
2462
22 MHz
2483.5 [MHz]
13
WLAN: IEEE 802.11a
OFDM正交频分复用

服务质量, 安全, …

1999年7月
同802.11b
数据率

特别的优点/缺点
优点: 使用拥挤较少的5 GHz频段, 高 带宽 缺点: 由于使用更高的频率从而有更 强的阴影


子载波之间正交

子载波频率间隔紧密
频率选择性衰减
弱子载波上的强衰减通过贯穿子载波的前向纠错(回旋编码)来处理 Coded OFDM编码正交频分复用

17
IEEE 802.11a中的OFDM
带 52个已用子载波的OFDM 48 个数据+ 4 个引导 (加上12个虚拟子载波) 312.5 kHz 间隔 (= 20MHz/64)


PIFS (PCF IFS) :
PIFS = SIFS + 时槽时间, 其为20 μs在802.11b中, 9 μs在802.11a/g中 中优先, 用于使用PCF的时限服务


DIFS (DCF IFS):
DIFS = PIFS + 时槽时间 低优先, 用于异步数据服务

IEEE_802.11ax核心技术及在IoT的使用场景

IEEE_802.11ax核心技术及在IoT的使用场景

I G I T C W技术 分析Technology Analysis84DIGITCW2023.091 Wi-Fi技术发展简介1997年6月,美国电气和电子工程师协会(Institute of Electrical and Electronics Engineers ,IEEE )制定了无线局域网第一个标准——IEEE 802.11,工作频段是2.4 GHz ,数据传输速率为2 Mbps [1]。

1999年9月,IEEE 发布了802.11b 、IEEE 802.11a 两项标准,IEEE 802.11b 的工作频段在2.4 GHz ,最大数据传输速率为11 Mbps ,IEEE 802.11a 的工作频段是5 GHz ,数据传输采用的是OFDM (Orthogonal Frequency Division Multiplexing )模式,最大数据传输速率为54 Mbps 。

2009年,IEEE 发布了一个比较重要的标准,这个标准运行在2.4 GHz 和5 GHz 频段,命名为IEEE 802.11n (Wi-Fi 4),此标准还引入了其他的新特性,比如4×4 MIMO (Multiple Input Multiple Output )、空间复用、波速成型等,数据传输速率达到600 Mbps [2]。

I EEE 802.11工作组在2019年9月推出了I E E E802.11ax 标准(Wi-Fi 6)[3],此标准引入了上行/下行多用户-多输入多输出(Multi-User Multiple-Input Multiple-Output ,MU-MIMO )、正交频分多址技术(Orthogonal Frequency Division Multiple Access ,OFDM A )、1024-QA M (Quad rat u re A mplit ude Modulation ,QAM )等多个新技术,理论最大数据传输速率可以达到9.6 Gbps [1-3]。

ieee.802.11p的工作原理

ieee.802.11p的工作原理

ieee.802.11p的工作原理IEEE 802.11p是一种无线通信标准,也被称为Wireless Access in Vehicular Environments(WAVE),它主要应用于车辆与车辆之间的通信,也被视为一种短距离的无线接入技术。

以下是对其工作原理的简要介绍:1. 物理层(Physical Layer):这是IEEE 802.11p协议的最底层,主要负责处理无线信号的发送和接收。

它包括调制、扩频、解扩频、混频等操作,以将数据转化为适合无线传输的信号。

2. 数据链路层(Data Link Layer):这一层包括逻辑链路控制子层(LLC)和媒体访问控制子层(MAC)。

LLC子层负责处理错误检测和修复,以及数据序列的重排。

MAC子层则负责管理无线信道的访问,包括信道分配、流量控制和多路复用等。

3. 网络层(Network Layer):这一层主要负责处理数据包的路由选择和转发。

它使用IP协议进行数据包的封装和解析,并通过无线路由器或其他网络设备将数据包从一个网络转发到另一个网络。

4. 传输层(Transport Layer):这一层主要负责提供端到端的通信服务,包括数据包的分段、重组、错误控制和流量控制等。

通常使用TCP或UDP协议。

5. 应用层(Application Layer):这是最顶层,它根据应用程序的不同需求,提供各种应用协议。

例如,在车辆间通信中,可能会使用交通安全应用协议、导航应用协议等。

在通信过程中,IEEE 802.11p使用直序扩频(DSSS)或者跳频扩频(FHSS)方式发送数据,接收端则通过对应的方式接收和解码数据。

此外,为了确保通信的可靠性,IEEE 802.11p还支持多种重传机制,例如自动重传请求(ARQ)和前向纠错(FEC)。

IEEE 802.11p是一种非常有效的短距离无线通信技术,尤其适用于车辆间的高速移动通信环境。

然而,由于其工作原理涉及到复杂的编码和解码过程,以及多个层次的协议处理,因此在实际应用中需要针对具体场景进行优化和调整。

IEEE 802.11E技术白皮书

IEEE 802.11E技术白皮书

IEEE 802.11E技术白皮书关键词:QoS、WMM摘要:本文介绍了无线局域网中的QoS标准—IEEE 802.11E与WMM标准的公有部分。

缩略语:目录1 概述 (4)2 技术应用背景 (4)2.1 技术优点 (4)2.2 应用限制 (6)3 特性介绍 (6)3.1 相关协议 (6)3.2 协议处理机制 (6)3.2.1 MAC层结构 (6)3.2.2 MAC层数据平面结构 (7)3.2.3 多个接入类 (7)3.2.4 EDCA机制 (8)3.2.5 新增帧类型 (11)4 产品实现的技术特色 (12)4.1 WX5002/WA2110 (12)4.2 WA1208E (12)5 典型组网案例 (13)5.1 全网QoS解决方案 (13)5.2 SVP应用 (14)5.3 WDS组网 (15)6 总结和展望 (15)7 参考文献 (15)1 概述IEEE 802.11E标准定义无线局域网MAC层服务质量,支持语音、视频等多媒体业务在无线局域网中的应用。

IEEE 802.11E扩展了原802.11MAC层DCF和PCF信道接入机制,形成了EDCA和HCCA信道接入规范。

前者增强了DCF机制,区分不同业务应用的优先级,保障高优先级业务的信道接入能力,并在一定程度上保障了高优先业务的带宽。

后者增强了PCF机制,通过QAP的集中控制,以轮询方式为QSTA分配空口资源,提供改善的访问带宽并且减少了高优先级业务的延迟。

由于HCCA机制相比EDCA、PCF机制更加复杂,目前被各厂商束之高阁,没有得到推广。

但EDCA得到了广泛的应用,本文中的机制全部基于EDCA竞争规则,不涉及HCCA的无竞争部分。

除信道接入机制的增强外,IEEE 802.11E标准还引入BLOCK ACK、DLS、No-ACK等多种技术,可以有效地提高无线信道的吞吐量和带宽。

IEEE 802.11E于2005年9月22日通过,但至今尚未完全商用,芯片厂商仅支持其中的少量特性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

IEEE802.11e in Industrial Environments:a Quality of Service SurveyMARKUS J¨AGERMaster’s Degree ProjectStockholm,Sweden2005-12-05IR–SB–EX–0525AbstractThe communication between control units andfield devices in industrial envi-ronments is based on so-calledfieldbus technologies-networks optimized for the realtime transmission of highly sensitive data for control and monitoring purposes.As a strong need for wirelessfieldbus systems arose,the applicability of available wireless standards has been examined.Some specialized wireless systems are arising on the market but so far,no appropriate general solution based on a common standard could be found.In this project,the upcoming standard IEEE802.11e is analyzed and its appli-cability tested by means of simulations in the network simulator ns-2.Several traffic scenarios,typical for communications in the automation industry are considered.In order to enhance the achievable performance in an error-prone environment,different algorithms and retransmission procedures are proposed. The obtained results show that,even though IEEE802.11e is not optimized for industrial applications,it has a potential for realtime applications with some jitter and error margins.iAcknowledgementsFirst of all I would like to thank the Advanced Industrial Communication group at ABB Corporate Research in V¨a ster˚as/Sweden for giving me the opportunity to work on this interesting project as well as for the helpfulness of all group members.I am particularly thankful for the excellent support and dedication of my supervisor Jimmy Kjellsson.I would also like to thank Erik Larsson for being my adviser and examiner at KTH.Furthermore,I would like to thank my project partner Maxime Maury for the great teamwork,his enthusiasm and countless interesting discussions we had during the last six months.I am really grateful that I had him as my project partner.Thanks also to all other thesis students at ABB Corporate Research for the pleasant working atmosphere and the great time we had together.My family and friends deserve a particular acknowledgment-you are most important in my life and give me so much!With all my heart,I want to thank my parents for their never-ending support,love and for letting me know where I am at home.Furthermore,I want to explicitly mention a friendship I highly appreciate and do not want to miss:thank you,Pancho,for being such a good st but not least I am deeply grateful for the encouragement and love of a wonderful person.Annemarie,you really make me happy!iiiContents1Introduction11.1Project Definition (2)1.2Motivation (3)1.3Scope of the Thesis (4)2IEEE802.11e52.1General Description (5)2.1.1Reference Model (5)2.1.2Network Components and Architecture (6)2.1.3Services (7)2.2Physical Layer (7)2.2.1General Description (7)2.2.2OFDM Physical Layer Convergence Procedure (8)2.2.3OFDM Physical Medium Dependent (8)2.3Medium Access Control Layer (9)2.3.1MAC Layer Architecture (9)2.3.2Fundamental Concepts of the IEEE802.11e MAC (9)2.3.3Enhanced Distributed Channel Access (11)2.3.4HCF Controlled Channel Access (12)2.3.5Further Quality of Service Enhancements (14)3Industrial Communication Systems173.1Communication Hierarchy in the Automation Industry (17)3.2Fieldbus Systems (18)3.2.1General Description (19)3.2.2Communication Model (19)3.2.3Medium Access Methods (20)3.2.4Traffic Classification (20)3.2.5Quality of Service Requirements (21)3.3Wireless Fieldbus Systems (22)3.3.1Requirements and Challenges (22)3.3.2IEEE802.11e in Industrial Environments (23)3.3.3Related Work (24)4System and Scenarios274.1System Description (27)4.1.1Topology and Protocols (27)4.1.2Packet Error Measurements (28)vvi Contents4.1.3Error Model (29)4.1.4Performance Measuring (31)4.2Scenario Definition (32)4.2.1Scenario1 (32)4.2.2Scenario2 (33)4.2.3Scenario3 (33)5Simulation Environment355.1Realization Approach (35)5.2Network Simulator ns-2 (36)5.3Protocol Implementation (37)5.3.1Retransmission Procedures (37)5.3.2Enhanced Scheduler (40)5.4Simulator Configuration (41)5.4.1General Settings (41)5.4.2Retry Limit Definition (42)6Results456.1Scenario1 (45)6.1.1Performance Analysis of Cyclic Data (45)6.1.2Performance Analysis of Acyclic Data (52)6.2Scenario2 (55)6.3Scenario3 (57)6.3.1Performance Analysis of Cyclic Data (57)6.3.2Performance Analysis of Acyclic Data (58)7Conclusions and Future Work61 References63 A Parameter Settings67List of Tables2.1Modulation and coding for different data rates in IEEE802.11a.82.2Inter Frame Spaces in IEEE802.11e (11)2.3User Priority to Access Category mapping (11)3.1Typical control layer characteristics (18)3.2Comparison of algorithms (25)4.1Error model parameter settings (30)4.2Traffic types and characteristics in scenario1 (33)4.3Traffic types and characteristics in scenario2 (33)4.4Traffic types and characteristics in scenario3 (33)5.1EDCA parameter settings (41)6.1Average latency of acyclic data in scenario2 (56)6.2Average latency of acyclic data(scenario1vs.scenario3),5nodes59A.1Physical layer parameter settings (67)A.2Medium Access Control layer parameter settings (67)viiList of Figures2.1IEEE802.11reference model (6)2.2IEEE802.11e architecture (7)2.3OFDM PLCP framing (8)2.4MAC layer architecture (9)2.5Relationship between channel access mechanisms (10)2.6Internal contention in EDCA (12)2.7Service Interval structure according to the simple scheduler (13)2.8Example frame exchange sequences during HCCA TXOPs (14)2.9Direct Link Set-up procedure (16)3.1Hierarchical structure of industrial communication systems (18)3.2Traffic classification on thefield level (20)3.3Example of cyclic data traffic (21)4.1Packet error measurement environment (28)4.2Spectrum analysis during packet error measurements (29)4.3Gilbert channel model (29)5.1Overall simulation process (37)5.2Calculation of the TXOP duration (39)5.3Immediate retransmission procedure (39)5.4Late retransmission procedure (40)5.5Capacity and error analysis(mode:immediate) (42)5.6Capacity and error analysis(mode:late) (43)6.1Illustration of a typical cyclic data exchange sequence (46)6.2Scenario1:per-stream analysis of cyclic data,mode:immediate466.3Scenario1:per-stream analysis of cyclic data,mode:late (47)6.4Scenario1:performance analysis of cyclic data,mode:immediate486.5Scenario1:performance analysis of cyclic data,mode:late (49)6.6Scenario1:performance comparison of cyclic data (50)6.7Scenario1:average jitter of cyclic data (50)6.8Scenario1:maximum jitter of cyclic data (51)6.9Scenario1:average packet loss rate of cyclic data (52)6.10Scenario1:latency comparison of acyclic data (53)6.11Scenario1:latency analysis of acyclic data,PER=5% (54)6.12Scenario1:latency analysis of acyclic data,PER=20% (54)6.13Scenario2:latency comparison of acyclic data,PER=5% (55)6.14Scenario2:latency comparison of acyclic data,PER=20% (56)ixx List of Figures6.15Scenario3:cyclic offset over time illustration,mode:immediate.576.16Scenario3:cyclic offset over time illustration,mode:late (58)6.17Latency comparison of acyclic data in scenario1and3 (58)6.18Time of packet generation and packet transmission within a cycle59List of AbbreviationsAAC.........................Access Category ACK.......................Acknowledgment AIFS.......................Arbitration Inter Frame Space AIFSN.....................Arbitration Inter Frame Space Number AP.........................Access Point API........................Application Programming InterfaceBBPSK......................Binary Phase Shift Keying BSS........................Basic Service SetCCAP.......................Controlled Access Phase CDF.......................Cumulative Distribution Function CF.........................Contention Free CFP.......................Contention Free Period CP.........................Contention PeriodCSMA/CA.................Carrier Sense Multiple Access with Collision Avoidance CSMA/CD.................Carrier Sense Multiple Access with Collision Detection CTS.......................Clear to Send CW........................Contention WindowDDCF.......................Distributed Coordination Function DCS.......................Digital Communication System DFS.......................Dynamic Frequency Selection DIFS.......................DCF Inter Frame Space DL.........................Downlink DLS.......................Direct Link Set-up DS.........................Distribution System DSS........................Distribution System Service DSSS......................Direct Sequence Spread SpectrumEEDCA.....................Enhanced Distributed Channel Access EIFS.......................Extended Inter Frame Space ESS........................Extended Service Setxixii List of AbbreviationsFFHSS......................Frequency Hopping Spread Spectrum FIFO......................First In First OutHHC........................Hybrid Coordinator HCCA.....................HCF Controlled Channel Access HCF.......................Hybrid Coordination FunctionIIBSS.......................Independent Basic Service Set IEEE......................Institute of Electrical and Electronics Engineers IFS........................Inter Frame Space IP.........................Internet Protocol IR.........................Infrared ISM........................Industrial,Scientific and Medical bandKKbps.......................Kilobits per secondLLAN.......................Local Area Network st In First Out LLC.......................Logical Link ControlMMAC......................Medium Access Control Mbps......................Megabits per second MSDU.....................MAC Service Data UnitNwork Allocation Vector nQAP......................non-QoS Access Point nQSTA....................non-QoS StationOOFDM.....................Orthogonal Frequency Division Multiplexing OSI........................Open System Interconnection OTcl.......................Object Tool Command LanguagePPC.........................Point Coordinator PCF.......................Point Coordination Function PER.......................Packet Error Rate PHY.......................Physical layer PIFS.......................PCF Inter Frame Space PLC.......................Programmable Logic Controller PLCP......................Physical Layer Convergence Procedure PMD......................Physical Medium Dependent PPDU.....................PLCP Protocol Data Unit PSDU......................PLCP Service Data UnitList of Abbreviations xiii QQAM......................Quadrature Amplitude Modulation QAP.......................QoS Access Point QBSS......................QoS Basic Service Set QIBSS.....................QoS Independent Basic Service Set QoS........................Quality of Service QPSK.....................Quadrature Phase Shift Keying QSTA......................QoS StationRRL.........................Retry Limit RTS.......................Request to SendSSAP.......................Service Access Point SI..........................Service Intervall SS.........................Station Service SIFS.......................Short Inter Frame Space STA.......................StationTTcl.........................Tool Command Language TCP.......................Transmission Control Protocol TDMA.....................Time Division Multiple Access TPC.......................Transmission Power Control TS.........................Traffic Stream TSF.......................Timing Synchronization Function TSPEC....................Traffic Specification TXOP.....................Transmission OpportunityUer Datagram Protocol UL.........................Uplink er PriorityWWLAN.....................Wireless Local Area Network WM.......................Wireless MediumChapter1IntroductionIn industrial networks the communication between control units andfield de-vices,such as sensors and actuators,is very crucial and implies hard realtime and reliability constraints.Traditional LAN technologies used in home and of-fice environments are designed for completely different types of applications, and are in general not capable to cope with the stringent Quality of Service (QoS)requirements of industrial communications on the factory level.There-fore,industrial networks at this level are based on so-calledfieldbus technologies specifically developed as highly reliable realtime communication systems.The strict separation of the industrial and office world seems to become blurred nowadays as there are various initiatives going on to use Ethernet or IEEE 802.3[1]respectively as a basis forfieldbus technologies.In order to fulfill the hard performance criteria,it is though usually necessary to modify the Medium Access Control(MAC)layer.The driving reasons for the trend towards Eth-ernet are its wide acceptance resulting in lower and lower costs as well as the steadily increasing data rates.Furthermore,using a worldwide standard,which undergoes continuous improvements,reduces the manufacturer’s costs of en-hancing their own solutions.[2,3,4]Another trend is to realize wirelessfieldbuses,as wireless communication poses many advantages such as the reduction of cabling costs,increasedflexibility and less cable breaks.As the trend in industrial communications goes towards Eth-ernet,the Ethernet-based standard IEEE802.11[5],which is very popular nowa-days,would be the logical technology for the realization of wirelessfieldbuses. However,the plain IEEE802.11standard without doing any modifications to the MAC layer cannot be used for many industrial applications as QoS cannot be guaranteed.The upcoming IEEE802.11e standard(currently available as draft version D13.0[6])faces this problem and might therefore be a potential technology to be used in wirelessfieldbus communication.Extensive research has been done to analyze its performance for multimedia services[7,8,9,10,11] but its applicability for industrial applications has not yet been fully specified. The above-mentioned benefits of wireless communications in general as well as the features and expected acceptance of IEEE802.11e in the consumer market make this standard highly attractive even for industrial applications.[12,13]12Chapter1.Introduction 1.1Project DefinitionTo main objective of this project is to analyze the potential of using IEEE 802.11e as a basis forfieldbus communications in industrial networks with re-spect to QoS requirements.The main question to be posed is:To which extent is IEEE802.11e able to fulfill the stringent requirements of industrial commu-nications?The thesis will not refer to a specificfieldbus technology but define several general traffic scenarios typical for communications in the automation industry.The result sought is the performance behavior of data traffic with respect to latency,jitter as well as reliability in the different traffic scenarios. These criteria will be analyzed as a function of the node density as well as trans-mission errors.The thesis is based on[14]where the utilization of IEEE802.11e for a certain simple industrial application under consideration of different implementation strategies is analyzed.Thefinally proposed algorithm will be analyzed more extensively in this thesis.As an extension to[14],additional and more en-hanced traffic scenarios will be considered.Furthermore,the assumptions of error-free transmission will be relaxed in order to obtain more realistic results as wireless channels are in general very error-prone.These issues will be ana-lyzed mainly with consideration of timeliness and reliability,which are the most important criteria for industrial communications.[15]poses an extensive research of using IEEE802.11forfieldbus communica-tions.It is concluded that the plain standard cannot be applied and changes to the MAC layer to adapt the standard to industrial requirements are proposed. However,IEEE802.11e is not considered.In[16],the author considers an early draft version of IEEE802.11e and proposes a new MAC layer for a specific fieldbus technology.The goal of this project is in contrast to define if and to which extent IEEE802.11e is applicable without doing any modifications to the standard itself.The reason for this is that compliance to the standard is neces-sary in order to be able to use mass market products as well as to enjoy ongoing improvements and further standard developments.Furthermore,it has to be considered that,as IEEE802.11e is not a standard yet and different draft ver-sions contained partly significant changes,research based on older drafts might not be completely valid.The analysis of using IEEE802.11e in industrial applications is based on a the-oretical study as well as simulations using the network simulator ns-2[17].It will be analyzed how the test traffic scenarios can be mapped onto the IEEE 802.11e MAC layer and what has to be done to improve the system performance. The network simulator ns-2is an open-source project widely used within the IEEE research community.A basic implementation of the IEEE802.11e MAC protocol is available and can be used and extended in this project. Throughout the report it is assumed that the standard IEEE802.11a is used by all devices as the physical layer supporting a constant data rate of54Mbps1.All scenarios are composed of one control station(master)and N nodes(slaves),1The utilization of IEEE802.11a is motivated in Sec.4.1.1.1.2.Motivation3 whereby the maximum communication distance is10m and the stations are not moving.Different packet error rates are considered in this report.Further as-sumptions and a more detailed system description is given in Sec.4.1.The thesis focuses on the performance of the MAC layer IEEE802.11e.No other layers will be analyzed.Furthermore,radio resource management issues, such as frequency planning or channel allocation schemes,as well as security issues will not be considered in this thesis.1.2MotivationToday there are three main global standards that could be considered for the implementation of wirelessfieldbuses:Bluetooth2,ZigBee3as well as IEEE 802.11[18].However,none of these technologies was developed specifically for industrial applications and involve therefore partly significant limitations. Bluetooth supports only seven active nodes per master,the main shortcoming of Zigbee is its very low data rate of at most250Kbps and IEEE802.11cannot provide for low and deterministic communication delays.[12]Due to the limitations of the above-mentioned technologies,companies provid-ing industrial communication solutions are forced to develop their own protocols resulting in considerable developing costs.Additionally,the market acceptance of company-specific solutions can in general expected to be lower than for tech-nologies that are based on a global standard.Therefore,even if there are some individual solutions available,there is still the need for a global standard able to fulfill the requirements of industrialfield level communications.IEEE802.11e is a promising amendment to IEEE802.11as it is supposed to eliminate the lack of predictability of communication delays,which was a major problem in the legacy version.The performance and applicability of the up-coming standard IEEE802.11e in industrial applications is of high interest for the automation industry and will therefore be analyzed in this report.The main challenge in wirelessfieldbus communication is to ensure a reliable data transmission in a very harsh radio environment.Every station exchanges information typically with an interval of around10ms,whereby latency and jitter have to be kept as low as possible.In[18],it is recommended to avoid wireless communication in case latencies of less than10ms are essential,which is an absolute necessity infield level applications.If IEEE802.11e can be used for such realtime constraints has not yet been fully defined.In[14],it was shown that IEEE802.11e allows deterministic communication with very low latency assuming error free data transmission.The impact of interference and conse-quently packet losses on the system performance is scope of this report.It can be expected that erroneous communication will strongly influence the number of stations that can be supported as packets need to be retransmitted.Conse-quently,also the jitter will increase.234Chapter1.Introduction The high interest in the promising standard IEEE802.11e within the automation industry,its novelty as well as the challenges in wireless industrial communica-tions constitute the driving factors for the realization of this project.1.3Scope of the ThesisThe thesis project is part of a collaborative project with Maxime Maury per-formed at the Advanced Industrial Communications department at ABB Cor-porate Research in V¨a ster˚as,Sweden.The project adviser at ABB is Jimmy Kjellsson;adviser and examiner at KTH is Erik Larsson.This thesis is organized as follows:First,a theoretical background about the relevant aspects of the standard IEEE802.11,its amendment IEEE802.11e and the physical layer IEEE802.11a is provided.Subsequently,an introduction to industrial communication systems with focus on thefield level is given,whereby communication models,medium access methods,traffic classification as well as QoS requirements are considered.It is also dealt with wirelessfieldbus systems potentially using IEEE802.11e.After the description of the system and scenar-ios,the simulation environment is closely examined in Ch.5.The results are presented and analyzed in Ch.6.The thesis concludes by stating the benefits and limitations of using IEEE802.11e in industrial environments.Furthermore, future work on this topic is suggested.Chapter2IEEE802.11eThis chapter provides the required background regarding IEEE802.11e and in this context also of IEEE802.11a as well as of IEEE802.11,which is often re-ferred to as the legacy version.First,a general description is given by discussing the reference model,the network components,architecture and services.After that,it is dealt with IEEE802.11a serving as the physical layer andfinally,the MAC layer IEEE802.11e is thoroughly described.2.1General DescriptionIEEE802.11e[6]is a MAC layer enhancement of the IEEE standard802.11[5] supporting LAN applications with Quality of Service(QoS)requirements.IEEE 802.11e is currently available as a draft version defined by the802.11e task group. As the standard is predicted to be published in late autumn20054,the current draft(D13.0)is not expected to undergo significant changes.2.1.1Reference ModelThe IEEE802.11protocol set represents the MAC layer and Physical layer (PHY)of the OSI reference model.The common IEEE802.2layer,amongst others also used for the lower-layer LAN technologies IEEE802.3(Ethernet)and IEEE802.5(Token Ring),applies as the Logical Link Control layer(LLC).As this layer is not specifically designed for wireless applications,the MAC handles the management functions related to the requirements in wireless communica-tions.Four different physical layers are defined within the IEEE802.11protocol suite: The transmission can be either based on Infrared(IR),Frequency Hopping Spread Spectrum(FHSS),Direct Sequence Spread Spectrum(DSSS)or Or-thogonal Frequency Division Multiplexing(OFDM).IR,FHSS and DSSS are specified as the PHY in the legacy IEEE802.11standard.Additionally,an enhancement of DSSS is given in IEEE802.11b[19]defining a high-rate DSSS with a rate of up to11Mbps.IEEE802.11g[20],an enhancement compatible to IEEE802.11b,uses both DSSS and OFDM providing data rates of up to 4/groups/802/11/56Chapter 2.IEEE 802.11e 54Mbps.Both IEEE 802.11b and IEEE 802.11g operate in the 2.4GHz fre-quency band.The IEEE 802.11a amendment to the original standard operates in contrast in the 5Ghz band and uses only OFDM.It also allows rates of up to 54Mbps.5Some vendors provide a data rate enhancement by using two neigh-boring channels simultaneously.This doubles the data rate and allows up to 108Mbps for IEEE 802.11a and IEEE 802.11g.The PHY is divided into two sublayers,the Physical Layer Convergence Proce-dure (PLCP)and the Physical Medium Dependent (PMD).The PLCP defines the mapping of the IEEE 802.11MAC frames into the framing format used in the PHY,while the PMD describes how this user data is transmitted over the wireless medium (WM).The interfaces between the sublayer entities,called Service Access Point (SAP),are the MAC-SAP between the MAC and LLC sub-layer entity,PHY-SAP between the MAC and PHY and the PMD-SAP between PLCP and PMD.The protocol stack is illustrated in Fig.2.1.IR FHSS DSSS OFDM 802.2 Logical Link Control LayerOSI Layer 2(Data Link Control)OSI Layer 1(Physical)802.11 Medium Access Control Layer PLCPPMDMACLLC MAC-SAP PHY-SAPPMD-SAPFigure 2.1:IEEE 802.11reference model2.1.2Network Components and ArchitectureThe network components and architecture defined for IEEE 802.11and its amendment IEEE 802.11e are very similar except of a slightly different nomen-clature in a way that the QoS support of devices is always explicitly mentioned in the latter standard.For example,an Access Point (AP)is referred to as AP in legacy version,whereas it is either a QAP if it is supporting QoS or a nQAP if it is not supporting QoS in IEEE 802.11e.Devices having enabled QoS and others without QoS support might coexist in an IEEE 802.11e network.How-ever,in the following only pure QoS networks are considered.The simplest type of an IEEE 802.11e LAN is the QoS Independent Basic Service Set (QIBSS)consisting of at least two QoS stations (QSTA)communicating directly without any QoS Access Point (QAP)(see lower part of Fig.2.2).The QIBSS is often referred to as ad hoc network.A second type of BSS is the infrastructure based QBSS.In such a system,a QAP provides access to a so-called Distribution System (DS)interconnecting different QBSSs.The medium5IEEE802.11a,IEEE 802.11b and IEEE 802.11g are the currently specified physical layer standards.Further enhancements,e.g.IEEE 802.11n,are under development.2.2.Physical Layer 7of the DS is not specified in the standard and consequently can either be wireless or wired.Such large area networks consisting of different QBSSs are called Extended Service Set (ESS).Finally,IEEE 802.11networks can be connected to other IEEE 802LANs via a so-called portal,which is a logical point at which MAC Service Data Units (MSDUs)from a non 802.11LAN enter the DS or vice versa.The overall architecture is illustrated in Fig.2.2.QSTAQSTAQSTA QIBSS QSTA QSTA QSTAQAPQBSS QSTAQSTA QSTA QAPQBSS802.x LAN Portal ESS STA STA STA IBSSSTA STA STABSS STA STASTA AP BSS 802.x LAN Portal ESSDSDSAP Figure 2.2:IEEE 802.11e architecture2.1.3Services Two categories of services used by the MAC sublayer are specified in IEEE 802.11:the Station Service (SS)and Distribution System Service (DSS).The setof services in a BSS and QBSS belonging to the SS are MSDU delivery,privacy and (de-)authentication.In IEEE 802.11e higher-layer timer synchronizationand QoS traffic scheduling are additionally defined.The DSSs are (dis-/re-)association,distribution,integration as well as QoS traffic scheduling.62.2Physical Layer IEEE 802.11e can be based on any physical layer specified for IEEE 802.11.Due to the issues outlined in Sec.4.1.1,IEEE 802.11a [21]is in the followingconsidered as the physical layer.72.2.1General DescriptionIEEE 802.11a operates in the 5GHz frequency band and uses 52-subcarrier OFDM with a maximum data rate of 54Mbps.Twelve non-overlapping channels with a bandwidth of 20MHz are reserved whereby each channel is composed of 52subcarriers.48of these carriers are used for data and four are pilot subcarriers.6Forfurther details on services refer to [5]and [6].7For further details about the physical layer refer to [21].A summary is given in [22].。

相关文档
最新文档