APT-ENG-M
BUB-JOL 电子产品说明书
01简介20230609CM-H11M-11122-70KV 共轴无刷动力系统是一款适配单轴25-28kg负载的行业版动力系统,单轴最大拉力57.5 kg;适配50mm碳纤管机臂, 整体防护等级IP45,高效散热,专为大载重、消防、物流、应急等领域多旋翼无人机应用,提供一站式动力解决方案。
FOC电调采用CAN通讯,数字油门与PWM油门双冗余设计,具备上电自检,故障存储,过流保护,堵转保护等保护功能。
0203动力组成04动力安装运行DataLink软件。
先选择“扫描”按键,再给电调通电。
等待升级完成,若升级失败,请重复前部分操作。
设备断电,断电无先后顺序,不会烧坏设备。
电调CAN线连接到DataLink数据盒子上,数据盒子连接到电脑。
进入CAN调参页面。
查看页面提示,确认设置是否成功。
设备断电,断电无先后顺序,亦不会烧坏设备。
CM-H11M-11122-70KV使用说明书法使用。
·所含电调拥有CAN功能,在使用CAN功能时,同一架飞机,电调ID和油门通道不能相同,否则多电调会被识别为同一个。
·地面测试请勿带桨,避免带来不必要的危险。
·请务必仔细连接好各部件,若接触不良,您可能无法正常控制飞行器,或出现设备损坏等其他不可预知的情况。
·若需对电调的输入、输出线插头做相关焊接,请保证焊接牢靠,并使用足功率的焊接设备。
·勿在外部环境温度超过65℃时使用,高温将会毁坏电调并且可能导致电机损害造成炸机。
·动力套出厂已定好转向,请观察电机转向标示,因封装密封工艺,暂不支持更改电机相线顺序。
使用环境温度:-30℃-65℃总重量(不含桨叶):4350g支持油门频率:50-500Hz电 机型号:11122KV值:70KV电机尺寸:Φ120.1 x 55.2mm在无要求的情况下,电调默认出厂ID为1,油门通道为1,总线速率为500KHz。
此功能需要另购DataLink数据盒子才能使用。
蜂鸟公司TMG 740-3燃烧控制盒说明书
TECHNICAL DATASupply voltage220 / 240 V (-15... +10%)50 HZ (40 - 60 Hz)AC frequency variations result in proportional timing deviationsFuse rating10 A rapid, 6 A slow Power consumption approx. 15 VAMax. current peroutput terminal 4 A6 ASensitivityIonisation input 1.6 µAUV input70 µAMin. sensor currentIonisation/IR probe 5 µA = 2 LEDUV tube250 µA = 2 LEDAir proving switch 6 A, 220 VReset delay noneFlame detector cableIonisation50 m normal cable100 m screened cableUV tube100 m normal cable200 m screened cableUV tube UVZ 780 blue low sensitivityUVZ 780 white medium sensitivityUVZ 780 red high sensitivityWeight incl. base1100 gMounting attitude anyInsulation standard IP 44Permissable ambient temp.-20° C to +60° C incl. Classified acc. to EN 298BTLLXN2TECHNICAL FEATURES 1. Flame detectionThe following types of flame detector can be used:-Ionisation electrode, where the mains supply provides a neutral earth connection. Suitable for gas burners (signal current from flame cannot be influenced by interference from ignition spark).-UV sensor type UVZ 780 red, suitable for gas, oil and dual fuel burners.-Infra-red flicker detector type IRD 820 and 1020 for all types of burner.The flame signal amplifier is adjusted to the the type of detector probe fitted by using the flame detector selection switch on the underside of the unit. If the IRD flicker detector is used, the selection switch must be adjusted to the "ION"position.Flame detection is only operational when the switch position selected corresponds to the type of detector probe connected.By optimally matching the amplifier to the detector probe,considerably longer signal transmission distances with less sensitivity to interference can be achieved.The flame signal current indicator consists of a five stage LED display which shows the signal current continuously.An indication of the strength of the flame signal current is therefore always given. Fluctuations in the monitoring sensitivity can be noticed at an early stage,and appropriate corrective action can be taken.If the infra-red flicker detector IRD 820 or 920 is employed, the flame signal current indicator on the control box is not relevant. In this case, the IRD indicator is the decisive indication of flame signal strength.Flame signal current indicator2. Burner Control-Burners can be operated with or without post-purge.This varies according to model (see technical data)and is activated when the burner motor is connected to terminal 19.-Air damper operation is monitored to ensure the nominal air volume during pre-purge and in the starting position before fuel is released. If confirmation of the damper positions "MIN" and "MAX" is not received, the control box start sequence is interrupted.-The air proving switch is checked for corrrect operation before the start, and air pressure is monitored during pre-purge as well as during normal operation. In normal use,switch contacts with a rating of 6A/220V are sufficient.Additional switch contacts which are to be monitored can be connected between terminal 18 and the air proving switch working contact. In this case, jumper II on the underside of the control box should be cut.-A separate connection for a pilot valve PV is provided,which is again closed at the end of the second safety interval. The heat output of the gas flow which is controlled by this valve must not exceed 120kW.-The terminal for the start valve SV must not be used when connecting the pilot valve PV.-Together with the start valve SV, a total of 3 power levels are available for use. The gas flow controlled by valves SV, V1 and V2 must lead to a common nozzle unit.- To determin the heating power of the gas flow controlled by the pilot- and start valve, EN 676 has to be consulted.-In addition to the built-in button with signal lamp, it is also possible to connect a remote lockout indicator and reset switch.-For monitoring of the ignition spark, link 1 on the base of the control box must be cut. In this case, flame detection is carried out by a UVZ 780 ultra-violet sensor.3. SafetyThe design and programme sequence employed in the control boxes in the TMG 740-3 series conform to the presently applicable European standards and regulations.The following features exceed the requirements of most standards, and therefore ensure additional safety:-After a normal shutdown, the stray light test is started immediatly by the control box which directs an increased voltage to the UV sensor. The very important extinguishing function of the sensor can therefore be checked. If the fuel valve does not close correctly, or a sensor or amplifier malfunction occurs, shutdown and lockout take place after approx. 20 sec., even if the controlling thermostat is open.-The contacts responsible for the release of fuel are checked when the programme starts, to ensure that they have not become welded together.4. Mounting and Electrical InstallationAt the base:-3 earth terminals, with an additional tag for the burner earth.-3 neutral terminals, with a fixed internal through connection to the neutral input, terminal 8.-2 separate slide-in plates and 4 fixed, threaded knockouts (PG 11 thread) as well as a wiring opening from below, to facilitate wiring of the base.-A keyed fit ensures that the wrong control box type cannot be fitted to the base. The corresponding control box designation is shown in lettering on the base.General:-Can be mounted in any position, insulated as per IP 44standard (unaffected by water spray). The control box and detector probes should not however be subjected to excessive vibration. With the UVZ 780 ultra-violet sensor,care should be taken to ensure that a good electrical contact to the burner exists via the metal flange.-If an ionisation electrode is used, appropriate protective measures are required in order to avoid contact with the electrode while installation work is being carried out.Trouble-free operation with this type of flame detection is not possible if a voltage of over 25 volts is measured between neutral and earth. In this case, provision must be made for a separate isolating transformer.-The maximum lengths for the detector probe cables,depending on the type of cable installed, are listed in the technical data and must be adhered to without fail. Laying the cables parallel to mains cabling over long distances should be avoided, and the use of multiple core cable is also not permitted.T M G 740-34COMMISSIONING AND MAINTENANCE 1. ImportantThe wiring must be checked exactly when commissioning the installation. Incorrect wiring could damage the control box, putting the safety of the burner system at risk.When mounting and wiring the control box, the applicable installation regulations must be observed.-The chosen fuse rating must not, on any account, be higher than the value listed in the technical data.-Failure to observe this instruction could, in the case of a short circuit, have serious consequences for the control box or burner system.-For safety reasons, it must be ensured that the control box performs at least one normal shutdown during every 24 hour period.-Switch off or disconnect the power before plugging in or unplugging the unit.-Burner control boxes are safety devices and should not be opened.T M G 740-32. Routine ChecksAn inspection of the technical safety of the flame detection system must be carried out during commissioning of the unit as well as after servicing, or if the system has not been in operation over a long period.For test a), the gas proving switch should be bridged.a)Attempt to start with the hand valve closed:- After the first safety interval has elapsed -> Lockoutb)During normal operation, interrupt detector probe or cutoff light:- In less than 1 sec.-> LockoutFault findingFault finding is considerably simplfied by making use of the coloured programme indicator. Irregularities during commissioning, normal operation or a normal shutdown pause can be localised via the programme indicator disc.If a malfunction occurs, it is useful to note the exact position of the indicator before operating the control switch or reset button.The following list is designed to assist with fault finding.COLOUR WHERE WHAT REASONBLUEbeginningdoesn’t start-no power, break in control circuit, air proving switch not in resting positioncontinuous ventilation -end switch "MAX" air damper doesn’t operateline lockout-air proving switch doesn’t switch over or is too lateendcontinuous ventilation -end switch "ignition position", air damper doesn’t operate anywherelockout -stray lightYELLOWendlockout-flame establishment pilot or start valve impossible no flame signal current or too weak (min. 2 LED’s) flame detector selector switch set incorrectlyRED end lockout-no flame signal current or too weak after end of second safety interval (double fuel feed burner)GREEN end lockout -loss of flame during operation, air pressure too low BLACKendlockout-stray light due to burning on, UVZ sensor tube reached end of life and activates shutoff, defect in flame detector circuitA test baseplate is available for checking the burner control box functions (model designation UP 7520, item no. 18601)6Honeywell-Platz 1Postfach 324CH-8157 DielsdorfORDERING INFORMATION ITEM DESIGNATION ITEM NO.Burner control box Type TMG 740-3 Mod. 32-3208211Socket Socket TMG 70205Insert plate PG-plate 70502optional Cable entry plate 70501Flame detector UVZ 780 white 18814or UVZ 780 blue 18812or UVZ 780 red 18813Flame detector IRD 82016201Flame detector IRD 1020 end-on viewing 16522Flame detector IRD 1020 side-on left 16523Flame detector IRD 1020 side-on right 16521IRD mounting flange IRD Holder M9359093Flame detector cable 3-wire, 0.6 m7236001The above ordering information refers to the standard version.Special versions are also included in our product range.Specifications subject to change without notice.。
罗曼尼亚国防护卫舰T22号改装动力系统的自动化控制说明书
U.P.B. Sci. Bull., Series D, Vol. 83, Iss. 1, 2021 ISSN 1454-2358 AUTOMATION CONTROL FOR REVAMPING THE PROPULSION SYSTEM OF A NAVY FRIGATEFilip NICULESCU1, Claudia BORZEA2, Iulian VLĂDUCĂ3, Andrei MITRU4, Mirela VASILE5, Alexandra ȚĂRANU6, Gabriel DEDIU7The paper presents the replacement of the current propulsion system of a T22 Romanian defence frigate with a Pratt & Whitney turboprop engine. Due to becomingout-of-date and reaching the maximum operation hours and expected lifetime, turbineengines need to be replaced. A ST40M engine of 4 MW power was tested in-house andinstalled on the frigate, replacing one of the Rolls Royce Tyne engines and proving itsreliability. After the revamp, the defence ship will be equipped with two ST40Mengines for cruise speed, and two Rolls Royce Olympus gas turbines for sprint speed.For the control, monitoring and warning functions, a modern automation andelectronic control system was designed and implemented, customised for the ship. Thelocal control panel displays the real time parameters and virtual engine controls. Amathematical model was developed for estimating the maximum power that can beachieved. Bench tests with the engine were performed to assess its behaviour andimplement the automation control program, prior to onboard commissioning tests. Keywords: automatic control system, PLC electronic control, gas turbine, turboprop engine, marine equipment1. IntroductionA marine propulsion system’s purpose is to convert a primary form of energy into mechanical power, and to convey this one to the propulsion system, in order to ensure the necessary torque for driving the propeller. Gas turbine engines experience degradations over time that cause great concern regarding engine reliability, availability, and operating costs [1, 2, 3]. Therefore, after becoming out-of-date and beginning to be unreliable for the precision required in marine ships, these engines need to be replaced.The paper presents the replacement of an out-of-date marine gas turbine engine with a newer propulsion system, on a T22 frigate. The new Pratt & Whitney 1PhDStud.Eng.,ScientificResearcherIII,INCDTCOMOTI,Romania,************************* 2PhDStud.Eng.,ScientificResearcherIII,INCDTCOMOTI,Romania,************************ 3PhDStud.Eng.,ScientificResearcherIII,INCDTCOMOTI,Romania,************************ 4PhDStud.Eng.,ScientificResearcherIII,INCDTCOMOTI,Romania,********************** 5PhDStud.Eng.,ScientificResearcher,INCDTCOMOTI,Romania,***********************6PhDStud.Eng.,ResearchAssistant,INCDTCOMOTI,Romania,**************************7PhDStud.Eng.,ScientificResearcherIII,INCDTCOMOTI,Romania,***********************258 F. Niculescu, Claudia Borzea, I. Vlăducă, A. Mitru, Mirela Vasile, Alexandra Țăranu, G. Dediu ST40M is derived from the PW150A aviation turboprop engine [4]. Its power is the same as the one of the old engine, Rolls Royce Tyne [5], namely 4 MW. However, after the last capital revision of the Tyne engine, the maximum power obtained decreased to less than 3 MW.Fig. 1. T22 frigate to be revamped [6]ST40M is currently being used only on the series of Norwegian small superfast, stealth missile corvettes Skjold, powered by a Combined Gas-and-Gas (CoGaG) propulsion system consisting of four Pratt & Whitney gas turbine engines: two ST18M with output power of 2,000 kW gas turbines for cruise speed, and two larger ST40M turbines of 4,000 kW for sprint speed [7]. These gas turbines have been tailored for marine applications and offer high efficiency and low weight [8].Pratt & Whitney ST18 engines have been used for cogeneration purposes, at Suplacu de Barcău power plant, installed and commissioned by the Romanian Research and Development Institute for Gas Turbines COMOTI. The power plant was built with the aim of studying the efficiency in growing oil production with lower costs for the electrical and thermal energy used in oil field. Each line consists of an electrical generator powered by one aero derivative ST18 turbine engine, a heat recovery steam generator with afterburner, and linked installations. The ST18M proved its efficiency and reliability, with 32,000 hours between overhauls. Operating over 55,000 hours from 2004 to 2008, the two lines of the cogeneration plant provided an efficiency of 85% [9]. These gas turbines are tailored for marine applications, with high efficiency and low weight.2. Mathematical model regarding engine operationFrom energetic point of view, a marine propulsion system consists of the power source (main propulsion engine) and the energy consumer (thruster). Among currently used marine thrusters, propellers best cater for current naval technology, most frequently used, and generally most efficient type of marine propulsion [10].Automation control for revamping the propulsion system of a navy frigate 259 Pratt & Whitney delivers ST40M power prop engine (Figure 2), without the control electronics. For functioning as cruise engine, this one has to be adapted to the specific type of ship.Fig. 2. Section through the 3D CAD model of ST40M gas turbine engine The characteristic curve of ST40M gas turbine, given in the specifications [11] for natural gas fuel operation, shows the relation between the output power at shaft and the exhaust fuel gas flow. Relying on specified characteristic for power in relation with the fuel gas discharge flow, we extracted the data in Table 1, using the exhaust gas flow (G gT), calculated with the relation:G gT=G c∙(α∙L0+1)(1) where: G c–fuel flow in kg/s; α – air excess; L0 – stoichiometric coefficient iterated determining the excess air α used to calculate the power (3728 kW) from Table 1, using natural gas fuel, for which the stoichiometric coefficient L0 is 17.16.Table 1In Table 2 we determined Q cn (exhaust gas flow injected in the combustion chamber of the turboprop engine) and the maximum shaft power in relation to the experimental fuel flow.260 F. Niculescu, Claudia Borzea, I. Vlăducă, A. Mitru, Mirela Vasile, Alexandra Țăranu, G. DediuTable 2cnAt a fuel flow Q cn of 19 l/min, a maximum exhaust gas flow of 13.6 kg/s at a power of 3728.7 kW was calculated iteratively using relation (1). For this shaft power, we also determined the acceleration percentage and the fuel flow. Table 3 shows experimental data acquired, the bolded values being used for computations.Table 3Depending on the propulsion turbine speed NTL, the parabolic variation curves for acceleration (Throttle [%]), and fuel flow Q cn) were determined, which allowed to calculate the acceleration percentage at 9900 rpm, namely 81.8%. The values of the free turbine speed and fuel flow required for acceleration of 81.8% and 100% respectively were determined using the universal characteristic of the turbine given by relation (2) hereinafter.W̅̅̅TP=f(G gT,N TP)(2) where: G gT is the exhaust gas flow and N TP is the propulsion turbine speed.Automation control for revamping the propulsion system of a navy frigate 261The variation curves and their polynomial approximation equations for propulsion turbine speed and fuel flow in relation with throttle opening percentage are represented on the graphs below.a) b) Fig. 3. a) Propulsion turbine speed and b) Fuel flow, depending on throttle opening percentageHaving the temperatures before and after the propulsion turbine, using the actual diesel fuel flow Q cn in (kg/s), we can obtain the free turbine power W TP :W TP =G gT ∙(H ITT −H 6)∙ηT (3)where: H ITT and H 6 are the exhaust gas enthalpies before and after turbine, depending on exhaust gas temperatures and excess air α, consider ed constant.G gt was determined, considering the stoichiometric coefficient of diesel fuel, L 0 = 14.7. The enthalpies were calculated according to the thermodynamic tables for exhaust gases using the excess air coefficient α = 2.991 [12]. Considering turbine efficiency ηT = 0.86, we obtain the real shaft power, W TP-cor in Table 4, along with the enthalpies for ITT and T 6M , with respect to the temperatures from Table 3. The shaft power is also given according to these parameters.Table 4y = 0.0258x 2+ 70.036x + 3921.2020004000600080001000012000020*********N T P [R P M ]THROTTLE OPENING [%]Propulsion turbine speed vs. throttle opening Throttle vs. NTP y = 0.0006x2 + 0.1408x + 3.2733051015202530020406080100F U E L F L O W [L /M I N ]THROTTLE OPENING [%]Fuel flow vs. throttle opening Throttle vs. fuel flow262 F. Niculescu, Claudia Borzea, I. Vlăducă, A. Mitru, Mirela Vasile, Alexandra Țăranu, G. DediuThe subsequent graphs show the power variation with throttle opening and with exhaust gas flow respectively, in the experimental data domain.a) b) Fig. 4. Shaft power variation with: a) throttle opening and b) exhaust gas flowFrom the ST40M data [11], the maximum power is 4040 kW, for fuel flow at 100% operation, at a gas flow of 13.88 kg/s (30.6 lb/s). Thus, at an acceleration of 81.8% we would have a theoretical axis power of 3304.72 kW. The difference between the two power values is:δcalculation =(P theoretical@81.8% − W TP−corrected )Ptheoretical@81.8%∙100 =19.1% (4)It has been demonstrated that changing the fuel from natural gas to diesel can modify the parameters with 2-4%, at the same shaft power [13]. Therefore, since the ship uses diesel, the total maximum difference from the theoretical power would be about 21-22%.The propulsion turbine rotation speed NTP at maximum power would be below 12000 rpm (Figure 3), while the theoretical rotation speed is ~14000 rpm[11]. To sum up, because the lifetime of Tyne turboprop engine has shortened, both the acquired data and computations show that we would have a decrease in the maximum theoretical power with ~20%, down to 3100-3200 kW.3. Automation and electronic control system designChoosing a propulsion system for maritime applications supposes the integration of a large number of elements into a limited functional space, choosing its components (propulsion engine, gear transmission and thruster), and adjusting them according to the imposed constraints and available space, as well as arranging the components in such a configuration so as to comply with the required performance [10, 14]. The advantages of electronic control in terms of accuracy and 020406080100050010001500200025003000T h r o t t l e [%]Power [kW]Power vs. throttle opening02468101214050010001500200025003000F l o w [k g /s ]Power [kW]Power vs. Exhaust gas flowAutomation control for revamping the propulsion system of a navy frigate 263 adaptability to various differing requirements are renowned for a long time. Among the available control systems [15], electronic control currently offers the highest reliability and adaptability, and can easily and rapidly be custom tailored for any arising situation or parameter change [16]. An automated electronic control system with programmable logic controller (PLC) was designed, built, installed and tested together with the ST40 engine for the replacement of the old propulsion system.The gas turbine control is performed from the engines room of the ship, situated on the deck above the hull, where the four propulsion engines of the frigate are installed. The gas turbines control is realized from the Panel PC on the local control cabinet (LCP) interfacing the PLC. This one receives the operator’s command, analyses the cruise mode of the ship, the regimes of the other propulsion systems, and conveys the electronic command to the PLC, which triggers the actuation elements for driving the engines. The PLC also monitors and acquires the parameters for operation in optimum conditions, setting thresholds for a safe and secure operation. The Panel PC offers all the functionalities of a computer, enabling the software program modification on-site, with all sequences and parameter limits.The PLC assembly located in the local control cabinet is connected to the current adapters located in the junction boxes (temperatures – TJB, pressures – PJB, speeds and vibrations– VJB), in close proximity of the engine. The PLC’s central processing unit (CPU) communicates over Ethernet with the Panel PC on the local control cabinet in engines room, and with the control panel and tests computer in the engines control room. Bench tests (Figure 5a) of the engine with the automation system were conducted according to the ones recommended by manufacturer, after which this one was installed in the place of a Tyne on the frigate (Figure 5b).a) b)Fig. 5. ST40M gas turbine: a) on test bench, and b) installed on the ship The block diagram of the automation system hardware physical components is presented in Figure 6 hereinafter. Placing the transducers configuration considered the distance from measured parameter, ease of debugging, and minimizing the environmental influences on the devices (such as a potential salt water penetration inside the ship, humidity, ambient temperature and pressure, etc.).264 F. Niculescu, Claudia Borzea, I. Vlăducă, A. Mitru, Mirela Vasile, Alexandra Țăranu, G. DediuFig. 6. Block diagram of the automation control systemThe designed automation system enables an integrated engine control and monitoring with programmable logic controller. The programmed sequences implemented in Proficy Machine Edition, the software for VersaMax PLCs, are presented hereinafter.•START-UP. The conditions that must be met for the start-up sequence to begin are: Cool engine (inter turbine temperature ITT<150°C); Fuel pressure >0.8 bar; Engine speed <1000 rpm; Deactivated stop valves (stop valves bypass the fuel tray so that it does not get into the engine); An override button is provided, allowing engine start-up overseeing the above two temperature and pressure conditions. There are three start-up possibilities, presented hereinafter.a)Cold start-up– is performed without fuel ignition, only by gradually opening the air inlet valve and, depending on the pressure attained, it is tried to maintain the engine at a speed of 6000 rpm. During in house tests, we obtained an 8 bar pressure, rendering a speed of ~5000 rpm.b)Deco start-up– when it was just taken out of the warehouse (the fuel valve is opened at 15% and the fuel is cleaned of impurities).Automation control for revamping the propulsion system of a navy frigate 265 In cold and deco start-up modes, the engine functions for 45 s and then stops.c)Hot start-up–begins with opening the air inlet valve. When the engine reaches 3200 rpm, the speed is maintained constant by controlling the air valve. When reaching this speed, the spark plugs are ignited. The fuel valve is opened progressively. If 15 seconds after it has reached 3200 rpm, the inter-turbine temperature ITT does not increase over 150°C, the engine is automatically shut down, since not reaching this temperature means that the spark plugs did not ignite.If ITT > 150°C, the opening of the fuel valve is continued and, at 1600 rpm, the spark plugs are turned off and the air valve is closed. The opening of the air valve is being carried on. If within 50 seconds after reaching 3200 rpm, from the moment fuel supply has started, the speed has not reached 19000 rpm, the engine is emergency shut down and the bypass valves are opened. The threshold speed between start-up and normal regime operation is 19700 rpm.•NORMAL REGIME OPERATION. Hereinafter, if the hot start-up sequence finished successfully and all conditions are met, after reaching 20000 rpm, no action is taken for the next 3 minutes, as it is an interval reserved for thermal stabilization. In emergency situations that can arise during frigate operation on sea, this condition can be overridden. After these 3 minutes, the speed can be modified both from the power control lever (PCL) situated in engines control room, as well as by pressing the virtual arrows on the touchscreen panel. The only difference is that propeller angle cannot modified from the operator panel. Initially, the angle is 0°, the blades being in the same plane, perpendicular on the engine shaft. From the lever, the angle can be modified, for allowing ship advancing.The command of ST40M gas turbine engine can thus be performed from the local control panel or from the engine control room. The so-called remote control from engines room is realised by means of the power control lever situated on the ship control board. ST40M also has two surge valves after the second compressor stage, namely valve 2.2 and valve 2.7. Valve 2.2 is gradually closed from the fully opened position at 20900 rpm, to completely closed at 23200 rpm. Valve 2.7 is closed at 21500 rpm, being an all or nothing flow control valve.In the speed domain from 20000 rpm to 29500 rpm, the ship is in normal operation, being ab le to be controlled according to captain’s orders.•SHUTDOWNa)Normal shutdown– can be activated either automatically by exceeding the set limits of less important parameters (such as fuel pressure, oil pressure, oil temperature, vibrations etc.), or manually by pushing the shutdown button (usually for the sprint engines to enter regime or for accosting. The engine is decelerated until reaching 20000 rpm, maintaining it at this idle speed for 5 minutes. During this time, while the engine cools down, in case it was shutdown due to exceeding a parameter limit, there is another override button that cancels the shutdown sequence (for unexpected situations during frigate operations on sea). If the engine shutdown266 F. Niculescu, Claudia Borzea, I. Vlăducă, A. Mitru, Mirela Vasile, Alexandra Țăranu, G. Dediu has not been cancelled during these 5 minutes, the stop valve is opened and the fuel valve is closed, the engine stopping completely in about 1 minute (speed 0).b)Emergency shutdown– occurs when one of the important parameters (such as turbines speeds or ITT exceed the prescribed limits. The fuel is cut, the air valves and surge valves are opened, the air valve is closed, and the spark plugs are closed. It is realised by pushing either of the two emergency shutdown (ESD) buttons – one placed on the local control panel near the engine, and one on the remote control box upstairs in engine control room. In this room where the engines control is performed, there is a switch for controls commutation on deck to the ship’s captain.The tests performed on the ship involved a minimal intervention in the automatic control of engines and propellers. The throttle controlling the power of the old engine was used for the new engine so that this signal is acquired, and depending on it, the engine provides the necessary power to the ship (up to around3.5 MW). The high-pressure compressor signal (throttle position) is converted intoa unified 4-20mA signal by the pressure transducer. Its value is converted, by the implemented software program of the PLC, into the corresponding speed of the high-pressure compressor required for the ST40M gas turbine. Relying on this signal, the position or opening of the fuel valve is regulated automatically, for setting the desired speed of the ship. The main screen with ST40M diagram and real time parameter values displayed on the LCP is presented in Figure 7.Fig. 7. Main screen with gas turbine and important parameters during operationAutomation control for revamping the propulsion system of a navy frigate 267The graph in Figure 8, represented with acquired parameters, shows that during tests the engine reached a speed between ~22,000÷28,800 rpm. By using solely this engine, the ship was driven up to a cruise speed of 8 knots (~22 km/h).Fig. 8. Evolution of the acquired values for the speed of the high-pressure compressorThe inter turbine temperature is considered to be at least 800°C by fuel flow decrease condition (ITT lim = 800°C). At every time increment Δt = 0.4 s, this condition is verified.4. ConclusionsThe evolution of the essential parameters recorded and acquired for ST40M gas turbine engine shows the stability of the engine in every functioning regime (idle and loaded). The implemented automated electronic control system has proved reliable, accomplishing the optimum control of the gas turbine, with the functions of monitoring, displaying and acquiring of the values of operation parameters. The operation was performed in good conditions and a safe and smooth engine characteristic was achieved by setting the temperature limiting protection. The touch screen control panels interfacing the PLC provide an easily and safely controlled operation, facilitating the revamp of the frigates by replacing the out-of-date Rolls Royce Tyne engine with Pratt & Whitney ST40M marine gas turbine engine, together with developing and implementing the afferent electronics tailored for this specific application. The chosen configuration of the system has proved its compatibility with the given naval requirements, also being easily adaptable.AcknowledgementThe work presented herein was funded by the Operational Programme Human Capital of the Ministry of European Funds through the Financial Agreement 51675/09.07.2019, SMIS code 125125.S p e e d [r p m ]Time [s]268 F. Niculescu, Claudia Borzea, I. Vlăducă, A. Mitru, Mirela Vasile, Alexandra Țăranu, G. Dediu We would like to thank our colleague Adrian Săvescu, for his essential contribution of elaborating and implementing the PLC software embedding the operation sequences, and for providing important information for the present paper.R E F E R E N C E S[1]Y.G. Li and P. Nilkitsaranont, "Gas Turbine Performance Prognostic for Condition-BasedMaintenance", Applied Energy 86, no. 10 (2009).[2]P. Laskowski, "Damages to Turbine Engine Components", in Scientific Journal of SilesianUniversity of Technology. Series Transport 94 (2017).[3] D. Burnes, A. Camou, "Impact of Fuel Composition on Gas Turbine Engine Performance", inJournal of Engineering for Gas Turbines and Power 141, no. 10 (2019).[4]"PW100-150 - Pratt & Whitney", Pwc.ca, https://www.pwc.ca/en/products-and-services/products/regional-aviation-engines/pw100-150 [Accessed: 28.04.2020]. [5]"Rolls-Royce Engines: Tyne - Graces Guide", , 2019,https:///Rolls-Royce_Engines:_Tyne. [Accessed 29.04.2020].[6] E. Pascu, "Fregata …Regina Maria”, de 15 ani în serviciul Forțelor Navale Român e",Defenseromania.ro, 2020, https://www.defenseromania.ro/fregata-regina-maria-de-15-ani-in-serviciul-for-elor-navale-romane_602768.html. [Accessed 03.05.2020].[7]"Skjold Class" (Archived report), pdf, 2018, , 2013,https:///archive/disp_pdf.cfm?DACH_RECNO=1014. [8]"P&W to Power Norwegian Navy “Skjold” Patrol Boats", , 2019,/articles-view/release/3/32064/p%26w-turbines-for-%E2%80%98skjold%E2%80%99-boats-(jan.-20).html. [Accessed 30.04.2020].[9]M. Borzea, G. Fetea, R. Codoban, "Implementation and Operation of a Cogeneration Plant forSteam Injection in Oil Field", in Volume 7: Education; Industrial and Cogeneration; Marine;Oil and Gas Applications, 2008.[10]G. Samoilescu, D. Iorgulescu, R. Mitrea, L.D. Cizer, "Propulsion Systems in MarineNavigation", in International Conference Knowledge-based Organization 24, no. 3 (2018). [11]"PW Power Systems ST18/ST40"(Archived report), pdf, 2018, ,2020, https:///archive/disp_pdf.cfm?DACH_RECNO=1327 [Accessed: 28.04.2020].[12]H. Kayadelen, Y. Ust, "Thermodynamic Properties of Engine Exhaust Gas for Different Kindof Fuels", Lecture Notes in Electrical Engineering 307, pp. 247-259, 2014. DOI: 10.1007/978-3-319-03967-1_19.[13]M. Elgohary, I. Seddiek, "Comparison between Natural Gas and Diesel Fuel Oil Onboard GasTurbine Powered Ships", Journal of King Abdulaziz University, vol. 23, no. 2, pp. 109-127, 2012. DOI: 10.4197/mar.23-2.7.[14]C.G. Hodge, "The Integration of Electrical Marine Propulsion Systems", in InternationalConference on Power Electronics Machines and Drives, 2002.[15]B. MacIsaac, R. Langton, "Marine Propulsion Systems", in Gas Turbine Propulsion Systems,2011.[16]F. Niculescu, A. Savescu, "Aspects Regarding the Control and Regulation of an IndustrialTurbine", 11th International Symposium on Advanced Topics in Electrical Engineering, 2019.。
APT防御产品_铁穹高级持续性威胁预警系统ppt课件
木马植入
木马控守
利用SSL加密通道访问C&C服 务器,获取敏感信息
全球20多家高科技企业被波 及,大量核心信息资产泄漏
破坏
韩国KBS事件
控制补丁服务器,向终端推送木马程序。
从终端尝试连接到服务器,成功后执 行破坏程序并执行。
定时激活数据毁灭功能,造成硬 盘数据永久性毁坏。
4
特种木马特点
• 规律域名解析 请求;
• 固定时间间隔 下内容一致的 通信行为
协议异常
• HTTP协议; • DNS协议; • 邮件类型协议
流量判断
异常访问次数
• 境外IP长时间 连接;
• 上下行流量比; • 传输总量; • 传输时间异常
• 内外网IP; • 域名访问; • URL访问
综合分析
• 数据关联分析 • 特殊筛选算法
潜伏阶段
活跃阶段
1. 通过虚拟引擎技术虚拟执 行协议还原得到的可执行 文件样本
2. 通过文件读写、进程创建、 注册表读写、网络上传下 载等行为来判定
3. 通过判断正常协议通信中 的蛛丝马迹来检测APT攻 击的伪装技术
1. 周期性的心跳数据包、 规律性的DNS请求、 规律性的IP地址访问
2. 异常的数据格式、异 常的通信协议
远程管理 事件告警/会话还原/资产威胁统计
远程分析 11
主要功能
1
木马检测
2
综合分析
3
资产关联
4
威胁告警
5
统计报表
12
木马检测--核心思想
根据木马的生存特点,铁穹从木马全生命周期入手,深入挖掘网络流量 数据,在木马植入、潜伏、活跃三个阶段分别采用不同的方法有针对性地 解决特种木马识别难题。
APT15DQ120KG 1200V 15A 超快软恢复直流恢复矩阵体芯片数据手册说明书
Product OverviewThe APT15DQ120KG is a1200V,15A Ultrafast Soft Recovery Rectifier Si Diode in a TO-220package.FeaturesThe following are key features of the APT15DQ120KG device:•Ultrafast recovery times•Soft recovery characteristics•Low forward voltage•Low leakage current•Avalanche-energy rated•RoHS compliant•AEC-Q101qualifiedBenefitsThe following are benefits of the APT15DQ120KG device:•High switching frequency•Low switching losses•Low noise(EMI)switching•Higher reliability systems•Increased system power densityApplicationsThe APT15DQ120KG device is designed for the following applications:•Power factor correction(PFC)•Anti-parallel diode◦Switch-mode power supply◦Inverters/converters◦Motor controllers•Freewheeling diode◦Switch-mode power supply◦Inverters/converters•Snubber/clamp diodeThis section shows the specifications of the APT15DQ120KG device.Absolute Maximum RatingsThe following table shows the absolute maximum ratings of the APT15DQ120KG device.T C=25°C,unless otherwise specified.Table1•Absolute Maximum RatingsSymbolRatingParameterUnit V R1200V Maximum DC reverse voltageV RRMMaximum peak repetitive reverse voltageMaximum working peak reverse voltageV RWMI F(AV)15Maximum average forward current(T C=127°C,duty cycle=0.5)AI FSMNon-repetitive forward surge current(T J=45°C,8.3ms)110E AVLAvalanche-energy(1A,40mH)mJ20The following table shows the thermal and mechanical characteristics of the APT15DQ120KG device. Table2•Thermal and Mechanical CharacteristicsUnitMaxSymbolCharacteristicTypMinRθJCJunction-to-case thermal resistance1.18°C/WT J,T STGOperating and storage temperature range−55°C175T L300Lead temperature for10secondsWtPackage weight0.07oz1.9glbf•m Mounting torque,6-32or M3screw101.1N•mElectrical PerformanceThe following table shows the static characteristics of the APT15DQ120KG device.T J =25°C,unless otherwise specified.Table 3•Static CharacteristicsUnit Max Typ MinTest Conditions Characteristic Symbol V3.32.8I F =15A Forward voltageV F3.4I F =30A2.5I F =15A,T J =125°CµA100V R =1200VMaximum reverse leakage currentI RM500V R =1200V,T J =125°CpF 17V R =200VJunction capacitanceC JThe following table shows the dynamic characteristics of the APT15DQ120KG device.Table 4•Dynamic CharacteristicsUnit MaxTyp MinTest ConditionsCharacteristic Symbol ns21I F =1A;di F /dt =–100A/µs V R =30VReverse recovery timet rrns240I F =15A;di F /dt =–200A/µs V R =800VReverse recovery time t rr nC 260Reverse recovery chargeQ rr A 3Maximum reverse recovery current I RRM ns290I F =15A;di F /dt =–200A/µs V R =800V;T J =125°CReverse recovery time t rr nC 960Reverse recovery chargeQ rr A 6Maximum reverse recovery current I RRM ns130I F =15A;di F /dt =–1000A/µs V R =800V;T J =125°CReverse recovery time t rr nC 1340Reverse recovery chargeQ rr A19Maximum reverse recovery currentI RRMTypical Performance CurvesThis section shows the typical performance curves of the APT15DQ120KG device.Figure 1•Maximum Transient Thermal ImpedanceFigure 3•Reverse Recovery Time vs.Current Rate of ChangeFigure 2•Forward Current vs.Forward VoltageFigure 5 • Reverse Recovery Current vs. Current Rate of ChangeFigure 4 • Reverse Recovery Charge vs. Current Rate of ChangeFigure 7•Maximum Average Forward Current vs.Case TemperatureFigure 6 • Dynamic Parameters vs. Junction Temperature Figure 8•Junction Capacitance vs.Reverse VoltageThe following figure illustrates the diode test circuit of the APT15DQ120KG device.Figure9•Diode Test CircuitThe following figure illustrates the diode reverse recovery waveform and definitions of the APT15DQ120KGdevice.Figure10•Diode Reverse Recovery Waveform and Definitions1.I F—Forward conduction current.2.di F/dt—Rate of diode current change through zero crossing.3.I RRM—Maximum reverse recovery current.4.t rr—Reverse recovery time,measured from zero crossing where diode current goes from positive tonegative,to the point at which the straight line through I RRM and0.25•I RRM passes through zero.5.Q rr—Area under the curve defined by I RRM and t rr.This section shows the package specification of the APT15DQ120KG device. Package Outline DrawingThe following figure illustrates the TO-220package outline of the APT15DQ120KG device.Figure11•Package Outline DrawingThe following table shows the TO-220dimensions and should be used in conjunction with the package outline drawing.Table5•TO-220DimensionsMINSYMBOLMINMAXMAX[mm][mm][INCH][INCH]A4.320.1804.570.170B1.141.400.0550.0452.50C2.740.1080.098D0.360.0210.0140.53E2.650.1203.050.104F3.600.1563.960.14214.50G15.600.5710.614H2.390.1443.650.094I6.006.800.2680.2368.40J9.000.3540.33113.00K14.000.5510.512L1.231.390.0480.055M0.690.880.0350.027N10.0010.360.4080.394O7.570.3117.900.298P12.200.48013.100.516Q2.54BSC0.100BSCTERMINAL1CATHODEANODETERMINAL2CATHODETERMINAL3Microsemi's product warranty is set forth in Microsemi's Sales Order Terms and rmation contained in this publication is provided for the sole purpose of designing with and using Microsemi rmation regarding device applications and the like is provided only for your convenience and may be superseded by updates.Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi.It is your responsibility to ensure that your application meets with your specifications.THIS INFORMATION IS PROVIDED "AS IS."MICROSEMI MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,WRITTEN OR ORAL,STATUTORY OR OTHERWISE,RELATED TO THE INFORMATION,INCLUDING BUT NOT LIMITED TO ITS CONDITION,QUALITY ,PERFORMANCE,NON-INFRINGEMENT,MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.IN NO EVENT WILL MICROSEMI BE LIABLE FOR ANY INDIRECT,SPECIAL,PUNITIVE,INCIDENTAL OR CONSEQUENTIAL LOSS,DAMAGE,COST OR EXPENSE WHATSOEVER RELATED TO THIS INFORMATION OR ITS USE,HOWEVER CAUSED,EVEN IF MICROSEMI HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE.TO THE FULLEST EXTENT ALLOWED BY LAW,MICROSEMI’S TOTAL LIABILITY ON ALL CLAIMS IN RELATED TO THIS INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES,IF ANY ,YOU PAID DIRECTLY TO MICROSEMI FOR THIS e of Microsemi devices in life support,mission-critical equipment or applications,and/or safety applications is entirely at the buyer’s risk,and the buyer agrees to defend and indemnify Microsemi from any and all damages,claims,suits,or expenses resulting from such use.No licenses are conveyed,implicitly or otherwise,under any Microsemi intellectual property rights unless otherwisestated.Microsemi2355W.Chandler Blvd.Chandler,AZ 85224USAWithin the USA:+1(480)792-7200Fax:+1(480)792-7277 ©2020Microsemi and its corporate affiliates.All rights reserved.Microsemi and the Microsemi logo are trademarks of Microsemi Corporation and its corporate affiliates.All other trademarks and service marks are the property of their respective owners.Microsemi Corporation,a subsidiary of Microchip Technology Inc.(Nasdaq:MCHP),and its corporate affiliates are leading providers of smart,connected and secure embedded control solutions.Their easy-to-use development tools and comprehensive product portfolio enable customers to create optimal designs which reduce risk while lowering total system cost and time to market.These solutions serve more than 120,000customers across the industrial,automotive,consumer,aerospace and defense,communications and computing markets.Headquartered in Chandler,Arizona,the company offers outstanding technical support along with dependable delivery and quality.Learn more at .053-4222|April 2020|ReleasedLegal。
阿特拉斯枪样本
电动装配工具和系统
69
工具代码............................................................................. 70 产品安全............................................................................. 74 工业用电池螺丝刀............................................................... 75 电动螺丝刀 – Eliza, EBL..................................................... 84 电动螺丝刀 – 电动微扭螺丝刀MicroTorqueTM..................... 87 电动螺丝刀 – Tensor DL..................................................... 90 电动螺丝刀 – Tensor SL..................................................... 91 电动拧紧扳手 – Tensor DS................................................. 92 电动拧紧扳手 – Tensor S.................................................... 98 电动拧紧扳手 – Tensor ST............................................... 103 Tensor DS / DL控制器.......................................................111 Power Focus.................................................................... 112 Power Focus / ETX拧紧轴和电缆..................................... 130 Power MACS 4000 / QST拧紧轴和电缆........................... 133 Power MACS / QMX拧紧轴和电缆................................... 141 刀头和动力套筒................................................................ 149 扭力臂............................................................................... 156
泰思曼高压电源产品手册说明书
大连总部:大连泰思曼科技有限公司联系电话:(0086)411-84754522 公司邮箱:********************公司地址:大连市高新园区任贤街16号西安分公司:泰思曼高压电源(西安)有限公司联系电话:(0086)29-88825577公司邮箱:***********************公司地址:西安市高新区纬二十六路中交科技城西区B1号楼高压电源选型手册1kV~6kV/60kW/10A,3μs~50μs,rise≤200ns,AC/Pulse 1kV~6kV/300kW/50A,1μs~5μs,1Hz,rise≤250ns,AC/Pulse1kV~40kV/1kW/25mA,8μs~50μs,1~1kHz,rise>15μs,AC/Pulse 1kV~20kV/10W~10kW/100A,1μs~DC,1Hz~10kHz,AC/Pulse ±3kV/6kV/30W/300A,1μs~5μs,1Hz,rise≤300ns,AC/Pulse ±3kV/500W/50A,1μs~5μs,80~90Hz,rise≤100ns,AC/PulseTP3011系列TP3012系列TP3080系列TP3090系列TP3096系列TP3210系列03脉冲高压电源TAP4055系列TM6010系列TDL6021系列TM6030系列TM6035系列05模块高压电源1kV~50kV/120W,AC/DC 1kV~100kV/1kW,AC/DC1kV~40kV/4.6kW,AC/DC1kV~70kV/600W,AC/DC 1.7kV/8.33W,AC/DC TNP5050系列TNP5060系列06深海变换器10kVDC转375VDC/10kW,DC/DC 恒流转恒压,48V/10kW,DC/DC定制服务典型客户08定制服务&典型客户TAC4010系列TAC4142系列04交流高压电源5kV~40kV/1kW,AC/AC 5kV~40kV/150W,AC/ACTPS7000系列TPS7001系列TPS7010系列07源表高压电源1~10kV/50W,AC/DC 1~10kV/50W,AC/DC 5kV/75W,高压放大器TRC2020系列TRC2025系列TLP2041系列TLP2081系列TD2110系列TD2200系列TD2202系列TD2204系列TD2208系列TE4020系列TC4080系列TC4160系列TCM6000i系列TCM6002系列TCM6004i系列TCM6008系列02直流高压电源1kV~100kV/300W,机架式,AC/DC 1kV~100kV/500W~1kW,机架式,AC/DC5kV~225kV/5kW~10kW,机架式,AC/DC1kV~30kV/15kW,机架式,AC/DC 1kV~60kV/5J,2Hz,机架式1kV~60kV/600W,机架式,AC/DC 1kV~150kV/2kW,机架式,AC/DC 1kV~50kV/4kW,机架式,AC/DC 50kV/8kW,机架式,AC/DC 50kV/120W,AC/DC 1kV~50kV/300W,正负极性可切换,AC/DC1kV~60kV/150W,AC/DC 1kV~30kV/30W,AC/DC 1kV~50kV/150W,AC/DC 1kV~30kV/12W,AC/DC 1kV~50kV/250W,AC/DC TXR1010系列TXR1012系列TXF1068系列TXR1110系列TXF1210系列TXLF1260系列535543454749515257596162646566737467697113151719212325272931333537394142010*********01X射线高压电源25kV~65kV/50W,DC/DC 5kV~50kV/50W,DC/DC 450kV/6kW,AC/DC 80kV/100W,DC/DC 30kV/6W,DC/DC -60kV/1200W,AC/DC泰思曼是一家面向军工、科研、以及科技前沿的高新技术企业,是中国高压电源市场的主要供应商之一。
西门子 NXGPro+ 控制系统手册_操作手册说明书
3.4
单元通讯的协议 ............................................................................................................ 36
3.5
NXGpro+ 高级安全 .......................................................................................................37
3.2
功率拓扑 ......................................................................................................................34
3.3
控制系统概述 ...............................................................................................................35
NXGPro+ 控制系统手册
NXGPro+ 控制系统手册
操作手册
AC
A5E50491925J
安全性信息
1
安全注意事项
2
控制系统简介
3
NXGPro+ 控制系统简介
4
硬件用户界面说明
5
参数配置/地址
6
运行控制系统
7
高级的操作功能
8
软件用户界面
9
运行软件
10
故障和报警检修
11
梅兰 mge galaxy 7000安装手册
LDPE
04
聚丙烯
PP
05
聚苯乙烯
PS
06
守当 清 包 遵
地现行规定 除 装物。
报废处理
依据当 施耐德电气公司旗下 APC 公司将
地规定在产品使用寿命结束后处理产品。
它 集 清 这些报废 施耐德电气公司旗下 APC 公司将与其 公司合作,在产品使用寿命结束后收 并 除
产品。
产品
由 材料 产品 可回收
。
包装
提高废 效率及 便 包 拆 为
品处理
方 回收,请将 装物 开。
包 纸箱中含 % 上 再 纸板 所使用的 装
有 30 以 的 利用
。
包 大袋 袋由聚乙烯材料 装
与小
制成。
包 材料 带 识 装
可回收利用并 有相应标
。
材料
缩写
标识
编号
聚酯
TPE
01
高密度聚乙烯
HDPE
02
聚氯乙稀
VP C
03
低密度聚乙烯
- 温度剧烈变化,
-
真强放管含通菌电射酸道风、磁性热性不昆场水物气良虫平,或质,高、来或于体自产正外其生常寄它水环生垢热境虫源、下等的渣的…滓热放…等气射杂,质性水的平冷,却水,整流器与水接触的部分产生的电解腐蚀物质,
- 电池的使用状况。
wUPS 的安装须遵守以下标准的相关规定: wCEI 60364-4-42 标准:热效应保护。 wCEI 60364-4-41 标准:电击保护。 wCEI 60364-4-482 标准:建筑物电力系统安装。 w 在法国,须符合 NFC 15-100 标准。 wUPS 符合 CEI 62040-1-2 标准。
1.1 安装方法 ................................................................................................................................................ 10
MIPS推出新一代AptiVTM处理器
一
I
【【Caet i 【 gd路 ■ lIr电 u n成 i h 集 er 】t C t i a c n 国
为平 板 电脑 和智能 手机 的应用 处理 器提 供顶 尖 的多 核性 能 , 为基 带处 理提 供高效 的 多线程 技术 , 为 触 并
( 自 CI 来 SA)
发器 , 旨在帮 助嵌入 式 开发人 员 和系统 架构 人员设
计及评估隔离通信接 口。这些高度集成的隔离收发
器能 够提 供更 低 的功耗 、 更高 的 时序 性 能 、 能集 成 功
h什n . ^AI /^ rm 盘n nm , /A ̄ Iri
, ■'—r—— —————— ———————— ———— ————— ——— ——————— ———— —一
有 车辆 ,让 驾驶 员 更 能集 中注 意力 观 察 路 面情 况 。
( 自S 来 T)
… P 推 出新 一 代 A t 处 理 器 S p i V
美普 思科 技公 司 ( P ehooi ,n 近 日 MISTcnl e Ic) gs 宣 布 推出新 一 代 At pl y微 处 理 器 内 核 , 包 括
控技 术 。这一整 合将 有助 于简 化手 机与 汽车 连接解 决 方案 的研发难 度 , 并加 快新 产 品的推 出速 度 , 可 并
G L X I 带来全新的移动支付来自验。备受期待 支援 手机应用 软件与汽 车系统 之间 的无 缝互通 。 A A YS I I
的三 星 G L X I 是 三 星 畅 销 机 型 G L X A A Y SI I A A YS I 的后续 机 型 。 I 三星 G L X I 用 谷 歌 An ri ̄40Ie A A Y SI 采 I dod . c
广州白云国际机场航图_ZGGG(最新)
ELEV 13.5 Y2 M1
Q8
T4 T3
T4 T3
Q8
F1 F3 F4 3600X45 CONC F5
ILS/GP 333.1
X X
Q9
Q
M2
Se r v i c e p a t h Over ni ght
Se r v i c e p a t h
L 1 5 A3 L 1 4 L 1 1 A B C P3 A4 Y3 P4 Y5 Y
300 0 300
3 8 00X 60
C O NC
600
900m
TAKE-OFF MINIMA(WITH RELIABLE ALTN)(m) 01/19 PALS CAT I SFL PAPI REDL RCLL
LIGHTS 02L/20R 02R/20L PALS CAT II SFL PAPI REDL RCLL TDZL
ELEVATIONS AND HEIGHTS IN METERS
9 1
P A P I P A P I
C O NC
C O NC
3 600X4 5
P A P I
P A P I P A P I
3 8 00X 60
02R 01 02L
01 02L 02R
SFL SFL PALS CAT I SFL PALS CAT II PALS CAT II
A5 Y7
AD2.24-1C.1D.
M4
ARP
Y8
L 9 A6
M
3800X60 CONC
St r i p 3920X300
Y9
St r i p 3920X300 P1 2 M5 M6
9 J 1 0 J
apt和et供电原理_概述及解释说明
apt和et供电原理概述及解释说明1. 引言1.1 概述该篇文章将详细介绍apt和et供电原理的概述、工作原理以及应用场景,并对两种供电原理进行比较与分析。
通过本文,读者将了解apt和et供电原理的异同点、优缺点,并能够根据相应的考虑因素选择适合的供电原理,从而实现最佳的供电效果。
1.2 文章结构本文主要分为五个部分:引言、apt供电原理、et供电原理、对比与分析以及结论。
下面将按照这个顺序依次介绍相关内容。
1.3 目的本文的目的是为读者提供关于apt和et供电原理方面的详细知识,并通过对两种供电原理进行比较与分析,帮助读者更好地了解这两个概念。
同时,文章还旨在总结apt和et供电原理的重要性及应用前景,并提出未来研究方向和发展建议,为相关领域的研究和应用提供指导。
2. apt供电原理:2.1 apt的定义和背景在文中这个部分,我们将介绍apt(Active Power Transfer)的定义和背景。
apt是一种无线能量传输技术,通过电磁感应原理将能量从一个装置传输到另一个装置。
该技术主要用于在没有物理连接的情况下为电子设备供电。
随着无线充电技术的不断发展,apt作为一种新型的供电方式逐渐受到关注。
它可以实现高效、安全、便捷地为各种设备提供稳定的电力输入,减少了传统有线充电过程中存在的接触问题和线缆松动等困扰。
2.2 apt的工作原理本节将阐述apt的工作原理。
当一个支持apt技术的发送器与接收器之间靠近时,发送器会产生一个交变磁场。
接收器内置的螺线圈通过电磁感应作用会感应到这个交变磁场,并将其转换为相应的电能。
在apt系统中,如果发送器产生高频交变磁场,那么接收器螺线圈也需要具备相同或者匹配频率以进行能量转换。
因此,在设计和配对apt系统时需保证发送器和接收器之间频率的匹配。
apt的工作原理可以简单概括为以上这些步骤。
通过高频交变磁场的感应和转换,apt能够实现将电能从发送器传输到接收器,从而为设备提供供电。
光传输设备介绍
1642EM 设备操作界面简介
从Supervision下拉菜单中选择Show NE Alarms选项,如下图
1642EM 设备操作界面简介
从Supervision下拉菜单中选择Show NE Alarms选项,出现告警列表,如下图
告警说明:
1642EM 设备操作界面简介
B103/r01sr1sl01/port#01-Ops B103-----站点名 r01---机架1 sr1---子架1 sl01---槽位1 port#01-Ops---第一个端口、类型是光口
1642EM 设备操作终端与设备的连接
F口 RS232串口
笔记本
1642EM 设备操作界面简介
一、1642EM设备正常情况下是由网管管理,CT维护终端无操作权限,不能进行电路删配电路和机盘,只能查 看 1.启动1320CT 点击屏幕下方的开始菜单– 选择1320CT快捷键(参见下图)启动应用程序。
1642EM 设备硬件介绍 二 1642EM板卡介绍
ISA-ES1 8FE (3)槽位的板卡功能
.8路10M/100M的以太网接口 .以太网的二层交换 .以太网的数据存储在ISA-ES1板上的一张FLASH 卡
1642EM 设备硬件介绍
二 1642EM板卡介绍 FB板 风扇单元 (7)槽位
DC48_24B 电源单元 (6)槽位的板卡功能
1642EM 可能发生的故障
1642EM一款较稳定的设备,所以现场可处理的故障类型很少,根据我们的维护经验,可能出现的 故障如下:
一、DCC 吊死造成设备从网管脱管,处理方法请见案例一 二、控制盘(MB4-1板)吊死、CT终端不能监控设备,处理方法请见案例二 三、设备出现ICP告警、处理方法请见案例三 四、设备硬件故障,处理方法更换硬件
安川变频器纺织专用GA500补充说明书
安川变频器纺织专用GA500补充说明书软件No. VSVA3009□为了安全使用本产品,请务必阅读该使用说明书。
另外,请妥善保管该使用说明书,并将其交至最终用户手中。
资料编号 TMCH GA500-007目录1 前言 (4)2 规格 (5)2.1 各种机型的规格 (5)2.2 专用软件表示 (6)3 相对于标准GA500的变更内容 (7)3.1 功能和参数的关系 (7)3.2 故障,轻故障,警告,操作故障 (8)4 追加・变更功能说明 (9)4.1 摆频功能 (9)4.2 频率指令增益 (12)4.3 制动晶体管 (13)4.4 V/f增益 (13)4.5 KEB功能 (14)4.6 同步加减速 (22)4.7 频率指令2的上限/下限 (23)4.8 直流制动 (23)4.9 节能控制选择 (26)4.10 选择第二电机时的加减速时间 (27)5 故障诊断 (28)6 参数一览表 (29)6.1 变更/追加参数一览表 (29)6.2 多功能接点输入的设定值 (40)6.3 多功能接点输出的设定值 (41)6.4 多功能模拟量输入的设定值 (41)6.5 出厂设定值随A1-02[控制模式的选择]而变化的参数 (41)6.6 出厂设定值随o2-04[变频器容量选择]和C6-01[ND/HD选择]而变化的参数 (41)6.7 出厂设定值随A1-02[控制模式选择]和C6-02[载波频率选择]而变化的参数 (42)改版记录感谢您购买安川变频器纺织专用GA500。
本补充说明书的目的是为了帮助您正确使用纺织专用GA500的相关功能。
请遵循与产品同箱包装的快速使用指南(TOCP C710617 54A)和我们的官方网站上发布的GA500技术手册(SICP C710617 54A)。
在使用(安装、接线、运行、维护、检查等)前,请务必认真阅读各资料。
另外,请在充分理解了关于产品的安全情报及注意事项的基础上进行使用。
青岛万象城高清平面图(优选.)
U PL E G E N DB O HB O H _R E N T A B L EC O N C O U R S EC O R R ID O RC O R R ID O R / ME PD E P A R T M E N T S T O R EE X I T I N GF O O D T E N A N T SL O A D I N GM A L L M A N A G E M E N TM E PM I N I A N C H O RP A R K I N GR E S T R O O MR E T A I LR O O F /T E R R A C ES E R V I C E /F I R EV E R T I C A L C I R C U L A T I O N-4.300-4.300-4.350-4.900-4.900-4.900-2.300-6.300-4.500-0.700131 m ²B -24141 m ²B -221971 m ²B -219270 m ²B -24315 m ²B -217138 m ²B -2036362 m ²B -20111 m ²P A Y B O O T H 112 m ²B .O .H 139 m ²L V S W I T C H /T R A N S F O R M E R R M (R E T A I L )64 m ²B .O .H 775 m ²P O R T A B L E W A T E R P U M P R M (R E T A I L )309 m ²L V S W I T C H /T R A N S F O R M E R R M (R E T A I L )280 m ²S T O R A G E /B .O .H .856 m ²T E L E C O M M U N I C A T I O N & C A T V R M 165 m ²L V S W I T C H /T R A N S F O R M E R R M (R E T A I L )343 m ²M C C R M C E N T R A L C H I L L E R P L A N T (R E T A I L )3066 m ²C E N T R A L C H I L L E R P L A N T (R E T A I L )37 m ²S P R I N K L E R C O N T R O L V A V L E R M 35 m ²S P R I N K L E R C O N T R O L V A V L E R M 145 m ²L V S W I T C H /T R A N S F O R M E R R M (R E T A I L )33 m ²A H U 135 m ²G A R B A G E 194 m ²B -223222 m ²B -237336 m ²L V S W I T C H /T R A N S F O R M E R R M (R E T A I L )386 m ²L V S W I T C H /T R A N S F O R M E R R M (O F F I C E )13 m ²P A Y B O O T H 99 m ²L O B B Y 14 m ²P A Y B O O T H 130 m ²L O B B Y 8329 m ²P A R K I N G 7373 m ²L O A D I N G 277 m ²B .O .H .159 m ²S U N K E N P L A Z A 973 m ²B -22971 m ²B .O .H .56 m ²A H U 80 m ²W C 78 m ²W C 238 m ²B -205125 m ²B -212118 m ²A H U R M 97 m ²B .O .H 126 m ²B .O .H .102 m ²G A R B A G E 204 m ²B .O .H 352 m ²B .O .H 81 m ²A H U 119 m ²G A RB A G E 147 m ²B .O .H 855 m ²G A R B A G E 5 m ²P I P E S H A F T 77 m ²B .O .H .153 m ²G A R B A G E 136 m ²A H U R M 199 m ²H V S W I T C H R M (R E T A I L )124 m ²H V S W I T C H R M (A P T )99 m ²H V S W I T C H R M (O F F I C E )63 m ²A H U 385 m ²H E A T I N G P L A N T (A P T )374 m ²H E A T I N G P L A N T (O F F I C E )458 m ²B .O .H 56 m ²A H U R M 185 m ²G A R B A G E 32 m ²A H U R M 15 m ²S P R I N K L E R C O N T R O L V A V L E R M 101 m ²B .O .H .26 m ²S P R I N K L E R C O N T R O L V A V L E R M 149 m ²A H U R M 115 m ²E AF /S E F R M 204 m ²F A F /M A F R M 6 m ²E L V 9 m ²E L 6 m ²E L V 9 m ²E L 135 m ²S T O R A G E /B .O .H .83 m ²F A F /M A F R M 86 m ²E A F /S E F R M 164 m ²F A F /M A F R M 76 m ²F A F /M A F R M 141 m ²E AF /S E F R M 49 m ²E A F /S E F R M 86 m ²F A F /M A F R M 83 m ²F A F /M A F R M 85 m ²F A F /M A F R M 344 m ²B .O .H 61 m ²F A F /M A F R M 114 m ²E AF /S E F R M 73 m ²S T O R AG E /B .O .H .47 m ²M E P 65 m ²M E P 43 m ²M E P 43 m ²M E P 69 m ²E A F /S E F R M 83 m ²F A F /M A F R M 43 m ²M E P 43 m ²M E P 6 m ²E L V 78 m ²H V S W I T C H R M 325 m ²H V S W I T C H R M (R E T A I L )95 m ²B .O .H 58 m ²A H U 33 m ²B .O .H .66 m ²A I RC H A M B E R 9 m ²E L 113 m ²K E F 115 m ²A H U 14 m ²M E P 10 m ²E L 12 m ²E L 7 m ²E L V 11 m ²E L V 22 m ²M E P 19 m ²M E P 109 m ²P U M P 4 m ²E L V 5 m ²E L 40 m ²P U M P 4 m ²E L V 5 m ²E L 77 m ²B .O .H 7 m ²M E P 7 m ²M E P 9 m ²E L 7 m ²E L V 9 m ²E L 7 m ²E L V 49 m ²E AF /S E F R M 144 m ²E A F /S E F R M 146 m ²F A F /M A F R M 139 m ²F A F /M A F R M 90 m ²F A F /M A F R M 85 m ²F A F /M A F R M20 m ²M E P 83 m ²E AF /S E F R M 85 m ²M E P 85 m ²E AF /S E F R M 86 m ²E AF /S E F R M 100 m ²F A F /M A F R M 61 m ²B -239369 m ²B -235177 m ²B -23147 m ²B -22368 m ²B -22526 m ²B -22731 m ²B -21637 m ²B -21529 m ²B -21313 m ²B -20714 m ²B -20914 m ²B -21014 m ²B -21125 m ²B .O .H .6 m ²D U T Y 5 m ²F M 2008 m ²F M 2004 m ²F M 20010 m ²D U T Y 157 m ²R E T A I LT O L G PF R O M B 2MF R O M B 2M T O LG PF R O M B 2MF R O M B 2MT O L GT O L GT O L GF R O M B 2U P t o L GU P D NU PT O L GF R O M B 2T O LG F R O M B 2L E G E N DB O HB O H _R E N T A B L EC O N C O U R S EC O R R ID O RC O R R ID O R / ME PD E P A R T M E N T S T O R EE X I T I N GF O O D T E N A N T SL O A D I N GM A L L M A N A G E M E N TM E PM I N I A N C H O RP A R K I N GR E S T R O O MR E T A I LR O O F /T E R R A C ES E R V I C E /F I R ES U P E R M A R K E TV E R T I C A L C I R C U L A T I O N3.0003.0002.4002.400-2.0003.0001.7002.8003.0004.5006.500-1.0005.500-0.7001510 m ²B .O .H 4817 m ²B -101404 m ²B .O .H .62 m ²A H U 220 m ²M C C (H O T E L )447 m ²B .O .H 94 m ²B -17553 m ²B -16531 m ²B -16173 m ²B -159904 m ²B -153537 m ²B -149264 m ²B -11159 m ²B -119420 m ²B -121122 m ²A H U 136 m ²A H U 52 m ²W C 49 m ²W C 123 m ²H V S W I T C H R M 13 m ²P A Y B O O T H 112 m ²B .O .H .374 m ²B -12311315 m ²P A R K I N G 42 m ²S P R I N K L E R C O N T R O L V A V L E R M 42 m ²S P R I N K L E R C O N T R O L V A V L E R M 299 m ²B .O .H 111 m ²B -179552 m ²B -19245 m ²M E P 1724 m ²T O U R I S T C E N T E R 42 m ²B -1694489 m ²B -139324 m ²B -195113 m ²F A F /M A F R M 200 m ²A H U 39 m ²M E P 143 m ²G A R B A G E 148 m ²B -155466 m ²S U N K E NP L A Z A102 m ²B -1372387 m ²L O A D I N G24 m ²G A R B A G E 90 m ²B -198127 m ²B .O .H .44 m ²A H U 192 m ²L O B B Y 76 m ²B -147169 m ²B -188922 m ²B -1831628 m ²C E N T R A L C H I L L E R P L A N T (H O T E L )638 m ²B .O .H .59 m ²WC 69 m ²W C 76 m ²E N T R Y 21 m ²P A Y B O O T H 47 m ²B .O .H 190 m ²A H U 560 m ²S U N K E N P L A Z A 42 m ²M E P 46 m ²B -10513 m ²B .O .H 71 m ²A H U 85 m ²G A R B A G E 1243 m ²B -151207 m ²B .O .H .144 m ²H V S W I T C H R M 135 m ²H V S W I T C H R M 76 m ²A H U 399 m ²L V S W I T C H /T R A N S F O R M E R R M (R E T A I L )205 m ²H V S W I T C H R M 42 m ²B .O .H .33 m ²M D F R M (A P T )38 m ²M D F R M (A P T )28 m ²S P R I N K L E R C O N T R O L V A V L E R M 34 m ²E AF /S E F R M 93 m ²A H U 220 m ²B .O .H 92 m ²A H U9 m ²M E P 16 m ²M E P 11 m ²P A Y B O O T H 122 m ²H V S W I T C H R M 238 m ²H V S W I T C H R M 24 m ²M E P 13 m ²M E P 24 m ²M E P 81 m ²M E P 23 m ²M E P 23 m ²M E P 33 m ²M E P68 m ²M E P 90 m ²A H U 240 m ²L V S W I T C H /T R A N S F O R M E RR M (A P T )55 m ²E AF /S E F R M 10 m ²E L V 7 m ²M E P12 m ²F M 11 m ²E L V 12 m ²M E P 6 m ²M E P22 m ²B .O .H .28 m ²G A R B A G E 88 m ²E AF /S E F R M 5 m ²E L 4 m ²E L V 128 m ²P U M P 10 m ²E L 12 m ²E L7 m ²E L V 7 m ²M E P 18 m ²M E P 6 m ²E L V 12 m ²E L 626 m ²B -1909 m ²E L 7 m ²E L V 9 m ²E L 7 m ²E L V 82 m ²A H U 56 m ²B .O .H .48 m ²M E P 9 m ²M E P 79 m ²M E P 51 m ²M E P 23 m ²M E P 41 m ²M E P 79 m ²M E P 78 m ²B -10337 m ²B -10750 m ²B -11346 m ²B -11544 m ²B -11747 m ²B -12531 m ²B -12732 m ²B -12932 m ²B -13110 m ²B -13323 m ²B -13526 m ²B .O .H .20 m ²B -14531 m ²B -14332 m ²B -14133 m ²B -15730 m ²B -17336 m ²B -17148 m ²B -16735 m ²B -16322 m ²B -181133 m ²B -187101 m ²B -186201 m ²B -193357 m ²B .O .H109 m ²A H U 168 m ²B -196T O L G M F R O M B 1F R O M B 1T O L G MT O L 1F R O M B 1T O L 1U P t o L 1T O L 1F R O M B 1T O L 1F R O M B 1U P t o L 1D N t o B 1U P t o L 1D N t o B 1D N t o B 1D N t o L G P U P t o L G M U P t o L 1U PU PD NU P D ND ND NF R O M LG L E G E N DB O HC O N C O U R S EC O R R ID O RC O R R ID O R / ME PD E P A R T M E N T S T O R EE X I T I N GF L AG SHI PF O O D T E N A N T SM A L L M A N A G E M E N TM A L L M A N A G E M E N TC E N T E RM E PM I N I A N C H O RP A R K I N GR E S T R O O MR E T A I LR O O F /T E R R A C ES AS E R V I C E /F I R EV E R T I C A L C I R C U L A T I O N7.0009.5009.4507.0009.4509.4509.4509.4509.4509.4505.5006.70010.50011.7004.5008.4006.90011.3007.000694 m ²G -141287 m ²G -139109 m ²G -137150 m ²G -136163 m ²G -135189 m ²G -13399 m ²G -132126 m ²G -126A 330 m ²G -130170 m ²G -12873 m ²G -126580 m ²G -142324 m ²G -103198 m ²G -105192 m ²G -106196 m ²G -107109 m ²G -108285 m ²G -109245 m ²G -131264 m ²G -112273 m ²G -113198 m ²G -116529 m ²G -123432 m ²G -12279 m ²G -11041 m ²M E P 94 m ²G -1191810 m ²M A N A G E M E N T 34 m ²M E P 625 m ²R A M P 5486 m ²G -10180 m ²W C 100 m ²W C 9 m ²M E P 39 m ²M E P 106 m ²G -115828 m ²G -14656 m ²G -111496 m ²S U N K E N P L A Z A 578 m ²G -121236 m ²A H U 315 m ²G -140143 m ²G -12711232 m ²P A R K I N G 193 m ²V E S T 229 m ²G -143187 m ²B .O .H 20 m ²V E S T 108 m ²E N T R Y 932 m ²B .O .H .168 m ²M E P S E R V I C E C O R R I D O R 102 m ²E N T R Y 220 m ²G -117242 m ²G -11887 m ²G -14569 m ²W C 59 m ²W C 64 m ²E N T R Y 11 m ²P A Y B O O T H 18 m ²P A Y B O O T H 375 m ²G -1202567 m ²S U N K E N P L A Z A 1894 m ²G -1382257 m ²S U N K E N P L A Z A 90 m ²G -129251 m ²A H U 26 m ²V E S T 5828 m ²C O N C O U R S E 19 m ²P A Y B O O T H 257 m ²A H U 489 m ²G -147134 m ²L O B B Y 197 m ²A H U 132 m ²A H U 72 m ²A H U 344 m ²R A M P 93 m ²F I R E C O N T R O L S .A .175 m ²G E N E R A T O R (R E T A I L )42 m ²S P R I N K L E R C O N T R O L V A V L E R M 42 m ²S P R I N K L E R C O N T R O L V A V L E R M 205 m ²B .O .H .68 m ²A H U 9 m ²M E P 33 m ²M E P 81 m ²M E P 76 m ²M E P66 m ²M E P 12 m ²M E P R e d u n d a n t R o o mM E P 6 m ²M E P 9 m ²E L 9 m ²E L V 8 m ²E L R e d u n d a n t R o o mE L V 5 m ²E L 4 m ²E L V 12 m ²E L 7 m ²E L V 7 m ²M E P 18 m ²M E P 6 m ²E L V 12 m ²E L 7 m ²M E P 9 m ²E L 7 m ²E L V 9 m ²E L 7 m ²E L V 182 m ²G E N E R A T O R (A P T )1161 m ²M A N A G E M E N T 24 m ²M E P 23 m ²M E P 23 m ²M E P23 m ²M E P51 m ²M E P 41 m ²M E P 55 m ²G -110A 268 m ²G -119A 36 m ²G -12568 m ²G -130A 49 m ²G -130B 21 m ²G -137A 50 m ²G -138A 181 m ²H E A T I N G P L A N T 109 m ²M E P 24 m ²M E P 10.0009.950藏储藏储藏储藏储藏储藏储藏储藏储藏储藏储藏储藏储T O L 2F R O M LG MF R O M LG M T O L 2D NU PD ND NT O L 2F R O M L GF R O M L GT O L 2T O L 2F R O M L GT O L 3F R O M L GT O L 2F R O M L GT O L 2L E G E N DB A N KB O HB O H _R E N T A B L EC O N C O U R S EC O R R ID O RC O R R ID O R / ME PD E P A R T M E N T S T O R EE X I T I N GF I T N E S S C E N T E RF L AG SHI PM A L L M A N A G E M E N TM A L L M A N A G E M E N T C E N T E RM E PO F F I C EP A R K I N GR E S T R O O MR E T A I LR O O F /T E R R A C ES AS E R V I C E /F I R EV E R T I C A L C I R C U L A T I O N15.30015.30013.50014.00015.25015.25017.1509.45015.25015.20014.00014.50015.25014.75017.70017.10016.00016.30014.80015.25015.25012.95016.35013.00011.63011.23010.70012.30015.25011.60011.00012.0009.45019.90016.7009.45015.25012.30015.25011.30022.20012.80019.10095 m ²R E T A I L 115 m ²R E T A I L 311 m ²F .S .57 m ²R E T A I L 625 m ²2-e v e F .S .90 m ²R E T A I L 185 m ²R E T A I L 278 m ²R E T A I L 150 m ²R E T A I L 105 m ²R E T A I L 175 m ²R E T A I L 110 m ²R E T A I L 35 m ²M E P 42 m ²M E P 195 m ²B .O .H 394 m ²R A M P 196 m ²R A M P 80 m ²W C 347 m ²R E T A I L 617 m ²2-e v e F .S .168 m ²S .A . L O B B Y 2756 m ²M A L LM A N A G E M E N T 467 m ²O F F I C E L O B B Y 170 m ²R E T A I L 176 m ²R E T A I L 156 m ²R E T A I L 180 m ²R E T A I L 988 m ²B A N K 376 m ²R E T A I L 580 m ²2-e v e F .S .609 m ²F .S .712 m ²2-e v e F .S .338 m ²2-e v e F .S .550 m ²2-e v e F .S .5082 m ²D E P A R T M E N T S T O R E 4777 m ²C O N C O U R S E 137 m ²A C 694 m ²2-e v e F .S .262 m ²R E T A I L 214 m ²R E T A I L 44 m ²M E P 181 m ²A H U 175 m ²R E T A I L 197 m ²R E T A I L 84 m ²E N T R Y 103 m ²R E T A I L 46 m ²B .O .H5283 m ²P A R K I N G 40 m ²S P R I N K L E R C O N T R O L V A V L E R M 39 m ²S P R I N K L E R C O N T R O L V A V L E R M 119 m ²R E T A I L 84 m ²M E P 89 m ²L O B B Y 332 m ²M E P 74 m ²W C52 m ²W C 47 m ²E N T R Y 15 m ²P A Y B O O T H 21 m ²P A Y B O O T H 125 m ²M E P 127 m ²R E T A I L 102 m ²R E T A I L 555 m ²F .S .550 m ²F .S .120 m ²R E T A I L 275 m ²E L E V A T O R L O B B Y 100 m ²W C 392 m ²R A M P 128 m ²G E NE R A T O R R M (OF F I C E )332 m ²R A M P 69 m ²B .O .H 72 m ²R E T A I L 121 m ²A H U64 m ²A H U 5 m ²A H U 9 m ²A C R I S E R 113 m ²B .O .H 13 m ²M E P 83 m ²F A F /M A F R M 119 m ²R E T A I L 34 m ²M E P 53 m ²M E P 36 m ²M E P 41 m ²M E P 54 m ²M E P 143 m ²A C 6 m ²M E P9 m ²E L 13 m ²M E P 7 m ²M E P 12 m ²M E P 9 m ²M E P 8 m ²E L V 20 m ²E L V 72 m ²B .O .H 12 m ²E L 7 m ²E L V 7 m ²M E P 18 m ²M E P 6 m ²E L V 12 m ²E L 8 m ²E L 9 m ²E L 7 m ²E L V 9 m ²E L 7 m ²E L V R e d u n d a n t R o o m2-e v e F .S .18 m ²B .O .H 41 m ²M E P 49 m ²M E P 255 m ²H E A T I N G P L A N T 133 m ²M E P 52 m ²M E P 13.000D NL E G E N DB A N KB O HB O H _R E N T A B L EC O N C O U R S EC O R R ID O RC O R R ID O R / ME PD E P A R T M E N T S T O R EE X I T I N GF O O D T E N A N T SM E PM I N I A N C H O RR E S T R O O MR E T A I LS E R V I C E /F I R EV E R T I C A L C I R C U L A T I O N22.00020.90015.20022.00024.00021.80021.30018.00019.20021.95021.95024.50022.200256 m ²R E T A I L 113 m ²R E T A I L 189 m ²R E T A I L 95 m ²R E T A I L 157 m ²R E T A I L 186 m ²R E T A I L 156 m ²R E T A I L 149 m ²R E T A I L 103 m ²R E T A I L 127 m ²R E T A I L 2637 m ²J .A .140 m ²G E N E R A T O R R O O M 186 m ²G E N E R A T O R R O O M 382 m ²B A N K 176 m ²R E T A I L 170 m ²R E T A I L 83 m ²R E T A I L 186 m ²R E T A I L 74 m ²R E T A I L 873 m ²J .A .938 m ²J .A .686 m ²J .A .627 m ²J .A .83 m ²A H U 37 m ²W C 38 m ²M E P 32 m ²M E P 187 m ²B .O .H 95 m ²A H U 44 m ²W C 52 m ²B .O .H .50 m ²WC 9 m ²M E P 495 m ²C A R S H O W R M 54 m ²V E S T 127 m ²W C 102 m ²R E T A I L 346 m ²R E T A I L 4997 m ²D E P A R T M E N T S T O R E 204 m ²R E T A I L 175 m ²R E T A I L 170 m ²R E T A I L 105 m ²R E T A I L 103 m ²R E T A I L 57 m ²R E T A I L 120 m ²R E T A I L 503 m ²R E T A I L 174 m ²R E T A I L 140 m ²R E T A I L 98 m ²R E T A I L 123 m ²I N F O & C A F E 90 m ²R E T A I L 76 m ²R E T A I L 93 m ²W C 60 m ²W C 120 m ²B .O .H .169 m ²R E T A I L F I R E C O N T R O L R M 226 m ²R E T A I L 154 m ²V E S T 116 m ²A H U 81 m ²A H U R M 233 m ²R E T A I L 42 m ²A H U R M 46 m ²A H U 180 m ²A H U 129 m ²A C 13 m ²M E P 110 m ²R E T A I L 22 m ²M E P 239 m ²A I R P L E N U M 32 m ²M E P 21 m ²M E P 53 m ²B .O .H .35 m ²M E P 43 m ²M E P 16 m ²M E P 140 m ²M E P 41 m ²B .O .H .108 m ²M E P 214 m ²A H U R M 6 m ²M E P 10 m ²E L 20 m ²M E P 7 m ²M E P34 m ²M E P 12 m ²M E P 9 m ²M E P 8 m ²E L V 49 m ²B .O .H 20 m ²E L V 12 m ²E L 7 m ²E L V 7 m ²M E P 18 m ²M E P 6 m ²E L V 12 m ²E L 8 m ²E L 9 m ²E L 7 m ²E L V 9 m ²E L 7 m ²E L V 20 m ²B .O .H .29 m ²M E P 19 m ²M E P 37 m ²M E P 29 m ²M E PD NL E G E N DB O HB O H _R E N T A B L EC I N E M AC O N C O U R S EC O R R ID O RC O R R ID O R / ME PE X I T I N GF O O D T E N A N T SF U R N I T U R EM E PM I N I A N C H O RR E S T R O O MR E T A I LR O O F /T E R R A C ES E R V I C E /F I R EV E R T I C A L C I R C U L A T I O N28.00020.90015.20026.60025.00027.70027.20027.95027.95032.50028.00027.9501436 m ²E L E C T R O N I C S M A R K E T 711 m ²B O O K S T O R E 127 m ²R E T A I L 174 m ²R E T A I L 102 m ²R E T A I L 95 m ²R E T A I L 91 m ²R E T A I L 90 m ²R E T A I L 120 m ²R E T A I L 103 m ²R E T A I L 141 m ²R E T A I L 93 m ²R E T A I L 171 m ²R E T A I L 1331 m ²F & B 102 m ²R E T A I L 97 m ²R E T A I L 156 m ²R E T A I L 91 m ²R E T A I L 1207 m ²F &B 589 m ²F &B 364 m ²F &B 1967 m ²J .A .1976 m ²F U R N I T U R E S T O R E 464 m ²R O O F G A R D E N 35 m ²M E P 122 m ²R E T A I L 173 m ²R E T A I L 18 m ²A C R I S E R 67 m ²B .O .H 48 m ²B .O .H 10 m ²M E P 66 m ²W C 17 m ²A C R I S E R 829 m ²C I N E M A 120 m ²A H U R M 174 m ²R E T A I L 170 m ²R E T A I L ?183 m ²R E T A I L 57 m ²R E T A I L 140 m ²R E T A I L 237 m ²B .O .H .50 m ²V E S T 103 m ²R E T A I L 49 m ²R E T A I L 94 m ²R E T A I L 88 m ²V E S T 161 m ²R E T A I L 138 m ²A H U R M 66 m ²W C 133 m ²R E T A I L 43 m ²W C336 m ²B .O .H 82 m ²A H U R M 81 m ²A H U R M 136 m ²A H U R M 157 m ²B .O .H .192 m ²R E T A I L 55 m ²R E T A I L 51 m ²C I N E M A B O H 55 m ²C I N E M A B O H 55 m ²C I N E M A B O H 55 m ²C I N E M A B O H 54 m ²C I N E M A B O H 42 m ²A H U R M 73 m ²A H U 107 m ²R E T A I L 44 m ²R E T A I L 77 m ²R E T A I L 120 m ²R E T A I L 114 m ²A H U R M 58 m ²T E R R A C E 159 m ²A C 92 m ²A H U R M 89 m ²R E T A I L 13 m ²M E P 230 m ²A H U R M 474 m ²R E T A I L 44 m ²W C 10 m ²E L 20 m ²M E P 146 m ²A H U 7 m ²M E P 9 m ²M E P 8 m ²E L V 98 m ²A C 11 m ²E L V 14 m ²B .O .H .12 m ²E L 12 m ²E L 7 m ²E L V 7 m ²M E P 18 m ²M E P 6 m ²E L V 12 m ²E L 8 m ²E L 9 m ²E L 7 m ²E L V 9 m ²E L 7 m ²E L V 132 m ²R E T A I L 127 m ²R E T A I L 204 m ²R E T A I L 82 m ²R E T A I L 78 m ²R E T A I L 50 m ²R E T A I L 327 m ²R E T A I L 432 m ²R E T A I L 267 m ²R E T A I L 512 m ²R E T A I L 677 m ²B A L L R O O ML E G E N DB O HB O H _R E N T A B L EC I N E M AC O N C O U R S EC O R R ID O RC O R R ID O R / ME PE N T E R T A I N M E N TE X I T I N GF O O D T E N A N T SI C E R I N KM E PR E S T R O O MR E T A I LR O O F /T E R R A C ES E R V I C E /F I R EV E R T I C A L C I R C U L A T I O N34.50034.10034.50032.50034.50050 m ²R E T A I L 103 m ²R E T A I L 105 m ²R E T A I L 315 m ²R E T A I L 91 m ²R E T A I L 964 m ²F &B 1769 m ²I C E R I N K 270 m ²F &B 102 m ²R E T A I L 566 m ²F &B 470 m ²F &B 670 m ²C U S T O M E R Z O N E 557 m ²F &B 412 m ²F &B 3537 m ²E N T E R T A I N M E N T 4584 m ²C O N C O U R S E 307 m ²T E R R A C E 55 m ²R E T A I L 42 m ²A H U R M 66 m ²W C 87 m ²A H U R M 1201 m ²C I N E M A 1639 m ²E N T E R T A I N M E N T C E N T E R 2203 m ²K I D S 57 m ²R E T A I L 62 m ²W C 135 m ²A H U R M 85 m ²R E T A I L 44 m ²W C 50 m ²B .O .H 44 m ²B .O .H 82 m ²A H U R M143 m ²A H U R M F O R I C E R I N K 185 m ²A H U 129 m ²R E T A I L 199 m ²1#200 m ²2#205 m ²3#205 m ²4#205 m ²5#205 m ²6#243 m ²C I N E M A B O H 99 m ²A C 62 m ²A C 9 m ²M E P 81 m ²A H U R M 241 m ²F &B 31 m ²M E P 103 m ²T E R R A C E 43 m ²W C 160 m ²E N T 10 m ²E L 20 m ²M E P 7 m ²M E P 78 m ²A H U 9 m ²M E P 8 m ²E L V 48 m ²B .O .H 20 m ²E L V 12 m ²E L 64 m ²Z A M B O N I 56 m ²I C E R I N K T I C K E T S 132 m ²R E N T A L 127 m ²I C E R I N K C A F E 37 m ²C O A C H R O O M 41 m ²L O C K E R S 12 m ²E L 7 m ²E L V 39 m ²B A L C O N Y 42 m ²B A L C O N Y 7 m ²M E P 18 m ²M E P 6 m ²E L V 12 m ²E L 8 m ²E L 9 m ²E L 7 m ²E L V 9 m ²E L 7 m ²E L V 95 m ²R E T A I L 69 m ²R E T A I L 61 m ²R E T A I L 68 m ²R E T A I L 64 m ²R E T A I L 62 m ²R E T A I L 62 m ²R E T A I L 62 m ²R E T A I L 64 m ²R E T A I L 27 m ²B O H 21 m ²B O H 135 m ²R E T A I L 45 m ²R E T A I L 52 m ²R E T A I L61 m ²R E T A I L 47 m ²R E T A I L 47 m ²R E T A I L48 m ²R E T A I L 50 m ²R E T A I L 41 m ²R E T A I L 49 m ²R E T A I L 110 m ²R E T A I L 64 m ²R E T A I L 57 m ²R E T A I L55 m ²R E T A I L 48 m ²R E T A I L 24 m ²R E T A I L 200 m ²M E P 33 m ²R E T A I L 61 m ²R E T A I L 55 m ²R E T A I L 42 m ²R E T A I L 48 m ²R E T A I L 54 m ²R E T A I L 59 m ²R E T A I L 28 m ²B O H 50 m ²B O H 193 m ²E N T 295 m ²F &B 188 m ²E N T 229 m ²E N T 157 m ²E N T 136 m ²E N TL E G E N DB O HB O H _R E N T A B L EC I N E M AC O N C O U R S EC O R R ID O RC O R R ID O R / ME PE N T E R T A I N M E N TE X I T I N GF O O D C O U R TF O O D T E N A N T SM E PR E S T R O O MR E T A I LR O O F /T E R R A C ES E R V I C E /F I R EV E R T I C A L C I R C U L A T I O N40.00040.00040.00040.00091 m ²R E T A I L 4912 m ²F &B 263 m ²F &B 93 m ²R E T A I L 958 m ²F &B 563 m ²F &B 570 m ²F &B 42 m ²A H U 75 m ²R E T A I L 449 m ²F &B 678 m ²F &B ??2477 m ²S E G A 97 m ²R E T A I L 43 m ²W C 1900 m ²C I N E M A 227 m ²T E R R A C E 99 m ²A C 118 m ²A H U 62 m ²W C 69 m ²A H U 51 m ²W C 48 m ²W C 121 m ²F & B 73 m ²T E R R A C E 78 m ²R E T A I L 135 m ²A H U 94 m ²A H U 66 m ²W C 147 m ²T E R R A C E 101 m ²C I N E M A B O H 23 m ²C I N E M A B O H 23 m ²C I N E M A B O H 22 m ²C I N E M A B O H 29 m ²C I N E M A B O H 150 m ²A H U R M 80 m ²S E F 2207 m ²F O O D C O U R T 44 m ²W C 20 m ²M E P 7 m ²M E P 9 m ²M E P 8 m ²E L V 56 m ²K E F 11 m ²E L ?20 m ²E L V 32 m ²M E P 12 m ²E L 12 m ²E L 7 m ²E L V 34 m ²B A LC O N Y 34 m ²B A L C O N Y 7 m ²M E P 18 m ²M E P 6 m ²E L V 12 m ²E L 8 m ²E L 42 m ²M E P 9 m ²E L 7 m ²E L V 9 m ²E L 7 m ²E L V 171 m ²M E P 199 m ²M E P 27 m ²B O H 21 m ²B O H 64 m ²R E T A I L 62 m ²R E T A I L 62 m ²R E T A I L 62 m ²R E T A I L 64 m ²R E T A I L 68 m ²R E T A I L 62 m ²R E T A I L 56 m ²R E T A I L 47 m ²R E T A I L 48 m ²R E T A I L 50 m ²R E T A I L 41 m ²R E T A I L 55 m ²F & B 48 m ²F & B 31 m ²F & B 26 m ²F & B 45 m ²F & B 94 m ²F & B 194 m ²R E T A I L 58 m ²R E T A I L 58 m ²R E T A I L 54 m ²R E T A I L 64 m ²R E T A I L 67 m ²R E T A I L 67 m ²R E T A I L 61 m ²R E T A I L 55 m ²R E T A I L 36 m ²R E T A I L 12 m ²R E T A I L 224 m ²F &B 419 m ²K I D S。
西门子840Dsl系统多组M功能的译码
组合机床与自动化加工技术 Modular Machine Tool & Automatic Manufacturing Techninue
文章编号:1001 -2265(2021)06 -0085 -01
DOI: 10.13462/j. cnki. mmTmt. 2021.06. 020
1 PLC地址
有关NCK到PLC的静态M功能接口地址见表1 &
表1静态M功能接口地址表
PLC地址 DB21+DBX58+0
DB21.DBX58.1 DB21+DBX58+2 DB21+DBX58+3 DB21+DBX58+4
DB21+DBD70
DB21. DBD76 DB21. DBD82
通道1信号(NCK—PLC)
[2] 刘阳阳,程国扬.直线电机位置伺服系统的增强复合非 线性控制[J].电机与控制应用,2019, 46 (12): 22 -
26, 54.
[3] 齐歌,徐福博.基于负载扰动补偿的PMSM无传感器控 制研究[J].组合机床与自动化加工技术,2020 (7 ):
104 -108.
[4] 卢军,阴建强.基于新型UDE的无速度传感器PMSM滑
(2) 程序段中的M功能不论在第几组,具有唯一 的 PLC 地址;
(3) M功能的PLC地址只保持一ቤተ መጻሕፍቲ ባይዱPLC扫描周期; (4) 当M功能超过最大数量时,NC读入禁止并有 信息显示& 按照要求,编制流程图,见图1 & (下转第89页)
收稿日期:2021 -02-24 作者简介:付纯连(1970—),男,黑龙江双城人,通用技术集团大连机床有限责任公司高级工程师,研究方向为组合机床及自动线、柔性加工中心
《新目标实用英语综合教程2》Unit 8 Indian Camp
inmmteenlmleuocsrteyu;tahlifewmhoe;rlcfdoronftehtrehyelittltaelteae,chhMenidhodatldethnAeegieredsowhtoanvtuehsaaet;pobrfeumsteotnhdtaewtrnistE;auarwnodipsedif.oThmheoruegahd dPwelaiisttritahgloen1u,ahtetSdhhteaumdsdi,aneanesneEsddeliarzhvbaaeobvvefeeotrhmtahduneec,mlhBiga,chwcutoo,nnfnnoiwbrnyagos,rot,nbmoasmoseerreevnamptt,riateoonncdi.ksRnefeoolayrw,dtahtnbheoialtpittrtyho.eTpchhdoeeonittrhrocafhdaiiecnfteuwse cfaenonnordttdu.ceHroylin,isgwtfhuohttri,eicie;shsniwnmoarapskrtioecvhabmatereelaninceetvwseesirsiaaeznn;edddportbeaeykttiestrhiwnfeogitrg;trgyfoor;wartnihonteregndmas;cmaniteeohnnrettmti,foiisacftiiisnncpdsdiristisutac.bloHktuelaernsr;eedn;caoatgnundriazfleodr hadipsbishiucliilontouiysq,roiusspehi;npybotduhsetietetijpoun;wd,mgceamoiglrlehainnlatggnarhdanivmdceosd;neilssofipdg“eFtoontroebewecxotpanagetserett”en.adHn,.iodsthcAaebreesuetnrotand cebhsxetaeurscadwuciatteelil,rnoawrmneedvoderp,saaeelnr.hhd(Saimstpousmdtjoiuebdsfegegewoaotmtfooapmbnaeraotkcfiechvueualwarpireoasdu,omsanqaneundab'sdlyicitgohienasert.a;eAcdblte;uextrta)htNnahdateeyirgst,ePhsnoeeprmreeaeilcsbanolloekds him “catsorhteuaenntwsodeiboslseer,sairtmne,bdaprdetighdoheinmtlepyeslontin,ttasipnnaadntrdthhsem;ewoamtirhtse,heabarnusletltisnomtgabooyeffmbraeafafnwdaki,rirbonsu,dctg”ohn,mwtotoheuiclbteuerbsBiytoeufnfrsitolJymos;tnuatsdnhoidonessde:oelmtickhleaatred hafiaemrswedtltoeiosaebrbaenesee“rdose.noaTeofd toswhpfehetohnbledloyd,gtaoyrneomdamtaweyusicthhhamvtdeiimlniageapenipnndrcosemptuaroidnsaitdteewsateoistxretesnhlrotycitiohosnef;.satS.odoBmouwsieerlaibnttohigoenikmsstghatooalosotodhmfaoudrch bfmetohearenyosrbintneoamnrmeaeanandyntbd,aiygsreedasiefn”fp.seu;cttsyah,toainootdni;negtxotfromarcatkhseemjluauddngegesomafnetdnhtebmwrehbaosyltl;oytgbheyenrttshl;eebiwruatrultklhienasgt,isfotrhe Phwatuhromaeulo2sdutobr meBoafocanohlsyn;c'srihniodmtliainhnrge.dTflwhoeresasytshipumeenprhivofeeeratcrdastan;nltaainatndurgirtueshm,ecaeonlnmdiktpesa,r.raSeenohpdeiefntrshafieevmcemtanened'sassnb;weytirthesexborpereet rwoiefansbconeoo:ktfohs;ring innewlatsatheunerdawielsrtoaiirnlblgdiel,diloteifbetowshohaikmirscehsaltrihuekede,lycinkotaehutelucdormamnlaompthlowaennmrtidtsaie,stt.ithDcilasul;teridfnnoegwreatidnhtepdrrecsu,monfulioanrnsgeshtbyroyatfthshitioinusngdslsyi,.fi;efathinmids ewhite dsibtsuetidncigeaulslietshdheeamdwshaeiymlvnesesvldfeoar sgsoiavlesictftholoerlt,ahhredinmiresuecsvttieobrneasgl itfnoieoaldgmasiuancn.hdaaItfslhaairssgcwei,eitenxbtciesetnp,wot ttrihatepeytr,abned pbhtooiluodnsidosetpidhneginru./iHsbhisyoperrxafpicentrdiicedanlifcefeex.rpeenrcieens,cleetofhitmhestwuodryldthaelssocmhoaodlemheinm; faorgrtehaetylarweyer
840D数控系统的联网应用
840D 数控系统的联网应用樊留群,张为民,马玉敏,罗小东(同济大学现代制造技术研究所,上海200092)CN C M ach ine fo r N etw o rk M anufactu ring I m p lem en tati on M ethod by Siem en s 840Dw ith Softw are SincomFAN L iu qun ,ZHANGW e i m i ng ,M A Y u m i ng ,L UO X i ao dong (A dvanced M anufacturing Institute Tongji U niversity ,Shanghai 200092,Ch ina ) 摘要:分析了信息化社会给制造业带来的变化,高度信息化带来了网络化制造的发展。
研究了网络化制造给设备层带来的变化,给出了设备层实现联网的三种类型,特别是通过以态网直接实现数控机床的联网。
通过对西门子840D 数控系统的联网软件Sincom 的分析,给出了基于Sincom 软件实现基于TCP IP 协议的网络化的方法。
关键词:网络化制造;E thernet ;840D 数控系统中图分类号:T P 273文献标识码:B文章编号:1001-2257(2002)05-0006-03Abstract :T he info r m ati on age has changed the concep t of m anufactu ring ,It b rings u s netw o rk m anufactu ring .In th is paper the developm en t of CN C m ach ine fo r netw o rk m anufactu ring is ana 2lyzed .T h ree k inds of i m p lem en tati on of netw o rk m anufactu ring fo r CN C m ach ine are in troduced ,es 2p ecially directly connected by E thernet .A t last the detail abou t how to u se Siem en s 840D CN C w ith Sincom softw are to i m p lem en t netw o rk m anufac 2tu ring is p resen ted .Key words :netw o rk m anufactu ring ;E thernet ;Siem en s 840D收稿日期:2002-04-021 网络化制造的发展随着遍布全球的计算机网络的形成(如互联网In ternet )和制造的数字化,使网络化制造成为可能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
REF. No. Date Company NameResidentNameRoomNo.Period Effective Expiring Rental Deposit ContractTypeRemarkAP/092/ 98 15December1998CASIOELECTRICES(GUANGZHOU)CO., LTD.Mr XuanJie1008 Sixmonths13December 199812 June1999US$2,500.00US$5,000.00SixmonthsagreementAP/093/ 98 03February1998SKIPATAEKNIMrSigmarOlafsson1812 OneYear06February199905February2000US$3,000.00US$6,000.00One YearContractAP/094/ 98 22December1998B.A.T.CHINALIMITEDMsPhangFoongSan805 Oneyear07January199908January2000US$5,000.00US$10,000.00One YearContractAP/001/ 99 30December1998DSMENGINEERINGPLASTICSMr XuDongPing908 Sixmonths01January199931 June1999US$5,000.00US$10,000.00SixMonthsContractAP/002/ 99 24February1999SHIMADZU(H.K.)LIMITEDGUANGZHOUMrMasudaTetsuo402 Oneyear01January199931December 1999US$1,800.00US$3,600.00One yearcontractAP/003/ 99 04January1999B.A.TCHINALIMITEDMsPhangFoongSan805 Oneyear(Unbreakable)January07, 1999January06, 2000HK$37,200.00(US$4,800.00)HK$74,400.00(US$9,600.00)One yearcontractAP/004/ 99 24February1999WUYANG-HONDAMOTORS(GUANGZHOU)MrShuichiOtsuka1918 OneYear01 March199929February2000US$4,200.00US$4,200.00One YearREF. No. Date Company NameResidentNameRoomNo.Period Effective Expiring Rental Deposit ContractTypeRemark CO., LTD.AP/033/ 99 01June1999SUNKYONG CO.,LTD.Mr ParkHanCheol1022 SixMonths25 July199924January2000US$2,473.00US$5,146.00SixmonthscontractAP/007/ 99 08February1999HYUNDAIPETROCHEMICALCO., LTD.Mr ChangHyunSung1116 OneYear4February199931 July1999US$3,400.00US$6,800.00SixmonthsContractAP/009/ 99 01February1999SAMSUNGGUANGZHOUOFFICEMr N. H.Park1818 Sixmonths24February199923 August1999US$3,500.00US$7,000.00SixMonthsContractAP/008/ 99 01February1999SAMSUNGGUANGZHOUOFFICEMr H. C.Park1222 OneYear21February199920February2000US$2,772.00US$5,544.00One YearContractAP/010/ 99 01February1999SAMSUNGGUANGZHOUOFFICEMr H. K.Bae502 OneYear01 March199929February2000US$3,300.00US$6,600.00One YearContractAP/011/ 99 08February1999SHUNDEHUA RISTEELCOILCENTERCO., LTD.Mr MotokiTatsunokuchi1142 Sixmonths01February199931 July1999US$2,100.00US$4,200.00SixMonthsContractAP/017/ 99 08March1999XINLIPAPERPACKAGIMrGeorge Ip2306 OneYear01 April199931 March2000US$2,500.00US$5,000.00One YearContractREF. No. Date Company NameResidentNameRoomNo.Period Effective Expiring Rental Deposit ContractTypeRemark NG COLTDAP/017/ 99 11March1999XINLIPAPERPACKAGING COLTDMrGeorge Ip2306 OneYear01 April199931 March2000US$2,500.00US$5,000.00One YearContractAP/018/ 99 10March1999JOTUNOCEANPAINTCO LTDMr TonyChioh407 OneYear07 March199906 March2000US$2,000.00US$4,000.00One yearagreementAP/019/ 99 25March1999HYOSUNG COLTDMr KangKyungTae506 OneYear16February199915February2000US$2,500.00US$5,000.00One YearContractAP/020/ 99 21March1999SHUNDEPOHANGCOATEDSTEELCO LTDMr KimHyoSeong1812 OneYear29 March200028 March2001US$2,724.00US$5,448.00One YearContractAP/026/ 99 29March1999LUCENTTECHNOLOGIESCHINACO LTDMr JuliusJou705 OneYear01February199931January2000US$6,650.00US$13,300.00One YearContractAP/028/ 99 14April1999LUCENTTECHNOLOGIESCHINACO LTDMr LouisTong708 OneYear01 June199931 May2000US$9,456.30US$18,912.60One yearcontractAP/028/ 99 01April1999LUCENTTECHNOLOGIESCHINAMr LouisTong708 OneYear01 June199931 May2000US$9,456.30US$18,912.60REF. No. Date Company NameResidentNameRoomNo.Period Effective Expiring Rental Deposit ContractTypeRemark CO LTDAP/031/ 99 06May1999MrAndrewLeungMrAndrewLeung1011 OneYear(Unbreakable)01 June199931 May2000US$1,200.00US$2,400.00One YearContractAP/034/ 99 02June1999BPGUANGDONGLIMITEDMr DavidCahill1908 Onemonth24 June199923 July1999US$4,650.00OnemonthAP/036/ 99 09June1999CORPORA(GUANGZHOU)CO LTDMrRicardoJavierLeon609 3months08 June199907September 1999US$2,200.00US$4,400.003 monthscontractAP/038/ 99 28June1999B.A.TCHINALIMITEDMr PeterChiang908 2months01 July199931 August1999US$3,900.00US$7,800.002 monthscontract.AP/039/ 99 06July1999ADIDASASIA /PACIFICLTD.GUANGZHOUOFFICEMrDonaldReardon1930 Oneyear20 July199919 July2000US$3,158.00US$6,316.00One yearcontract.AP/040/ 99 30June1999GUANGZHOUJOTUNOCEANPAINTSCO., LTD.Mr LimWai Bin503 6Months30 June199929December 1999US$2,500.00US$5,000.006 monthsagreementAP/041/ 99 02SeptemberLGINTERNATIONALMr C. Y.Park406 OneYear11September 199910September 2000US$1,500.00US$3,000.00One yearcontractREF. No.Date Company NameResidentNameRoomNo.Period Effective Expiring Rental Deposit ContractTypeRemark 1999 CORP.AP/043/ 99 13August 1999PEPSICOINVESTMENT(CHINA)LIMITEDMr JamesNg605 OneYear20 August199919 August2000US$4,000.00US$8,000.00One yearcontractAP/045/ 99 24August 1999NEWWORLDCHINALANDLIMITED/GUANGZHOUXINHUACHENESTATECO LTDMrKenneth,S. Geng1032 OneYear01September 199931 August2000US$1,350.00US$2,700.00One yearcontractAP/046/ 99 01September1999SIEMENSSHANGHAIMOBILECOMMUNICATIONS LTDMrNelashBansal801 OneYear03September 199902September 2000Rmb24,900.00(US$3,000.00)Rmb49,800.00(US$6,000.00)One yearcontract.AP/049/ 99 28September1999GARDNERMERCHANTGUANGZHOUMr JeanChristophe Coubat905 Oneyear16November 199915November 2000RMB22,410.00(US$2,700.00)RMB44,820.00(US$5,400.00)One YearcontractAP/050/24 Mr Robert Mr Robert 501 Six 8 October 7 April US$1,20US$2,400SixREF. No. Date Company NameResidentNameRoomNo.Period Effective Expiring Rental Deposit ContractTypeRemark99 September1999 Apted Apted months 1999 2000 0.00 .00 monthscontractAP/051/ 99 28September1999MrPatriziaVaghiMrPatriziaVaghi408 6Months01October199931 March2000US$1,800.00US$3,600.006 MonthsContractAP/052/ 99 22November1999CONSULGENERAL OFMALAYSIAMsKhadijahNaim2307 Twoyears22January200021January2002US$3,300.00US$6,600.00One yearcontract,sixmonthsunbreakableAP/053/ 99 27October1999URBOTEHFMrSigmarOlafsson605 OneYear31October199930October2000US$2,400.00US$4,800.00One yearcontractAP/054/ 99 4November1999SAATCHI&SAATCHIADVERTISING COLTDMrSamuelWong1822 OneYear1November 199931October2000Rmb15,000.00Rmb30,000.00One yearcontractAP/056/ 99 19November1999HALIFAA.ALGOSAIBIMrWilliamWatson706 SixMonth(Unbreakable)20November 199919 May2000US$2,000.00US$4,000.00Six MonthContractUnbreakableAP/060/ 99 1December1999BUSHBOAKEALLEN(GUANGZHOU)CO., LTDMr. NgKimSoong804 OneyearTo beadviseTo beadviseRmb28,000.00Rmb58,100.00One YearContractREF. No. Date Company NameResidentNameRoomNo.Period Effective Expiring Rental Deposit ContractTypeRemarkAP/001/ 00 24January2000DAELIMCORPORATIONGUANGZHOUREPRESENTATIVEMr. M. W.Lee1228 TwoYears(Unbreakable)01February200031January2002USD3,000.00USD6,000.00TwoYearsContractAP/002/ 00 24January2000JOTUNOCEANPAINTMr. TerjeHoltskog804 OneYear(Unbreakable)22January200021January2001USD3,200.00USD6,400.00One YearUnbreakableContractAP/007/ 00 17/March/2000SAMSUNGHONGKONG LTDMr.ChoSeong -Yeon702 OneYear(Unbreakable)01 April200031 March2001US$3,200.00US$6,400.00One YearUnbreakableContractAp/008/ 00 17March2000SAMSUNGHONGKONG LTDMr. H.C.Park1222 OneYear(Unbreakable)21February200020February2001US$2,500.00US$5,000.00One YearUnbreakableContractAP/009/ 00 22March2000EURORSCGGREATOCEANMr.Thmans401 6Months(Unbreakable)01 April200030September 2000RMB10,000.00RMB20,000.00Half YearUnbreakableCantract。