中考数学三角形四边形求角度专项复习题含答案
中考数学:三角形四边形求角度专项复习题(含答案)
中考数学复习非圆几何求角度1、[基础题](2015呼和浩特)如左以下图,已知∠1=70°,如果CD∥BE,那么∠B的度数为()A.70°B. 100°C. 110°D. 120°2、[基础题](2015)如右上图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°)按如下图放置.若∠1=55°,则∠2的度数为()A.105°B. 110°C. 115°D.120°3、[基础题](2015)如右图,在△A BC中,∠C=31°,∠A BC的平分线BD交A C于点D,如果DE垂直平分BC,那么∠A= °.4、[综合Ⅰ]在△ABC中,∠A:∠B:∠C=1:2:3,求△ABC各角的度数.5、[综合Ⅰ](2015)如左以下图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A. 15°B. 17.5°C. 20°D. 22.5°6、[综合Ⅱ](2015)如右上图,△ABC中,CD是边AB上的高,且AD CD CD BD.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.7、[综合Ⅲ] 如左以下图,点O是△ABC一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC等于_______8、[基础题](2015)右上图是由射线AB、BC、CD、DE、EA,组成的平面图形,则∠1+∠2+∠3+∠4+∠5=_____.9、[综合Ⅱ](2015)如左以下图,平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,则∠3+∠1-∠2=°10、[基础题](2015)如右上图,□ABCD中,对角线AC与BD交于点O,∠DAC=42º,∠CBD=23º,则∠COD的度数是()A.61º B.63º C.65º D.67º11、[综合Ⅱ]如右图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,E为垂足,连接DF,则∠CDF的度数为.12、[综合Ⅱ](2010襄阳)菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为()A.3:1 B.4:1 C.5:1 D.6:113、[综合Ⅲ]如左以下图,在矩形ABCD中,AC与BD相交于一点O,AE平分∠BAD,若∠EAO=15°,求∠BOE的度数.14、[综合Ⅱ](2015)如右上图,已知点E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD=______度.15、[综合Ⅱ](2015黄冈)如左以下图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于度.16、[综合Ⅲ](2015)如右上图,等腰直角三角形BDC的顶点D在等边三角形ABC的部,∠BDC=90°,连接AD,过点D作一条直线将△ABD分割成两个等腰三角形,则分割出的这两个等腰三角形的顶角分别是度.17、[综合Ⅲ](2014)如图,在△ABC 中,AB =AC ,且D 为BC 上一点,CD =AD ,AB =BD ,则∠B 的度数为( )A .30°B .36°C.40°D.45°18、[综合Ⅲ](2015襄阳)在□ABCD 中,AD=BD ,BE 是AD 边上的高,∠EBD=20°,则∠A 的度数为.19、[提高题]如左以下图,等边△ABC 中,BD =CE ,AD 与BE 相交于点P ,则∠APE 的度数是 ( )A. 45°B. 60°C. 75°D. 80°20、[提高题](2015)如右上图,在△ABC 中,∠B=40°,三角形的外角∠DAC 和∠ACF 的平分线交于点E ,则∠AEC=度。
中考数学三角形与四边形复习题及答案
第二部分空间与图形第四章三角形与四边形第1讲线、角、相交线和平行线一级训练1.(2011年安徽芜湖)一个角的补角是36°35′,这个角是________.2.如图4-1-12,已知线段AB=10 cm,AD=2 cm,D为线段AC的中点,那么线段CB=________cm.图4-1-123.(2012年湖南株洲)如图4-1-13,已知直线a∥b,直线c与a,b分别交于点A,B,且∠1=120°,则∠2=()图4-1-13A.60°B.120°C.30°D.150°4.(2011年四川南充)如图4-1-14,直线DE经过点A,DE∥BC,∠B=60°,下列结论成立的是()图4-1-14A.∠C=60°B.∠DAB=60°C.∠EAC=60°D.∠BAC=60°5.下列命题中,正确的是()A.若a·b>0,则a>0,b>0 B.若a·b<0,则a<0,b<0C.若a·b=0,则a=0且b=0 D.若a·b=0,则a=0或b=06.(2012年湖北孝感)已知∠α是锐角,∠α与∠β互补,∠α与∠r互余,则∠β-∠r的值等于()A.45°B.60°C.90°D.180°7.(2011年浙江丽水)如图4-1-15,有一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°图4-1-158.如图4-1-16,下列条件中,不能判断l1∥l2的是()图4-1-16A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°9.(2011年湖北孝感)如图4-1-17,直线AB,CD相交于点O,OT⊥AB于点O,CE∥AB交CD于点C.若∠ECO=30°,则∠DOT=()图4-1-17A.30°B.45° C. 60° D. 120°10.(2012年湖南怀化)如图4-1-18,已知AB∥CD,AE平分∠CAB,且交CD于点D,若∠C=110°,则∠EAB=()A.30°B.35°C.40°D.45°图4-1-1811.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行所在的直线;③从A地到B地架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路变直,就能缩短路程.其中可用公理“两点之间,线段最短”来解决的现象有()A.①②B.①③C.②④D.③④12.如图4-1-19,一束光线垂直照射在水平地面,在地面上放一个平面镜,欲使这束光线经过平面镜反射后成水平光线,则平面镜与地面所成锐角的度数为()图4-1-19A.45°B.60°C.75°D.80°二级训练13.(2012年四川广元)一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度()A.先向左转130°,再向左转50°B.先向左转50°,再向右转50°C.先向左转50°,再向右转40°D.先向左转50°,再向左转40°14.如图4-1-20,在△ABC中,∠C=90°.若BD∥AE,∠DBC=20°,则∠CAE的度数是()A.40°B.60°C.70°D.80°图4-1-2015.如图4-1-21,把一张长方形纸片沿EF折叠后,点D,C分别落在点D′,C′的位置.若∠EFB=65°,则∠AED′=()图4-1-21A.70°B.65°C.50°D.25°w16.观察下图4-1-22,寻找对顶角(不含平角):(1)(2)(3)图4-1-22(1)如图4-1-22(1),图中共有______对对顶角;(2)如图4-1-22(2),图中共有______对对顶角;(3)如图4-1-22(3),图中共有______对对顶角;(4)研究(1)~(3)小题中直线条数与对顶角的对数之间的关系,若有n条直线相交于一点,则可形成______对对顶角;(5)若有2 008条直线相交于一点,则可形成______对对顶角.三级训练17.如图4-1-23,∠AOB=90°,∠BOC=30°,射线OM平分∠AOC,ON平分∠BOC.图4-1-23(1)求∠MON的度数;(2)如果(1)中,∠AOB=α,其他条件不变,求∠MON的度数;(3)如果(1)中,∠BOC=β(β为锐角),其他条件不变,求∠MON的度数;(4)从(1)、(2)、(3)的结果中,你能看出什么规律?第2讲三角形第1课时三角形一级训练1.已知在△ABC中,若∠A=70°-∠B,则∠C=()A.35°B.70°C.110°D.140°2.如图4-2-14,在△ABC中,∠A=70°,∠B=60°,点D在BC的延长线上,则∠ACD=()A.100°B.120°C.130°D.150°图4-2-143.已知如图4-2-15的两个三角形全等,则α的度数是()图4-2-15A.72°B.60°C.58°D.50°4.(2011年湖南怀化)如图4-2-16,∠A,∠1,∠2的大小关系是()图4-2-16A. ∠A>∠1>∠2B. ∠2>∠1>∠AC. ∠A>∠2>∠1D. ∠2>∠A>∠15.(2011年江西)如图4-2-17,下列条件中,不能证明△ABD≌△ACD的是()图4-2-17A.BD=DC,AB=AC B.∠ADB=∠ADC,∠BAD=∠CADC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC6.(2011年上海)下列命题中,是真命题的是()A.周长相等的锐角三角形都全等B.周长相等的直角三角形都全等C.周长相等的钝角三角形都全等D.周长相等的等腰直角三角形都全等7.(2012年山东德州)不一定在三角形内部的线段是()A.三角形的角平分线B.三角形的中线C.三角形的高D.三角形的中位线8.(2012年山东济宁)用直尺和圆规作一个角的平分线的示意图如图4-2-18,则能说明∠AOC=∠BOC的依据是()A.SSS B.ASAC.AAS D.角平分线上的点到角两边距离相等图4-2-189.(2011年安徽芜湖)如图4-2-19,已知在△ABC中,∠ABC=45°,F是高AD和BE 的交点,CD=4,则线段DF的长度为()图4-2-19A.2 2B.4C.3 2D.4 210.以三条线段3,4,x-5为边组成三角形,则x的取值范围为________.11.若△ABC的周长为a,点D,E,F分别是△ABC三边的中点,则△DEF的周长为__________.12.(2011年江西)如图4-2-20,两块完全相同的含30°的直角三角形叠放在一起,且∠DAB=30°.有以下四个结论:①AF⊥BC;②△ADG≌△ACF; ③O为BC的中点;④AG∶DE =3∶4.其中正确结论的序号是__________.图4-2-20二级训练13.(2011年山东威海)在△ABC中,AB>AC,点D,E分别是边AB,AC的中点,点F 在边BC上,连接DE,DF,EF,则添加下列哪一个条件后,仍无法判定△BFD与△EDF全等?()A.EF∥AB B.BF=CF C.∠A=∠DFE D.∠B=∠DEF14.(2011年浙江)如图4-2-21,点D,E分别在AC,AB上.(1)已知BD=CE,CD=BE,求证:AB=AC;(2)分别将“BD=CE”记为①,“CD=BE”记为②,“AB=AC”记为③.添加条件①、③,以②为结论构成命题1,添加条件②、③,以①为结论构成命题2.命题1是________命题,命题2是_________命题(选择“真”或“假”填入空格).图4-2-2115.(2012年湖北随州)如图4-2-22,在△ABC中,AB=AC,点D是BC的中点,点E 在AD上.求证:(1)△ABD≌△ACD;(2)BE=CE.图4-2-22三级训练16.(2011年湖南衡阳)如图4-2-23,在△ABC 中,∠B =90°,AB =3,AC =5,将△ABC 折叠,使点C 与点A 重合,折痕为DE ,则△ABE 的周长为________.图4-2-2317.如图4-2-24,两根旗杆间相距12 m ,某人从点B 沿BA 走向点A ,一定时间后他到达点M ,此时他仰望旗杆的顶点C 和D ,两次视线的夹角为90°,且CM =DM ,已知旗杆AC 的高为3 m ,该人的运动速度为1 m/s ,求这个人运动了多长时间?图4-2-24第二部分 空间与图形 第四章 三角形与四边形第1讲 线、角、相交线和平行线 【分层训练】 1.143°25′ 2.B 3.B 4.B 5.D 6.C 7.B 8.B 9.C 10.B 11.D 12.A 解析:如图D9,过点O 作OD ⊥OC ,根据平面镜反射定律,可得∠AOD =∠BOD .又∵AO 垂直于水平面,OB 平行于水平面,∴∠AOB =90°.∴∠AOD =∠BOD =45°.又∵OD ⊥OC ,∴∠BOC =90°-∠BOD =45°.由于OB 平行于水平面,可得∠1=∠BOC =45°.图D911.D 13.B14.C 解析:由题意,可得∠EAB +∠DBA =180°,又由∠C =90°,可得∠CAB +∠CBA =90°,于是∠CAE +∠DBC =90°.故∠CAE =90°-∠DBC =70°.15.C 解析:∠D ′EF =∠DEF =∠EFB =65°,于是∠AED ′=180°-∠D ′ED =50°. 16.(1)2 (2)6 (3)12 (4)n (n -1) (5)4 030 056解析:(1)如图4-1-22(1),图中共有1×2=2对对顶角; (2)如图4-1-22(2),图中共有2×3=6对对顶角; (3)如图4-1-22(3),图中共有3×4=12对对顶角;(4)研究(1)~(3)小题中直线条数与对顶角的对数之间的关系,若有n 条直线相交于一点,则可形成(n -1)n 对对顶角;(5)若有2 008条直线相交于一点,则可形成(2 008-1)×2 008=4 030 056对对顶角.17.解:(1)∠MON =∠COM -∠CON =12∠AOC -12∠BOC =12×120°-12×30°=45°.(2)∠MON =∠COM -∠CON =12∠AOC -12∠BOC =12(α+30°)-12×30°=12α.(3)∠MON =∠COM -∠CON =12∠AOC -12∠BOC =12(90°+β)-12β=45°.(4)∠MON 的大小等于∠AOB 的一半,与∠BOC 的大小无关. 第2讲 三角形 第1课时 三角形 【分层训练】1.C 2.C 3.D 4.B 5.D 6.D 7.C 8.A 9.B10.6<x <12 解析:由题意,可得1<x -5<7,解得6<x <12. 11.a 2 解析:由题意,可得△DEF 的三边为△ABC 的中位线,故其周长为a 2. 12.①②③④ 13.C 14.(1)证明:连接BC ,∵ BD =CE ,CD =BE ,BC =CB , ∴ △DBC ≌△ECB (SSS). ∴ ∠DBC =∠ECB . ∴ AB =AC . (2)真 假15.证明:(1)∵D 是BC 的中点, ∴BD =CD .在△ABD 和△ACD 中, ⎩⎪⎨⎪⎧BD =CD ,AB =AC ,AD =AD (公共边),∴△ABD ≌△ACD (SSS).(2)由(1),可知:△ABD ≌△ACD , ∴∠BAD =∠CAD ,即∠BAE =∠CAE . 在△ABE 和△ACE 中, ⎩⎪⎨⎪⎧AB =AC ,∠BAE =∠CAE , AE =AE ,∴△ABE ≌△ACE (SAS).∴BE =CE (全等三角形的对应边相等).16.7 解析:因为将△ABC 折叠,使点C 与点A 重合,折痕为DE ,所以EC =AE ,故△ABE 的周长为AB +BE +AE =AB +BE +EC =AB +BC =3+4=7.17.解:∵∠CMD =90°, ∴∠CMA +∠DMB =90°. 又∵∠CAM =90°,∴∠CMA +∠ACM =90°. ∴∠ACM =∠DMB . 又∵CM =MD ,∴Rt △ACM ≌Rt △BMD . ∴AC =BM =3.∴他到达点M 时,运动时间为3÷1=3(s). 答:这人运动了3 s.。
中考数学冲刺专题训练(附答案):三角形与四边形
精品基础教育教学资料,仅供参考,需要可下载使用!中考数学冲刺专题训练(附答案):三角形与四边形一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.一个等腰三角形的底边长是6,腰长是一元二次方程28150x x -+=的一根,则此三角形的周长是( ) A .16 B .12C .14D .12或16【答案】A 【解析】解方程28150x x -+=,得:3x =或5x =,若腰长为3,则三角形的三边为3、3、6,显然不能构成三角形; 若腰长为5,则三角形三边长为5、5、6,此时三角形的周长为16, 故选:A .2.如图,在△ABC 中,BE 是∠ABC 的平分线,CE 是外角∠ACM 的平分线,BE 与CE 相交于点E ,若∠A =60°,则∠BEC 是( )A .15°B .30°C .45°D .60°【答案】B 【解析】∵BE 是∠ABC 的平分线, ∴∠EBM=12∠ABC , ∵CE 是外角∠ACM 的平分线, ∴∠ECM=12∠ACM , 则∠BEC=∠ECM-∠EBM=12×(∠ACM-∠ABC )=12∠A=30°, 故选:B .3.如图,在△ABC 中,∠C =90°,AC =12,AB 的垂直平分线EF 交AC 于点D ,连接BD ,若cos ∠BDC =57,则BC 的长是( )A .10B .8C .3D .6【答案】D 【解析】∵∠C =90°,cos ∠BDC =57, 设CD =5x ,BD =7x , ∴BC =6x ,∵AB 的垂直平分线EF 交AC 于点D , ∴AD =BD =7x , ∴AC =12x , ∵AC =12, ∴x =1, ∴BC =6; 故选D.4.一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为( ) A .8 B .12C .16D .32【答案】C 【解析】 如图所示:四边形ABCD 是菱形,12AO CO AC ∴==, 12DC BO BD ==,AC BD ⊥, 面积为28,∴12282AC BD OD AO ⋅=⋅=① 菱形的边长为6,2236OD OA ∴+=②,由①②两式可得:222()2362864OD AO OD OA OD AO +=++⋅=+=,8OD AO ∴+=,2()16OD AO ∴+=,即该菱形的两条对角线的长度之和为16, 故选C .5.如图,点B 、F 、C 、E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF 的是( )A .AB =DE B .AC =DF C .∠A =∠D D .BF =EC【答案】C 【解析】解:选项A 、添加AB=DE 可用AAS 进行判定,故本选项错误; 选项B 、添加AC=DF 可用AAS 进行判定,故本选项错误; 选项C 、添加∠A=∠D 不能判定△ABC ≌△DEF ,故本选项正确;选项D 、添加BF=EC 可得出BC=EF ,然后可用ASA 进行判定,故本选项错误. 故选C .6.如图,ABCD 中,对角线AC 、BD 相交于点O ,OE BD ⊥交AD 于点E ,连接BE ,若ABCD 的周长为28,则ABE ∆的周长为( )A .28B .24C .21D .14【答案】D 【解析】∵四边形ABCD 是平行四边形, ∴OB OD =,AB CD =,AD BC =, ∵平行四边形的周长为28, ∴14AB AD += ∵OE BD ⊥,∴OE 是线段BD 的中垂线, ∴BE ED =,∴ABE ∆的周长14AB BE AE AB AD =++=+=, 故选:D .7.如图,在ABCD 中,将ADC ∆沿AC 折叠后,点D 恰好落在DC 的延长线上的点E 处.若=60B ︒∠,=3AB ,则ADE ∆的周长为( )A .12B .15C .18D .21【答案】C 【解析】由折叠可得,90ACD ACE ︒∠=∠=,90BAC ︒∴∠=,又60B ︒∠=,30ACB ︒∴∠=,26BC AB ∴==,6AD ∴=,由折叠可得,60E D B ︒∠=∠=∠=,60DAE ︒∴∠=,ADE ∴∆是等边三角形, ADE ∴∆的周长为6318⨯=,故选:C .8.如图,在正方形ABCD 中,E 、F 分别是BC 、CD 上的点,且∠EAF =45°,AE 、AF 分别交BD 于M 、N ,连按EN 、EF 、有以下结论:①AN =EN ,②当AE =AF 时,BEEC=2﹣2,③BE+DF =EF ,④存在点E 、F ,使得NF >DF ,其中正确的个数是( )A .1B .2C .3D .4【答案】B 【解析】 ①如图1,∵四边形ABCD 是正方形,∴∠EBM =∠ADM =∠FDN =∠ABD =45°,∵∠MAN=∠EBM=45°,∠AMN=∠BME,∴△AMN∽△BME,∴AM MN BM EM=,∵∠AMB=∠EMN,∴△AMB∽△NME,∴∠AEN=∠ABD=45°∴∠NAE=∠AEN=45°,∴△AEN是等腰直角三角形,∴AN=EN,故①正确;②在△ABE和△ADF中,∵AB ADABE ADF90 AE AF︒=⎧⎪∠=∠=⎨⎪=⎩,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=CD,∴CE=CF,假设正方形边长为1,设CE=x,则BE=1﹣x,如图2,连接AC,交EF于H,∵AE=AF,CE=CF,∴AC是EF的垂直平分线,∴AC⊥EF,OE=OF,Rt △CEF 中,OC =12EF =22x , △EAF 中,∠EAO =∠FAO =22.5°=∠BAE =22.5°, ∴OE =BE , ∵AE =AE ,∴Rt △ABE ≌Rt △AOE (HL ), ∴AO =AB =1, ∴AC =2=AO+OC ,∴1+22x =2, x =2﹣2,∴BE EC =1(22)22---=(21)(22)2-+=22; 故②不正确; ③如图3,∴将△ADF 绕点A 顺时针旋转90°得到△ABH ,则AF =AH ,∠DAF =∠BAH , ∵∠EAF =45°=∠DAF+∠BAE =∠HAE , ∵∠ABE =∠ABH =90°, ∴H 、B 、E 三点共线, 在△AEF 和△AEH 中,AE AE FAE HAE AF AH =⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△AEH (SAS ), ∴EF =EH =BE+BH =BE+DF , 故③正确;④△ADN 中,∠FND =∠ADN+∠NAD >45°, ∠FDN =45°, ∴DF >FN ,故存在点E 、F ,使得NF >DF , 故④不正确; 故选B .二、填空题(本大题共4个小题,每小题6分,共24分)9.如图,在△ABC 中,以点B 为圆心,以BA 长为半径画弧交边BC 与点D ,连结AD ,若∠B =40°,∠C =36°,则∠DAC 的度数是____________.【答案】34° 【解析】由作图过程可知BD=BA , ∵∠B=40°, ∴∠BDA=∠BAD=12(180°-∠B)=70°, ∴∠DAC=∠BDA-∠C=70°-36°=34°. 故答案为34°. 10.如图,在矩形ABCD 中,1AB =,BC a =,点E 在边BC 上,且35BE α=.连接AE ,将ABE ∆沿AE 折叠,若点B 的对应点B '落在矩形ABCD 的边上,则 a 的值为________.【答案】53或53【解析】 分两种情况:①当点B '落在AD 边上时,如图1. 四边形ABCD 是矩形,90BAD B ︒∴∠=∠=,将ABE ∆沿AE 折叠,点B 的对应点B '落在AD 边上,1452BAE B AE BAD '︒∴∠=∠=∠=,AB BE ∴=,315a ∴=, 53a ∴=;②当点B '落在CD 边上时,如图2. ∵四边形ABCD 是矩形,90BAD B C D ︒∴∠=∠=∠=∠=,AD BC a ==.将ABE ∆沿AE 折叠,点B 的对应点B '落在CD 边上,90B AB E '︒∴∠=∠=,1AB AB '==,35EB EB a '==,2221DB B A AD a ''∴=-=-,3255EC BC BE a a =-=-=. 在ADB '∆与B CE '∆中,90A 90B AD EBC B DD C ︒︒⎧∠=∠=-∠'''⎨∠=∠=⎩, ADB B CE ''∴∆⋃∆,DB AB CE B E'''∴=,即2112355a a a -=,解得153a =,20a =(舍去). 综上,所求a 的值为53或53. 故答案为53或53. 11.如图,正方形ABCD 的边长为4,点E 是CD 的中点,AF 平分BAE ∠交BC 于点F ,将ADE ∆绕点A 顺时针旋转90°得ABG ∆,则CF 的长为_____.【答案】6-25 【解析】作FM AD M FN AG N ⊥⊥于,于 ,如图,易得四边形CFMD 为矩形,则4FM =∵正方形ABCD的边长为4,点是的中点,2DE ∴=,∴224225AE =+=∵△ADE 绕点A 顺时针旋转90°得△ABG ,∴252349090AG AE BG DE GAE ABG D ∠∠∠︒∠∠︒==,==,=,=,== 而90ABC ∠︒= , ∴点G 在CB 的延长线上,∵AF 平分∠BAE 交BC 于点F ,∴∠1=∠2,∴∠2+∠4=∠1+∠3,即F A 平分∠GAD , ∴FN =FM =4, ∵11••22AB GF FN AG =, ∴425254GF ⨯==, ∴4225625CF CG GF +=-=﹣=﹣ . 故答案为6-25.12.如图,在平面直角坐标系中,OA =1,以OA 为一边,在第一象限作菱形OAA 1B ,并使∠AOB =60°,再以对角线OA 1为一边,在如图所示的一侧作相同形状的菱形OA 1A 2B 1,再依次作菱形OA 2A 3B 2,OA 3A 4B 3,……,则过点B 2018,B 2019,A 2019的圆的圆心坐标为_____.【答案】(-32018,3)2019) 【解析】过A 1作A 1C ⊥x 轴于C ,∵四边形OAA1B是菱形,∴OA=AA1=1,∠A1AC=∠AOB=60°,∴A1C=32,AC=12,∴OC=OA+AC=32,在Rt△OA1C中,OA1=2213OC AC+=,∵∠OA2C=∠B1A2O=30°,∠A3A2O=120°,∴∠A3A2B1=90°,∴∠A2B1A3=60°,∴B1A3=23,A2A3=3,∴OA3=OB1+B1A3=33=(3)3∴菱形OA2A3B2的边长=3=(3)2,设B1A3的中点为O1,连接O1A2,O1B2,于是求得,O1A2=O1B2=O1B133)1,∴过点B1,B2,A2的圆的圆心坐标为O1(0,23,∵菱形OA3A4B3的边长为333,∴OA4=934,设B2A4的中点为O2,连接O2A3,O2B3,同理可得,O2A3=O2B3=O2B2=3=(3)2,∴过点B2,B3,A3的圆的圆心坐标为O2(﹣3,33),…以此类推,菱形OA2019A2020B2019的边长为(3)2019,OA2020=(3)2020,设B2018A2020的中点为O2018,连接O2018A2019,O2018B2019,求得,O2018A2019=O2018B2019=O2018B2018=(3)2018,∴点O2018是过点B2018,B2019,A2019的圆的圆心,∵2018÷12=168…2,∴点O2018在射线OB2上,则点O2018的坐标为(﹣(3)2018,(3)2019),即过点B2018,B2019,A2019的圆的圆心坐标为:(﹣(3)2018,(3)2019),故答案为:(﹣(3)2018,(3)2019).三、解答题(本大题共3个小题,每小题12分,共36分.解答应写出文字说明、证明过程或演算步骤)13.如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F、H在菱形ABCD的对角线BD上.=;(1)求证:BG DEFH=,求菱形ABCD的周长。
中考数学:三角形四边形求角度专项复习题(含答案)
中考数学复习非圆几何求角度1、【基础题】(2015呼和浩特)如左下图,已知∠1=70°,如果CD∥BE,那么∠B的度数为()A.70°B. 100°C. 110°D. 120°2、【基础题】(2015)如右上图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为()A.105°B. 110°C. 115°D.120°3、【基础题】(2015)如右图,在△A BC中,∠C=31°,∠A BC的平分线BD交A C于点D,如果DE垂直平分BC,那么∠A= °.4、【综合Ⅰ】在△ABC中,∠A:∠B:∠C=1:2:3,求△ABC各角的度数.5、【综合Ⅰ】(2015)如左下图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A. 15°B. 17.5°C. 20°D. 22.5°6、【综合Ⅱ】(2015)如右上图,△ABC中,CD是边AB上的高,且AD CD CD BD.(1)求证:△ACD ∽△CBD;(2)求∠ACB的大小.7、【综合Ⅲ】如左下图,点O是△ABC一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC等于_______8、【基础题】(2015)右上图是由射线AB、BC、CD、DE、EA,组成的平面图形,则∠1+∠2+∠3+∠4+∠5=_____.9、【综合Ⅱ】(2015)如左下图,平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,则∠3+∠1-∠2=°10、【基础题】(2015)如右上图,□ABCD中,对角线AC与BD交于点O,∠DAC=42º,∠CBD=23º,则∠COD的度数是()A.61º B.63º C.65º D.67º11、【综合Ⅱ】如右图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,E为垂足,连接DF,则∠CDF的度数为.12、【综合Ⅱ】(2010襄阳)菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为()A.3:1 B.4:1 C.5:1 D.6:113、【综合Ⅲ】如左下图,在矩形ABCD中,AC与BD相交于一点O,AE平分∠BAD,若∠EAO=15°,求∠BOE的度数.14、【综合Ⅱ】(2015)如右上图,已知点E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD=______度.15、【综合Ⅱ】(2015黄冈)如左下图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于度.16、【综合Ⅲ】(2015)如右上图,等腰直角三角形BDC的顶点D在等边三角形ABC的部,∠BDC=90°,连接AD,过点D作一条直线将△ABD分割成两个等腰三角形,则分割出的这两个等腰三角形的顶角分别是度.17、【综合Ⅲ】(2014)如图,在△ABC 中,AB =AC ,且D 为BC 上一点,CD =AD ,AB =BD ,则∠B 的度数为( )A .30°B .36°C .40°D .45°18、【综合Ⅲ】(2015襄阳)在□ABCD 中,AD=BD ,BE 是AD 边上的高,∠EBD=20°,则∠A 的度数为 .19、【提高题】如左下图,等边△ABC 中,BD =CE ,AD 与BE 相交于点P ,则∠APE 的度数是 ( )A. 45°B. 60°C. 75°D. 80°20、【提高题】(2015)如右上图,在△ABC 中,∠B=40°,三角形的外角∠DAC 和∠ACF 的平分线交于点E ,则∠AEC= 度。
2019、2020年山东中考数学试题分类(5)——三角形与四边形(含答案)
2019、2020年山东中考数学试题分类(5)——三角形与四边形一.三角形的重心(共2小题)1.(2020•淄博)如图,在△ABC中,AD,BE分别是BC,AC边上的中线,且AD⊥BE,垂足为点F,设BC=a,AC=b,AB=c,则下列关系式中成立的是()A.a2+b2=5c2B.a2+b2=4c2C.a2+b2=3c2D.a2+b2=2c22.(2020•烟台)如图,点G为△ABC的重心,连接CG,AG并延长分别交AB,BC于点E,F,连接EF,若AB=4.4,AC=3.4,BC=3.6,则EF的长度为()A.1.7 B.1.8 C.2.2 D.2.4二.三角形内角和定理(共1小题)3.(2019•青岛)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.35°B.40°C.45°D.50°三.全等三角形的性质(共1小题)4.(2020•淄博)如图,若△ABC≌△ADE,则下列结论中一定成立的是()A.AC=DE B.∠BAD=∠CAE C.AB=AE D.∠ABC=∠AED四.全等三角形的判定与性质(共7小题)5.(2019•临沂)如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF=3,则BD 的长是()A.0.5 B.1 C.1.5 D.26.(2019•滨州)如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM.下列结论:①AC=BD;②∠AMB=40°;③OM平分∠BOC;④MO 平分∠BMC.其中正确的个数为()A.4 B.3 C.2 D.17.(2019•临沂)如图,在△ABC中,∠ACB=120°,BC=4,D为AB的中点,DC⊥BC,则△ABC的面积是.8.(2020•烟台)如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC上一动点,以DE 为一边作等边三角形DEF,连接CF.【问题解决】如图1,若点D在边BC上,求证:CE+CF=CD;【类比探究】如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.9.(2020•菏泽)如图,在△ABC中,∠ACB=90°,点E在AC的延长线上,ED⊥AB于点D,若BC=ED,求证:CE=DB.10.(2020•泰安)若△ABC和△AED均为等腰三角形,且∠BAC=∠EAD=90°.(1)如图(1),点B是DE的中点,判定四边形BEAC的形状,并说明理由;(2)如图(2),若点G是EC的中点,连接GB并延长至点F,使CF=CD.求证:①EB=DC,②∠EBG=∠BFC.11.(2019•莱芜区)如图,已知等边△ABC ,CD ⊥AB 于D ,AF ⊥AC ,E 为线段CD 上一点,且CE =AF ,连接BE ,BF ,EG ⊥BF 于G ,连接DG . (1)求证:BE =BF ;(2)试说明DG 与AF 的位置关系和数量关系.五.等腰三角形的性质(共1小题) 12.(2020•临沂)如图,在△ABC 中,AB =AC ,∠A =40°,CD ∥AB ,则∠BCD =( )A .40°B .50°C .60°D .70° 六.勾股定理(共2小题) 13.(2020•烟台)如图,△OA 1A 2为等腰直角三角形,OA 1=1,以斜边OA 2为直角边作等腰直角三角形OA 2A 3,再以OA 3为直角边作等腰直角三角形OA 3A 4,…,按此规律作下去,则OA n 的长度为( )A .(√2)nB .(√2)n ﹣1C .(√22)n D .(√22)n ﹣114.(2019•枣庄)把两个同样大小含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个三角尺的直角顶点重合于点A ,且另外三个锐角顶点B ,C ,D 在同一直线上.若AB =2,则CD = .七.勾股定理的逆定理(共1小题) 15.(2019•滨州)满足下列条件时,△ABC 不是直角三角形的为( ) A .AB =√41,BC =4,AC =5 B .AB :BC :AC =3:4:5 C .∠A :∠B :∠C =3:4:5D .|cos A −12|+(tan B −√33)2=0八.等腰直角三角形(共1小题) 16.(2020•威海)七巧板是大家熟悉的一种益智玩具.用七巧板能拼出许多有趣的图案.小李将一块等腰直角三角形硬纸板(如图①)切割七块,正好制成一副七巧板(如图②).已知AB =40cm ,则图中阴影部分的面积为( )A .25cm 2B .1003cm 2C .50cm 2D .75cm 2九.三角形综合题(共1小题) 17.(2020•泰安)小明将两个直角三角形纸片如图(1)那样拼放在同一平面上,抽象出如图(2)的平面图形,∠ACB 与∠ECD 恰好为对顶角,∠ABC =∠CDE =90°,连接BD ,AB =BD ,点F 是线段CE 上一点. 探究发现:(1)当点F 为线段CE 的中点时,连接DF (如图(2)),小明经过探究,得到结论:BD ⊥DF .你认为此结论是否成立? .(填“是”或“否”) 拓展延伸:(2)将(1)中的条件与结论互换,即:BD ⊥DF ,则点F 为线段CE 的中点.请判断此结论是否成立.若成立,请写出证明过程;若不成立,请说明理由. 问题解决:(3)若AB =6,CE =9,求AD 的长.一十.多边形内角与外角(共5小题) 18.(2020•烟台)量角器测角度时摆放的位置如图所示,在△AOB 中,射线OC 交边AB 于点D ,则∠ADC 的度数为( )A.60°B.70°C.80°D.85°19.(2020•德州)如图,小明从A点出发,沿直线前进8米后向左转45°,再沿直线前进8米,又向左转45°…照这样走下去,他第一次回到出发点A时,共走路程为()A.80米B.96米C.64米D.48米20.(2020•济宁)一个多边形的内角和是1080°,则这个多边形的边数是()A.9 B.8 C.7 D.621.(2019•莱芜区)如果一个多边形的内角和是外角和的5倍,那么这个多边形的边数是()A.10 B.11 C.12 D.1322.(2019•枣庄)用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE.图中,∠BAC=度.一十一.平行四边形的性质(共5小题)23.(2020•临沂)如图,P是面积为S的▱ABCD内任意一点,△P AD的面积为S1,△PBC的面积为S2,则()A.S1+S2>S 2B.S1+S2<S 2C.S1+S2=S 2D.S1+S2的大小与P点位置有关24.(2019•烟台)如图,面积为24的▱ABCD中,对角线BD平分∠ABC,过点D作DE⊥BD交BC的延长线于点E,DE=6,则sin∠DCE的值为()A .2425B .45C .34D .122525.(2020•济南)如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,过点O 的直线分别交AD ,BC 于点E ,F .求证:AE =CF .26.(2020•淄博)已知:如图,E 是▱ABCD 的边BC 延长线上的一点,且CE =BC . 求证:△ABC ≌△DCE .27.(2020•青岛)如图,在▱ABCD 中,对角线AC 与BD 相交于点O ,点E ,F 分别在BD 和DB 的延长线上,且DE =BF ,连接AE ,CF . (1)求证:△ADE ≌△CBF ;(2)连接AF ,CE .当BD 平分∠ABC 时,四边形AFCE 是什么特殊四边形?请说明理由.一十二.平行四边形的判定与性质(共1小题) 28.(2019•威海)如图,E 是▱ABCD 边AD 延长线上一点,连接BE 、CE 、BD ,BE 交CD 于点F .添加以下条件,不能判定四边形BCED 为平行四边形的是( )A .∠ABD =∠DCEB .DF =CFC .∠AEB =∠BCD D .∠AEC =∠CBD 一十三.菱形的性质(共3小题) 29.(2020•日照)已知菱形的周长为8,两邻角的度数比为1:2,则菱形的面积为( ) A .8√3 B .8 C .4√3 D .2√3 30.(2019•东营)如图,在平面直角坐标系中,△ACE 是以菱形ABCD 的对角线AC 为边的等边三角形,AC =2,点C 与点E 关于x 轴对称,则点D 的坐标是 .31.(2019•聊城)在菱形ABCD 中,点P 是BC 边上一点,连接AP ,点E ,F 是AP 上的两点,连接DE ,BF ,使得∠AED =∠ABC ,∠ABF =∠BPF . 求证:(1)△ABF ≌△DAE ; (2)DE =BF +EF .一十四.菱形的判定(共1小题) 32.(2020•滨州)如图,过▱ABCD 对角线AC 与BD 的交点E 作两条互相垂直的直线,分别交边AB 、BC 、CD 、DA 于点P 、M 、Q 、N . (1)求证:△PBE ≌△QDE ;(2)顺次连接点P 、M 、Q 、N ,求证:四边形PMQN 是菱形.一十五.矩形的性质(共3小题) 33.(2020•威海)如图,矩形ABCD 的四个顶点分别在直线l 3,l 4,l 2,l 1上.若直线l 1∥l 2∥l 3∥l 4且间距相等,AB =4,BC =3,则tan α的值为( )A .38B .34C .√52D .√151534.(2020•泰安)如图,矩形ABCD 中,AC ,BD 相交于点O ,过点B 作BF ⊥AC 交CD 于点F ,交AC 于点M ,过点D 作DE ∥BF 交AB 于点E ,交AC 于点N ,连接FN ,EM .则下列结论: ①DN =BM ; ②EM ∥FN ; ③AE =FC ;④当AO =AD 时,四边形DEBF 是菱形.其中,正确结论的个数是( )A .1个B .2个C .3个D .4个 35.(2020•菏泽)如图,矩形ABCD 中,AB =5,AD =12,点P 在对角线BD 上,且BP =BA ,连接AP 并延长,交DC 的延长线于点Q ,连接BQ ,则BQ 的长为 .一十六.矩形的判定(共1小题) 36.(2019•临沂)如图,在平行四边形ABCD 中,M 、N 是BD 上两点,BM =DN ,连接AM 、MC 、CN 、NA ,添加一个条件,使四边形AMCN 是矩形,这个条件是( )A .OM =12ACB .MB =MOC .BD ⊥AC D .∠AMB =∠CND一十七.正方形的性质(共5小题) 37.(2019•莱芜区)如图,在正方形ABCD 中,E 、F 分别是BC 、CD 上的点,且∠EAF =45°,AE 、AF 分别交BD 于M 、N ,连接EN 、EF ,有以下结论: ①AN =EN②当AE =AF 时,SS SS=2−√2③BE +DF =EF④存在点E 、F ,使得NF >DF 其中正确的个数是( )A .1B .2C .3D .4 38.(2020•青岛)如图,在正方形ABCD 中,对角线AC 与BD 交于点O ,点E 在CD 的延长线上,连接AE ,点F 是AE 的中点,连接OF 交AD 于点G .若DE =2,OF =3,则点A 到DF 的距离为 .39.(2020•枣庄)如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF 的周长是.40.(2019•泰安)如图,四边形ABCD是正方形,△EFC是等腰直角三角形,点E在AB上,且∠CEF=90°,FG⊥AD,垂足为点G.(1)试判断AG与FG是否相等?并给出证明;(2)若点H为CF的中点,GH与DH垂直吗?若垂直,给出证明;若不垂直,说明理由.41.(2019•潍坊)如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接DG,过点A作AH∥DG,交BG于点H.连接HF,AF,其中AF交EC于点M.(1)求证:△AHF为等腰直角三角形.(2)若AB=3,EC=5,求EM的长.一十八.正方形的判定(共1小题)42.(2020•威海)如图,在▱ABCD中,对角线BD⊥AD,AB=10,AD=6,O为BD的中点,E为边AB 上一点,直线EO交CD于点F,连结DE,BF.下列结论不成立的是()A .四边形DEBF 为平行四边形B .若AE =3.6,则四边形DEBF 为矩形C .若AE =5,则四边形DEBF 为菱形D .若AE =4.8,则四边形DEBF 为正方形 一十九.梯形(共1小题) 43.(2020•泰安)如图,四边形ABCD 是一张平行四边形纸片,其高AG =2cm ,底边BC =6cm ,∠B =45°,沿虚线EF 将纸片剪成两个全等的梯形,若∠BEF =30°,则AF 的长为( )A .1cmB .√63cm C .(2√3−3)cmD .(2−√3)cm二十.*平面向量(共1小题)44.(2019•日照)规定:在平面直角坐标系xOy 中,如果点P 的坐标为(a ,b ),那么向量SS →可以表示为:SS →=(a ,b ),如果SS →与SS →互相垂直,SS →=(x 1,y 1),SS →=(x 2,y 2),那么x 1x 2+y 1y 2=0.若SS →与SS →互相垂直,SS →=(sin α,1),SS →=(2,−√3),则锐角∠α= .二十一.四边形综合题(共6小题) 45.(2020•德州)如图,在矩形ABCD 中,AB =√3+2,AD =√3.把AD 沿AE 折叠,使点D 恰好落在AB 边上的D ′处,再将△AED ′绕点E 顺时针旋转α,得到△A 'ED ″,使得EA ′恰好经过BD ′的中点F .A ′D ″交AB 于点G ,连接AA ′.有如下结论:①A ′F 的长度是√6−2;②弧D 'D ″的长度是5√312π;③△A ′AF ≌△A ′EG ;④△AA ′F ∽△EGF .上述结论中,所有正确的序号是 .46.(2020•青岛)已知:如图,在四边形ABCD 和Rt △EBF 中,AB ∥CD ,CD >AB ,点C 在EB 上,∠ABC =∠EBF =90°,AB =BE =8cm ,BC =BF =6cm ,延长DC 交EF 于点M .点P 从点A 出发,沿AC 方向匀速运动,速度为2cm /s ;同时,点Q 从点M 出发,沿MF 方向匀速运动,速度为1cm /s .过点P 作GH ⊥AB 于点H ,交CD 于点G .设运动时间为t (s )(0<t <5). 解答下列问题:(1)当t 为何值时,点M 在线段CQ 的垂直平分线上?(2)连接PQ ,作QN ⊥AF 于点N ,当四边形PQNH 为矩形时,求t 的值; (3)连接QC ,QH ,设四边形QCGH 的面积为S (cm 2),求S 与t 的函数关系式;(4)点P 在运动过程中,是否存在某一时刻t ,使点P 在∠AFE 的平分线上?若存在,求出t 的值;若不存在,请说明理由.47.(2020•临沂)如图,菱形ABCD 的边长为1,∠ABC =60°,点E 是边AB 上任意一点(端点除外),线段CE 的垂直平分线交BD ,CE 分别于点F ,G ,AE ,EF 的中点分别为M ,N .(1)求证:AF =EF ;(2)求MN +NG 的最小值;(3)当点E 在AB 上运动时,∠CEF 的大小是否变化?为什么?48.(2020•济宁)如图,在菱形ABCD 中,AB =AC ,点E ,F ,G 分别在边BC ,CD 上,BE =CG ,AF 平分∠EAG ,点H 是线段AF 上一动点(与点A 不重合).(1)求证:△AEH ≌△AGH ;(2)当AB =12,BE =4时.①求△DGH 周长的最小值;②若点O 是AC 的中点,是否存在直线OH 将△ACE 分成三角形和四边形两部分,其中三角形的面积与四边形的面积比为1:3.若存在,请求出SS SS 的值;若不存在,请说明理由.49.(2020•德州)问题探究:小红遇到这样一个问题:如图1,△ABC 中,AB =6,AC =4,AD 是中线,求AD 的取值范围.她的做法是:延长AD 到E ,使DE =AD ,连接BE ,证明△BED ≌△CAD ,经过推理和计算使问题得到解决. 请回答:(1)小红证明△BED ≌△CAD 的判定定理是: ;(2)AD 的取值范围是 ;方法运用:(3)如图2,AD 是△ABC 的中线,在AD 上取一点F ,连结BF 并延长交AC 于点E ,使AE =EF ,求证:BF =AC .(4)如图3,在矩形ABCD 中,SS SS =12,在BD 上取一点F ,以BF 为斜边作Rt △BEF ,且SS SS =12,点G 是DF 的中点,连接EG ,CG ,求证:EG =CG .50.(2019•青岛)已知:如图,在四边形ABCD中,AB∥CD,∠ACB=90°,AB=10cm,BC=8cm,OD 垂直平分AC.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC 方向匀速运动,速度为1cm/s;当一个点停止运动,另一个点也停止运动.过点P作PE⊥AB,交BC于点E,过点Q作QF∥AC,分别交AD,OD于点F,G.连接OP,EG.设运动时间为t(s)(0<t<5),解答下列问题:(1)当t为何值时,点E在∠BAC的平分线上?(2)设四边形PEGO的面积为S(cm2),求S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使四边形PEGO的面积最大?若存在,求出t的值;若不存在,请说明理由;(4)连接OE,OQ,在运动过程中,是否存在某一时刻t,使OE⊥OQ?若存在,求出t的值;若不存在,请说明理由.2019、2020年山东中考数学试题分类(5)——三角形与四边形参考答案与试题解析一.三角形的重心(共2小题)1.【解答】解:设EF =x ,DF =y ,∵AD ,BE 分别是BC ,AC 边上的中线,∴点F 为△ABC 的重心,AE =12AC =12b ,BD =12a , ∴AF =2DF =2y ,BF =2EF =2x ,∵AD ⊥BE ,∴∠AFB =∠AFE =∠BFD =90°,在Rt △AFB 中,4x 2+4y 2=c 2,①在Rt △AEF 中,x 2+4y 2=14b 2,②在Rt △BFD 中,4x 2+y 2=14a 2,③②+③得5x 2+5y 2=14(a 2+b 2),∴4x 2+4y 2=15(a 2+b 2),④①﹣④得c 2−15(a 2+b 2)=0,即a 2+b 2=5c 2.故选:A .2.【解答】解:∵点G 为△ABC 的重心,∴AE =BE ,BF =CF ,∴EF =12SS =1.7, 故选:A .二.三角形内角和定理(共1小题)3.【解答】解:∵BD 是△ABC 的角平分线,AE ⊥BD ,∴∠ABD =∠EBD =12∠ABC =35°2,∠AFB =∠EFB =90°,∴∠BAF =∠BEF =90°﹣17.5°,∴AB =BE ,∴AF =EF ,∴AD =ED ,∴∠DAF =∠DEF ,∵∠BAC =180°﹣∠ABC ﹣∠C =95°,∴∠BED =∠BAD =95°,∴∠CDE =95°﹣50°=45°,故选:C .三.全等三角形的性质(共1小题)4.【解答】解:∵△ABC ≌△ADE ,∴AC =AE ,AB =AD ,∠ABC =∠ADE ,∠BAC =∠DAE ,∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC ,即∠BAD =∠CAE .故A ,C ,D 选项错误,B 选项正确,故选:B .四.全等三角形的判定与性质(共7小题)5.【解答】解:∵CF ∥AB ,∴∠A =∠FCE ,∠ADE =∠F ,在△ADE 和△CFE 中{∠S =∠SSSSSSS =SS SS =SS,∴△ADE ≌△CFE (AAS ),∴AD =CF =3,∵AB =4,∴DB =AB ﹣AD =4﹣3=1.故选:B .6.【解答】解:∵∠AOB =∠COD =40°,∴∠AOB +∠AOD =∠COD +∠AOD ,即∠AOC =∠BOD ,在△AOC 和△BOD 中,{SS =SS SSSS =SSSS SS =SS ,∴△AOC ≌△BOD (SAS ),∴∠OCA =∠ODB ,AC =BD ,①正确;∴∠OAC =∠OBD ,由三角形的外角性质得:∠AMB +∠OAC =∠AOB +∠OBD ,∴∠AMB =∠AOB =40°,②正确;作OG ⊥MC 于G ,OH ⊥MB 于H ,如图2所示:则∠OGC =∠OHD =90°,在△OCG 和△ODH 中,{∠SSS =∠SSSSSSS =SSSS SS =SS ,∴△OCG ≌△ODH (AAS ),∴OG =OH ,∴MO 平分∠BMC ,④正确;∵∠AOB =∠COD ,∴当∠DOM =∠AOM 时,OM 才平分∠BOC ,假设∠DOM =∠AOM∵△AOC ≌△BOD ,∴∠COM =∠BOM ,∵MO 平分∠BMC ,∴∠CMO =∠BMO , 在△COM 和△BOM 中,{∠SSS =∠SSS SS =SS SSSS =SSSS,∴△COM ≌△BOM (ASA ),∴OB =OC ,∵OA =OB∴OA =OC与OA >OC 矛盾,∴③错误;正确的个数有3个;故选:B .7.【解答】解:∵DC ⊥BC ,∴∠BCD =90°,∵∠ACB =120°,∴∠ACD =30°,延长CD 到H 使DH =CD ,∵D 为AB 的中点,∴AD =BD ,在△ADH 与△BCD 中,{SS =SSSSSS =SSSS SS =SS ,∴△ADH ≌△BCD (SAS ),∴AH =BC =4,∠H =∠BCD =90°,∵∠ACH =30°,∴CH =√3AH =4√3,∴△ABC 的面积=S △ACH =12×4×4√3=8√3,故答案为:8√3.8.【解答】【问题解决】证明:在CD 上截取CH =CE ,如图1所示:∵△ABC 是等边三角形,∴∠ECH =60°,∴△CEH 是等边三角形,∴EH =EC =CH ,∠CEH =60°,∵△DEF 是等边三角形,∴DE =FE ,∠DEF =60°,∴∠DEH +∠HEF =∠FEC +∠HEF =60°,∴∠DEH =∠FEC ,在△DEH 和△FEC 中,{SS =SS SSSS =SSSS SS =SS ,∴△DEH ≌△FEC (SAS ),∴DH =CF ,∴CD =CH +DH =CE +CF ,∴CE +CF =CD ;【类比探究】解:线段CE ,CF 与CD 之间的等量关系是FC =CD +CE ;理由如下: ∵△ABC 是等边三角形,∴∠A =∠B =60°,过D 作DG ∥AB ,交AC 的延长线于点G ,如图2所示:∵GD ∥AB ,∴∠GDC =∠B =60°,∠DGC =∠A =60°,∴∠GDC =∠DGC =60°,∴△GCD 为等边三角形,∴DG =CD =CG ,∠GDC =60°,∵△EDF 为等边三角形,∴ED =DF ,∠EDF =∠GDC =60°,∴∠EDG =∠FDC ,在△EGD 和△FCD 中,{SS =SS SSSS =SSSS SS =SS ,∴△EGD ≌△FCD (SAS ),∴EG =FC ,∴FC =EG =CG +CE =CD +CE .9.【解答】证明:∵ED ⊥AB ,∴∠ADE =∠ACB =90°,∠A =∠A ,BC =DE ,∴△ABC ≌△AED (AAS ),∴AE =AB ,AC =AD ,∴CE =BD .10.【解答】解:(1)四边形BEAC 是平行四边形,理由如下:∵△AED 为等腰三角形,∠EAD =90°,B 是DE 的中点,∴∠E =∠BAE =45°,∠ABE =90°,∵△ABC 是等腰三角形,∠BAC =90°,∴∠ABC =∠BAE =45°,∠ABE =∠BAC =90°,∴BC ∥AE ,AC ∥BE ,∴四边形BEAC 是平行四边形;(2)①∵△ABC 和△AED 均为等腰三角形,∠BAC =∠EAD =90°,∴AE =AD ,AB =AC ,∠BAE =∠CAD ,∴△AEB ≌△ADC (SAS ),∴BE =CD ;②延长FG 至点H ,使GH =FG ,∵G是EC的中点,∴EG=DC,又∵∠EGH=∠FGC,∴△EGH≌△CGF(SAS),∴∠BFC=∠H,CF=EH,∵CF=CD,CD=BE,∴EH=BE,∴∠H=∠EBG,∴∠EBG=∠BFC.11.【解答】证明:(1)∵△ABC是等边三角形∴AB=AC=BC,∠BAC=∠ACB=∠ABC=60°∵CD⊥AB,AC=BC∴BD=AD,∠BCD=30°,∵AF⊥AC∴∠F AC=90°∴∠F AB=∠F AC﹣∠BAC=30°∴∠F AB=∠ECB,且AB=BC,AF=CE∴△ABF≌△CBE(SAS)∴BF=BE(2)AF=2GD,AF∥DG理由如下:连接EF,∵△ABF≌△CBE∴∠ABF=∠CBE,∵∠ABE+∠EBC=60°∴∠ABE+∠ABF=60°,且BE=BF∴△BEF是等边三角形,且GE⊥BF∴BG=FG,且BD=AD∴AF=2GD,AF∥DG五.等腰三角形的性质(共1小题)12.【解答】解:∵在△ABC 中,AB =AC ,∠A =40°,∴∠ACB =70°,∵CD ∥AB ,∴∠ACD =180°﹣∠A =140°,∴∠BCD =∠ACD ﹣∠ACB =70°.故选:D .六.勾股定理(共2小题)13.【解答】解:∵△OA 1A 2为等腰直角三角形,OA 1=1,∴OA 2=√2;∵△OA 2A 3为等腰直角三角形,∴OA 3=2=(√2)2;∵△OA 3A 4为等腰直角三角形,∴OA 4=2√2=(√2)3.∵△OA 4A 5为等腰直角三角形,∴OA 5=4=(√2)4,……∴OA n 的长度为(√2)n ﹣1.故选:B .14.【解答】解:如图,过点A 作AF ⊥BC 于F ,在Rt △ABC 中,∠B =45°,∴BC =√2AB =2√2,BF =AF =√22AB =√2,∵两个同样大小的含45°角的三角尺,∴AD =BC =2√2,在Rt △ADF 中,根据勾股定理得,DF =√SS 2−SS 2=√6,∴CD =BF +DF ﹣BC =√2+√6−2√2=√6−√2,故答案为:√6−√2.七.勾股定理的逆定理(共1小题)15.【解答】解:A 、∵52+42=25+16=41=(√41)2,∴△ABC 是直角三角形,错误;B 、∵(3x )2+(4x )2=9x 2+16x 2=25x 2=(5x )2,∴△ABC 是直角三角形,错误;C 、∵∠A :∠B :∠C =3:4:5,∴∠C =53+4+5×180°=75°≠90°,∴△ABC 不是直角三角形,正确; D 、∵|cos A −12|+(tan B −√33)2=0,∴SSSS =12,SSSS =√33,∴∠A =60°,∠B =30°,∴∠C =90°,∴△ABC 是直角三角形,错误;故选:C .八.等腰直角三角形(共1小题)16.【解答】解:如图:设OF =EF =FG =x (cm ),∴OE=OH=2x,在Rt△EOH中,EH=2√2x,由题意EH=20cm,∴20=2√2x,∴x=5√2,∴阴影部分的面积=(5√2)2=50(cm2)故选:C.九.三角形综合题(共1小题)17.【解答】解:(1)如图(2)中,∵∠EDC=90°,EF=CF,∴DF=CF,∴∠FCD=∠FDC,∵∠ABC=90°,∴∠A+∠ACB=90°,∵BA=BD,∴∠A=∠ADB,∵∠ACB=∠FCD=∠FDC,∴∠ADB+∠FDC=90°,∴∠FDB=90°,∴BD⊥DF.故答案为是.(2)结论成立:理由:∵BD⊥DF,ED⊥AD,∴∠BDC+∠CDF=90°,∠EDF+∠CDF=90°,∴∠BDC=∠EDF,∵AB=BD,∴∠A=∠BDC,∴∠A=∠EDF,∵∠A+∠ACB=90°,∠E+∠ECD=90°,∠ACB=∠ECD,∴∠A=∠E,∴∠E =∠EDF ,∴EF =FD ,∵∠E +∠ECD =90°,∠EDF +∠FDC =90°,∴∠FCD =∠FDC ,∴FD =FC ,∴EF =FC ,∴点F 是EC 的中点.(3)如图3中,取EC 的中点G ,连接GD .则GD ⊥BD .∴DG =12EC =92, ∵BD =AB =6,在Rt △BDG 中,BG =√SS 2+SS 2=√(92)2+62=152, ∴CB =152−92=3,在Rt △ABC 中,AC =√SS 2+SS 2=√62+32=3√5,∵∠ACB =∠ECD ,∠ABC =∠EDC ,∴△ABC ∽△EDC ,∴SS SS =SS SS,∴3√59=3SS , ∴CD =9√55, ∴AD =AC +CD =3√5+9√55=24√55. 一十.多边形内角与外角(共5小题)18.【解答】解:∵OA =OB ,∠AOB =140°,∴∠A =∠B =12(180°﹣140°)=20°, ∵∠AOC =60°,∴∠ADC =∠A +∠AOC =20°+60°=80°,故选:C .19.【解答】解:根据题意可知,他需要转360÷45=8次才会回到原点, 所以一共走了8×8=64(米).故选:C .20.【解答】解:设所求正n 边形边数为n ,则1080°=(n ﹣2)•180°,解得n =8.故选:B .21.【解答】解:设这个多边形是n 边形,根据题意得,(n ﹣2)•180°=5×360°,解得n =12.故选:C .22.【解答】解:∵∠ABC =(5−2)×180°5=108°,△ABC 是等腰三角形, ∴∠BAC =∠BCA =36度.一十一.平行四边形的性质(共5小题)23.【解答】解:过点P 作EF ⊥AD 交AD 于点E ,交BC 的延长线于点F ,∵四边形ABCD 是平行四边形,∴AD =BC ,∴S =BC •EF ,S 1=SS ⋅SS 2,S 2=SS ⋅SS 2, ∵EF =PE +PF ,AD =BC ,∴S 1+S 2=S 2,故选:C .24.【解答】解:连接AC ,过点D 作DF ⊥BE 于点F ,∵BD 平分∠ABC ,∴∠ABD =∠DBC ,∵▱ABCD 中,AD ∥BC ,∴∠ADB =∠DBC ,∴∠ADB =∠ABD ,∴AB =AD ,∴四边形ABCD 是菱形,∴AC ⊥BD ,OB =OD ,∵DE ⊥BD ,∴OC ∥ED ,∵DE =6,∴OC =12DE =3,∵▱ABCD 的面积为24,∴12BD •AC =24,∴BD =8, ∴BC =CD =√SS 2+SS 2=√42+32=5,∵S 平行四边形ABCD =BC •DF =24,∴DF =245,∴DF =245,∴sin ∠DCE =SS SS =2455=2425. 故选:A .25.【解答】证明:∵▱ABCD 的对角线AC ,BD 交于点O ,∴AO =CO ,AD ∥BC ,∴∠EAC =∠FCO ,在△AOE 和△COF 中{∠SSS =∠SSSSS =SS SSSS =SSSS,∴△AOE ≌△COF (ASA ),∴AE =CF .26.【解答】证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,∴∠B =∠DCE ,在△ABC 和△DCE 中,{SS =SSSS =SSSS SS =SS∴△ABC ≌△DCE (SAS ).27.【解答】(1)证明:∵四边形ABCD 是平行四边形,∴AD =CB ,AD ∥BC ,∴∠ADB =∠CBD ,∴∠ADE =∠CBF ,在△ADE 和△CBF 中,{SS =SS SSSS =SSSS SS =SS ,∴△ADE ≌△CBF (SAS );(2)当BD 平分∠ABC 时,四边形AFCE 是菱形,理由:∵BD 平分∠ABC ,∴∠ABD =∠CBD ,∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD ,AD ∥BC ,∴∠ADB =∠CBD ,∴∠ABD =∠ADB ,∴AB =AD ,∴平行四边形ABCD 是菱形,∴AC ⊥BD ,∴AC ⊥EF ,∵DE =BF ,∴OE =OF ,又∵OA =OC ,∴四边形AFCE 是平行四边形,∵AC ⊥EF ,∴四边形AFCE 是菱形.一十二.平行四边形的判定与性质(共1小题)28.【解答】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB ∥CD ,∴DE ∥BC ,∠ABD =∠CDB ,∵∠ABD =∠DCE ,∴∠DCE =∠CDB ,∴BD ∥CE ,∴BCED 为平行四边形,故A 正确;∵DE ∥BC ,∴∠DEF =∠CBF ,在△DEF 与△CBF 中,{∠SSS =∠SSSSSSS =SSSS SS =SS,∴△DEF ≌△CBF (AAS ),∴EF =BF ,∵DF =CF ,∴四边形BCED 为平行四边形,故B 正确;∵AE ∥BC ,∴∠AEB =∠CBF ,∵∠AEB =∠BCD ,∴∠CBF =∠BCD ,∴CF =BF ,同理,EF =DF ,∴不能判定四边形BCED 为平行四边形;故C 错误;∵AE ∥BC ,∴∠DEC +∠BCE =∠EDB +∠DBC =180°,∵∠AEC =∠CBD ,∴∠BDE =∠BCE ,∴四边形BCED 为平行四边形,故D 正确,故选:C .一十三.菱形的性质(共3小题)29.【解答】解:如图,∵两邻角度数之比为1:2,两邻角和为180°,∴∠ABC =60°,∠BAD =120°,∵菱形的周长为8,∴边长AB =2,∴菱形的对角线AC =2,BD =2×2sin60°=2√3,∴菱形的面积=12AC •BD =12×2×2√3=2√3.故选:D .30.【解答】解:如图,∵△ACE 是以菱形ABCD 的对角线AC 为边的等边三角形,AC =2,∴CH =1,∴AH =√3,∵∠ABO =∠DCH =30°,∴DH =AO =√33, ∴OD =√3−√33−√33=√33, ∴点D 的坐标是(√33,0).故答案为:(√33,0). 31.【解答】证明:(1)∵四边形ABCD 是菱形,∴AB =AD ,AD ∥BC ,∴∠BP A =∠DAE ,∵∠ABC =∠AED ,∴∠BAF =∠ADE ,∵∠ABF =∠BPF ,∠BP A =∠DAE ,∴∠ABF =∠DAE ,∵AB =DA ,∴△ABF ≌△DAE (ASA );(2)∵△ABF ≌△DAE ,∴AE =BF ,DE =AF ,∵AF =AE +EF =BF +EF ,∴DE =BF +EF .一十四.菱形的判定(共1小题)32.【解答】(1)证明:∵四边形ABCD 是平行四边形,∴EB =ED ,AB ∥CD ,∴∠EBP =∠EDQ ,在△PBE 和△QDE 中,{∠SSS =∠SSSSS =SS SSSS =SSSS,∴△PBE ≌△QDE (ASA );(2)证明:如图所示:∵△PBE ≌△QDE ,∴EP =EQ ,同理:△BME ≌△DNE (ASA ),∴EM =EN ,∴四边形PMQN 是平行四边形,∵PQ ⊥MN ,∴四边形PMQN 是菱形.一十五.矩形的性质(共3小题)33.【解答】解:作CF ⊥l 4于点F ,交l 3于点E ,设CB 交l 3于点G ,由已知可得,GE ∥BF ,CE =EF ,∴△CEG ∽△CFB ,∴SS SS =SS SS , ∵SS SS =12, ∴SS SS =12,∵BC =3, ∴GB =32,∵l 3∥l 4,∴∠α=∠GAB ,∵四边形ABCD 是矩形,AB =4,∴∠ABG =90°,∴tan ∠BAG =SS SS =324=38,∴tan α的值为38,故选:A .34.【解答】解:∵四边形ABCD 是矩形,∴AB =CD ,AB ∥CD ,∠DAE =∠BCF =90°,OD =OB =OA =OC ,AD =BC ,AD ∥BC , ∴∠DAN =∠BCM ,∵BF ⊥AC ,DE ∥BF ,∴DE ⊥AC ,∴∠DNA =∠BMC =90°,在△DNA 和△BMC 中,{∠SSS =∠SSS SSSS =SSSS SS =SS,∴△DNA ≌△BMC (AAS ),∴DN =BM ,∠ADE =∠CBF ,故①正确;在△ADE 和△CBF 中,{∠SSS =∠SSS SS =SS SSSS =SSSS,∴△ADE ≌△CBF (ASA ),∴AE =FC ,DE =BF ,故③正确;∴DE ﹣DN =BF ﹣BM ,即NE =MF ,∵DE ∥BF ,∴四边形NEMF 是平行四边形,∴EM ∥FN ,故②正确;∵AB =CD ,AE =CF ,∴BE =DF ,∵BE ∥DF ,∴四边形DEBF 是平行四边形,∵AO =AD ,∴AO =AD =OD ,∴△AOD 是等边三角形,∴∠ADO =∠DAN =60°,∴∠ABD =90°﹣∠ADO =30°,∵DE ⊥AC ,∴∠ADN =ODN =30°,∴∠ODN =∠ABD ,∴DE =BE ,∴四边形DEBF 是菱形;故④正确;正确结论的个数是4个,故选:D .35.【解答】解:∵矩形ABCD 中,AB =5,AD =12,∠BAD =∠BCD =90°, ∴BD =√SS 2+SS 2=13,∵BP =BA =5,∴PD =BD ﹣BP =8,∵BA =BP ,∴∠BAP =∠BP A =∠DPQ ,∵AB ∥CD ,∴∠BAP =∠DQP ,∴∠DPQ =∠DQP ,∴DQ =DP =8,∴CQ =DQ ﹣CD =DQ ﹣AB =8﹣5=3,∴在Rt △BCQ 中,根据勾股定理,得BQ =√SS 2+SS 2=√153=3√17.故答案为:3√17.一十六.矩形的判定(共1小题)36.【解答】证明:∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD∵对角线BD 上的两点M 、N 满足BM =DN ,∴OB ﹣BM =OD ﹣DN ,即OM =ON ,∴四边形AMCN 是平行四边形,∵OM =12AC ,∴MN =AC ,∴四边形AMCN 是矩形.故选:A .一十七.正方形的性质(共5小题)37.【解答】解:①如图1,∵四边形ABCD 是正方形,∴∠EBM =∠ADM =∠FDN =∠ABD =45°,∵∠MAN =∠EBM =45°,∠AMN =∠BME ,∴△AMN ∽△BME ,∴SS SS =SS SS ,∵∠AMB =∠EMN ,∴△AMB ∽△NME ,∴∠AEN =∠ABD =45°∴∠NAE =∠AEN =45°,∴△AEN 是等腰直角三角形,∴AN =EN ,故①正确;②在△ABE 和△ADF 中,∵{SS =SSSSSS =SSSS =90°SS =SS ,∴Rt △ABE ≌Rt △ADF (HL ),∴BE =DF ,∵BC =CD ,∴CE =CF ,假设正方形边长为1,设CE =x ,则BE =1﹣x ,如图2,连接AC ,交EF 于O ,∵AE =AF ,CE =CF ,∴AC 是EF 的垂直平分线,∴AC ⊥EF ,OE =OF ,Rt △CEF 中,OC =12EF =√22x ,△EAF 中,∠EAO =∠F AO =22.5°=∠BAE =22.5°,∴OE =BE ,∵AE =AE ,∴Rt △ABE ≌Rt △AOE (HL ),∴AO =AB =1,∴AC =√2=AO +OC ,∴1+√22x =√2,x =2−√2,∴SS SS =√2)2−√2=(√2−1)(2+√2)2=√22; 故②不正确;③如图3,∴将△ADF 绕点A 顺时针旋转90°得到△ABH ,则AF =AH ,∠DAF =∠BAH ,∵∠EAF =45°=∠DAF +∠BAE =∠HAE ,∵∠ABE =∠ABH =90°,∴H 、B 、E 三点共线,在△AEF 和△AEH 中,{SS =SS SSSS =SSSS SS =SS ,∴△AEF ≌△AEH (SAS ),∴EF =EH =BE +BH =BE +DF ,故③正确;④△ADN 中,∠FND =∠ADN +∠NAD >45°,∠FDN =45°,∴DF >FN ,故不存在点E 、F ,使得NF >DF ,故④不正确;故选:B .38.【解答】解:解法一:∵在正方形ABCD 中,对角线AC 与BD 交于点O ,∴AO =DO ,∠ADC =90°,∴∠ADE =90°,∵点F 是AE 的中点,∴DF =AF =EF =12AE ,∴OF 垂直平分AD ,∴AG =DG ,∴FG =12DE =1,∵OF =3,∴OG =2,∵AO =CO ,∴CD =2OG =4,∴AD =CD =4,∴AE =√SS 2+SS 2=√42+22=2√5.过A 作AH ⊥DF 于H ,∴∠H =∠ADE =90°,∵AF =DF ,∴∠ADF =∠DAE ,∴△ADH ∽△EAD ,∴SS SS =SS SS , ∴SS 2=2√5, ∴AH =4√55,即点A 到DF 的距离为4√55,解法二:在正方形ABCD 中,对角线AC 与BD 交于点O , ∴AO =DO ,∠ADC =90°,∴∠ADE =90°,∵点F 是AE 的中点,∴DF =AF =EF =12AE ,∴OF 垂直平分AD ,∴AG =DG , ∴FG =12DE =1, ∵OF =3,∴OG =2,∵AO =CO ,∴CD =2OG =4,∴AD =CD =4,∴DG =2,∴DF =√SS 2+SS 2=√4+1=√5,过A 作AH ⊥DF 于H ,∴∠H =∠ADE =90°,∴S △ADF =12DF •AH =12AD •FG , ∴AH =4√55,故答案为:4√55.39.【解答】解:如图,连接BD交AC于点O,∵四边形ABCD为正方形,∴BD⊥AC,OD=OB=OA=OC,∵AE=CF=2,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形BEDF为平行四边形,且BD⊥EF,∴四边形BEDF为菱形,∴DE=DF=BE=BF,∵AC=BD=8,OE=OF=8−42=2,由勾股定理得:DE=√SS+SS=√42+22=2√5,∴四边形BEDF的周长=4DE=4×2√5=8√5,故答案为:8√5.40.【解答】解:(1)AG=FG,理由如下:如图,过点F作FM⊥AB交BA的延长线于点M∵四边形ABCD是正方形∴AB=BC,∠B=90°=∠BAD∵FM⊥AB,∠MAD=90°,FG⊥AD∴四边形AGFM是矩形∴AG=MF,AM=FG,∵∠CEF=90°,∴∠FEM+∠BEC=90°,∠BEC+∠BCE=90°∴∠FEM=∠BCE,且∠M=∠B=90°,EF=EC∴△EFM≌△CEB(AAS)∴BE =MF ,ME =BC∴ME =AB =BC∴BE =MA =MF∴AG =FG ,(2)DH ⊥HG理由如下:如图,延长GH 交CD 于点N ,∵FG ⊥AD ,CD ⊥AD∴FG ∥CD∴SS SS =SS SS =SS SS ,且CH =FH ,∴GH =HN ,NC =FG∴AG =FG =NC又∵AD =CD ,∴GD =DN ,且GH =HN∴DH ⊥GH41.【解答】证明:(1)∵四边形ABCD ,四边形ECGF 都是正方形∴DA ∥BC ,AD =CD ,FG =CG ,∠B =∠CGF =90°∵AD ∥BC ,AH ∥DG∴四边形AHGD 是平行四边形∴AH =DG ,AD =HG =CD∵CD =HG ,∠ECG =∠CGF =90°,FG =CG∴△DCG ≌△HGF (SAS )∴DG =HF ,∠HFG =∠HGD∴AH =HF ,∵∠HGD +∠DGF =90°∴∠HFG +∠DGF =90°∴DG ⊥HF ,且AH ∥DG∴AH ⊥HF ,且AH =HF∴△AHF 为等腰直角三角形.(2)∵AB =3,EC =5,∴AD =CD =3,DE =2,EF =5∵AD ∥EF∴SS SS =SS SS =53,且DE =2 ∴EM =54一十八.正方形的判定(共1小题)42.【解答】解:∵O 为BD 的中点,∴OB =OD ,∵四边形ABCD 为平行四边形,∴DC ∥AB ,∴∠CDO =∠EBO ,∠DFO =∠OEB ,∴△FDO ≌△EBO (AAS ),∴OE =OF ,∴四边形DEBF 为平行四边形,故A 选项不符合题意,若AE =3.6,AD =6,∴SS SS =3.66=35, 又∵SS SS =610=35, ∴SS SS =SS SS ,∵∠DAE =∠BAD ,∴△DAE ∽△BAD ,∴∠AED =∠ADB =90°.∴四边形DEBF 为矩形.故B 选项不符合题意,∵AB =10,AE =5,∴BE =5,又∵∠ADB =90°,∴DE =12AB =5, ∴DE =BE ,∴四边形DEBF 为菱形.故C 选项不符合题意,∵AE =3.6时,四边形DEBF 为矩形,AE =5时,四边形DEBF 为菱形,∴AE =4.8时,四边形DEBF 不可能是正方形.故选项D 符合题意.故选:D .一十九.梯形(共1小题)43.【解答】解:过F 作FH ⊥BC 于H ,∵高AG =2cm ,∠B =45°,∴BG =AG =2cm ,∵FH ⊥BC ,∠BEF =30°,∴EH =√3SS =2√3,∵沿虚线EF 将纸片剪成两个全等的梯形,∴AF =CE ,∵AG ⊥BC ,FH ⊥BC ,∴AG ∥FH ,∵AG =FH ,∴四边形AGHF 是矩形,∴AF =GH ,∴BC =BG +GH +HE +CE =2+2AF +2√3=6,∴AF =2−√3(cm ),故选:D .二十.*平面向量(共1小题)44.【解答】解:依题意,得2sin α+1×(−√3)=0,解得sin α=√32.∵α是锐角,∴α=60°.故答案是:60°.二十一.四边形综合题(共6小题)45.【解答】解:∵把AD 沿AE 折叠,使点D 恰好落在AB 边上的D ′处,∴∠D =∠AD 'E =90°=∠DAD ',AD =AD ',∴四边形ADED '是矩形,又∵AD =AD '=√3,∴四边形ADED '是正方形,∴AD =AD '=D 'E =DE =√3,AE =√2AD =√6,∠EAD '=∠AED '=45°,∴D 'B =AB ﹣AD '=2,∵点F 是BD '中点,∴D 'F =1,∴EF =√2+S′S 2=√3+1=2,∵将△AED ′绕点E 顺时针旋转α,∴AE =A 'E =√6,∠D 'ED ''=α,∠EA 'D ''=∠EAD '=45°,∴A 'F =√6−2,故①正确;∵tan ∠FED '=S′S S′S =3=√33, ∴∠FED '=30°∴α=30°+45°=75°,∴弧D 'D ″的长度=75°×S ×√3180°=5√312π,故②正确; ∵AE =A 'E ,∠AEA '=75°,∴∠EAA '=∠EA 'A =52.5°,∴∠A 'AF =7.5°,∵∠AA 'F ≠∠EA 'G ,∠A 'AF ≠∠EA 'G ,∠AF A '=120°≠∠EA 'G ,∴△A 'AF 与△A 'GE 不全等,故③错误;∵D 'E =D ''E ,EG =EG ,∴Rt △ED 'G ≌Rt △ED ''G (HL ),∴∠D 'GE =∠D ''GE ,∵∠AGD ''=∠A 'AG +∠AA 'G =105°,∴∠D 'GE =52.5°=∠AA 'F ,又∵∠AF A '=∠EFG ,∴△AF A '∽△EFG ,故④正确,故答案为:①②④.46.【解答】解:(1)∵AB ∥CD ,∴SS SS =SS SS , ∴8−68=SS6,∴CM =32,∵点M 在线段CQ 的垂直平分线上, ∴CM =MQ , ∴1×t =32,∴t =32;(2)如图1,过点Q 作QN ⊥AF 于点N ,∵∠ABC =∠EBF =90°,AB =BE =8cm ,BC =BF =6cm ,∴AC =√SS 2+SS 2=√64+36=10cm ,EF =√SS 2+SS 2=√64+36=10cm , ∵CE =2cm ,CM =32cm ,∴EM =√SS2+SS 2=√4+94=52, ∵sin ∠P AH =sin ∠CAB , ∴SS SS =SS SS ,∴610=SS 2S ,∴PH =65t , 同理可求QN =6−45t ,∵四边形PQNH 是矩形,∴PH =NQ ,∴6−45t =65t , ∴t =3;∴当t =3时,四边形PQNH 为矩形;(3)如图2,过点Q 作QN ⊥AF 于点N ,由(2)可知QN =6−45t , ∵cos ∠P AH =cos ∠CAB ,∴SS SS =SS SS , ∴SS 2S =810,∴AH =85t ,∵四边形QCGH 的面积为S =S 梯形GMFH ﹣S △CMQ ﹣S △HFQ ,∴S =12×6×(8−85t +6+8−85t +32)−12×32×[6﹣(6−45t )]−12×(6−45t )(8−85t +6)=−1625t 2+15t +512;(4)存在,理由如下:如图3,连接PF ,延长AC 交EF 于K ,∵AB =BE =8cm ,BC =BF =6cm ,AC =EF =10cm ,∴△ABC ≌△EBF (SSS ),∴∠E =∠CAB ,又∵∠ACB =∠ECK ,∴∠ABC =∠EKC =90°,∵S △CEM =12×EC ×CM =12×EM ×CK ,∴CK =2×3252=65, ∵PF 平分∠AFE ,PH ⊥AF ,PK ⊥EF ,∴PH =PK ,∴65t =10﹣2t +65, ∴t =72,∴当t =72时,使点P 在∠AFE 的平分线上.47.【解答】解:(1)连接CF ,∵FG 垂直平分CE ,∴CF =EF ,∵四边形ABCD 为菱形,∴A 和C 关于对角线BD 对称,∴CF =AF ,∴AF =EF ;(2)连接AC ,交BD 于点O ,∵M 和N 分别是AE 和EF 的中点,点G 为CE 中点,∴MN =12AF ,NG =12CF ,即MN +NG =12(AF +CF ),当点F 与菱形ABCD 对角线交点O 重合时,AF +CF 最小,即此时MN +NG 最小,∵菱形ABCD 边长为1,∠ABC =60°,∴△ABC 为等边三角形,AC =AB =1,即MN +NG 的最小值为12;(3)不变,理由是:延长EF,交DC于H,∵∠CFH=∠FCE+∠FEC,∠AFH=∠F AE+∠FEA,∴∠AFC=∠FCE+∠FEC+∠F AE+∠FEA,∵点F在菱形ABCD对角线BD上,根据菱形的对称性可得:∠AFD=∠CFD=12∠AFC,∵AF=CF=EF,∴∠AEF=∠EAF,∠FEC=∠FCE,∴∠AFD=∠F AE+∠ABF=∠FEA+∠CEF,∴∠ABF=∠CEF,∵∠ABC=60°,∴∠ABF=∠CEF=30°,为定值.48.【解答】(1)证明:∵四边形ABCD是菱形,∴AB=BC,∵AB=AC,∴AB=BC=AC,∴△ABC是等边三角形,∴∠ABC=60°,∴∠BCD=120°,∵AC是菱形ABCD的对角线,∴∠ACD=12∠BCD=60°=∠ABC,∵BE=CG,∴△ABE≌△ACG(SAS),∴AE=AG,∵AF平分∠EAG,∴∠EAF=∠GAF,∵AH=AH,∴△AEH≌△AGH(SAS);(2)①如图1,过点D作DM⊥BC交BC的延长线于M,连接DE,∵AB=12,BE=4,∴CG=4,∴CE =DG =12﹣4=8,由(1)知,△AEH ≌△AGH ,∴EH =HG ,∴l △DGH =DH +GH +DG =DH +HE +8,要使△DGH 的周长最小,则EH +DH 最小,最小为DE ,在Rt △DCM 中,∠DCM =180°﹣120°=60°,CD =AB =12,∴CM =6,∴DM =√3CM =6√3,在Rt △DME 中,EM =CE +CM =14,根据勾股定理得,DE =√SS 2+SS 2=√142+(6√3)2=4√19,∴△DGH 周长的最小值为4√19+8;②Ⅰ、当OH 与线段AE 相交时,交点记作点N ,如图2,连接CN ,∴点O 是AC 的中点,∴S △AON =S △CON =12S △ACN , ∵三角形的面积与四边形的面积比为1:3,∴S △SSSS △SSS =14, ∴S △CEN =S △ACN ,∴AN =EN ,∵点O 是AC 的中点,∴ON ∥CE ,∴SS SS =12;Ⅱ、当OH 与线段CE 相交时,交点记作Q ,如图3,连接AQ ,FG ,∵点O 是AC 的中点,∴S △AOQ =S △COQ =12S △ACQ ,∵三角形的面积与四边形的面积比为1:3,∴S △SSSS △SSS =14, ∴S △AEQ =S △ACQ ,∴CQ =EQ =12CE =12(12﹣4)=4,∵点O 是AC 的中点,∴OQ ∥AE ,设FQ =x ,∴EF =EQ +FQ =4+x ,CF =CQ ﹣FQ =4﹣x ,由(1)知,AE =AG ,∵AF 是∠EAG 的角平分线,∴∠EAF =∠GAF ,∵AF =AF ,∴△AEF ≌△AGF (SAS ),∴FG =EF =4+x ,过点G 作GP ⊥BC 交BC 的延长线于P ,在Rt △CPG 中,∠PCG =60°,CG =4,∴CP =12CG =2,PG =√3CP =2√3,∴PF =CF +CP =4﹣x +2=6﹣x ,在Rt △FPG 中,根据勾股定理得,PF 2+PG 2=FG 2,∴(6﹣x )2+(2√3)2=(4+x )2,∴x =85,∴FQ =85,EF =4+85=285, ∵OQ ∥AE ,∴SS SS =SS SS =4285=57, 即SS SS 的值为12或57.49.【解答】解:(1)∵AD 是中线,∴BD =CD ,又∵∠ADC =∠BDE ,AD =DE ,∴△BED ≌△CAD (SAS ),故答案为:SAS ;(2)∵△BED ≌△CAD ,∴AC =BE =4,在△ABE 中,AB ﹣BE <AE <AB +BE ,∴2<2AD <10,。
初三数学专题复习之三角形与特殊四边形(含答案)
初三数学专题之三角形与特殊四边形(含答案)一.选择题(共20小题)1.关于▱ABCD的叙述,正确的是()A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形2.下列说法中正确的是()A.对角线相等的平行四边形是菱形B.对角线互相垂直平分且相等的四边形是正方形C.对角线垂直的四边形是菱形D.有一个角是直角的四边形是矩形3.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B 为()A.66°B.104°C.114° D.124°4.如图,O是▱ABCD的对角线交点,E为AB中点,DE交AC于点F,若S▱ABCD=16.则S△DOE的值为()A.1 B.C.2 D.5.在△ABC与△A′B′C′中,有下列条件:(1),(2);(3)∠A=∠A′;(4)∠C=∠C′,如果从中任取两个条件组成一组,那么能判断△ABC∽△A′B′C′的共有()A.1组 B.2组 C.3组 D.4组6.如图,P是Rt△ABC斜边AB上任意一点(A,B两点除外),过P点作一直线,使截得的三角形与Rt△ABC相似,这样的直线可以作()A.1条 B.2条 C.3条 D.4条7.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中△ABC相似的是()A.B.C.D.8.如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD,则△ADE的形状是()A.等腰三角形B.等边三角形C.不等边三角形D.不能确定形状9.如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120°B.130°C.140° D.150°10.在给定的条件中,能画出平行四边形的是()A.以60cm为一条对角线,20cm,34cm为两条邻边B.以6cm,10cm为两条对角线,8cm为一边C.以20cm,36cm为两条对角线,22cm为一边D.以6cm为一条对角线,3cm,10cm为两条邻边11.用尺规作图,不能作出唯一直角三角形的是()A.已知两条直角边B.已知两个锐角C.已知一直角边和直角边所对的一锐角D.已知斜边和一直角边12.如图所示,在菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=6cm,则OE的长为()A.6cm B.4cm C.3cm D.2cm13.已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙两同学的作业:甲:1.以点C为圆心,AB长为半径画弧;2.以点A为圆心,BC长为半径画弧;3.两弧在BC上方交于点D,连接AD,CD,四边形ABCD即为所求(如图1).乙:1.连接AC,作线段AC的垂直平分线,交AC于点M;2.连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD,四边形ABCD 即为所求(如图2).对于两人的作业,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对14.下列命题是假命题的是()A.不在同一直线上的三点确定一个圆B.角平分线上的点到角两边的距离相等C.正六边形的内角和是720°D.角的边越大,角就越大15.如图是一个正方体的展开图,把展开图折叠成正方体后,有“弘”字一面的相对面上的字是()A.传B.统C.文D.化16.如图是正方体的平面展开图,每个面都标注了数字,如果5在正方体的右面,4在下面,那么后面的数字是()A.3 B.4 C.5 D.617.一个正方体的表面展开图如图所示,每个面内都标注了字母,如果从正方体的右面看是面D,面C在后面,则正方体的上面是()A.面E B.面F C.面A D.面B18.如图所示,已知AB∥CD,下列结论正确的是()A.∠1=∠2 B.∠2=∠3 C.∠1=∠4 D.∠3=∠419.如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C.AD∥BC D.DF∥BE20.如图,已知E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE 的度数为()A.20°B.25°C.30°D.35°二.填空题(共8小题)21.如图,A,B两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C,连接CA,CB,分别延长到点M,N,使AM=AC,BN=BC,测得MN=200m,则A,B间的距离为m.22.如图,依据尺规作图的痕迹,计算∠α=°.23.如图,四边形ABCD中,点M、N分别在AB、BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=°.24.如图,在Rt△ABC与Rt△DCB中,已知∠A=∠D=90°,请你添加一个条件(不添加字母和辅助线),使Rt△ABC≌Rt△DCB,你添加的条件是.25.将一副三角板如图叠放,则图中∠α的度数为.26.如图,在菱形ABCD中,∠DAB=60°,AB=2,则菱形ABCD的面积为.27.如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段BH的长为.28.矩形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件,使其成为正方形(只填一个即可)三.解答题(共7小题)29.如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.30.嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.已知:如图1,在四边形ABCD中,BC=AD,AB=求证:四边形ABCD是四边形.(1)填空,补全已知和求证;(2)按嘉淇的想法写出证明;(3)用文字叙述所证命题的逆命题为.31.如图,△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°.得到△ADE.连接BD,CE交于点F.(1)求证:△ABD≌△ACE;(2)求∠ACE的度数;(3)求证:四边形ABFE是菱形.32.如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.33.如图,△ABC、△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,点E在AB 上.求证:△CDA≌△CEB.34.如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.(1)求证:△AGE≌△BGF;(2)试判断四边形AFBE的形状,并说明理由.35.如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC.(1)求证:△ABC≌△DFE;(2)连接AF、BD,求证:四边形ABDF是平行四边形.2018年05月07日橙子的初中数学组卷参考答案与试题解析一.选择题(共20小题)1.关于▱ABCD的叙述,正确的是()A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形【分析】由菱形的判定方法、矩形的判定方法、正方形的判定方法得出选项A、B、D错误,C正确;即可得出结论.【解答】解:∵▱ABCD中,AB⊥BC,∴四边形ABCD是矩形,不一定是菱形,选项A错误;∵▱ABCD中,AC⊥BD,∴四边形ABCD是菱形,不一定是正方形,选项B错误;∵▱ABCD中,AC=BD,∴四边形ABCD是矩形,选项C正确;∵▱ABCD中,AB=AD,∴四边形ABCD是菱形,不一定是正方形,选项D错误.故选:C.【点评】本题考查了平行四边形的性质、菱形的判定方法、矩形的判定方法、正方形的判定方法;熟练掌握矩形、菱形、正方形的判定方法是解决问题的关键.2.下列说法中正确的是()A.对角线相等的平行四边形是菱形B.对角线互相垂直平分且相等的四边形是正方形C.对角线垂直的四边形是菱形D.有一个角是直角的四边形是矩形【分析】利用矩形的判定、菱形的判定及正方形的判定方法分别判断后即可确定正确的选项.【解答】解:A、有一组邻边相等的平行四边形是菱形,故错误;B、对角线互相垂直平分且相等的四边形是正方形,正确;C、对角线互相垂直的平行四边形是菱形,故错误;D、有一个角是直角的平行四边形是矩形,故错误,故选:B.【点评】本题考查了命题与定理的知识,解题的关键是能够了解矩形的判定、菱形的判定及正方形的判定方法,难度不大.3.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B 为()A.66°B.104°C.114° D.124°【分析】由平行四边形的性质和折叠的性质得出∠ACD=∠BAC=∠B′AC,由三角形的外角性质求出∠BAC=∠ACD=∠B′AC=∠1=22°,再由三角形内角和定理求出∠B即可.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=∠1=22°,∴∠B=180°﹣∠2﹣∠BAC=180°﹣44°﹣22°=114°;故选:C.【点评】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC的度数是解决问题的关键.4.如图,O是▱ABCD的对角线交点,E为AB中点,DE交AC于点F,若S▱ABCD=16.则S△DOE的值为()A.1 B.C.2 D.【分析】由平行四边形的面积,找到三角形底边和高与平行四边形底边和高的关系,利用面积公式以及线段间的关系求解.分别作△OED和△AOD的高,利用平行线的性质,得出高的关系,进而求解.【解答】解:如图,过A、E两点分别作AN⊥BD、EM⊥BD,垂足分别为M、N,则EM∥AN,∴,∴EM=AN,由题意S ABCD=16∴2××AN×BD=16,∴S OED=×OD×EM===2.故选:C.【点评】本题考查平行四边形的性质,综合了平行线的性质以及面积公式.已知一个三角形的面积求另一个三角形的面积有以下几种做法:①面积比是边长比的平方比;②分别找到底和高的比.5.在△ABC与△A′B′C′中,有下列条件:(1),(2);(3)∠A=∠A′;(4)∠C=∠C′,如果从中任取两个条件组成一组,那么能判断△ABC∽△A′B′C′的共有()A.1组 B.2组 C.3组 D.4组【分析】根据相似三角形的判定方法对各个条件进行分析,从而得到答案.【解答】解:共有3组,其组合分别是(1)和(2)三边对应成比例的两个三角形相似;(2)和(4)两边对应成比例且夹角相等的两个三角形相似;(3)和(4)两角对应相等的两个三角形相似.故选:C.【点评】考查相似三角形的判定定理:(1)两角对应相等的两个三角形相似.(2)两边对应成比例且夹角相等的两个三角形相似.(3)三边对应成比例的两个三角形相似.(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.6.如图,P是Rt△ABC斜边AB上任意一点(A,B两点除外),过P点作一直线,使截得的三角形与Rt△ABC相似,这样的直线可以作()A.1条 B.2条 C.3条 D.4条【分析】本题要根据相似三角形的判定方法进行求解.【解答】解:过点P可作PE∥BC或PE∥AC,可得相似三角形;过点P还可作PE⊥AB,可得:∠EPA=∠C=90°,∠A=∠A,∴△APE∽△ACB;所以共有3条.故选:C.【点评】此题考查了相似三角形的判定:①有两个对应角相等的三角形相似;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.7.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中△ABC相似的是()A.B.C.D.【分析】本题主要应用两三角形相似判定定理,三边对应成比例,分别对各选项进行分析即可得出答案.【解答】解:已知给出的三角形的各边AB、CB、AC分别为、2、、只有选项B的各边为1、、与它的各边对应成比例.故选:B.【点评】此题考查三角形相似判定定理的应用.8.如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD,则△ADE的形状是()A.等腰三角形B.等边三角形C.不等边三角形D.不能确定形状【分析】先证得△ABE≌△ACD,可得AE=AD,∠BAE=∠CAD=60°,即可证明△ADE 是等边三角形.【解答】解:∵△ABC为等边三角形∴AB=AC∵∠1=∠2,BE=CD∴△ABE≌△ACD∴AE=AD,∠BAE=∠CAD=60°∴△ADE是等边三角形.故选:B.【点评】此题主要考查学生对等边三角形的判定及三角形的全等等知识点的掌握.9.如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120°B.130°C.140° D.150°【分析】如图,作辅助线;首先运用平行线的性质求出∠DGC的度数,借助三角形外角的性质求出∠ACD即可解决问题.【解答】解:如图,延长AC交EF于点G;∵AB∥EF,∴∠DGC=∠BAC=50°;∵CD⊥EF,∴∠CDG=90°,∴∠ACD=90°+50°=140°,故选:C.【点评】该题主要考查了垂线的定义、平行线的性质、三角形的外角性质等几何知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用平行线的性质、三角形的外角性质等几何知识点来分析、判断、解答.10.在给定的条件中,能画出平行四边形的是()A.以60cm为一条对角线,20cm,34cm为两条邻边B.以6cm,10cm为两条对角线,8cm为一边C.以20cm,36cm为两条对角线,22cm为一边D.以6cm为一条对角线,3cm,10cm为两条邻边【分析】能画出平行四边形,首先要能画出三角形:两条对角线的一半和平行四边形的一边构成三角形;平行四边形的两条边和一条对角线构成三角形.【解答】解:A、20+34不大于60,不能构成三角形,故A选项错误;B、3+5不大于8,不能构成三角形,故B选项错误;C、10+18>22,能构成三角形,故C选项正确;D、3+6不大于10,不能构成三角形,故D选项错误;故选:C.【点评】此题主要考查平行四边形的作图,综合考查了平行四边形的性质和三角形三边之间的关系.11.用尺规作图,不能作出唯一直角三角形的是()A.已知两条直角边B.已知两个锐角C.已知一直角边和直角边所对的一锐角D.已知斜边和一直角边【分析】能不能作出唯一直角三角形要看所给条件是否满足全等三角形的判定条件,然后利用三角形全等的判定方法对各选项进行判定.【解答】解:A、已知两条直角边和直角,可根据“SAS”作出唯一直角三角形,所以A选项错误;B、已知两个锐角,不能出唯一的直角三角形,所以B选项之前;C、已知一直角边和直角边所对的一锐角,可根据“AAS”或“ASA”作出唯一直角三角形,所以B选项错误;D、已知斜边和一直角边,可根据“HL”作出唯一直角三角形,所以D选项错误.故选:B.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.解决本题的关键是熟练掌握全等三角形的判定方法.12.如图所示,在菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC 于点E,AD=6cm,则OE的长为()A.6cm B.4cm C.3cm D.2cm【分析】利用菱形的四边都相等的性质结合三角形相似求解.【解答】解:∵四边形ABCD是菱形,∴AB=AD=6cm,OC=OA=AC.∵OE∥DC,∴△ABC∽△OEC,则===,∴OE=3(cm).故选:C.【点评】本题根据三角形相似及菱形的性质解答.13.已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙两同学的作业:甲:1.以点C为圆心,AB长为半径画弧;2.以点A为圆心,BC长为半径画弧;3.两弧在BC上方交于点D,连接AD,CD,四边形ABCD即为所求(如图1).乙:1.连接AC,作线段AC的垂直平分线,交AC于点M;2.连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD,四边形ABCD即为所求(如图2).对于两人的作业,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对【分析】先由两组对边分别相等的四边形是平行四边形得出四边形ABCD是平行四边形,再根据有一个角是直角的平行四边形是矩形判断甲的作业正确;先由对角线互相平分的四边形是平行四边形得出四边形ABCD是平行四边形,再根据有一个角是直角的平行四边形是矩形判断乙的作业也正确.【解答】解:由甲同学的作业可知,CD=AB,AD=BC,∴四边形ABCD是平行四边形,又∵∠ABC=90°,∴▱ABCD是矩形.所以甲的作业正确;由乙同学的作业可知,CM=AM,MD=MB,∴四边形ABCD是平行四边形,又∵∠ABC=90°,∴▱ABCD是矩形.所以乙的作业正确;故选:A.【点评】本题考查了作图﹣复杂作图的应用及矩形的判定,从两位同学的作图语句中获取正确信息及熟练掌握矩形的判定定理是解题的关键.14.下列命题是假命题的是()A.不在同一直线上的三点确定一个圆B.角平分线上的点到角两边的距离相等C.正六边形的内角和是720°D.角的边越大,角就越大【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、不在同一直线上的三点确定一个圆,真命题;B、角平分线上的点到角两边的距离相等,真命题;C、正六边形的内角和是720°,真命题;D、角的边越大,角就越大是假命题,因为角的大小与边的长短无关.故选:D.【点评】主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.15.如图是一个正方体的展开图,把展开图折叠成正方体后,有“弘”字一面的相对面上的字是()A.传B.统C.文D.化【分析】利用正方体及其表面展开图的特点解题.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“扬"与“统”相对,面“弘”与面“文”相对,“传"与面“化”相对.故选:C.【点评】本题考查了正方体的展开图得知识,注意正方体的空间图形,从相对面入手,分析及解答问题.16.如图是正方体的平面展开图,每个面都标注了数字,如果5在正方体的右面,4在下面,那么后面的数字是()A.3 B.4 C.5 D.6【分析】利用正方体及其表面展开图的特点以及题意解题,把“4”作为正方体的底面,然后把平面展开图折成正方体,然后根据5在正方体的右面,4在下面,判断出正方体后面的数.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“5”与面“2”相对,面“4”与面“6”相对,“1”与面“3"相对.所以后面的数字是3.故选:A.【点评】注意正方体的空间图形,从相对面入手,分析及解答问题.17.一个正方体的表面展开图如图所示,每个面内都标注了字母,如果从正方体的右面看是面D,面C在后面,则正方体的上面是()A.面E B.面F C.面A D.面B【分析】利用正方体及其表面展开图的特点解题.这是一个正方体的平面展开图,共有六个面,其中面“B”与面“D”相对,面“E”与面“A"相对,“F”与面“C"相对.因为右面看是面D,面C在后面,则正方体的上面是A.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“B"与面“D”相对,面“E"与面“A”相对,“F"与面“C”相对.因为右面看是面D,面C在后面,则正方体的上面是A.故选:C.【点评】注意正方体的空间图形,从相对面入手,分析及解答问题.18.如图所示,已知AB∥CD,下列结论正确的是()A.∠1=∠2 B.∠2=∠3 C.∠1=∠4 D.∠3=∠4【分析】根据平行线的性质即可得到结论.【解答】解:∵AB∥CD,∴∠1=∠4,故选:C.【点评】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.19.如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C.AD∥BC D.DF∥BE【分析】利用全等三角形的判定与性质进而得出当∠D=∠B时,△ADF≌△CBE.【解答】解:当∠D=∠B时,在△ADF和△CBE中∵,∴△ADF≌△CBE(SAS),故选:B.【点评】此题主要考查了全等三角形的判定与性质,正确掌握全等三角形的判定方法是解题关键.20.如图,已知E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE 的度数为()A.20°B.25°C.30°D.35°【分析】依题意得出AE=AB=AD,∠ADE=50°,又因为∠B=80°故可推出∠ADC=80°,∠CDE=∠ADC﹣∠ADE,从而求解.【解答】解:∵AD∥BC,∴∠AEB=∠DAE=∠B=80°,∴AE=AB=AD,在三角形AED中,AE=AD,∠DAE=80°,∴∠ADE=50°,又∵∠B=80°,∴∠ADC=80°,∴∠CDE=∠ADC﹣∠ADE=30°.故选:C.【点评】本题是简单的推理证明题,主要考查菱形的边的性质,同时综合利用三角形的内角和及等腰三角形的性质.二.填空题(共8小题)21.如图,A,B两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C,连接CA,CB,分别延长到点M,N,使AM=AC,BN=BC,测得MN=200m,则A,B间的距离为100m.【分析】根据三角形中位线定理计算即可.【解答】解:∵AM=AC,BN=BC,∴AB是△CMN的中位线,∴AB=MN=100m,故答案为:100.【点评】本题考查的是三角形的中位线定理的应用,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.22.如图,依据尺规作图的痕迹,计算∠α=56°.【分析】先根据矩形的性质得出AD∥BC,故可得出∠DAC的度数,由角平分线的定义求出∠EAF的度数,再由EF是线段AC的垂直平分线得出∠AEF的度数,根据三角形内角和定理得出∠AFE的度数,进而可得出结论.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠DAC=∠ACB=68°.∵由作法可知,AF是∠DAC的平分线,∴∠EAF=∠DAC=34°.∵由作法可知,EF是线段AC的垂直平分线,∴∠AEF=90°,∴∠AFE=90°﹣34°=56°,∴∠α=56°.故答案为:56.【点评】本题考查的是作图﹣基本作图,熟知角平分线及线段垂直平分线的作法是解答此题的关键.23.如图,四边形ABCD中,点M、N分别在AB、BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=95°.【分析】根据两直线平行,同位角相等求出∠BMF、∠BNF,再根据翻折的性质求出∠BMN和∠BNM,然后利用三角形的内角和定理列式计算即可得解.【解答】解:∵MF∥AD,FN∥DC,∴∠BMF=∠A=100°,∠BNF=∠C=70°,∵△BMN沿MN翻折得△FMN,∴∠BMN=∠BMF=×100°=50°,∠BNM=∠BNF=×70°=35°,在△BMN中,∠B=180°﹣(∠BMN+∠BNM)=180°﹣(50°+35°)=180°﹣85°=95°.故答案为:95.【点评】本题考查了两直线平行,同位角相等的性质,翻折变换的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.24.如图,在Rt△ABC与Rt△DCB中,已知∠A=∠D=90°,请你添加一个条件(不添加字母和辅助线),使Rt△ABC≌Rt△DCB,你添加的条件是AB=DC.【分析】根据:斜边与直角边对应相等的两个直角三角形全等,使Rt△ABC≌Rt △DCB,添加的条件是:AB=DC.【解答】解:∵斜边与直角边对应相等的两个直角三角形全等,∴在Rt△ABC与Rt△DCB中,已知∠A=∠D=90°,使Rt△ABC≌Rt△DCB,添加的条件是:AB=DC.故答案为:AB=DC.【点评】此题主要考查了全等三角形的判定和性质的应用,要熟练掌握,解答此题的关键是要明确:①判定定理1:SSS﹣﹣三条边分别对应相等的两个三角形全等.②判定定理2:SAS﹣﹣两边及其夹角分别对应相等的两个三角形全等.③判定定理3:ASA﹣﹣两角及其夹边分别对应相等的两个三角形全等.④判定定理4:AAS﹣﹣两角及其中一个角的对边对应相等的两个三角形全等.⑤判定定理5:HL﹣﹣斜边与直角边对应相等的两个直角三角形全等.25.将一副三角板如图叠放,则图中∠α的度数为15°.【分析】根据三角形的外角的性质计算即可.【解答】解:由三角形的外角的性质可知,∠α=60°﹣45°=15°,故答案为:15°.【点评】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.26.如图,在菱形ABCD中,∠DAB=60°,AB=2,则菱形ABCD的面积为2.【分析】由菱形ABCD,得到邻边相等,且对角线互相平分,再由一个角为60°的等腰三角形为等边三角形得到三角形ABD为等边三角形,求出BD的长,再由菱形的对角线垂直求出AC的长,即可求出菱形的面积.【解答】解:∵菱形ABCD,∴AD=AB,OD=OB,OA=OC,∵∠DAB=60°,∴△ABD为等边三角形,∴BD=AB=2,∴OD=1,在Rt△AOD中,根据勾股定理得:AO==,∴AC=2,=AC•BD=2,则S菱形ABCD故答案为:2【点评】此题考查了菱形的性质,等边三角形的判定与性质,勾股定理,熟练掌握菱形的性质是解本题的关键.27.如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段BH的长为.【分析】直接利用菱形的性质得出AO,DO的长,再利用三角形面积以及勾股定理得出答案.【解答】解:∵四边形ABCD是菱形,AC=24,BD=10,∴AO=12,OD=5,AC⊥BD,∴AD=AB==13,∵DH⊥AB,∴AO×BD=DH×AB,∴12×10=13×DH,∴DH=,∴BH==.故答案为:.【点评】此题主要考查了菱形的性质以及勾股定理,正确得出DH的长是解题关键.28.矩形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件AB=BC (答案不唯一),使其成为正方形(只填一个即可)【分析】此题是一道开放型的题目答案不唯一,证出四边形ABCD是菱形,由正方形的判定方法即可得出结论.【解答】解:添加条件:AB=BC,理由如下:∵四边形ABCD是矩形,AB=BC,∴四边形ABCD是菱形,∴四边形ABCD是正方形,故答案为:AB=BC(答案不唯一).【点评】本题考查了矩形的性质,菱形的判定,正方形的判定的应用,能熟记正方形的判定定理是解此题的关键,注意:有一组邻边相等的矩形是正方形,对角线互相垂直的矩形是正方形.三.解答题(共7小题)29.如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.【分析】(1)先证明BC=EF,再根据SSS即可证明.(2)结论AB∥DE,AC∥DF,根据全等三角形的性质即可证明.【解答】(1)证明:∵BF=CE,∴BF+FC=FC+CE,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).(2)结论:AB∥DE,AC∥DF.理由:∵△ABC≌△DEF,∴∠ABC=∠DEF,∠ACB=∠DFE,∴AB∥DE,AC∥DF.【点评】本题考查全等三角形的判定和性质、平行线的判定等知识,解题的关键是正确寻找全等三角形的条件,记住平行线的判定方法,属于基础题,中考常考题型.30.嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.已知:如图1,在四边形ABCD中,BC=AD,AB=CD求证:四边形ABCD是平行四边形.(1)填空,补全已知和求证;(2)按嘉淇的想法写出证明;(3)用文字叙述所证命题的逆命题为平行四边形两组对边分别相等.【分析】(1)命题的题设为“两组对边分别相等的四边形”,结论是“是平行四边形”,根据题设可得已知:在四边形ABCD中,BC=AD,AB=CD,求证:四边形ABCD 是平行四边形;(2)连接BD,利用SSS定理证明△ABD≌△CDB可得∠ADB=∠DBC,∠ABD=∠CDB,进而可得AB∥CD,AD∥CB,根据两组对边分别平行的四边形是平行四边形可得四边形ABCD是平行四边形;(3)把命题“两组对边分别相等的四边形是平行四边形”的题设和结论对换可得平行四边形两组对边分别相等.【解答】解:(1)已知:如图1,在四边形ABCD中,BC=AD,AB=CD求证:四边形ABCD是平行四边形.(2)证明:连接BD,在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),∴∠ADB=∠DBC,∠ABD=∠CDB,∴AB∥CD,AD∥CB,∴四边形ABCD是平行四边形;(3)用文字叙述所证命题的逆命题为:平行四边形两组对边分别相等.。
初中数学角度经典练习题
初中数学角度经典练习题
以下是一些初中数学角度方面的经典练题,供学生们进行练和巩固知识。
1. 问题:已知一个角的补角是100度,求这个角的度数。
解析:两个角的和为180度,所以这个角的度数为80度。
2. 问题:已知一个角的补角是60度,求这个角的度数。
解析:同样,两个角的和为180度,所以这个角的度数为120度。
3. 问题:已知两个角的度数分别是30度和65度,求它们的补角。
解析:两个角的和为180度,所以第一个角的补角是150度,第二个角的补角是115度。
4. 问题:已知直角三角形的一个角是30度,求另外两个角的度数。
解析:直角三角形的两个角相加为90度,所以另外两个角的度数分别是60度和90度。
5. 问题:已知平行线与一条横截线相交,求对应的内错角的度数。
解析:内错角的度数等于对应的同位角的度数,所以对应的内错角的度数相等。
这些经典练习题可以帮助学生们巩固和运用角度相关的知识。
通过反复练习和解题,学生们可以更好地理解数学中的角度概念和运算方法,提高数学解题能力。
中考数学一轮复习《四边形》综合复习练习题(含答案)
中考数学一轮复习《四边形》综合复习练习题(含答案)一、单选题1.一个多边形的内角和为900°,则这个多边形是( )A .七边形B .八边形C .九边形D .十边形 2.如图,将三角形纸片剪掉一角得四边形,设△ABC 与四边形BCDE 的外角和的度数分别为α,β,则正确的是( )A .0αβ-=B .0αβ-<C .0αβ->D .无法比较α与β的大小3.如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D ′、C ′的位置,若∠EFB =65°,则∠AED ′等于( )A .50°B .55°C .60°D .65°4.若一个正多边形的一个外角是60°,则这个正多边形的边数是( )A .10B .9C .8D .65.如图,四边形ABCD 是平行四边形,下列结论中正确的是( )A .当ABCD 是矩形时,90BAC ∠=︒B .当ABCD 是菱形时,AB BC ⊥ C .当ABCD 是正方形时,AC BD = D .当ABCD 是菱形时,AB AC =6.如图,在正方形ABCD 中,AE 平分BAC ∠交BC 于点E ,点F 是边AB 上一点,连接DF ,若BE AF =,则CDF ∠的度数为( )A .45︒B .60︒C .67.5︒D .775︒.7.如图,要拧开一个边长为()=6mm a a 的正六边形,扳手张开的开口b 至少为( )A .43mmB .63mmC . 42mmD . 12mm8.如图,菱形ABCD 中,∠BAD = 60°,AB = 6,点E ,F 分别在边AB ,AD 上,将△AEF 沿EF 翻折得到△GEF ,若点G 恰好为CD 边的中点,则AE 的长为( )A .34B .214C 3154D .39.以下说法不正确的是( )A .平行四边形是抽对称图形B .矩形对角线相等C .正方形对角线互相垂直平分D .菱形四条边相等10.陈师傅应客户要求加工4个长为4cm 、宽为3cm 的矩形零件.在交付客户之前,陈师傅需要对4个零件进行检测.根据零件的检测结果,图中有可能不合格的零件是( )A.B.C.D.11.如图,AB是半圆O的直径,以弦AC为折痕折叠AC后,恰好经过点O,则AOC∠等于()A.120°B.125°C.130°D.145°12.如图,在平面直角坐标系中,矩形ABCD的对角线AC经过坐标原点O,矩形的边分别平行于坐标轴,点B在函数kyx=(k≠0,x>0)的图像上,点D的坐标为(﹣3,1),则k的值为()A.53B.3-C.3D.53-二、填空题13.如果一个多边形的每一个外角都是60︒,那么这个多边形的边数是_______.14.如图,在矩形ABCD中,E是AD边上一点,且2AE DE=,BD与CE相交于点F,若DEF 的面积是3,则BCF △的面积是______.15.如果正多边形的一个外角是45︒,则这个正多边形的内角和是________︒.16.巧板是我国古代劳动人民的一项发明,被誉为“东方魔板”,它由五块等腰直角三角形、一块正方形和一块平行四边形组成.如图是利用七巧板拼成的正方形,随机向该图形内抛一枚小针,则针尖落在阴影部分的概率为 _____.17.如图,四边形ABCD 是菱形,42BD =,26AD =,点E 是CD 边上的一动点,过点E 作EF ⊥OC 于点F ,EG ⊥OD 于点G ,连接FG ,则FG 的最小值为_________.18.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,过点O 作OE AC ⊥交AD 于点E ,若4AB =,8BC =,则DE 的长为______.19.已知ABC 中,65A ∠=︒,将B C ∠∠、按照如图所示折叠,若35ADB '∠=︒,则123∠+∠+∠=_____︒.CE ,F 20.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,5为DE的中点.若CEF△的周长为18,则OF的长为______.三、解答题21.如图,一组正多边形,观察每个正多边形中a的变化情况,解答下列问题.(1)将表格补充完整.正多边形的边数 3 4 5 6α的度数(2)观察上面表格中α的变化规律,角α与边数n的关系为.(3)根据规律,当α=18°时,多边形边数n=.22.如图,在ABCD中,AC=BC,M、N分别是AB和CD的中点.(1)求证:四边形AMCN是矩形;(2)若∠B=60°,BC=8,求ABCD的面积.23.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD 的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.24.如图,矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.25.如图,点E为矩形ABCD外一点,AE = DE.求证:△ABE≌△DCE26.如图,已知四边形ABCD为正方形,AB=2,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE,交BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:①CE与CG有怎样的位置关系?请说明理由.②CE+CG的值为.27.某数学兴趣小组在数学课外活动中,对多边形内两条互相垂直的线段做了如下探究:【现察与猜想】(1)如图1,在正方形ABCD中,点E,F分别是AB,AD上的两点,连接DE,CF,DE⊥CF,则DECF的值为______.(2)如图2,在矩形ABCD中,AD=7,CD=4,点E是AD上的一点,连接CE,BD,且CE⊥BD,则CEBD的值______.【类比探究】(3)如图3,在四边形ABCD中,∠A=∠B=90°,点E为AB上一点,连接DE,过点C作DE 的垂线交ED的延长线于点G,交AD的延长线于点F,求证:DE•AB=CF•AD.28.在矩形ABCD中,AB=6,AD=4,点M为AB边上一个动点,连接DM,过点M作MN⊥DM,且MN=32DM,连接DN.(1)如图1,连接BD与BN,BD交MN于点E.①求证:△ABD∽△MND;②求证:∠CBN=∠DNM.(2)如图2,当AM=4BM时,求证:A,C,N三点在同一条直线上.参考答案1.A2.A3.A4.D5.C6.C7.B8.B9.A10.C11.A12.B13.614.2715.108016.381718.319.265︒20.7221.(1)正多边形每个内角的度数为180(2)n n -. 1803,603n α===; 904,452n α===; 正五边形的内角180(52)1085-=,1801085,362n α-===; 正五边形的内角180(62)1206-=,1801206,302n α-===.(2)观察(1)中结论,1803,603n == 1804,454n == 1805,365n == 1806,306n == 总结规律,则有180n α=. (3)借助(2)中公式,有180n α=,即18018n= 解得10n =.22.(1)证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB =CD ,∵M 、N 分别是AB 和CD 的中点, ∴AM =BM ,AM ∥CN ,AM =CN , ∴四边形AMCN 是平行四边形,又∵AC =BC ,AM =BM ,∴CM ⊥AB ,∴∠CMA =90°,∴四边形AMCN 是矩形;(2)解:∵∠B =60°,BC =8,∠BMC =90°, ∴∠BCM =30°,∴Rt △BCM 中,BM =12BC =4,CM∵AC =BC ,CM ⊥AB ,∴AB =2BM =8,∴ABCD 的面积为AB ×CM23.(1)证明:∵四边形ABCD 是平行四边形, ∴AB =CD ,AB ∥CD ,OB =OD ,OA =OC , ∴∠ABE =∠CDF ,∵点E ,F 分别为OB ,OD 的中点, ∴BE =12OB ,DF =12OD ,∴BE =DF ,在△ABE 和△CDF 中,AB CD ABE CDF BE DF ⎧⎪∠∠⎨⎪⎩===,∴△ABE ≌△CDF (SAS ) .(2)当AB =12AC 时,四边形EGCF 是矩形;理由如下: 当AB =12AC 时,∵AC =2OA ,AC =2AB ,∴AB =OA ,∵E 是OB 的中点,∴AG⊥OB,∴∠OEG=90°,同理:CF⊥OD,∴AG∥CF,∴EG∥CF,由(1)得:△ABE≌△CDF,∴AE=CF,∵EG=AE,∴EG=CF,∴四边形EGCF是平行四边形,∵∠OEG=90°,∴四边形EGCF是矩形.24.(1)证明:由题意可得,△BCE≌△BFE,∴∠BEC=∠BEF,FE=CE,∵FG∥CE,∴∠FGE=∠CEB,∴∠FGE=∠FEG,∴FG=FE,∴FG=EC,∴四边形CEFG是平行四边形,又∵CE=FE,∴四边形CEFG是菱形;(2)解:∵矩形ABCD 中,AB =6,AD =10,BC =BF ,∴∠BAF =90°,AD =BC =BF =10,∴AF =8,∴DF =2,设EF =x ,则CE =x ,DE =6-x ,∵∠FDE =90°,∴22+(6-x )2=x 2,解得,x =103, ∴CE =103, ∴四边形CEFG 的面积是:CE •DF =103×2=203. 25.解:四边形ABCD 是矩形,AB DC ∴=,90BAD CDA ∠=∠=︒,AE DE =,EAD EDA ∴∠=∠,EAB BAD EAD CDA EDA EDC ∴∠=∠+∠=∠+=∠, 在ABE ∆和DCE ∆中,AE DE EAB EDC AB DC =⎧⎪∠=∠⎨⎪=⎩()ABE DCE SAS ∴∆∆≌.26.(1)如图,作EM ⊥BC 于M ,EN ⊥CD 于N ,又∠BCD =90°,∴∠MEN =90°,∵点E 是正方形ABCD 对角线上的点,∴EM =EN ,∵∠DEF =90°,∴∠DEN =∠MEF =90°﹣∠FEN ,∵∠DNE =∠FME =90°,在△DEN 和△FEM 中,DNE FME EN EMDEN FEM ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△DEN ≌△FEM (ASA ),∴EF =DE ,∵四边形DEFG 是矩形,∴矩形DEFG 是正方形;(2)①CE ⊥CG ,理由如下:∵正方形DEFG 和正方形ABCD ,∴DE =DG ,AD =DC ,∵∠CDG +∠CDE =∠ADE +∠CDE =90°,∴∠CDG =∠ADE ,在△ADE 和△CDG 中,AD CD ADE CDG DE DG =⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△CDG (SAS ),∴∠DAE =∠DCG ,∵∠ACD +∠CAD +∠ADC =180°,∠ADC =90°,∴∠ACG =∠ACD +∠DCG =∠ACD +∠CAD =90°, ∴CE ⊥CG ;②由①知,△ADE ≌△CDG ,∴AE =CG ,∴CE +CG =CE +AE =ACAB=2,故答案为:2.27.(1)解:设DE与CF的交点为G,∵四边形ABCD是正方形,∴∠A=∠FDC=90°,AD=CD,∵DE⊥CF,∴∠DGF=90°,∴∠ADE+∠CFD=90°,∠ADE+∠AED=90°,∴∠CFD=∠AED,在△AED与△DFC中,A FDCCFD AEDAD CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AED≌△DFC(AAS),∴DE=CF,∴DECF=1,故答案为:1;(2)解:如图,设DB与CE交于点G,∵四边形ABCD是矩形,∴∠A=∠EDC=90°,∵CE⊥BD,∴∠DGC=90°,∴∠CDG +∠ECD =90°,∠ADB +∠CDG =90°,∴∠ECD =∠ADB ,∵∠CDE =∠A ,∴△DEC ∽△ABD , ∴47CE DC BD AD ==, 故答案为:47; (3)证明:如图,过点C 作CH ⊥AF 交AF 的延长线于点H ,∵CG ⊥EG ,∴∠G =∠H =∠A =∠B =90°,∴四边形ABCH 为矩形,∴AB =CH ,∠FCH +∠CFH =∠DFG +∠FDG =90°,∴∠FCH =∠FDG =∠ADE ,∠A =∠H =90°,∴△AED ∽△HFC ,∴DE AD CF CH =, ∴DE AD CF AB=, ∴DE •AB =CF •AD .28.(1)①证明:∵四边形ABCD 是矩形,DM ⊥MN ∴∠A =∠DMN =90°∵AB =6,AD =4,MN =32DM ∴23AD DM AB MN == ∴△ABD ∽△MND .②证明:∵四边形ABCD 是矩形,DM ⊥MN ∴∠ABC =∠DMN =90°∴∠ABD +∠CBD =90°由①得△ABD ∽△MND∴∠ABD =∠DNM又∵∠MEB =∠DEN∴△MBE ∽△DNE ∴ME BE DE NE = ∴ME DE BE NE= 又∠MED =∠BEN∴△DME ∽△NBE∴∠NBE =∠DME =90°∴∠CBN +∠CBD =90°又∠ABD +∠CBD =90°,∠ABD =∠DNM ∴∠CBN =∠DNM .(2) 如图②,过点N 作NF ⊥AB 于点F ,连接AC ,AN ∴∠NF A =90°∵四边形ABCD 是矩形,AD =4,AB =6 ∴∠A =∠ABC =90°,BC =AD =4∴23BC AB =,∠ADM +∠AMD =90° ∵AM =4BM ,AB =6∴42455AM AB ==又DM ⊥MN∴∠AMD +∠FMN =90° ∴∠ADM =∠FMN∴△ADM ∽△FMN ∴AD AM DM MF FN MN== 又MN =32DM ∴24425=3DM MF FN MN == ∴MF =6,FN =365∴AF =AM +MF =2454655+= ∴23NF AF = ∴NF BC AF AB = ∵∠ABC =∠AFN =90° ∴△ABC ∽△AFN∴∠BAC =∠F AN∴A ,C ,N 三点在同一条直线.。
中考数学几何压轴题(有关三角形、四边形)的综合专题(含答案解析)
中考数学几何压轴题(有关三角形、四边形)的综合专题1、如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的一点,F为AB边上一点,连接CF,交BE于点D且∠ACF=∠CBE,CG平分∠ACB交BD于点G,(1)求证:CF=BG;(2)延长CG交AB于H,连接AG,过点C作CP∥AG交BE的延长线于点P,求证:PB=CP+CF;(3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG=3,BG=6,求AC的长.2、[问题背景]如图1所示,在△ABC中,AB=BC,∠ABC=90°,点D为直线BC上的一个动点(不与B、C重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.[问题初探]如果点D在线段BC上运动,通过观察、交流,小明形成了以下的解题思路:过点E作EF⊥BC 交直线BC于F,如图2所示,通过证明△DEF≌△,可推证△CEF是三角形,从而求得∠DCE=.[继续探究]如果点D在线段CB的延长线上运动,如图3所示,求出∠DCE的度数.[拓展延伸]连接BE,当点D在直线BC上运动时,若AB=,请直接写出BE的最小值.3、(2019秋•锦江区校级期末)在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线.(1)如图1,求证:AD=2DC.(2)如图2,作∠CBD的角平分线交线段CD于点M,若CM=1,求△DBM的面积;(3)如图3,过点D作DE⊥AB于点E,点N是线段AC上一点(不与C、D重合),以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G,试探究线段ND,DG与AD之间的数量关系,并说明理由.4、(2019•镇平县三模)如图1,已知直角三角形ABC,∠ACB=90°,∠BAC=30°,点D是AC边上一点,过D作DE⊥AB于点E,连接BD,点F是BD中点,连接EF,CF.(1)发现问题:线段EF,CF之间的数量关系为;∠EFC的度数为;(2)拓展与探究:若将△AED绕点A按顺时针方向旋转α角(0°<α<30°),如图2所示,(1)中的结论还成立吗?请说明理由;(3)拓展与运用:如图3所示,若△AED绕点A旋转的过程中,当点D落到AB边上时,AB边上另有一点G,AD=DG=GB,BC=3,连接EG,请直接写出EG的长度.5、(2017春•西城区校级期末)如图1,在等腰△ABC中,AB=AC,∠BAC=a,点P是线段AB的中点,点E是线段CB延长线上一点,且PE=PC,将线段PC绕点P顺时针旋转α得到PD,连接BD.(1)如图2,若α=60°,其他条件不变,先补全图形,然后探究线段BD和BC之间的数量关系,并说明理由.(2)如图3,若α=90°,其他条件不变,探究线段BP、BD和BC之间的等量关系,并说明理由.6、【发现问题】如图1,已知△ABC,以点A为直角顶点、AB为腰向△ABC外作等腰直角△ABE.请你以A为直角顶点、AC为腰,向△ABC外作等腰直角△ACD(不写作法,保留作图痕迹).连接BD、CE.那么BD与CE的数量关系是BD=CE.【拓展探究】如图2,已知△ABC,以AB、AC为边向外作正方形AEFB和正方形ACGD,连接BD、CE,试判断BD与CE之间的数量关系,并说明理由.【解决问题】如图3,有一个四边形场地ABCD,∠ADC=60°,BC=15,AB=8,AD=CD,求BD的最大值.7、(1)如图1,点C为线段AB外一个动点,已知AB=a,AC=b.当点C位于BA的延长线上时,线段BC取得最大值,则最大值为(用含a,b的式子表示);(2)如图2,点C为线段AB外一个动点,若AB=10,AC=3,分别以AC,BC为边,作等边三角形ACD和等边三角形BCE,连接AE,DB.①求证:AE=DB;②请直接写出线段AE的最大值;(3)如图3,AB=6,点M为线段AB外一个动点,且AM=2,MB=MN,∠BMN=90°,请直接写出线段AN的最大值.8、【初步探索】(1)如图1:在四边形ABC中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF =BE+FD,探究图中∠BAE、∠F AD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;【灵活运用】(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;【拓展延伸】(3)如图3,已知在四边形ABCD中,∠ABC+∠ADC=180°AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请写出∠EAF与∠DAB的数量关系,并给出证明过程.9、(2018•大东区一模)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P逆时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=45°,AC=,请直接写出BQ的长.10、模型发现:同学们知道,三角形的两边之和大于第三边,即如图1,在△ABC中,AB+AC>BC.对于图1,若把点C看作是线段AB外一动点,且AB=c,AC=b,则线段BC的长会因为点C的位置的不同而发生变化.因为AB、AC的长度固定,所以当∠BAC越大时,BC边越长.特别的,当点C位于时,线段BC的长取得最大值,且最大值为(用含b,c的式子表示)(直接填空).模型应用:点C为线段AB外一动点,且AB=3,AC=2,如图2所示,分别以AC,BC为边,作等边三角形ACD 和等边三角形BCE,连接BD,AE.(1)求证:BD=AE.(2)线段AE长的最大值为.模型拓展:如图3,在平面直角坐标系中,点A是y轴正半轴上的一动点,点B是x轴正半轴上的一动点,且AB =8.若AC⊥AB,AC=3,试求OC长的最大值.11、已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC =3MC,请直接写出的值.12、已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求的值.13、已知,△ABC中,AB=AC,∠BAC=90°,E为边AC任意一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,F也为AC上一点,且满足AE=CF,过A作AD⊥BE交BE于点H,交BC于点D,连接DF交BE于点G,连接AG;①若AG平分∠CAD,求证:AH=AC;②如图3,当G落在△ABC外时,若将△EFG沿EF边翻折,点G刚好落在AB边上点P,直接写出AG与EF的数量关系.14、如图所示,Rt△ABC中,∠ACB=90°,E为AC中点,作ED⊥AC交AB于D,连接CD;(1)如图1,求证:AB=2CD;(2)如图2,作CF⊥AB交AB于F,点G为CF上一点,点H为DE延长线上一点,分别连接AH、GH,若∠AHG=2∠B,求证:AH=GH;(3)如图3,在(2)的条件下,连接DG,且有DE=BF,∠EDG=90°,若AC=6,求AH的长度.15、【问题情境】一节数学课后,老师布置了一道课后练习题:如图:已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,点E、F分别在A和BC上,∠1=∠2,FG⊥AB于点G,求证:△CDE≌△EGF.(1)阅读理解,完成解答本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写这道练习题的证明过程;(2)特殊位置,证明结论若CE平分∠ACD,其余条件不变,求证:AE=BF;(3)知识迁移,探究发现如图,已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,若点E是DB的中点,点F在直线CB上且满足EC=EF,请直接写出AE与BF的数量关系.(不必写解答过程)16、在正方形ABCD和等腰直角△BGF中,∠BGF=90°,P是DF的中点,连接PG、PC.(1)如图1,当点G在BC边上时,延长GP交DC于点E.求证:PG=PC;(2)如图2,当点F在AB的延长线上时,(1)中的结论是否成立?请证明你的结论;(3)如图3,若四边形ABCD为菱形,且∠ABC=60°,△BGF为等边三角形,点F在CB的延长线上时,线段PC、PG又有怎样的数量关系,请直接写出你的结论,并画出论证过程中需要添加的辅助线.17、在△ABC中,∠BAC=60°,点D、E分别在边AC、AB上,AD=AE,连接CE、BD相交于点F,且∠BEC=∠ADF,连接AF.(1)如图1,连接ED,求证:∠ABD=∠CED;(2)如图2,求证:EF+FD=AF;(3)如图3,取BC的中点G,连接AG交BD于点H,若∠GAC=3∠ABD,BH=7,求△ABH的面积.18、点D,E分别在△ABC的边AC,BD上,BD,CE交于点F,连接AF,∠F AE=∠F AD,FE=FD.(1)如图1,若∠AEF=∠ADF,求证:AE=AD;(2)如图2,若∠AEF≠∠ADF,FB平分∠ABC,求∠BAC的度数;(3)在(2)的条件下,如图3,点G在BE上,∠CFG=∠AFB若AG=6,△ABC的周长为20,求BC长.中考数学几何压轴题(有关三角形、四边形)的综合专题参考答案1、如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的一点,F为AB边上一点,连接CF,交BE于点D且∠ACF=∠CBE,CG平分∠ACB交BD于点G,(1)求证:CF=BG;(2)延长CG交AB于H,连接AG,过点C作CP∥AG交BE的延长线于点P,求证:PB=CP+CF;(3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG=3,BG=6,求AC的长.证明:(1)如图1,∵∠ACB=90°,AC=BC,∴∠A=45°,∵CG平分∠ACB,∴∠ACG=∠BCG=45°,∴∠A=∠BCG,在△BCG和△CAF中,∵,∴△BCG≌△CAF(ASA),∴CF=BG;(2)如图2,∵PC∥AG,∴∠PCA=∠CAG,∵AC=BC,∠ACG=∠BCG,CG=CG,∴△ACG≌△BCG,∴∠CAG=∠CBE,∵∠PCG=∠PCA+∠ACG=∠CAG+45°=∠CBE+45°,∠PGC=∠GCB+∠CBE=∠CBE+45°,∴∠PCG=∠PGC,∴PC=PG,∵PB=BG+PG,BG=CF,∴PB=CF+CP;(3)解法一:如图3,过E作EM⊥AG,交AG于M,∵S△AEG=AG•EM=3,由(2)得:△ACG≌△BCG,∴BG=AG=6,∴×6×EM=3,EM=,设∠FCH=x°,则∠GAC=2x°,∴∠ACF=∠EBC=∠GAC=2x°,∵∠ACH=45°,∴2x+x=45,x=15,∴∠ACF=∠GAC=30°,在Rt△AEM中,AE=2EM=2,AM==3,∴M是AG的中点,∴AE=EG=2,∴BE=BG+EG=6+2,在Rt△ECB中,∠EBC=30°,∴CE=BE=3+,∴AC=AE+EC=2+3+=3+3.解法二:同理得:∠CAG=30°,AG=BG=6,如图4,过G作GM⊥AC于M,在Rt△AGM中,GM=3,AM===3,∵∠ACG=45°,∠MGC=90°,∴GM=CM=3,∴AC=AM+CM=3+3.2、[问题背景]如图1所示,在△ABC中,AB=BC,∠ABC=90°,点D为直线BC上的一个动点(不与B、C重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.[问题初探]如果点D在线段BC上运动,通过观察、交流,小明形成了以下的解题思路:过点E作EF⊥BC 交直线BC于F,如图2所示,通过证明△DEF≌△ADB,可推证△CEF是等腰直角三角形,从而求得∠DCE=135°.[继续探究]如果点D在线段CB的延长线上运动,如图3所示,求出∠DCE的度数.[拓展延伸]连接BE,当点D在直线BC上运动时,若AB=,请直接写出BE的最小值.解:[问题初探]如图2,过点E作EF⊥BC交直线BC于F,∴∠DFE=90°=∠ABD,∴∠EDF+∠DEF=90°,由旋转知,AD=DE,∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD≌△DFE(AAS),∴BD=EF,DF=AB,∵AB=BC,∴BC=DF,∴BD=CF,∴EF=CF,∴△CEG是等腰直角三角形,∴∠ECF=45°,∴∠DCE=135°,故答案为:ADB,等腰直角,135;[继续探究]如图3,过点E作EF⊥BC于F,∴∠DFE=90°=∠ABD,∴∠EDF+∠DEF=90°,由旋转知,AD=DE,∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD≌△DFE(AAS),∴BD=EF,DF=AB,∵AB=BC,∴BC=DF,∴BD=CF,∴EF=CF,∴△CEG是等腰直角三角形,∴∠ECF=45°,∴∠DCE=45°;[拓展延伸]如图4,在△ABC中,∠ABC=90°,AB=BC=,∴∠ACB=45°当点D在射线BC上时,由[问题初探]知,∠BCM=135°,∴∠ACM=∠BCM﹣∠ACB=90°,当点D在线段CB的延长线上时,由[继续探究]知,∠BCE=45°,∴∠ACN=∠ACB+∠BCM=90°,∴点E是过点C垂直于AC的直线上的点,∴当BE⊥MN时,BE最小,∵∠BCE=45°,∴∠CBE=45°=∠BCE,∴BE=CE,∴BE最小=BC=,即:BE的最小值为.3、在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线.(1)如图1,求证:AD=2DC.(2)如图2,作∠CBD的角平分线交线段CD于点M,若CM=1,求△DBM的面积;(3)如图3,过点D作DE⊥AB于点E,点N是线段AC上一点(不与C、D重合),以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G,试探究线段ND,DG与AD之间的数量关系,并说明理由.证明:(1)如图1,过点D作DE⊥AB,∵BD是△ABC的角平分线,DE⊥AB,∠ACB=90°,∴DC=DE,∵∠A=30°,DE⊥AB,∴AD=2DE,∴AD=2DC;(2)如图2,过点M作ME∥BD,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=30°,∵BM平分∠CBD,∴∠CBM=15°=∠DBM,∵ME∥BD,∴∠MEC=∠CBD=30°,∠EMB=∠DBM=∠MBE,∴ME=BE,∵∠MEC=30°,∠C=90°∴CE=MC=,ME=2MC=2=BE,∴BC=+2,∵∠CBD=30°,∠C=90°,∴BC=CD,∴CD=1+,∴DM=,∴△DBM的面积=××(+2)=1+;(3)若点N在CD上时,AD=DG+DN,理由如下:如图3所示:延长ED使得DW=DN,连接NW,∵∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于点E,∴∠ADE=∠BDE=60°,AD=BD,∵DN=DW,且∠WDN=60°∴△WDN是等边三角形,∴NW=DN,∠W=∠WND=∠BNG=∠BDN=60°,∴∠WNG=∠BND,在△WGN和△DBN中,∴△WGN≌△DBN(SAS),∴BD=WG=DG+DN,∴AD=DG+DN.(3)若点N在AD上时,AD=DG﹣DN,理由如下:如图4,延长BD至H,使得DH=DN,连接HN,由(1)得DA=DB,∠A=30°.∵DE⊥AB于点E.∴∠2=∠3=60°.∴∠4=∠5=60°.∴△NDH是等边三角形.∴NH=ND,∠H=∠6=60°.∴∠H=∠2.∵∠BNG=60°,∴∠BNG+∠7=∠6+∠7.即∠DNG=∠HNB.在△DNG和△HNB中,∴△DNG≌△HNB(ASA).∴DG=HB.∵HB=HD+DB=ND+AD,∴DG=ND+AD.∴AD=DG﹣ND.4、如图1,已知直角三角形ABC,∠ACB=90°,∠BAC=30°,点D是AC边上一点,过D作DE⊥AB于点E,连接BD,点F是BD中点,连接EF,CF.(1)发现问题:线段EF,CF之间的数量关系为EF=CF;∠EFC的度数为120°;(2)拓展与探究:若将△AED绕点A按顺时针方向旋转α角(0°<α<30°),如图2所示,(1)中的结论还成立吗?请说明理由;(3)拓展与运用:如图3所示,若△AED绕点A旋转的过程中,当点D落到AB边上时,AB边上另有一点G,AD=DG=GB,BC=3,连接EG,请直接写出EG的长度.解:(1)如图1中,∵DE⊥AB,∴∠BED=90°,∵∠BCD=90°,BF=DF,∴FE=FB=FD=CF,∴∠FBE=∠FEB,∠FBC=∠FCB,∴∠EFC=∠EFD+∠CFD=∠FBE+∠FEB+∠FBC+∠FCB=2(∠FBE+∠FBC)=2∠ABC=120°,故答案为:EF=CF,120°.(2)结论成立.理由:如图2中,取AB的中点M,AD的中点N,连接MC,MF,ED,EN,FN.∵BM=MA,BF=FD,∴MF∥AD,MF=AD,∵AN=ND,∴MF=AN,MF∥AN,∴四边形MFNA是平行四边形,∴NF=AM,∠FMA=∠ANF,在Rt△ADE中,∵AN=ND,∠AED=90°,∴EN=AD=AN=ND,同理CM=AB=AM=MB,在△AEN和△ACM中,∠AEN=∠EAN,∠MCA=∠MAC,∵∠MAC=∠EAN,∴∠AMC=∠ANE,又∵∠FMA=∠ANF,∴∠ENF=∠FMC,在△MFC和△NEF中,,∴△MFC≌△NEF(SAS),∴FE=FC,∠NFE=∠MCF,∵NF∥AB,∴∠NFD=∠ABD,∵∠ACB=90°,∠BAC=30°,∴∠ABC=60°,△BMC是等边三角形,∠MCB=60°∴∠EFC=∠EFN+∠NFD+∠DFC=∠MCF+∠ABD+∠FBC+∠FCB=∠ABC+∠MCB=60°+60°=120°.(3)如图3中,作EH⊥AB于H.在Rt△ABC中,∵∠BAC=30°,BC=3,∴AB=2BC=6,在Rt△AED中,∠DAE=30°,AD=2,∴DE=AD=1,在Rt△DEH中,∵∠EDH=60°,DE=1,∴EH=ED•sin60°=,DH=ED•cos60°=,在Rt△EHG中,EG==.5、如图1,在等腰△ABC中,AB=AC,∠BAC=a,点P是线段AB的中点,点E是线段CB延长线上一点,且PE=PC,将线段PC绕点P顺时针旋转α得到PD,连接BD.(1)如图2,若α=60°,其他条件不变,先补全图形,然后探究线段BD和BC之间的数量关系,并说明理由.(2)如图3,若α=90°,其他条件不变,探究线段BP、BD和BC之间的等量关系,并说明理由.解:(1)BC=2BD,理由:如图2,连接CD,由旋转可得,CP=DP,∠CPD=60°,∴△CDP是等边三角形,∴∠CDP=60°=∠PCD,又∵P是AB的中点,AB=AC,∠A=60°,∴等边三角形ABC中,∠PCB=30°,CP⊥AB,∴∠BCD=30°,即BC平分∠PCD,∴BC垂直平分PD,∴∠BDC=∠BPC=90°,∴Rt△BCD中,BC=2BD.(2)如图3,取BC中点F,连接PF,∵∠A=90°,AB=AC,∴△ABC是等腰直角三角形,∵P是AB的中点,F是BC的中点,∴PF是△ABC的中位线,∴PF∥AC,∴∠PFB=∠ACB=45°,∠BPF=∠A=90°,∴△BPF是等腰直角三角形,∴BF=BP,BP=PF,∵∠DPC=∠BPF=90°,∴∠BPD=∠FPC,又∵PD=PC,∴△BDP≌△FCP,∴BD=CF,∵BC=BF+FC,∴BC=BD+BP.6、【发现问题】如图1,已知△ABC,以点A为直角顶点、AB为腰向△ABC外作等腰直角△ABE.请你以A为直角顶点、AC为腰,向△ABC外作等腰直角△ACD(不写作法,保留作图痕迹).连接BD、CE.那么BD与CE的数量关系是BD=CE.【拓展探究】如图2,已知△ABC,以AB、AC为边向外作正方形AEFB和正方形ACGD,连接BD、CE,试判断BD与CE之间的数量关系,并说明理由.【解决问题】如图3,有一个四边形场地ABCD,∠ADC=60°,BC=15,AB=8,AD=CD,求BD的最大值.【发现问题】解:延长CA到M,作∠MAC的平分线AN,在AN上截取AD=AC,连接CD,即可得到等腰直角△ACD;连接BD、CE,如图1所示:∵△ABE与△ACD都是等腰直角三角形,∴AB=AE,AD=AC,∠BAE=∠CAD=90°,∴∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE,【拓展探究】解:BD=CE;理由如下:∵四边形AEFB与四边形ACGD都是正方形,∴AB=AE,AD=AC,∠BAE=∠CAD=90°,∴∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE;【解决问题】解:以AB为边向外作等边三角形ABE,连接CE,如图3所示:则∠BAE=60°,BE=AB=AE=8,∵AD=CD,∠ADC=60°,∴△ACD是等边三角形,∴∠CAD=60°,AC=AD,∴∠CAD+∠BAC=∠BAE+∠BAC,即∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE;当C、B、E三点共线时,CE最大=BC+BE=15+8=23,∴BD的最大值为23.7、如图1,点C为线段AB外一个动点,已知AB=a,AC=b.当点C位于BA的延长线上时,线段BC取得最大值,则最大值为a+b(用含a,b的式子表示);(2)如图2,点C为线段AB外一个动点,若AB=10,AC=3,分别以AC,BC为边,作等边三角形ACD和等边三角形BCE,连接AE,DB.①求证:AE=DB;②请直接写出线段AE的最大值;(3)如图3,AB=6,点M为线段AB外一个动点,且AM=2,MB=MN,∠BMN=90°,请直接写出线段AN的最大值.(1)解:∵点C为线段AB外一动点,且AC=b,AB=a,∴当点C位于BA的延长线上时,线段BC的长取得最大值,且最大值为AC+AB=a+b,(2)①证明:如图2中,∵△ACD与△BCE是等边三角形,∴CD=AC,CB=CE,∠ACD=∠BCE=60°,∴∠DCB=∠ACE,在△CAD与△EAB中,,∴△CAD≌△EAB(SAS),∴AE=BD.②∵线段AE长的最大值=线段BD的最大值,由(1)知,当线段BD的长取得最大值时,点D在BA的延长线上,∴最大值为AD+AB=3+10=13;(3)如图3中,连接BN,∵将△AMN绕着点M顺时针旋转90°得到△PBM,连接AP,则△APM是等腰直角三角形,∴MA=MP=2,BP=AN,∴P A=2,∵AB=6,∴线段AN长的最大值=线段BP长的最大值,∴当P在线段BA的延长线时,线段BP取得最大值最大值=AB+AP=6+2.8、【初步探索】(1)如图1:在四边形ABC中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF =BE+FD,探究图中∠BAE、∠F AD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是∠BAE+∠F AD=∠EAF;【灵活运用】(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;【拓展延伸】(3)如图3,已知在四边形ABCD中,∠ABC+∠ADC=180°AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请写出∠EAF与∠DAB的数量关系,并给出证明过程.解:(1)∠BAE+∠F AD=∠EAF.理由:如图1,延长FD到点G,使DG=BE,连接AG,根据SAS可判定△ABE≌△ADG,进而得出∠BAE=∠DAG,AE=AG,再根据SSS可判定△AEF≌△AGF,可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF.故答案为:∠BAE+∠F AD=∠EAF;(2)仍成立,理由:如图2,延长FD到点G,使DG=BE,连接AG,∵∠B+∠ADF=180°,∠ADG+∠ADF=180°,∴∠B=∠ADG,又∵AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF;(3)∠EAF=180°﹣∠DAB.证明:如图3,在DC延长线上取一点G,使得DG=BE,连接AG,∵∠ABC+∠ADC=180°,∠ABC+∠ABE=180°,∴∠ADC=∠ABE,又∵AB=AD,∴△ADG≌△ABE(SAS),∴AG=AE,∠DAG=∠BAE,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠F AE=∠F AG,∵∠F AE+∠F AG+∠GAE=360°,∴2∠F AE+(∠GAB+∠BAE)=360°,∴2∠F AE+(∠GAB+∠DAG)=360°,即2∠F AE+∠DAB=360°,∴∠EAF=180°﹣∠DAB.9、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P逆时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=45°,AC=,请直接写出BQ的长.解:(1)CP=BQ,理由:如图1,连接OQ,由旋转知,PQ=OP,∠OPQ=60°⊅∴△POQ是等边三角形,∴OP=OQ,∠POQ=60°,在Rt△ABC中,O是AB中点,∴OC=OA=OB,∴∠BOC=2∠A=60°=∠POQ,∴∠COP=∠BOQ,在△COP和△BOQ中,,∴△COP≌△BOQ(SAS),∴CP=BQ,(2)CP=BQ,理由:如图2,连接OQ,由旋转知,PQ=OP,∠OPQ=60°∴△POQ是等边三角形,∴OP=OQ,∠POQ=60°,在Rt△ABC中,O是AB中点,∴OC=OA=OB,∴∠BOC=2∠A=60°=∠POQ,∴∠COP=∠BOQ,在△COP和△BOQ中,,∴△COP≌△BOQ(SAS),∴CP=BQ,(3)如图3,在Rt△ABC中,∠A=30°,AC=,∴BC=AC•tan∠A=,过点O作OH⊥BC,∴∠OHB=90°=∠BCA,∴OH∥AB,∵O是AB中点,∴CH=BC=,OH=AC=,∵∠BPQ=45°,∠OHP=90°,∴∠BPQ=∠PQH,∴PH=OH=,∴CP=PH﹣CH=﹣=,连接BQ,同(1)的方法得,BQ=CP=.10、模型发现:同学们知道,三角形的两边之和大于第三边,即如图1,在△ABC中,AB+AC>BC.对于图1,若把点C看作是线段AB外一动点,且AB=c,AC=b,则线段BC的长会因为点C的位置的不同而发生变化.因为AB、AC的长度固定,所以当∠BAC越大时,BC边越长.特别的,当点C位于线段BA的延长线上时,线段BC的长取得最大值,且最大值为b+c(用含b,c的式子表示)(直接填空)模型应用:点C为线段AB外一动点,且AB=3,AC=2,如图2所示,分别以AC,BC为边,作等边三角形ACD 和等边三角形BCE,连接BD,AE.(1)求证:BD=AE.(2)线段AE长的最大值为5.模型拓展:如图3,在平面直角坐标系中,点A是y轴正半轴上的一动点,点B是x轴正半轴上的一动点,且AB =8.若AC⊥AB,AC=3,试求OC长的最大值.解:当点C位于线段BA的延长线上时,线段BC的长取得最大值,最大值为b+c,故答案为:线段BA的延长线上;b+c;模型应用:(1)证明:∵△ACD、△BCE都是等边三角形,∴CD=CA=AD,CB=CE,∠ACD=60°,∠BCE=60°,∴∠DCB=∠ACE,在△DCB和△ACE中,,∴△DCB≌△ACE(SAS)∴BD=AE;(2)当点D位于线段BA的延长线上时,线段BD的长取得最大值,最大值为AB+AD=AB+AC=3+2=5,∵AE=BD,∴线段AE长的最大值为5,模型拓展:取AB的中点G,连接OG、CG,在Rt△AOB中,G为AB的中点,∴OG=AB=4,在Rt△CAG中,CG===5,当点O、G、C在同一条直线上时,OC最大,最大值为4+5=9.11、已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC =3MC,请直接写出的值.(1)证明:如图1中,∵BE⊥AD于E,∴∠AEF=∠BCF=90°,∵∠AFE=∠CFB,∴∠DAC=∠CBF,∵BC=CA,∴△BCF≌△ACD,∴BF=AD.(2)结论:BD=2CF.理由:如图2中,作EH⊥AC于H.∵∠AHE=∠ACD=∠DAE=90°,∴∠DAC+∠ADC=90°,∠DAC+∠EAH=90°,∴∠DAC=∠AEH,∵AD=AE,∴△ACD≌△EHA,∴CD=AH,EH=AC=BC,∵CB=CA,∴BD=CH,∵∠EHF=∠BCF=90°,∠EFH=∠BFC,EH=BC,∴△EHF≌△BCF,∴FH=CF,∴BD=CH=2CF.(3)如图3中,同法可证BD=2CM.∵AC=3CM,设CM=a,则AC=CB=3a,BD=2a,∴==.12、已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求的值.(1)①证明:如图1中,∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②证明:如图2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,连接AK.∵∠BFE=∠2+∠BAF,∠CFE=∠4+∠1,∴∠CFB=∠2+∠4+∠BAC,∵∠BFE=∠BAC=2∠EFC,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB=AC,∴△ABK≌CAF,∴∠3=∠4,S△ABK=S△AFC,∵∠1+∠3=∠2+∠3=∠CFE=∠AKB,∠BAC=2∠CEF,∴∠KAF=∠1+∠3=∠AKF,∴AF=FK=BK,∴S△ABK=S△AFK,∴=2.13、已知,△ABC中,AB=AC,∠BAC=90°,E为边AC任意一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,F也为AC上一点,且满足AE=CF,过A作AD⊥BE交BE于点H,交BC于点D,连接DF交BE于点G,连接AG;①若AG平分∠CAD,求证:AH=AC;②如图3,当G落在△ABC外时,若将△EFG沿EF边翻折,点G刚好落在AB边上点P,直接写出AG与EF的数量关系.(1)解:如图1中,在AB上取一点M,使得BM=ME,连接ME.在Rt△ABE中,∵OB=OE,∴BE=2OA=2,∵MB=ME,∴∠MBE=∠MEB=15°,∴∠AME=∠MBE+∠MEB=30°,设AE=x,则ME=BM=2x,AM=x,∵AB2+AE2=BE2,∴(2x+x)2+x2=22,∴x=(负根已经舍弃),∴AB=AC=(2+)•,∴BC=AB=+1.方法二:作EH⊥BC于H,求出BH,CH即可解决问题.(2)证明:如图2中,作CP⊥AC,交AD的延长线于P,GM⊥AC于M.∵BE⊥AP,∴∠AHB=90°,∴∠ABH+∠BAH=90°,∵∠BAH+∠P AC=90°,∴∠ABE=∠P AC,在△ABE和△CAP中,,∴△ABE≌△CAP,∴AE=CP=CF,∠AEB=∠P,在△DCF和△DCP中,,∴△DCF≌△DCP,∴∠DFC=∠P,∴∠GFE=∠GEF,∴GE=GF,∵GM⊥EF,∴FM=ME,∵AE=CF,∴AF=CE,∴AM=CM,在△GAH和△GAM中,,∴△AGH≌△AGM,∴AH=AM=CM=AC(3)解:结论:AG=EF.理由:如图3中,作CM⊥AC交AD的延长线于M,连接PG交AC于点O.由(2)可知△ACM≌△BAE,△CDF≌△CDM,∴∠AEB=∠M=∠GEF,∠M=∠CFD=∠GFE,AE=CM=CF,∴∠GEF=∠GFE,∴GE=GF,∵△EFP是由△EFG翻折得到,∴EG=EP=GF=PF,∴四边形EGFP是菱形,∴PG⊥AC,OE=OF,∵AE=CF,∴AO=OC,∵AB∥OP,∴BP=PC,∵PF∥BE,∴EF=CF=AE,∵PB=PC,AO=OC,∴PO=OG=AB,∴AB=PG,AB∥PG,∴四边形ABPG是平行四边形,∴AG∥BC,∴∠GAO=∠ACB=45°,设EO=OF=a,则OA=OG=3a,AG=3a,∴==,∴AG=EF14、如图所示,Rt△ABC中,∠ACB=90°,E为AC中点,作ED⊥AC交AB于D,连接CD;(1)如图1,求证:AB=2CD;(2)如图2,作CF⊥AB交AB于F,点G为CF上一点,点H为DE延长线上一点,分别连接AH、GH,若∠AHG=2∠B,求证:AH=GH;(3)如图3,在(2)的条件下,连接DG,且有DE=BF,∠EDG=90°,若AC=6,求AH的长度.解:(1)∵E为AC中点,作ED⊥AC交AB于D,∴AD=CD,∵∠ACB=90°,∴BC∥DE,∴AD=BD,∴CD=BD,∴AB=2CD;(2)如图2,连接CH,∵点E是AC的中点,∴AE=CE,∵DE⊥AC,∴CH=AH,∴∠ACH=∠CAH,∵∠ACB=90°,∴∠B+∠BAC=90°,∵CF⊥AB,∴∠BAC+∠ACF=90°,∴∠ACF=∠B,∴∠HCG=∠ACH+∠ACF=∠CAH+∠B,∠AHG=2∠B∴在四边形AHGF中,∠AFG+∠FGH+∠AHG+∠F AH=360°,∴∠FGH=360°﹣(∠AFG+∠AHG+∠F AH)=360°﹣(90°+2∠B+∠CAH+∠BAC)=360°﹣(90°+2∠B+∠CAH+90°﹣∠B)=360°﹣(180°+∠B+∠CAH)=180°﹣(∠B+∠CAH),∵∠CGH=180°﹣∠FGH=∠B+∠CAH=∠HCG,∴CH=GH,∵CH=AH,∴AH=GH;(3)如图3,由(1)知,DE∥BC,∴∠B=∠ADE,在△BFC和△DEA中,,∴△BFC≌△DEA,∴BC=AD,∵AD=BD=CD,∴BC=BD=CD,∴△BCD是等边三角形,∴∠B=60°,在Rt△ABC中,AC=6,∴BC=2,AB=4,∵CF⊥BD,∴DF=,CF=3,∵∠BAC=30°,∴∠ADE=60°,∵∠EDG=90°,∠FDG=30°,在Rt△DFG中,DF=,∴FG=1,DG=2,∴CG=CF﹣FG=2过点H作HN⊥CF,由(2)知,CH=GH,∴NG=CG=1,∴FN=NG+FG=2,过点H作HM⊥AB,∴∠FMH=∠NFM=∠HNF=90°,∴四边形NFMH是矩形,∴HM=FN=2,在Rt△DMH中,∠ADE=60°,HM=2,∴DH=,在Rt△HDG中,根据勾股定理得,HG==.15、【问题情境】一节数学课后,老师布置了一道课后练习题:如图:已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,点E、F分别在A和BC上,∠1=∠2,FG⊥AB于点G,求证:△CDE≌△EGF.(1)阅读理解,完成解答本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写这道练习题的证明过程;(2)特殊位置,证明结论若CE平分∠ACD,其余条件不变,求证:AE=BF;(3)知识迁移,探究发现如图,已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,若点E是DB的中点,点F在直线CB上且满足EC=EF,请直接写出AE与BF的数量关系.(不必写解答过程)(1)证明:∵AC=BC,∠ACB=90°,∴∠A=∠B=45°,∵CD⊥AB,∴∠CDB=90°,∴∠DCB=45°,∵∠ECF=∠DCB+∠1=45°+∠1,∠EFC=∠B+∠2=45°+∠2,∠1=∠2,∴∠ECF=∠EFC,∴CE=EF,∵CD⊥AB,FG⊥AB,∴∠CDE=∠EGF=90°,在△CDE和△EGF中,,∴△CDE≌△EGF(AAS);(2)证明:由(1)得:CE=EF,∠A=∠B,∵CE平分∠ACD,∴∠ACE=∠1,∵∠1=∠2,∴∠ACE=∠2,在△ACE和△BEF中,,∴△ACE≌△BEF(AAS),∴AE=BF;(3)AE=BF,作EH⊥BC与H,如图3所示:设DE=x,根据题意得:BE=DE=x,AD=BD=2x,CD=AD=2x,AE=3x,根据勾股定理得:BC=AC=2x,∵∠ABC=45°,EH⊥BC,∴BH=x,∴CH=BC﹣BH=x,∵EC=EF,∴FH=CH=x,∴BF=x﹣x=x,∴=,∴AE=.16、在正方形ABCD和等腰直角△BGF中,∠BGF=90°,P是DF的中点,连接PG、PC.(1)如图1,当点G在BC边上时,延长GP交DC于点E.求证:PG=PC;(2)如图2,当点F在AB的延长线上时,(1)中的结论是否成立?请证明你的结论;(3)如图3,若四边形ABCD为菱形,且∠ABC=60°,△BGF为等边三角形,点F在CB的延长线。
2023年九年级中考数学复习:几何探究压轴题(角度问题)(附答案)
2023年九年级中考数学复习:几何探究压轴题(角度问题)1.已知:正方形ABCD ,以A 为旋转中心,旋转AD 至AP ,连接BP DP 、.(1)若将AD 顺时针旋转30︒至AP ,如图1所示,求BPD ∠的度数? (2)若将AD 顺时针旋转α度()090α︒<<︒至AP ,求BPD ∠的度数?(3)若将AD 逆时针旋转α度()0180α︒<<︒至AP ,请分别求出090α︒<<︒、90α=︒、90180α︒<<︒三种情况下的BPD ∠的度数(图2、图3、图4).2.如图1所示,将一个长为6宽为4的长方形ABEF ,裁成一个边长为4的正方形ABCD 和一个长为4、宽为2的长方形CEFD 如图2.现将小长方形CEFD 绕点C 顺时针旋转至CE F D ''',旋转角为a .(1)当点D 恰好落在EF 边上时,求旋转角a 的值;(2)如图3,G 为BC 中点,且0°<a <90°,求证:GD E D ''=;(3)小军是一个爱动手研究数学问题的孩子,他发现在小长方形CEFD 绕点C 顺时针旋转一周的过程中,DCD '与CBD '△存在两次全等,请你帮助小军直接写出当DCD '与CBD '△全等时,旋转角a 的值.3.图1是边长分别为a 和()b a b >的两个等边三角形纸片ABC 和CDE 叠放在一起(C 与C '重合)的图形.(1)操作:固定ABC ,将CDE 绕点C 按顺时针方向旋转20°,连结AD ,BE ,如图2,则ECA ∠=___ ___度,并直接写出线段BE 与AD 的数量关系____ .(2)操作:若将图1中的CDE ,绕点C 按顺时针方向旋转120°,使点B 、C 、D 在同一条直线上,连结AD 、BE ,如图3.①线段BE 与AD 之间是否仍存在(1)中的结论?若是,请证明;若不是,请直接写出BE 与AD 之间的数量关系;②求APB ∠的度数.(3)若将图1中的CDE ,绕点C 按逆时针方向旋转一个角()0360αα<<︒,当α等于多少度时,BCD △的面积最大?请直接写出答案.4.我们定义:如图1,在△ABC 中,把AB 绕点A 顺时针旋转α(0°<α<180°)得到AB ',把AC 绕点A 逆时针旋转β得到AC ′,连接B 'C ',当a +β=180°时,我们称△AB 'C '是△ABC 的“旋补三角形”,△AB 'C 边B 'C '上的中线AD 叫做△ABC 的“旋补中线”.(1)[特例感知]在图2,图3中,△AB 'C ′是△ABC 的“旋补三角形”,AD 是△ABC 的“旋补中线”. ①如图2,当△ABC 为等边三角形,且BC =6时,则AD 长为 . ②如图3,当∠BAC =90°,且BC =7时,则AD 长为 .(2)[猜想论证]在图1中,当△ABC 为任意三角形时,猜想AD 与BC 的数量关系,并给予证明.(如果你没有找到证明思路,可以考虑延长AD 或延长B 'A ,…)(3)[拓展应用]如图4,在四边形ABCD 中,∠BCD =150°,AB =12,CD =6,以CD 为边在四边形ABCD 内部作等边△PCD ,连接AP ,BP .若△P AD 是△PBC 的“旋补三角形”,请直接写出△PBC 的“旋补中线”长及四边形ABCD 的边AD 长.5.如图,已知正方形ABCD ,点E 为AB 上的一点,EF AB ⊥,交BD 于点F .(1)如图1,直按写出DFAE的值____ ___; (2)将△EBF 绕点B 顺时针旋转到如图2所示的位置,连接AE 、DF ,猜想DF 与AE 的数量关系,并证明你的结论;(3)如图3,当BE =BA 时,其他条件不变,△EBF 绕点B 顺时针旋转,设旋转角为(0360)αα︒<<︒,当α为何值时EA =ED ?请在图3或备用图中画出图形并求出α的值.6.如图,已知正方形ABCD ,将AD 绕点A 逆时针方向旋转(090)n n ︒<<到AP 的位置,分别过点C D 、作,CE BP DF BP ⊥⊥,垂足分别为点E 、F .(1)求证:CE EF =;(2)联结CF ,如果13DP CF =,求ABP ∠的正切值;(3)联结AF ,如果AF AB =,求n 的值.7.把两个等腰直角△ABC 和△ADE 按如图1所示的位置摆放,将△ADE 绕点A 按逆时针方向旋转,如图2,连接BD ,EC ,设旋转角α(0°<α<360°).(Ⅰ)当DE ⊥AC 时,旋转角α= 度,AD 与BC 的位置关系是 ,AE 与BC 的位置关系是 ;(Ⅱ)当点D 在线段BE 上时,求∠BEC 的度数; (Ⅲ)当旋转角α= 时,△ABD 的面积最大.8.已知:在Rt ABC 中,90ABC ∠=︒,30BAC ∠=︒,将ABC 绕点A 顺时针旋转一定的角度α得到AED △,点B 、C 的对应点分别是E 、D .(1)如图1,若60α=︒时,连接BE ,求证:AB BE =; (2)如图2,当点E 恰好在AC 上时,求CDE ∠的度数;(3)如图3,点B 、C 的坐标分别是()0,0,()0,2,点Q 是线段AC 上的一个动点,点M 是线段AO 上的一个动点,是否存在这样的点Q 、M 使得CQM 为等腰三角形且AQM 为直角三角形?若存在,请求出满足条件的点M 的坐标;若不存在,请说明理由.9.把边长分别为4和6的矩形ABCO 如图放在平面直角坐标系中,将它绕点C 顺时针旋转a 角,旋转后的矩形记为矩形EDCF .在旋转过程中,(1)如图①,当点E 在射线CB 上时,E 点坐标为;(2)当△CBD 是等边三角形时,旋转角a 的度数是(a 为锐角时); (3)如图②,设EF 与BC 交于点G ,当EG=CG 时,求点G 的坐标;(4)如图③,当旋转角a=90°时,请判断矩形EDCF 的对称中心H 是否在以C 为顶点,且经过点A 的抛物线上.10.如图,ABC 是等边三角形,点D 是BC 边的中点,以D 为顶点作一个120︒的角,角的两边分别交直线AB AC 、于M 、N 两点,以点D 为中心旋转MDN ∠(MDN ∠的度数不变)(1)如图①,若DM AB ⊥,求证:BM CN BD +=;(2)如图②,若DM 与AB 不垂直,且点M 在边AB 上,点N 在边AC 上时,(1)中的结论是否成立?并说明理由;(3)如图③,若DM 与AB 不垂直,且点M 在边AB 上,点N 在边AC 的延长线上时,(1)中的结论是否成立?若不成立,写出BM CN BD 、、之间的数量关系,并说明理由.11.如图1,在Rt ABC △中,90,ACB AC BC ∠==,点D 为AB 边上的一点,将BCD △绕点C 逆时针旋转90得到ACE △,易得BCD ACE ≌,连接BE .(1)求BCE ACD ∠∠+的度数.(2)当5,BC BD ==BE CE 、的长.(3)如图2,在(2)的条件下,取AD 中点F ,连接CF 交BE 于H ,试探究线段BE CF 、的数量关系和位置关系,并说明理由.12.如图①,ABC 和ADE 是有公共顶点的等腰直角三角形,90BAC DAE ∠=∠=︒,点P 为射线,BD CE 的交点.(1)如图②,将ADE 绕点A 旋转,当C 、D 、E 在同一条直线上时,连接BD 、BE ,求证:BD CE =且BD CE ⊥.(2)若8,4AB AD ==,把ADE 绕点A 旋转, ①当90EAC ∠=︒时,求PB 的长;②旋转过程中线段BP 长的最小值是_____ __.13.如图1,ABC 中,90,30,ACB B AD ∠=︒∠=︒是角平分线,点E 、F 分别在边AC 、BC 上,45,CEF CF CD ∠=︒<、将CEF △绕点C 按逆时针方向旋转,使得EF 所在直线交线段AD 于点M ,交线段AB 于点N .(1)当旋转75°时,如图2,直线EF 与AD 的位置关系是____ __,ANM ∠=__ ____°; (2)在旋转一周过程中,试探究:当CE 旋转多少度时,AMN 中有两个角相等.14.菱形ABCD 的对角线AC ,BD 交于点O .(1)如图1,过菱形ABCD 的顶点A 作AE BC ⊥于点E ,交OB 于点H ,若6AB AC ==,求OH 的长; (2)如图2,过菱形ABCD 的顶点A 作AF AD ⊥,且AF AD =,线段AF 交OB 于点H ,交BC 于点E .当D ,C ,F 三点在同一直线上时,求证:2OH OA +=; (3)如图3,菱形ABCD 中,=45ABC ∠︒,点P 为直线AD 上的动点,连接BP ,将线段BP 绕点B 逆时针旋转60°得到线段BQ ,连接AQ ,当线段AQ 的长度最小时,直接写出BAQ ∠的度数.15.(1)阅读理解利用旋转变换解决数学问题是一种常用的方法.如图1,点P 是等边三角形ABC 内一点,P A =1,PB PC =2.求∠BPC 的度数.为利用已知条件,不妨把△BPC 绕点C 顺时针旋转60°得AP C '△,连接PP '.利用这种变换可以求∠BPC 的度数,请写出推理过程; (2)类比迁移如图2,点P 是等腰Rt △ABC 内一点,∠ACB =90°,P A =2,PB PC =1.求∠APC 的度数.16.ABC 为等边三角形,AB =8,AD ⊥BC 于点D ,E 为线段AD 上一点,AE =AE 为边在直线AD 右侧构造等边三角形AEF ,连接CE ,N 为CE 的中点.(1)如图1,EF 与AC 交于点G ,连接NG ,BE ,直接写出NG 与BE 的数量关系;(2)如图2,将AEF △绕点A 逆时针旋转,旋转角为α,M 为线段EF 的中点,连接DN ,MN .当30120α︒<<︒时,猜想∠DNM 的大小是否为定值,如果是定值,请写出∠DNM 的度数并证明,如果不是,请说明理由;(3)连接BN,在AEF△绕点A逆时针旋转过程中,请直接写出线段BN的最大值.17.如图1,在Rt△ABC中,∠ACB=90°,AB=10,BC=6.D、E分别是AB、AC边的中点,连接DE.现将△ADE绕A点逆时针旋转,连接BD,CE并延长交于点F.(1)如图2,点E正好落在AB边上,CF与AD交于点P.①求证:AE•AB=AD•AC;②求BF的长;(2)如图3,若AF恰好平分∠DAE,直接写出CE的长.18.如图①,在ABC中,∠ACB=90°,∠ABC=30°,AC=1,D为ABC内部的一动点(不在边上),连接BD,将线段BD绕点D逆时针旋转60°,使点B到达点F的位置;将线段AB绕点B顺时针旋转60°,使点A到达点E的位置,连接AD,CD,AE,AF,BF,EF.(1)求证:BDA≌BFE;(2)当CD+DF+FE取得最小值时,求证:AD∥BF.(3)如图②,M,N,P分别是DF,AF,AE的中点,连接MP,NP,在点D运动的过程中,请判断∠MPN 的大小是否为定值.若是,求出其度数;若不是,请说明理由.参考答案:1.(1)135︒(2)135︒(3)45︒,45︒,45︒2.(1)30°(3)135°,315°3.(1)40,BE =AD(2)①存在,②60°(3)当α=150°或330°时,BCD △的面积最大4.(1)①3;②3.5(2)AD =12BC ,(3)339=AD5.2(2)2DF AE =,(3)α的值为30°或150°,6.(2)23;(3)307.(Ⅰ)45;垂直;平行;(Ⅱ)90BEC ∠=︒;(Ⅲ)90︒或270︒8.(2)15°;(3)存在,23,03M ⎫⎪⎭或()423,0- 9.(1)E (4,13;(2)60°;(3)13(4,)3G ; (4)点H 不在此抛物线上.10.(2)成立,(3)不成立,BM CN BD -=,11.(1)180BCE ACD ∠+∠=︒(2)BE =CE =(3)2BE CF =;BE CF ⊥,12.(2)①PB =;②413.(1)垂直,60(2)当CE 旋转45°,90°,270°,315°时,△AMN 中有两个角相等14.(3)75︒15.(2)90°16.(1)2BE NG =(2)∠DNM 的大小是定值,为120°(3)17.(1)②18.(3)∠MPN 的值为定值,30°.。
中考数学特训卷专题八三角形和四边形(有答案)
专题八三角形和四边形
⊙热点一:与三角形、四边形有关的计算、证明1.(2013年吉林长春)如图Z8-3,以△ABC的顶点A为圆心,以BC长为半径作弧,再以顶点C为圆心,以AB长为半径作弧,两弧交于点D,连接AD,C
D.若∠B=65°,则∠ADC的大小为________ .
图Z8-3
2.(2013年河南)如图Z8-4,在矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠
B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为________.
图Z8-4
3.(2013年江苏扬州)如图Z8-5,在△ABC中,∠ACB=90°,AC=BC,点D在边AB上,连接CD,将线段CD绕点C顺时针旋转90°至CE的位置,连接AE.
(1)求证:AB⊥AE;
(2)若BC2=AD·AB,求证:四边形ADCE是正方形.
图Z8-5
⊙热点二:与三角形、四边形有关的操作探究题1.(2013年湖南湘潭)在数学活动课中,小辉将边长为2
和3的2个正方形放置在直线l上,如图Z8-6(1),他连接AD,CF,经测量发现AD=CF.
(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图Z8-6(2),试判断AD与CF还相等吗?说明你的理由
;
(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图Z8-6(3),请你求出CF的长.
(1) (2)(3)
图Z8-6。
2020届中考数学热点冲刺5 三角形四边形问题(江苏版)(含解析)
2020届中考数学热点冲刺5 三角形四边形问题考向1 三角形的性质1. (2019 江苏省淮安市)下列长度的3根小木棒不能搭成三角形的是( ) A .2cm ,3cm ,4cm B .1cm ,2cm ,3cm C .3cm ,4cm,5cmD .4cm ,5cm ,6cm【解析】解:A 、2+3>4,能构成三角形,不合题意; B 、1+2=3,不能构成三角形,符合题意; C 、4+3>5,能构成三角形,不合题意; D 、4+5>6,能构成三角形,不合题意.故选:B.2. (2019 江苏省泰州市)如图所示的网格由边长相同的小正方形组成,点A、B、C、D、E、F、G在小正方形的顶点上,则△ABC的重心是()A.点D B.点E C.点F D.点G【解析】根据题意可知,直线CD经过△ABC的AB边上的中线,直线AD经过△ABC的BC边上的中线,△点D是△ABC重心.故选:A.3. (2019 江苏省徐州市)下列长度的三条线段,能组成三角形的是()A.2,2,4B.5,6,12C.5,7,2D.6,8,10【解析】224+=Q,2∴,2,4不能组成三角形,故选项A错误,Q,55612+<∴,6,12不能组成三角形,故选项B错误,Q,5+=527∴,7,2不能组成三角形,故选项C错误,Q,66810+>∴,8,10能组成三角形,故选项D正确,故选:D.4. (2019 江苏省盐城市)如图,点D、E分别是△ABC边BA、BC的中点,AC=3,则DE的长为()A.2B.C.3D.【解析】△点D、E分别是△ABC的边BA、BC的中点,△DE是△ABC的中位线,△DE=AC=1.5.故选:D.5. (2019 江苏省南京市)如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分△ACB.若AD=2,BD=3,则AC的长.【解析】△BC的垂直平分线MN交AB于点D,△CD=BD=3,△△B=△DCB,AB=AD+BD=5,△CD平分△ACB,△△ACD=△DCB=△B,△△A=△A,△△ACD△△ABC,△=,△AC2=AD×AB=2×5=10,△AC=.故答案为:.考向2等腰三角形的性质与判定1. (2019 江苏省徐州市)函数1=+的图象与x轴、y轴分别交于A、B两点,点C在x轴y x上.若ABC∆为等腰三角形,则满足条件的点C共有个.【解析】以点A为圆心,AB为半径作圆,与x轴交点即为C;以点B为圆心,AB为半径作圆,与x轴交点即为C;作AB的中垂线与x轴的交点即为C;故答案为3;2. (2019 江苏省镇江市)如图,直线a△b,△ABC的顶点C在直线b上,边AB与直线b相交于点D.若△BCD是等边三角形,△A=20°,则△1=°.【解析】△△BCD是等边三角形,△△BDC=60°,△a△b,△△2=△BDC=60°,由三角形的外角性质可知,△1=△2﹣△A=40°,故答案为:40.3. (2019 江苏省连云港市)如图,在△ABC中,AB=AC.将△ABC沿着BC方向平移得到△DEF,其中点E在边BC上,DE与AC相交于点O.(1)求证:△OEC为等腰三角形;(2)连接AE、DC、AD,当点E在什么位置时,四边形AECD为矩形,并说明理由.【解析】(1)证明:△AB=AC,△△B=△ACB,△△ABC平移得到△DEF,△AB△DE,△△B=△DEC,△△ACB=△DEC,△OE=OC,即△OEC为等腰三角形;(2)解:当E为BC的中点时,四边形AECD是矩形,理由是:△AB=AC,E为BC的中点,△AE△BC,BE=EC,△△ABC平移得到△DEF,△BE△AD,BE=AD,△AD△EC,AD=EC,△四边形AECD是平行四边形,△AE△BC,△四边形AECD是矩形.考向3全等三角形的性质与判定1. (2019 江苏省南京市)如图,D是△ABC的边AB的中点,DE△BC,CE△AB,AC与DE相交于点F.求证:△ADF△△CEF.【解析】证明:△DE△BC,CE△AB,△四边形DBCE是平行四边形,△BD=CE,△D是AB的中点,△AD=BD,△AD=EC,△CE△AD,△△A=△ECF,△ADF=△E,△△ADF△△CEF(ASA).2. (2019 江苏省泰州市)如图,线段AB=8,射线BG△AB,P为射线BG上一点,以AP为边作正方形APCD,且点C、D与点B在AP两侧,在线段DP上取一点E,使△EAP=△BAP,直线CE与线段AB相交于点F(点F与点A、B不重合).(1)求证:△AEP△△CEP;(2)判断CF与AB的位置关系,并说明理由;(3)求△AEF的周长.【解析】(1)证明:△四边形APCD正方形,△DP平分△APC,PC=P A,△△APD=△CPD=45°,△△AEP△△CEP(AAS);(2)CF△AB,理由如下:△△AEP△△CEP,△△EAP=△ECP,△△EAP=△BAP,△△BAP=△FCP,△△FCP+△CMP=90°,△AMF=△CMP,△△AMF+△P AB=90°,△△AFM=90°,△CF△AB;(3)过点C作CN△PB.△CF△AB,BG△AB,△FC△BN,△△CPN=△PCF=△EAP=△P AB,又AP=CP,△△PCN△△APB(AAS),△CN=PB=BF,PN=AB,△△AEP△△CEP,△AE=CE,△AE+EF+AF=CE+EF+AF=BN+AF=PN+PB+AF=AB+CN+AF=AB+BF+AF=2AB=16.3. (2019 江苏省无锡市)如图,在ABC∆中,AB AC=,=,点D、E分别在AB、AC上,BD CE BE、CD相交于点O.(1)求证:DBC ECB∆≅∆;(2)求证:OB OC=.【解析】(1)证明:△AB=AC,△△ECB=△DBC在中与ECB DBC ∆∆,△ECB CB BC DBC CE BD ∠⎪⎩⎪⎨⎧==∠=△ ECB DBC ∆≅∆(2)证明:由(1)知ECB DBC ∆≅∆ △△DCB=△EBC △OB=OC4. (2019 江苏省镇江市)如图,四边形ABCD 中,AD △BC ,点E 、F 分别在AD 、BC 上,AE =CF ,过点A 、C 分别作EF 的垂线,垂足为G 、H . (1)求证:△AGE △△CHF ;(2)连接AC ,线段GH 与AC 是否互相平分?请说明理由.【解析】(1)证明:△AG △EF ,CH △EF , △△G =△H =90°,AG △CH , △AD △BC , △△DEF =△BFE ,△△AEG =△DEF ,△CFH =△BFE , △△AEG =△CFH ,在△AGE 和△CHF 中,,△△AGE△△CHF(AAS);(2)解:线段GH与AC互相平分,理由如下:连接AH、CG,如图所示:由(1)得:△AGE△△CHF,△AG=CH,△AG△CH,△四边形AHCG是平行四边形,△线段GH与AC互相平分.考向4平行四边形的性质与判定1. (2019 江苏省常州市)如图,把平行四边形纸片ABCD沿BD折叠,点C落在点C′处,BC′与AD相交于点E.(1)连接AC′,则AC′与BD的位置关系是;(2)EB与ED相等吗?证明你的结论.【解析】(1)连接AC′,则AC′与BD的位置关系是AC′△BD,故答案为:AC′△BD;(2)EB与ED相等.由折叠可得,△CBD=△C'BD,△AD△BC,△△ADB=△CBD,△△EDB=△EBD,△BE=DE.2. (2019 江苏省淮安市)已知:如图,在△ABCD中,点E、F分别是边AD、BC的中点.求证:BE=DF.【解析】证明:△四边形ABCD是平行四边形,△AD△BC,AD=BC,△点E、F分别是△ABCD边AD、BC的中点,△DE=AD,BF=BC,△DE=BF,△四边形BFDE是平行四边形,△BE=DF.3. (2019 江苏省徐州市)如图,将平行四边形纸片ABCD沿一条直线折叠,使点A与点C重合,点D落在点G处,折痕为EF.求证:(1)ECB FCG∠=∠;(2)EBC FGC∆≅∆.【解析】证明:(1)Q四边形ABCD是平行四边形,∴∠=∠,A BCD由折叠可得,A ECG∠=∠,∴∠=∠,BCD ECG∴∠-∠=∠-∠,BCD ECF ECG ECF∴∠=∠;ECB FCG(2)Q四边形ABCD是平行四边形,∴∠=∠,AD BCD B=,由折叠可得,D G=,∠=∠,AD CG=,B G∴∠=∠,BC CG又ECB FCGQ,∠=∠∴∆≅∆.()EBC FGC ASA4. (2019 江苏省扬州市)如图,在平行四边形ABCD中,AE平分△DAB,已知CE=6,BE=8,DE=10.(1)求证:△BEC=90°;(2)求cos△DAE.【解析】(1)证明:△四边形ABCD是平行四边形,△DC=AB=,AD=BC,DC△AB,△△DEA=△EAB,△AE平分△DAB,△△DAE=△EAB,△△DAE=△DEA△AD=DE=10,△BC=10,AB=CD=DE+CE=16,△CE2+BE2=62+82=100=BC2,△△BCE是直角三角形,△BEC=90°;(2)解:△AB△CD,△△ABE=△BEC=90°,△AE===8,△cos△DAE=cos△EAB===.考向5矩形的性质与判定1. (2019 江苏省徐州市)如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC 的中点.若4MN=,则AC的长为.【解析】MQ、N分别为BC、OC的中点,∴==.28BO MNQ四边形ABCD是矩形,AC BD BO∴===.216故答案为16.2. (2019 江苏省宿迁市)如图,矩形ABCD中,AB=4,BC=2,点E、F分别在AB、CD上,且BE=DF=.(1)求证:四边形AECF是菱形;(2)求线段EF的长.【解析】(1)证明:△在矩形ABCD中,AB=4,BC=2,△CD=AB=4,AD=BD=2,CD△AB,△D=△B=90°,△BE=DF=,△CF=AE=4﹣=,△AF=CE==,△AF=CF=CE=AE=,△四边形AECF是菱形;(2)解:过F作FH△AB于H,则四边形AHFD是矩形,△AH=DF=,FH=AD=2,△EH=﹣=1,△EF===.考向6菱形的性质与判定1. (2019 江苏省苏州市)如图,菱形ABCD 的对角线AC ,BD 交于点O ,416AC BD ==,,将ABO V 沿点A 到点C 的方向平移,得到A B C '''V ,当点A '与点C 重合时,点A 与点B '之间的距离为( )A .6B .8C .10D .12【解析】由菱形的性质得28AO OC CO BO OD B O '''======,90AOB AO B ''∠=∠=o ,AO B ''∴V 为直角三角形10AB '∴= 故选C2. (2019 江苏省无锡市)下列结论中,矩形具有而菱形不一定具有的性质是( ) A .内角和为360︒ B .对角线互相平分 C .对角线相等D .对角线互相垂直【解析】本题考查了矩形和菱形的性质,显然对角线相等是矩形有而菱形不一定有的. 故选C考向7 正方形的性质与判定1. (2019 江苏省扬州市)如图,已知点E 在正方形ABCD 的边AB 上,以BE 为边向正方形ABCD 外部作正方形BEFG ,连接DF ,M 、N 分别是DC 、DF 的中点,连接MN .若AB =7,BE =5,则MN = .DB【解析】连接CF,△正方形ABCD和正方形BEFG中,AB=7,BE=5,△GF=GB=5,BC=7,△GC=GB+BC=5+7=12,△=13.△M、N分别是DC、DF的中点,△MN==.故答案为:.2.(2019 山东省东营市)如图,在正方形ABCD中,点O是对角线AC、BD的交点,过点O 作射线OM、ON分别交BC、CD于点E、F,且△EOF=90°,OC、EF交于点G.给出下列结论:△△COE△△DOF;△△OGE△△FGC;△四边形CEOF的面积为正方形ABCD面积的;△DF2+BE2=OG•OC.其中正确的是()A.△△△△B.△△△C.△△△D.△△【解析】△△四边形ABCD是正方形,△OC=OD,AC△BD,△ODF=△OCE=45°,△△MON=90°,△△COM=△DOF,△△COE△△DOF(ASA),故△正确;△△△EOF=△ECF=90°,△点O、E、C、F四点共圆,△△EOG=△CFG,△OEG=△FCG,△OGE△△FGC,故△正确;△△△COE△△DOF,△S△COE=S△DOF,△,故△正确;△)△△COE△△DOF,△OE=OF,又△△EOF=90°,△△EOF是等腰直角三角形,△△OEG=△OCE=45°,△△EOG=△COE,△△OEG△△OCE,△OE:OC=OG:OE,△OG•OC=OE2,△OC=AC,OE=EF,△OG•AC=EF2,△CE=DF,BC=CD,△BE=CF,又△Rt△CEF中,CF2+CE2=EF2,△BE2+DF2=EF2,△OG•AC=BE2+DF2,故△错误,故选:B.。
2024陕西数学中考备考重难专题:抛物线与几何综合题特殊三角形、四边形问题课后练习【含答案】
2024陕西数学中考备考重难专题:抛物线与几何综合题特殊三角形、四边形问题考情分析年份题号题型分值抛物线的变化设问形式解题关键点201724解答题10关于y轴对称(1)求两抛物线表达式(2)求抛物线与x轴两交点坐标(3)求满足平行四边形存在的点坐标(1)轴对称性质,抛物线的对称轴,抛物线的图象,开口方向(2)两点位置(3)平行四边形的性质20212410平移(1)判断抛物线与x轴交点情况(2)写满足等腰直角三角形存在的平移过程(1)待定系数法求抛物线表达式,一元二次方程根的判别(2)抛物线图象的平移20222410中心对称(1)求与坐标轴交点坐标(2)求抛物线表达式(3)求不是菱形的平行四边形的面积(1)抛物线与坐标轴的交点问题(2)抛物线图象关于中心对称性质(3)平行四边形的性质:平行四边形的对角线互相平分例(2022陕西逆袭卷改编)如图,抛物线L:y=x2+2x-c的图象与x轴交于A,B两点(点B 在点A的左侧),与y轴交于点C(0,-3),过点A的直线与y轴交于点D,与抛物线交于点M,且tan∠BAM=1.(1)求点A,B的坐标及抛物线解析式;(2)抛物线M与抛物线L关于y轴对称,求抛物线M与y轴交点坐标;(3)若点P为抛物线L上一动点,E为直线AD上一动点,则是否存在点P,使得以点A,P,E 为顶点的三角形为等腰直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.例题图①(4)抛物线M上存在一点F,抛物线L上存在一点G,使得四边形ABFG为平行四边形,求出F,G两点坐标.例题图②探究平行四边形存在性问题的步骤:1.三定点(A、B、C),一动点(D):分别过点A、B、C作BC、AC、AB的平行线,三条平行线的交点即为所求作的点D 2.两定点(A、C),两动点(E、F):分AC为边和AC为对角线两种情况来讨论:①AC为边,平移AC,利用平行四边形的对边平行且相等确定点E、F位置②AC为对角线,取AC中点,利用平行四边形对角线互相平分来确定点E、F位置练习(2022山西逆袭复诊卷)综合与探究如图,抛物线y=38x2-94x-6与x轴交于点A,C,与y轴交于点B,点P是抛物线上任意一点,连接PB,PC,BC.练习题图(1)求点A,B,C的坐标;(2)当△PBC的面积为24时,求点P的坐标;(3)若点Q是直线x=4上一点,是否存在以点P,Q,B,C为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由.练习1(2022陕西原创卷)在平面直角坐标系中,抛物线L:y=x2+bx+c与x轴交于A、B(3,0)两点,与y轴交于点C(0,-3),抛物线L′与抛物线L关于y轴对称.练习1题图(1)求抛物线L的表达式;(2)抛物线L′的顶点为D,在x轴上是否存在一点P,使得以B、D、P为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.练习2(2022陕西黑白卷白卷)如图,抛物线y=ax2+bx+c(a≠0)与直线y=23x-2分别交x轴、y轴于点A,B,且抛物线与x轴的另一个交点为C(-1,0).(1)求抛物线的表达式;(2)点P是平面内任意一点,在抛物线对称轴上是否存在点Q,使得以A,B,P,Q为顶点的四边形是菱形?若存在,求出点Q的坐标;若不存在,请说明理由.练习2题图答案典例精讲例解:(1)∵C(0,-3)∴抛物线L解析式为y=x2+2x-3,令y=0,即x2+2x-3=0,解得x=1或x=-3,∴A(1,0),B(-3,0);(2)将抛物线L化为顶点式为y=(x+1)2-4∵抛物线M与抛物线L关于y轴对称,∴抛物线M的解析式为y=(x-1)2-4令x=0,则y=-3,∴抛物线M与y轴交点坐标为(0,-3)(3)存在.在Rt△AOD中,∵tan∠BAM=tan∠OAD=ODOA=1,∴OD=OA,∠BAD=45°.如解图,分三种情况讨论:例题解题①①当AE=PE时,∠AEP=90°,∴∠EPA=∠EAP=45°,∵∠DAB=45°,∴此时点P与点B重合,∴点P 的坐标为(-3,0);②当AP =PE 时,∠EPA =90°,∴∠PEA =∠EAP =45°,∴此时点P 与点B 重合,∴点P 的坐标为(-3,0);③当AP =AE 时,∠EAP =90°,设AP 与y 轴交于点F ,则∠OFA =∠OAF =45°,∴OF =OA =1,∴点F 的坐标为(0,-1),设直线AF 的表达式为y =kx +b (k ≠0),将A (1,0),F (0,-1)代入y =kx +b 中,=k +b1=b =1=-1,∴直线AF 的表达式为y =x -1,设点P 的坐标为(x ,x 2+2x -3),∴x 2+2x -3=x -1,解得x 1=1(舍去),x 2=-2,当x =-2时,y =-2-1=-3,∴点P 的坐标为(-2,-3).综上所述,满足条件的点P 的坐标为(-3,0)或(-2,-3).(4)∵A (1,0),B (-3,0)∴AB =4∵点F 在抛物线M 上,点G 在抛物线L 上,且四边形ABFG 是平行四边形∴FG ∥AB ,FG =AB =4∵抛物线M 与抛物线L 关于y 轴对称∴两抛物线上纵坐标相同的点,横坐标关于y 轴对称∴4F G x x +=,x F =-x G分两种情况讨论,当F 、G 在x 轴上方时,即x F =-2时,x G =2当F、G在x轴下方时,即x F=2时,x G=-2将x F=-2代入抛物线M解析式y=x2-2x-3可得y F=5,x G=2,y G=5,此时F(-2,5),G(2,5)将x F=2代入抛物线M解析式y=x2-2x-3可得y F=-3,x G=-2,y G=-3,此时F(2,-3),G(-2,-3)∴综上所述,F(-2,5),G(2,5)或F(2,-3),G(-2,-3).例题解图②课堂练兵练习解:(1)在y=38x2-94x-6中,令y=0,得38x2-94x-6=0,解得x=-2或x=8,令x=0,得y=-6,∴点A(-2,0),点B(0,-6),点C(8,0);(2)当点P在直线BC下方时,如解图①,过点P作PD⊥x轴于点D,交BC于点E,设直线BC的表达式为y=kx+d(k≠0),将点B(0,-6),C(8,0)代入,得=-68+=0,解得=34=-6,∴直线BC的表达式为y=34x-6.设点P (m ,38m 2-94m -6)(0<m <8),则点E (m ,34m -6),∴PE =(34m -6)-(38m 2-94m -6)=-38m 2+3m ,∴S △PBC =12PE ·OC =12(-38m 2+3m )×8=-32m 2+12m ,当S △PBC =24时,即-32m 2+12m =24,解得m =4,此时P (4,-9);当点P 在直线BC 上方时,如解图②,由平移易求得lP 1P 2:y =34x ,联立=34=382-94-6,解得1=4+421=3+32,2=4-422=3-32,此时P 1(4+42,3+32),P 2(4-42,3-32).综上所述,点P 的坐标为(4,-9)或(4+42,3+32)或(4-42,3-32);解图①解图②练习题(3)存在.当以点P ,Q ,B ,C 为顶点的四边形是平行四边形时,分两种情况:①如解图③,当BC 作为平行四边形的一条边时,PQ ∥BC ,且PQ =BC ,∵点Q 的横坐标为4,∴|x p -4|=8,解得x p =-4或x p =12,∴P 1(-4,9),P 2(12,21);②如解图④,当BC 为平行四边形的对角线时,设对角线交于点R ,则BR =CR ,∴点R (4,-3),+2=4,点Q 在直线x =4上,∴点P 的横坐标为4,此时P 3(4,-9).综上所述,存在满足题意的点P ,点P 的坐标为(-4,9)或(12,21)或(4,-9).解图③解图④练习题课后小练练习1解:(1)分别将点B (3,0),C (0,-3)的坐标代入y =x 2+bx +c 中得9+3+=0=-3,解得=-2=-3,∴抛物线L 的表达式为y =x 2-2x -3;(2)存在.∵抛物线L ′与抛物线L 关于y 轴对称,∴抛物线L ′的表达式为y =x 2+2x -3=(x +1)2-4,∴D (-1,-4),设点P 的坐标为(m ,0),∴BD 2=(3+1)2+[0-(-4)]2=32,DP 2=(m +1)2+(0+4)2,则PB 2=(m -3)2,∵△PBD 为等腰三角形,分三种情况讨论:①当PB =BD 时,即(m -3)2=32,解得m =3+42或m =3-42,∴P 1(3+42,0),P 2(3-42,0);②当BD =PD 时,即32=(m +1)2+(0+4)2,解得m =3(舍去)或m =-5,∴P 3(-5,0);③当PB =PD 时,即(m -3)2=(m +1)2+(0+4)2,解得m =-1,∴P 4(-1,0)综上所述,点P 点坐标为(3+42,0),(3-42,0),(-5,0),(-1,0).练习2解:(1)在y =23x -2中,当x =0时,y =-2.∴B (0,-2).令y =23x -2=0,得x =3.∴A (3,0).设抛物线的表达式为y =a (x +1)(x -3),将点B(0,-2)代入,得-2=-3a,解得a=2 3 .∴抛物线的表达式为y=23(x+1)(x-3)=23x2-43x-2;(2)存在.∵A(3,0),B(0,-2),∴AB2=13.由(1)可知抛物线的对称轴为直线x=1,∴设Q(1,m),则AQ2=22+m2,BQ2=1+(m+2)2,要使以A,B,P,Q为顶点的四边形是菱形,则分三种情况讨论:①当AQ=AB,即AQ2=AB2时,四边形ABPQ为菱形,∴22+m2=13,解得m=3或m=-3,∴点Q的坐标为(1,3)或(1,-3);②当AB=BQ,即AB2=BQ2时,四边形ABQP为菱形,∴13=1+(m+2)2,解得m=23-2或m=-23-2,∴点Q的坐标为(1,23-2)或(1,-23-2),③当AQ=BQ,即AQ2=BQ2时,四边形AQBP为菱形,∴22+m2=1+(m+2)2,解得m=-1 4∴点Q的坐标为(1,-1 4 ).综上所述,点Q的坐标为(1,3)或(1,-3)或(1,23-2)或(1,-23-2)或(1,-1 4 ).。
人教版数学中考复习《三角形相关问题》专项练习含答案
三角形相关问题一、综合题1.(•北京)如图,在四边形ABCD中,BD为一条对角线,AD∥BC,AD=2BC,∠ABD=90°,E为AD的中点,连接BE.(1)求证:四边形BCDE为菱形;(2)连接AC,若AC平分∠BAD,BC=1,求AC的长.2.(•北京)在平面直角坐标系xOy中的点P和图形M,给出如下的定义:若在图形M上存在一点Q,使得P、Q两点间的距离小于或等于1,则称P为图形M的关联点.(1)当⊙O的半径为2时,①在点P1(,0),P2(,),P3(,0)中,⊙O的关联点是________.②点P在直线y=﹣x上,若P为⊙O的关联点,求点P的横坐标的取值范围.(2)⊙C的圆心在x轴上,半径为2,直线y=﹣x+1与x轴、y轴交于点A、B.若线段AB上的所有点都是⊙C的关联点,直接写出圆心C的横坐标的取值范围.3.(•河南)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是________,位置关系是________;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.4.(•荆州)如图,在矩形ABCD中,连接对角线AC、BD,将△ABC沿BC方向平移,使点B移到点C,得到△DCE.(1)求证:△ACD≌△EDC;(2)请探究△BDE的形状,并说明理由.5.(•十堰)已知O为直线MN上一点,OP⊥MN,在等腰Rt△ABO中,∠BAO=90°,AC∥OP交OM于C,D为OB的中点,DE⊥DC交MN于E.(1)如图1,若点B在OP上,则①AC________OE(填“<”,“=”或“>”);②线段CA、CO、CD满足的等量关系式是________;(2)将图1中的等腰Rt△ABO绕O点顺时针旋转α(0°<α<45°),如图2,那么(1)中的结论②是否成立?请说明理由;(3)将图1中的等腰Rt△ABO绕O点顺时针旋转α(45°<α<90°),请你在图3中画出图形,并直接写出线段CA、CO、CD满足的等量关系式________.6.(•玉林)如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,E,F分别是AC,BC上的点(点E不与端点A,C重合),且AE=CF,连接EF并取EF的中点O,连接DO并延长至点G,使GO=OD,连接DE,DF,GE,GF.(1)求证:四边形EDFG是正方形;(2)当点E在什么位置时,四边形EDFG的面积最小?并求四边形EDFG面积的最小值.7.(•黄石)在现实生活中,我们会看到许多“标准”的矩形,如我们的课本封面、A4的打印纸等,其实这些矩形的长与宽之比都为:1,我们不妨就把这样的矩形称为“标准矩形”,在“标准矩形”ABCD中,P 为DC边上一定点,且CP=BC,如图所示.(1)如图①,求证:BA=BP;(2)如图②,点Q在DC上,且DQ=CP,若G为BC边上一动点,当△AGQ的周长最小时,求的值;(3)如图③,已知AD=1,在(2)的条件下,连接AG并延长交DC的延长线于点F,连接BF,T为BF 的中点,M、N分别为线段PF与AB上的动点,且始终保持PM=BN,请证明:△MNT的面积S为定值,并求出这个定值.8.(•荆门)已知:如图,在Rt△ACB中,∠ACB=90°,点D是AB的中点,点E是CD的中点,过点C作CF∥AB交AE的延长线于点F.(1)求证:△ADE≌△FCE;(2)若∠DCF=120°,DE=2,求BC的长.9.(•海南)如图,四边形ABCD是边长为1的正方形,点E在AD边上运动,且不与点A和点D重合,连结CE,过点C作CF⊥CE交AB的延长线于点F,EF交BC于点G.(1)求证:△CDE≌△CBF;(2)当DE= 时,求CG的长;(3)连结AG,在点E运动过程中,四边形CEAG能否为平行四边形?若能,求出此时DE的长;若不能,说明理由.10.(•大连)如图1,四边形ABCD的对角线AC,BD相交于点O,OB=OD,OC=OA+AB,AD=m,BC=n,∠ABD+∠ADB=∠ACB.(1)填空:∠BAD与∠ACB的数量关系为________;(2)求的值;(3)将△ACD沿CD翻折,得到△A′CD(如图2),连接BA′,与CD相交于点P.若CD= ,求PC 的长.11.(•呼和浩特)如图,等腰三角形ABC中,BD,CE分别是两腰上的中线.(1)求证:BD=CE;(2)设BD与CE相交于点O,点M,N分别为线段BO和CO的中点,当△ABC的重心到顶点A的距离与底边长相等时,判断四边形DEMN的形状,无需说明理由.12.(•张家界)如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.(1)求证:△AGE≌△BGF;(2)试判断四边形AFBE的形状,并说明理由.13.(•北京)在等腰直角△ABC中,∠ACB=90°,P是线段BC上一动点(与点B、C不重合),连接AP,延长BC至点Q,使得CQ=CP,过点Q作QH⊥AP于点H,交AB于点M.(1)若∠PAC=α,求∠AMQ的大小(用含α的式子表示).(2)用等式表示线段MB与PQ之间的数量关系,并证明.14.(•百色)已知反比例函数y= (k≠0)的图象经过点B(3,2),点B与点C关于原点O对称,BA⊥x 轴于点A,CD⊥x轴于点D.(1)求这个反比函数的解析式;(2)求△ACD的面积.15.(•百色)矩形ABCD中,E、F分别是AD、BC的中点,CE、AF分别交BD于G、H两点.求证:(1)四边形AFCE是平行四边形;(2)证明:EG=FH.16.(•河池)解答题(1)如图1,在正方形ABCD中,点E,F分别在BC,CD上,AE⊥BF于点M,求证:AE=BF;(2)如图2,将(1)中的正方形ABCD改为矩形ABCD,AB=2,BC=3,AE⊥BF于点M,探究AE与BF 的数量关系,并证明你的结论.17.(•东营)如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.18.(•青岛)已知:如图,在菱形ABCD中,点E,O,F分别为AB,AC,AD的中点,连接CE,CF,OE,OF.(1)求证:△BCE≌△DCF;(2)当AB与BC满足什么关系时,四边形AEOF是正方形?请说明理由.19.(•威海)如图,四边形ABCD为一个矩形纸片,AB=3,BC=2,动点P自D点出发沿DC方向运动至C 点后停止,△ADP以直线AP为轴翻折,点D落在点D1的位置,设DP=x,△AD1P与原纸片重叠部分的面积为y.(1)当x为何值时,直线AD1过点C?(2)当x为何值时,直线AD1过BC的中点E?(3)求出y与x的函数表达式.20.(•达州)如图,在△ABC中,点O是边AC上一个动点,过点O作直线EF∥BC分别交∠ACB、外角∠ACD 的平分线于点E、F.(1)若CE=8,CF=6,求OC的长;(2)连接AE、AF.问:当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.21.(•达州)小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P1(x1,y1),P2(x2,y2),可通过构造直角三角形利用图1得到结论:P1P2= 他还利用图2证明了线段P1P2的中点P(x,y)P的坐标公式:x= ,y= .(1)请你帮小明写出中点坐标公式的证明过程;(2)①已知点M(2,﹣1),N(﹣3,5),则线段MN长度为________;②直接写出以点A(2,2),B(﹣2,0),C(3,﹣1),D为顶点的平行四边形顶点D的坐标:________;(3)如图3,点P(2,n)在函数y= x(x≥0)的图象OL与x轴正半轴夹角的平分线上,请在OL、x轴上分别找出点E、F,使△PEF的周长最小,简要叙述作图方法,并求出周长的最小值.22.(•常德)如图,直角△ABC中,∠BAC=90°,D在BC上,连接AD,作BF⊥AD分别交AD于E,AC于F.(1)如图1,若BD=BA,求证:△ABE≌△DBE;(2)如图2,若BD=4DC,取AB的中点G,连接CG交AD于M,求证:①GM=2MC;②AG2=AF•AC.23.(•扬州)我们规定:三角形任意两边的“极化值”等于第三边上的中线和这边一半的平方差.如图1,在△ABC中,AO是BC边上的中线,AB与AC的“极化值”就等于AO2﹣BO2的值,可记为AB△AC=AO2﹣BO2.(1)在图1中,若∠BAC=90°,AB=8,AC=6,AO是BC边上的中线,则AB△AC=________,OC△OA=________;(2)如图2,在△ABC中,AB=AC=4,∠BAC=120°,求AB△AC、BA△BC的值;(3)如图3,在△ABC中,AB=AC,AO是BC边上的中线,点N在AO上,且ON= AO.已知AB△AC=14,BN△BA=10,求△ABC的面积.24.(•赤峰)△OPA和△OQB分别是以OP、OQ为直角边的等腰直角三角形,点C、D、E分别是OA、OB、AB的中点.(1)当∠AOB=90°时如图1,连接PE、QE,直接写出EP与EQ的大小关系;(2)将△OQB绕点O逆时针方向旋转,当∠AOB是锐角时如图2,(1)中的结论是否成立?若成立,请给出证明;若不成立,请加以说明.(3)仍将△OQB绕点O旋转,当∠AOB为钝角时,延长PC、QD交于点G,使△ABG为等边三角形如图3,求∠AOB的度数.答案解析部分一、综合题1.【答案】(1)证明:∵AD=2BC,E为AD的中点,∴DE=BC,∵AD∥BC,∴四边形BCDE是平行四边形,∵∠ABD=90°,AE=DE,∴BE=DE,∴四边形BCDE是菱形(2)解:连接AC.∵AD∥BC,AC平分∠BAD,∴∠BAC=∠DAC=∠BCA,∴AB=BC=1,∵AD=2BC=2,∴sin∠ADB= ,∴∠ADB=30°,∴∠DAC=30°,∠ADC=60°,在Rt△ACD中,∵AD=2,∴CD=1,AC= .【解析】【分析】(1)由DE=BC,DE∥BC,推出四边形BCDE是平行四边形,再证明BE=DE即可解决问题;(2)在Rt△只要证明∠ADC=60°,AD=2即可解决问题;2.【答案】(1)解:①P2,P3②根据定义分析,可得当最小y=﹣x上的点P到原点的距离在1到3之间时符合题意,∴设P(x,﹣x),当OP=1时,由距离公式得,OP= =1,∴x= ,当OP=3时,OP= =3,解得:x=± ;∴点P的横坐标的取值范围为:﹣≤≤﹣,或≤x≤(2)解:∵直线y=﹣x+1与x轴、y轴交于点A、B,∴A(1,0),B(0,1),如图1,当圆过点A时,此时,CA=3,∴C(﹣2,0),如图2,当直线AB与小圆相切时,切点为D,∴CD=1,∵直线AB的解析式为y=﹣x+1,∴直线AB与x轴的夹角=45°,∴AC= ,∴C(1﹣,0),∴圆心C的横坐标的取值范围为:﹣2≤x C≤1﹣;如图3,当圆过点A,则AC=1,∴C(2,0),如图4,当圆过点B,连接BC,此时,BC=3,∴OC= =2 ,∴C(2 ,0).∴圆心C的横坐标的取值范围为:2≤x C≤2 ;综上所述;圆心C的横坐标的取值范围为:﹣2≤x C≤1﹣或2≤x C≤2【解析】【解答】(1)①∵点P1(,0),P2(,),P3(,0),∴OP1= ,OP2=1,OP3= ,∴P1与⊙O的最小距离为,P2与⊙O的最小距离为1,OP3与⊙O的最小距离为,∴⊙O,⊙O的关联点是P2,P3;故答案为:P2,P3;【分析】(1)①根据点P1(,0),P2(,),P3(,0),求得P1= ,P2=1,OP3= ,于是得到结论;②根据定义分析,可得当最小y=﹣x上的点P到原点的距离在1到3之间时符合题意,设P(x,﹣x),根据两点间的距离公式得到即可得到结论;(2根据已知条件得到A(1,0),B(0,1),如图1,当圆过点A时,得到C(﹣2,0),如图2,当直线AB与小圆相切时,切点为D,得到C(1﹣,0),于是得到结论;如图3,当圆过点A,则AC=1,得到C(2,0),如图4,当圆过点B,连接BC,根据勾股定理得到C(2 ,0),于是得到结论.3.【答案】(1)PM=PN;PM⊥PN(2)解:由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位线得,PN= BD,PM= CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形(3)解:如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2 ,在Rt△ABC中,AB=AC=10,AN=5 ,∴MN最大=2 +5 =7 ,∴S△PMN最大= PM2= × MN2= ×(7 )2= .【解析】【解答】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN= BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM= CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN,【分析】(1)利用三角形的中位线得出PM= CE,PN= BD,进而判断出BD=CE,即可得出结论,另为利用三角形的中位线得出平行线即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM= BD,PN= BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.4.【答案】(1)证明:∵四边形ABCD是矩形,∴AB=DC,AC=BD,AD=BC,∠ADC=∠ABC=90°,由平移的性质得:DE=AC,CE=BC,∠DCE=∠ABC=90°,DC=AB,∴AD=EC,在△ACD和△EDC中,,∴△ACD≌△EDC(SAS)(2)解:△BDE是等腰三角形;理由如下:∵AC=BD,DE=AC,∴BD=DE,∴△BDE是等腰三角形【解析】【分析】(1)由矩形的性质得出AB=DC,AC=BD,AD=BC,∠ADC=∠ABC=90°,由平移的性质得:DE=AC,CE=BC,∠DCE=∠ABC=90°,DC=AB,得出AD=EC,由SAS即可得出结论;(2)由AC=BD,DE=AC,得出BD=DE即可.5.【答案】(1)=;AC2+CO2=CD2(2)如图2,(1)中的结论②不成立,理由是:连接AD,延长CD交OP于F,连接EF,∵AB=AO,D为OB的中点,∴AD⊥OB,∴∠ADO=90°,∵∠CDE=90°,∴∠ADO=∠CDE,∴∠ADO﹣∠CDO=∠CDE﹣∠CDO,即∠ADC=∠EDO,∵∠ADO=∠ACO=90°,∴∠ADO+∠ACO=180°,∴A、D、O、C四点共圆,∴∠ACD=∠AOB,同理得:∠EFO=∠EDO,∴∠EFO=∠AOC,∵△ABO是等腰直角三角形,∴∠AOB=45°,∴∠DCO=45°,∴△COF和△CDE是等腰直角三角形,∴OC=OF,∵∠ACO=∠EOF=90°,∴△ACO≌△EOF,∴OE=AC,AO=EF,∴AC2+OC2=FO2+OE2=EF2,Rt△DEF中,EF>DE=DC,∴AC2+OC2>DC2,所以(1)中的结论②不成立(3)OC﹣AC= CD【解析】【解答】解:(1)①AC=OE,理由:如图1,∵在等腰Rt△ABO中,∠BAO=90°,∴∠ABO=∠AOB=45°,∵OP⊥MN,∴∠COP=90°,∴∠AOC=45°,∵AC∥OP,∴∠CAO=∠AOB=45°,∠ACO=∠POE=90°,∴AC=OC,连接AD,∵BD=OD,∴AD=OD,AD⊥OB,∴AD∥OC,∴四边形ADOC是正方形,∴∠DCO=45°,∴AC=OD,∴∠DEO=45°,∴CD=DE,∴OC=OE,∴AC=OE;②在Rt△CDO中,∵CD2=OC2+OD2,∴CD2=AC2+OC2;故答案为:AC2+CO2=CD2;(3.)如图3,结论:OC﹣CA= CD,理由是:连接AD,则AD=OD,同理:∠ADC=∠EDO,∵∠CAB+∠CAO=∠CAO+∠AOC=90°,∴∠CAB=∠AOC,∵∠DAB=∠AOD=45°,∴∠DAB﹣∠CAB=∠AOD﹣∠AOC,即∠DAC=∠DOE,∴△ACD≌△OED,∴AC=OE,CD=DE,∴△CDE是等腰直角三角形,∴CE2=2CD2,∴(OC﹣OE)2=(OC﹣AC)2=2CD2,∴OC﹣AC= CD,故答案为:OC﹣AC= CD.【分析】(1)①如图1,证明AC=OC和OC=OE可得结论;②根据勾股定理可得:AC2+CO2=CD2;(2)如图2,(1)中的结论②不成立,作辅助线,构建全等三角形,证明A、D、O、C四点共圆,得∠ACD=∠AOB,同理得:∠EFO=∠EDO,再证明△ACO≌△EOF,得OE=AC,AO=EF,根据勾股定理得:AC2+OC2=FO2+OE2=EF2,由直角三角形中最长边为斜边可得结论;(3)如图3,连接AD,则AD=OD证明△ACD≌△OED,根据△CDE是等腰直角三角形,得CE2=2CD2,等量代换可得结论(OC﹣OE)2=(OC ﹣AC)2=2CD2,开方后是:OC﹣AC= CD.6.【答案】(1)证明:连接CD,如图1所示.∵△ABC为等腰直角三角形,∠ACB=90°,D是AB的中点,∴∠A=∠DCF=45°,AD=CD.在△ADE和△CDF中,,∴△ADE≌△CDF(SAS),∴DE=DF,∠ADE=∠CDF.∵∠ADE+∠EDC=90°,∴∠EDC+∠CDF=∠EDF=90°,∴△EDF为等腰直角三角形.∵O为EF的中点,GO=OD,∴GD⊥EF,且GD=2OD=EF,∴四边形EDFG是正方形(2)解:过点D作DE′⊥AC于E′,如图2所示.∵△ABC为等腰直角三角形,∠ACB=90°,AC=BC=4,∴DE′= BC=2,AB=4 ,点E′为AC的中点,∴2≤DE<2 (点E与点E′重合时取等号).∴4≤S四边形EDFG=DE2<8.∴当点E为线段AC的中点时,四边形EDFG的面积最小,该最小值为4.【解析】【分析】(1)连接CD,根据等腰直角三角形的性质可得出∠A=∠DCF=45°、AD=CD,结合AE=CF 可证出△ADE≌△CDF(SAS),根据全等三角形的性质可得出DE=DF、ADE=∠CDF,通过角的计算可得出∠EDF=90°,再根据O为EF的中点、GO=OD,即可得出GD⊥EF,且GD=2OD=EF,由此即可证出四边形EDFG是正方形;(2)过点D作DE′⊥AC于E′,根据等腰直角三角形的性质可得出DE′的长度,从而得出2≤DE <2 ,再根据正方形的面积公式即可得出四边形EDFG的面积的最小值.7.【答案】(1)证明:如图①中,设AD=BC=a,则AB=CD= a.∵四边形ABCD是矩形,∴∠C=90°,∵PC=AD=BC=a,∴PB= = a,∴BA=BP(2)解:如图②中,作Q关于BC的对称点Q′,连接AQ′交BC于G,此时△AQG的周长最小.设AD=BC=QD=a,则AB=CD= a,∴CQ=CQ′= a﹣a,∵CQ′//AB,∴= = =(3)证明:如图③中,作TH//AB交NM于H,交BC于K.由(2)可知,AD=BC=1,AB=CD= ,DP=CF= ﹣1,∵S△MNT= •TH•CK+ •TH•BK= HT•(KC+KB)= HT•BC= HT,∵TH//AB//FM,TF=TB,∴HM=HN,∴HT= (FM+BN),∵BN=PM,∴HT= (FM+PM)= PF= •(1+ ﹣1)= ,∴S△MNT= HT= =定值【解析】【分析】(1)如图①中,设AD=BC=a,则AB=CD= a.通过计算得出AB=BP= a,由此即可证明;(2)如图②中,作Q关于BC的对称点Q′,连接AQ′交BC于G,此时△AQG的周长最小.设AD=BC=QD=a,则AB=CD= a,可得CQ=CQ′= a﹣a,由CQ′//AB,推出= = = ;(3)如图③中,作TH//AB交NM于H,交BC于K.由S△MNT= •TH•CK+ •TH•BK= HT•(KC+KB)= HT•BC= HT,利用梯形的中位线定理求出HT即可解决问题;8.【答案】(1)证明:∵点E是CD的中点,∴DE=CE.∵AB∥CF,∴∠BAF=∠AFC.在△ADE与△FCE中,∵,∴△ADE≌△FCE(AAS)(2)解:由(1)得,CD=2DE,∵DE=2,∴CD=4.∵点D为AB的中点,∠ACB=90°,∴AB=2CD=8,AD=CD= AB.∵AB∥CF,∴∠BDC=180°﹣∠DCF=180°﹣120°=60°,∴∠DAC=∠ACD= ∠BDC= ×60°=30°,∴BC= AB= ×8=4【解析】【分析】(1)先根据点E是CD的中点得出DE=CE,再由AB∥CF可知∠BAF=∠AFC,根据AAS 定理可得出△ADE≌△FCE;(2)根据直角三角形的性质可得出AD=CD= AB,再由AB∥CF可知∠BDC=180°﹣∠DCF=180°﹣120°=60°,由三角形外角的性质可得出∠DAC=∠ACD= ∠BDC=30°,进而可得出结论.9.【答案】(1)证明:如图,在正方形ABCD中,DC=BC,∠D=∠ABC=∠DCB=90°,∴∠CBF=180°﹣∠ABC=90°,∠1+∠2=∠DCB=90°,∵CF⊥CE,∴∠ECF=90°,∴∠3+∠2=∠ECF=90°,∴∠1=∠3,在△CDE和△CBF中,,∴△CDE≌△CBF(2)解:在正方形ABCD中,AD∥BC,∴△GBF∽△EAF,∴,由(1)知,△CDE≌△CBF,∴BF=DE= ,∵正方形的边长为1,∴AF=AB+BF= ,AE=AD﹣DE= ,∴,∴BG= ,∴CG=BC﹣BG=(3)解:不能,理由:若四边形CEAG是平行四边形,则必须满足AE∥CG,AE=CG,∴AD﹣AE=BC﹣CG,∴DE=BG,由(1)知,△CDE≌△ECF,∴DE=BF,CE=CF,∴△GBF和△ECF是等腰直角三角形,∴∠GFB=45°,∠CFE=45°,∴∠CFA=∠GFB+∠CFE=90°,此时点F与点B重合,点D与点E重合,与题目条件不符,∴点E在运动过程中,四边形CEAG不能是平行四边形.【解析】【分析】(1)先判断出∠CBF=90°,进而判断出∠1=∠3,即可得出结论;(2)先求出AF,AE,再判断出△GBF∽△EAF,可求出BG,即可得出结论;(3)假设是平行四边形,先判断出DE=BG,进而判断出△GBF和△ECF是等腰直角三角形,即可得出∠GFB=∠CFE=45°,即可得出结论.10.【答案】(1)∠BAD+∠ACB=180°(2)解:如图1中,作DE∥AB交AC于E.∴∠DEA=∠BAE,∠OBA=∠ODE,∵OB=OD,∴△OAB≌△OED,∴AB=DE,OA=OE,设AB=DE=CE=CE=x,OA=OE=y,∵∠EDA+∠DAB=180°,∠BAD+∠ACB=180°,∴∠EDA=∠ACB,∵∠DEA=∠CAB,∴△EAD∽△ABC,∴= = = ,∴= ,∴4y2+2xy﹣x2=0,∴()2+ ﹣1=0,∴= (负根已经舍弃),∴= .(3)解:如图2中,作DE∥AB交AC于E.由(1)可知,DE=CE,∠DCA=∠DCA′,∴∠EDC=∠ECD=∠DCA′,∴DE∥CA′∥AB,∴∠ABC+∠A′CB=180°,∵△EAD∽△ACB,∴∠DAE=∠ABC=∠DA′C,∴∠DA′C+∠A′CB=180°,∴A′D∥BC,∴△PA′D∽△PBC,∴= = ,∴= ,即=∵CD= ,∴PC=1.【解析】【解答】解:(1.)如图1中,在△ABD中,∵∠BAD+∠ABD+∠ADB=180°,又∵∠ABD+∠ADB=∠ACB,∴∠BAD+∠ACB=180°,故答案为∠BAD+∠ACB=180°.【分析】(1)在△ABD中,根据三角形的内角和定理即可得出结论:∠BAD+∠ACB=180°;(2)如图1中,作DE∥AB交AC于E.由△OAB≌△OED,可得AB=DE,OA=OE,设AB=DE=CE=CE=x,OA=OE=y,由△EAD∽△ABC,推出= = = ,可得= ,可得4y2+2xy﹣x2=0,即()2+﹣1=0,求出的值即可解决问题;(3)如图2中,作DE∥AB交AC于E.想办法证明△PA′D∽△PBC,可得= = ,可得= ,即= ,由此即可解决问题;11.【答案】(1)解:由题意得,AB=AC,∵BD,CE分别是两腰上的中线,∴AD= AC,AE= AB,∴AD=AE,在△ABD和△ACE中,∴△ABD≌△ACE(ASA).∴BD=CE;(2)四边形DEMN是正方形,证明:∵E、D分别是AB、AC的中点,∴AE= AB,AD= AC,ED是△ABC的中位线,∴ED∥BC,ED= BC,∵点M、N分别为线段BO和CO中点,∴OM=BM,ON=CN,MN是△OBC的中位线,∴MN∥BC,MN= BC,∴ED∥MN,ED=MN,∴四边形EDNM是平行四边形,由(1)知BD=CE,又∵OE=ON,OD=OM,OM=BM,ON=CN,∴DM=EN,∴四边形EDNM是矩形,在△BDC与△CEB中,,∴△BDC≌△CEB,∴∠BCE=∠CBD,∴OB=OC,∵△ABC的重心到顶点A的距离与底边长相等,∴O到BC的距离= BC,∴BD⊥CE,∴四边形DEMN是正方形.【解析】【分析】(1)根据已知条件得到AD=AE,根据全等三角形的性质即可得到结论;(2)根据三角形中位线的性质得到ED∥BC,ED= BC,MN∥BC,MN= BC,等量代换得到ED∥MN,ED=MN,推出四边形EDNM是平行四边形,(1)知BD=CE,求得DM=EN,得到四边形EDNM是矩形,根据全等三角形的性质得到OB=OC,由三角形的重心的性质得到O到BC的距离= BC,根据直角三角形的判定得到BD⊥CE,于是得到结论.12.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEG=∠BFG,∵EF垂直平分AB,∴AG=BG,在△AGEH和△BGF中,,∴△AGE≌△BGF(AAS)(2)解:四边形AFBE是菱形,理由如下:∵△AGE≌△BGF,∴AE=BF,∵AD∥BC,∴四边形AFBE是平行四边形,又∵EF⊥AB,∴四边形AFBE是菱形【解析】【分析】(1)由平行四边形的性质得出AD∥BC,得出∠AEG=∠BFG,由AAS证明△AGE≌△BGF 即可;(2)由全等三角形的性质得出AE=BF,由AD∥BC,证出四边形AFBE是平行四边形,再根据EF⊥AB,即可得出结论.13.【答案】(1)解:∠AMQ=45°+α;理由如下:∵∠PAC=α,△ACB是等腰直角三角形,∴∠BAC=∠B=45°,∠PAB=45°﹣α,∵QH⊥AP,∴∠AHM=90°,∴∠AMQ=180°﹣∠AHM﹣∠PAB=45°+α(2)解:PQ= MB;理由如下:连接AQ,作ME⊥QB,如图所示:∵AC⊥QP,CQ=CP,∴∠QAC=∠PAC=α,∴∠QAM=45°+α=∠AMQ,∴AP=AQ=QM,在△APC和△QME中,,∴△APC≌△QME(AAS),∴PC=ME,∴△AEB是等腰直角三角形,∴PQ= MB,∴PQ= MB.【解析】【分析】(1)由等腰直角三角形的性质得出∠BAC=∠B=45°,∠PAB=45°﹣α,由直角三角形的性质即可得出结论;(2)连接AQ,作ME⊥QB,由AAS证明△APC≌△QME,得出PC=ME,△AEB是等腰直角三角形,由等腰直角三角形的性质即可得出结论.14.【答案】(1)解:将B点坐标代入函数解析式,得=2,解得k=6,∴反比例函数的解析式为y= ;(2)解:由B(3,2),点B与点C关于原点O对称,得C(﹣3,﹣2).由BA⊥x轴于点A,CD⊥x轴于点D,得A(3,0),D(﹣3,0).∴S△ACD= AD•CD= × [3﹣(﹣3)]×|﹣2|=6.【解析】【分析】(1)根据待定系数法,可得函数解析式;(2)根据三角形的面积公式,可得答案.15.【答案】(1)证明:∵四边形ABCD是矩形,∴AD//BC,AD=BC,∵E、F分别是AD、BC的中点,∴AE= AD,CF= BC,∴AE CF,∴四边形AFCE是平行四边形;(2)证明:∵四边形AFCE是平行四边形,∴CE//AF,∴∠DGE=∠AHD=∠BHF,∵AB//CD,∴∠EDG=∠FBH,在△DEG和△BFH中,∴△DEG≌△BFH(AAS),∴EG=FH.【解析】【分析】(1)根据一组对边平行且相等的四边形是平行四边形证明即可;(2)可证明EG和FH所在的△DEG、△BFH全等即可.16.【答案】(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠C,AB=BC.∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF.在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:AB= BC,理由:∵四边形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,∴= ,∴AE= BF.【解析】【分析】(1)根据正方形的性质,可得∠ABC与∠C的关系,AB与BC的关系,根据两直线垂直,可得∠AMB的度数,根据直角三角形锐角的关系,可得∠ABM与∠BAM的关系,根据同角的余角相等,可得∠BAM与∠CBF的关系,根据ASA,可得△ABE≌△BCF,根据全等三角形的性质,可得答案;(2)根据矩形的性质得到∠ABC=∠C,由余角的性质得到∠BAM=∠CBF,根据相似三角形的性质即可得到结论.17.【答案】(1)证明:∵△ABC是等腰三角形,且∠BAC=120°,∴∠ABD=∠ACB=30°,∴∠ABD=∠ADE=30°,∵∠ADC=∠ADE+∠EDC=∠ABD+∠DAB,∴∠EDC=∠DAB,∴△ABD∽△DCE;(2)解:如图1,∵AB=AC=2,∠BAC=120°,过A作AF⊥BC于F,∴∠AFB=90°,∵AB=2,∠ABF=30°,∴AF= AB=1,∴BF= ,∴BC=2BF=2 ,∵BD=x,AE=y则DC=2 ﹣x,EC=2﹣y,∵△ABD∽△DCE,∴,∴,化简得:y= x+2(0<x<2 );(3)解:当AD=DE时,如图2,由(1)可知:此时△ABD∽△DCE,则AB=CD,即2=2 ﹣x,x=2 ﹣2,代入y= x+2,解得:y=4﹣2 ,即AE=4﹣2 ,当AE=ED时,如图3,∠EAD=∠EDA=30°,∠AED=120°,∴∠DEC=60°,∠EDC=90°,则ED= EC,即y= (2﹣y),解得:y= ,即AE= ,当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在,∴当△ADE是等腰三角形时,AE=4﹣2 或.【解析】【分析】(1)根据两角相等证明:△ABD∽△DCE;(2)如图1,作高AF,根据直角三角形30°的性质求AF的长,根据勾股定理求BF的长,则可得BC的长,根据(1)中的相似列比例式可得函数关系式,并确定取值;(3)分三种情况进行讨论:①当AD=DE时,如图2,由(1)可知:此时△ABD∽△DCE,则AB=CD,即2=2 ﹣x;②当AE=ED时,如图3,则ED= EC,即y= (2﹣y);③当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在.18.【答案】(1)证明:∵四边形ABCD是菱形,∴∠B=∠D,AB=BC=DC=AD,∵点E,O,F分别为AB,AC,AD的中点,∴AE=BE=DF=AF,OF= DC,OE= BC,OE∥BC,在△BCE和△DCF中,,∴△BCE≌△DCF(SAS);(2)解:当AB⊥BC时,四边形AEOF是正方形,理由如下:由(1)得:AE=OE=OF=AF,∴四边形AEOF是菱形,∵AB⊥BC,OE∥BC,∴OE⊥AB,∴∠AEO=90°,∴四边形AEOF是正方形.【解析】【分析】(1)由菱形的性质得出∠B=∠D,AB=BC=DC=AD,由已知和三角形中位线定理证出AE=BE=DF=AF,OF= DC,OE= BC,OE∥BC,由SAS证明△BCE≌△DCF即可;(2)由(1)得:AE=OE=OF=AF,证出四边形AEOF是菱形,再证出∠AEO=90°,四边形AEOF是正方形.19.【答案】(1)解:如图1,∵由题意得:△ADP≌△AD1P,∴AD=AD1=2,PD=PD1=x,∠D=∠AD1P=90°,∵直线AD1过C,∴PD1⊥AC,在Rt△ABC中,AC= = ,CD1= ﹣2,在Rt△PCD1中,PC2=PD12+CD12,即(3﹣x)2=x2+(﹣2)2,解得:x= ,∴当x= 时,直线AD1过点C(2)解:如图2,连接PE,∵E为BC的中点,∴BE=CE=1,在Rt△ABE中,AE= = ,∵AD1=AD=2,PD=PD1=x,∴D1E= ﹣2,PC=3﹣x,在Rt△PD1E和Rt△PCE中,x2+(﹣2)2=(3﹣x)2+12,解得:x= ,∴当x= 时,直线AD1过BC的中点E;(3)解:如图3,当0<x≤2时,y=x,如图4,当2<x≤3时,点D1在矩形ABCD的外部,PD1交AB于F,∵AB∥CD,∴∠1=∠2,∵∠1=∠3(根据折叠),∴∠2=∠3,∴AF=PF,作PG⊥AB于G,设PF=AF=a,由题意得:AG=DP=x,FG=x﹣a,在Rt△PFG中,由勾股定理得:(x﹣a)2+22=a2,解得:a= ,所以y= = ,综合上述,当0<x≤2时,y=x;当2<x≤3时,y=【解析】【分析】(1)根据折叠得出AD=AD1=2,PD=PD1=x,∠D=∠AD1P=90°,在Rt△ABC中,根据勾股定理求出AC,在Rt△PCD1中,根据勾股定理得出方程,求出即可;(2)连接PE,求出BE=CE=1,在Rt△ABE中,根据勾股定理求出AE,求出AD1=AD=2,PD=PD1=x,D1E= ﹣2,PC=3﹣x,在Rt△PD1E 和Rt△PCE中,根据勾股定理得出方程,求出即可;(3)分为两种情况:当0<x≤2时,y=x;当2<x≤3时,点D1在矩形ABCD的外部,PD1交AB于F,求出AF=PF,作PG⊥AB于G,设PF=AF=a,在Rt△PFG中,由勾股定理得出方程(x﹣a)2+22=a2,求出a即可.20.【答案】(1)解:∵EF交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠OCE=∠BCE,∠OCF=∠DCF,∵MN∥BC,∴∠OEC=∠BCE,∠OFC=∠DCF,∴∠OEC=∠OCE,∠OFC=∠OCF,∴OE=OC,OF=OC,∴OE=OF;∵∠OCE+∠BCE+∠OCF+∠DCF=180°,∴∠ECF=90°,在Rt△CEF中,由勾股定理得:EF= =10,∴OC=OE= EF=5(2)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由如下:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.【解析】【分析】(1)根据平行线的性质以及角平分线的性质得出∠OEC=∠OCE,∠OFC=∠OCF,证出OE=OC=OF,∠ECF=90°,由勾股定理求出EF,即可得出答案;(2)根据平行四边形的判定以及矩形的判定得出即可.21.【答案】(1)证明:∵P1(x1,y1),P2(x2,y2),∴Q1Q2=OQ2﹣OQ1=x2﹣x1,∴Q1Q= ,∴OQ=OQ1+Q1Q=x1+ = ,∵PQ为梯形P1Q1Q2P2的中位线,∴PQ= = ,即线段P1P2的中点P(x,y)P的坐标公式为x= ,y=(2);(﹣3,3)或(7,1)或(﹣1,﹣3)(3)解:如图,设P关于直线OL的对称点为M,关于x轴的对称点为N,连接PM交直线OL于点R,连接PN交x轴于点S,连接MN交直线OL于点E,交x轴于点F,由对称性可知EP=EM,FP=FN,∴PE+PF+EF=ME+EF+NF=MN,∴此时△PEF的周长即为MN的长,为最小,设R(x,x),由题意可知OR=OS=2,PR=PS=n,∴=2,解得x=﹣(舍去)或x= ,∴R(,),∴=n,解得n=1,∴P(2,1),∴N(2,﹣1),设M(x,y),则= ,= ,解得x= ,y= ,∴M(,),∴MN= = ,即△PEF的周长的最小值为【解析】【解答】(2)①∵M(2,﹣1),N(﹣3,5),∴MN= = ,故答案为:;②∵A(2,2),B(﹣2,0),C(3,﹣1),∴当AB为平行四边形的对角线时,其对称中心坐标为(0,1),设D(x,y),则x+3=0,y+(﹣1)=2,解得x=﹣3,y=3,∴此时D点坐标为(﹣3,3),当AC为对角线时,同理可求得D点坐标为(7,1),当BC为对角线时,同理可求得D点坐标为(﹣1,﹣3),综上可知D点坐标为(﹣3,3)或(7,1)或(﹣1,﹣3),故答案为:(﹣3,3)或(7,1)或(﹣1,﹣3);【分析】(1)用P1、P2的坐标分别表示出OQ和PQ的长即可证得结论;(2)①直接利用两点间距离公式可求得MN的长;②分AB、AC、BC为对角线,可求得其中心的坐标,再利用中点坐标公式可求得D点坐标;(3)设P关于直线OL的对称点为M,关于x轴的对称点为N,连接PM交直线OL于点R,连接PN交x轴于点S,则可知OR=OS=2,利用两点间距离公式可求得R的坐标,再由PR=PS=n,可求得n的值,可求得P点坐标,利用中点坐标公式可求得M点坐标,由对称性可求得N点坐标,连接MN交直线OL于点E,交x轴于点S,此时EP=EM,FP=FN,此时满足△PEF的周长最小,利用两点间距离公式可求得其周长的最小值.22.【答案】(1)证明:在Rt△ABE和Rt△DBE中,,∴△ABE≌△DBE(2)证明:①过G作GH∥AD交BC于H,∵AG=BG,∴BH=DH,∵BD=4DC,设DC=1,BD=4,∴BH=DH=2,∵GH∥AD,∴= = ,∴GM=2MC;②过C作CN⊥AC交AD的延长线于N,则CN∥AG,∴△AGM∽△NCM,∴= ,由①知GM=2MC,∴2NC=AG,∵∠BAC=∠AEB=90°,∴∠ABF=∠CAN=90°﹣∠BAE,∴△ACN∽△BAF,∴= ,∵AB=2AG,∴= ,∴2CN•AG=AF•AC,∴AG2=AF•AC.【解析】【分析】(1)根据全等三角形的判定定理即可得到结论;(2)①过G作GH∥AD交BC于H,由AG=BG,得到BH=DH,根据已知条件设DC=1,BD=4,得到BH=DH=2,根据平行线分线段成比例定理得到= = ,求得GM=2MC;②过C作CN⊥AD交AD的延长线于N,则CN∥AG,根据相似三角形的性质得到= ,由①知GM=2MC,得到2NC=AG,根据相似三角形的性质得到= ,等量代换得到= ,于是得到结论.23.【答案】(1)0;7(2)解:①如图2,取BC的中点O,连接AO,∵AB=AC,∴AO⊥BC,在△ABC中,AB=AC,∠BAC=120°,∴∠ABC=30°,在Rt△AOB中,AB=4,∠ABC=30°,∴AO=2,OB=2 ,∴AB△AC=AO2﹣BO2=4﹣12=﹣8,②取AC的中点D,连接BD,∴AD=CD= AC=2,过点B作BE⊥AC交CA的延长线于E,在Rt△ABE中,∠BAE=180°﹣∠BAC=60°,∴∠ABE=30°,∵AB=4,∴AE=2,BE=2 ,∴DE=AD+AE=4,在Rt△BED中,根据勾股定理得,BD= = =2 ,∴BA△BC=BD2﹣CD2=24;(3)解:如图3,设ON=x,OB=OC=y,∴BC=2y,OA=3x,∵AB△AC=14,∴OA2﹣OB2=14,∴9x2﹣y2=14①,取AN的中点D,连接BD,∴AD=DB= AN= × OA=ON=x,∴OD=ON+DN=2x,在Rt△BOD中,BD2=OB2+OD2=y2+4x2,∵BN△BA=10,∴BD2﹣DN2=10,∴y2+4x2﹣x2=10,∴3x2+y2=10②联立①②得,或(舍),∴BC=4,OA=3 ,∴S△ABC= BC×AO=6 .【解析】【解答】解:①∵∠BAC=90°,AB=8,AC=6,∴BC=10,∵点O是BC的中点,∴OA=OB=OC= BC=5,∴AB△AC=AO2﹣BO2=25﹣25=0,②如图1,取AC的中点D,连接OD,∴CD= AC=3,∵OA=OC=5,∴OD⊥AC,在Rt△COD中,OD= =4,∴OC△OA=OD2﹣CD2=16﹣9=7,故答案为0,7;【分析】(1)①先根据勾股定理求出BC=10,再利用直角三角形的性质得出OA=OB=OC=5,最后利用新定义即可得出结论;②再用等腰三角形的性质求出CD=3,再利用勾股定理求出OD,最后用新定义即可得出结论;(2)①先利用含30°的直角三角形的性质求出AO=2,OB=2 ,再用新定义即可得出结论;②先构造直角三角形求出BE,AE,再用勾股定理求出BD,最后用新定义即可得出结论;(3)先构造直角三角形,表述出OA,BD2,最后用新定义建立方程组求解即可得出结论.24.【答案】(1)解:如图1,延长PE,QB交于点F,∵△APO和△BQO是等腰直角三角形,∴∠APO=∠BQO=90°,∠AOP=∠BOQ=45°,∵∠AOB=90°,∴∠AOP+∠AOB+∠BOQ=180°,∴点P,O,Q在同一条直线上,∵∠APO=∠BQO=90°,∵点E是AB中点,∴AE=BE,∵∠AEP=∠BEF,∴△APE≌△BFE,∴PE=EF,∴点E是Rt△PQF的斜边PF的中点,∴EP=EQ;(2)解:成立,证明:∵点C,E分别是OA,AB的中点,∴CE∥OB,CE= OB,∴∠DOC=∠ECA,∵点D是Rt△OQB斜边中点,∴DQ= OB,∴CE=DQ,同理:PC=DE,∠DOC=∠BDE,∴∠ECA=∠BDE,∵∠PCE=∠EDQ,∴△EPC≌△QED,∴EP=EQ;(3)解:如图2,连接GO,∵点D,C分别是OB,OA的中点,△APO与△QBO都是等腰直角三角形,∴CQ,GP分别是OB,OA的垂直平分线,∴GB=GO=GA,∴∠GBO=∠GOB,∠GOA=∠GAO,设∠GOB=x,∠GOA=y,∴x+x+y+y+60°=360°【解析】【分析】(1)先判断出点P,O,Q在同一条直线上,再判断出△APE≌△BFE,最后用直角三角形的斜边的中线等于斜边的一半即可得出结论;(2)先判断出CE=DQ,PC=DE,进而判断出△EPC≌△QED 即可得出结论;(3)先判断出CQ,GP分别是OB,OA的垂直平分线,进而得出∠GBO=∠GOB,∠GOA=∠GAO,即可得出结论.。
中考数学 几何基础:三角形和四边形(含答案)
2020中考数学 几何基础:三角形和四边形(含答案)1. 已知:直线l 1∥l 2,一块含30︒角的直角三角板如图1-2所示放置,125∠=︒,则2∠等于( )A .30︒B .35︒C .40︒D .45︒2. 如图1-1,在ABC △中,D ,E 分别是边AC 、BC 的中点,若4DE =,则AB =______.3. 若三角形的三边长分别为8、19、a ,则最长的边a 的取值范围是__________.CDE211l 2l图1-1 图1-24. 如图1-3,在ABC △中,B ∠与C ∠的平分线交于点O .过O 点作DE//BC ,分别交AB 、AC 于D 、E .若5AB =,4AC =,则ADE △的周长是__________.5. 如图1-4,15AOE BOE ∠=∠=︒,EF//OB ,EC OB ⊥,若1EC =,则EF = ________.6. 如图1-5,在ABC △中,47B ∠=︒,三角形的外角DAC ∠和ACF ∠的平分线交于点E ,则AEC ∠=__________.BAD EOCOB CEABC F EAD图1-3 图1-4 图1-5(1)B ;(2)8;(3 )1927a ≤<;(4)9;(5)2;(6)66.5︒.7. 如图3-1,在ABC △中,AB =6,AC =8,BC =10,P 为边BC 上一动点(且点P 不与点B 、C 重合),PE AB ⊥于E ,PF AC ⊥于F .则EF 的最小值为__________.8. 如图3-2,在ABC △中,90ABC ∠=︒,BD 为AC 边的中线,过点C 作CE BD ⊥于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG BD =,连接BG 、DF .若12AB =,5BC =,则四边形BDFG 的周长为__________.9. 已知如图3-3,正方形ABCD 的边长为3,E 在BC 边上,且1EC =,P 是BD 上一动点,则PE PC +的最小值为__________.ABC P E FC D A B EG F图3-1 图3-2 图3-3(7)245;(8)26;(910. 如图,在ABC △中,AD 是ABC △的中线,1tan 2B =,cosC =AC =,则sin ADC ∠的值___________.11. 在ABC △中,3tan 4B =,10AB =,AC =,则线段BC 的长为__________.(10;(11)5或11.P E DC B AB A12. 如图5-1,五边形ABCDE 中,120A ∠=︒,90B E ∠=∠=︒,1AB BC ==,2AE DE ==,在BC 、DE 上分别找一点M 、N ,使AMN △的周长最小,则AMN △的周长最小值为________.13. 如图5-2,在锐角ABC △中,AB =,45BAC =︒∠,BAC ∠的平分线交BC 于点D 、M 、N 分别是AD 和AB 上的动点,则BM MN +的最小值是________.ABMCD NECAN B MD图5-1 图5-2(12)(13)4.14. 如图6-1,在ABC △中,90C ∠=︒,4AC =,2BC =,点A 、C 分别在x 轴、y 轴正半轴上,当点A 在x 轴上运动时,点C 随之在y 轴上运动,在运动过程中,点B 到原点的最大距离是( ) A.2B.C.D .615. 如图6-2,在ABC △中,90C ∠=︒,4AC =,3BC =,点A 、C 分别在x 轴、y 轴上,当点A 在x 轴上运动时,点C 随之在y 轴上运动,在运动过程中,点B 到原点的最小距离是__________.16. 如图6-3,E 、F 是正方形ABCD 的边AD 上两个动点,满足AE DF =,连接CF 交BD于点G ,连接BE 交AG 于点H ,若正方形的边长为2,则线段DH 长度的最小值是_______.图6-1 图6-2 图6-3(14)A ;(152;(161.图1 图2 图3(1)∵点(0,2)C -,(3,2)D --,∴3CD =,且CD//x 轴,∴BCD △的面积13232=⨯⨯=;(2)∵BQ 平分CBA ∠,∴ABQ CBQ ∠=∠, ∵AC BC ⊥,∴90CBQ CQP ∠+∠=︒,又∵90ABQ CPQ ∠+∠=︒,∴CQP CPQ ∠=∠; (3)在ACE △中,E DAC ACE αβ∠=∠-∠=-; (4)在AOE △和BOC △中,180E EAO AOE ∠+∠+∠=︒, 180ABC BCO BOC ∠+∠+∠=︒, ∵CD//x 轴,∴EAO ADC α∠=∠=, 又∵AOE BOC ∠=∠(对顶角相等),∴E EAO ABC BCO ∠+∠=∠+∠,即ABC αβαβ-+=∠+,∴2()ABC αβ∠=-,HGFE D C BA∴12E ABC ∠=∠,(是定值,不变).。
中考数学几何基础、三角形与四边形复习专题训练精选试题及答案
立体图形的认识及角、相交线与平行线专题训练一、填空题:(每题 3 分,共 36 分)1、32.43°=___度___分___秒。
2、若∠1=30°,则∠A 的补角是____度。
3、如图,∠1和∠2是直线AB 、AC 被BC 所截而成的____角。
4、如图,射线OA 表示的方向是_______。
5、锯木头时,一般先在木板上画出两个点,然后过这两点弹出一条墨线,这种做法的理由是______________。
6、如图,AC ⊥l 1,AB ⊥l 2,则点A 到直线 l 2 的距离是指线段________的长度。
7、如图,已知:AB ∥CD ,∠1=∠2,若∠1=50°,则∠3=____度。
8、如图,将两块直角三角板的直角顶点重合为如图所示的形状,若∠AOD =127°, 则∠BOC =____。
9、下面是一些相同的小正方体构成的几何体的三视图。
则至少要___个正方体搭成。
主视图 左视图 俯视图10、如图,要得到AB ∥CD 的结论,则需要角相等的条件是______(写出一个即可)11、直线 a ∥b ,则∠ACB =____。
12、平面内有若干条直线,当下列情形时,可将平面最多分成几部分。
① 有一条直线时,最多分成两部分。
② 有两条直线时,最多分成 2+2=4 部分。
③ 有三条直线时,最多分成____部分。
二、选择题。
(每题 4 分,共 24 分)A B CG D E F (第10题)A O DB C(第8题) A D E C ) ) ) 1 2 3 (第7题) ┘ ┘A B C l 1 l 2 (第6题) ) ) 1 2 A B C (第3题) 东 南西 A北 ) 30° O (第4题)(第11题) a b A B 28° 50°C1、在下列立体图形中,不属于多面体的是( )A 、正方体B 、三棱柱C 、长方体D 、圆锥 2、两条直线被第三条直线所截,则( ) A 、同位角相等 B 、同错角相等 C 、同旁内角互补 D 、无法确定 3、在修建泉厦高速公路时,有时需将弯曲的道路改直,根据( )A 、直线公理B 、直线公理或线段最短公理C 、线段最短公理D 、平行公理4、如图是一个台球桌面的示意图,如果一个球按图中所示的方向被击中(球可以经过多次反射),那么该球最后将落入的球袋是( )A 、1号袋B 、2号袋C 、3号袋D 、4号袋5、下面图形中,不能折成正方体的是( )AB D 6、如果两个角的一边在同一直线上,另一边互相平行,那么这两个角的关系是( )A 、相等B 、互补C 、相等或互补D 、相等且互补三、解答题:(每题 8 分,共 40 分)1、已知C 为线段AB 的中点,D 在线段CB 上,且DA =6,DB =4,求CD 的长度。
中考数学四边形专题训练50题(含答案)
中考数学四边形专题训练50题含答案(单选、填空、解答题)一、单选题1.若正多边形的一个外角是24°,则这个正多边形( )A .正十二边形B .正十五边形C .正十八边形D .正二十边形 2.若平行四边形中两个相邻内角的度数比为1:2,则其中较小的内角是( ) A .120︒ B .90︒ C .60︒ D .45︒ 3.如图,四边形ABCD ∽四边形EFGH ,80E ∠=︒,90G ∠=︒,120D ∠=︒,则B ∠等于( )A .50︒B .60︒C .70︒D .80︒ 4.已知三角形的3条中位线分别为3cm 、4cm 、6cm ,则这个三角形的周长是( )A .13cmB .26cmC .24cmD .65cm 5.如图,正方形ABCD 中,E ,F 分别在边AD ,CD 上,AF ,BE 相交于G ,若34AE ED =,DF CF =,则AG GF 的值是( )A .59B .611C .713D .1115 6.在平行四边形ABCD 中,∠B =60°,那么下列各式中,不能成立的是( ) A .∠D =60° B .∠A =120° C .∠C +∠D =180° D .∠C +∠A =180°7.下列说法中,不正确的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的矩形是正方形D.对角线互相垂直的平行四边形是菱形8.对角线互相平分且相等的四边形是()A.菱形B.矩形C.正方形D.等腰梯形9.如图,过O外一点P作O的两条切线PD、PB,切点分别为D、B,作直径∠的度数为()AB,连接AD、BD,若80P∠=︒,则AA.50°B.60°C.70°D.80°10.如图,在∠ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE∠AB于E,PF∠AC于F,M为EF中点,则AM的最小值为()A.1B.1.3C.1.2D.1.5∠=︒,11.如图,将平行四边形ABCD沿对角线AC折叠,使点B落在点B'处,若148∠=︒,则B232∠的度数为().A.124°B.114°C.104°D.56°12.下列说法正确的是()A.矩形的对角线相互垂直B.菱形的对角线相等C.平行四边形是轴对称图形D.等腰梯形的对角线相等13.如图,正方形ABCD中,AB=12,点E在边CD上,且BG=CG,将△ADE沿AE 对折至△AFE,延长EF交边BC于点G,连接AG、CF,下列结论:∠△EAG=45°:∠CE=3DE;∠AG∠CF;∠S△FGC=725,其中正确结论的个数是()A.1个B.2个C.3个D.4个14.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,若AB=6,EF=2,则BC的长为()A.8B.10C.12D.1415.如图,在四边形ABCD中,∠A=90°,AB=AD=3,M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),E、F分别为D M,MN的中点,则EF长度的最大值为() .A.4B.3C.D.16.下列说法错误的是()A.菱形的面积等于两条对角线乘积的一半B.矩形的对角线相等C.对角线互相垂直的平行四边形是矩形D.对角线相等的菱形是正方形17.如图所示,将正六边形与正五边形按此方式摆放,正六边形与正五边形的公共顶点为O,且正六边形的边AB与正五边形的边DE共线,则∠COF的度数是()A.86°B.84°C.76°D.74°18.如图,在矩形ABCD中,点E、F分别在边AD、DC上,ABE DEF,AB=,26DF=,则BE的长是()DE=,3D.A.12B.15C.19.如图,在一张矩形纸片ABCD中4BC=,点E,F分别在AD,BC上,AB=,8将纸片ABCD沿直线EF折叠,点C落在AD上的点H处,点D落在点G处,连接CE,CH.有以下四个结论:∠四边形CFHE是菱形;∠CE平分∠DCH;∠线段BF的EF=.以上结论中,其中正确结取值范围为34BF≤≤;∠当点H与点A重合时,5论的个数有()A.1个B.2个C.3个D.4个二、填空题=,连接AE交CD于F,那么20.四边形ABCD是正方形,延长BC至E,使CE AC∠的度数为________.AFC21.M为矩形ABCD中AD的中点,P为BC上一点,PE∠MC,PF∠MB,当AB、BC 满足_________时,四边形PEMF为矩形.22.如图,在矩形ABCD中,E,F分别是边AB,BC上的点.将∠A,∠B,∠C按如图所示的方式向内翻折,EQ ,EF ,DF 为折痕.若A ,B ,C 恰好都落在同一点P 上,AE =1,则ED =___.23.如图,△ABC 内接于∠O ,∠BAC =120°,AB =AC ,BD 为∠O 的直径,CD =8,OA 交 BC 于点 E ,则 AE 的长度是________.24.如图,在正五边形ABCDE 中,AC 为对角线,以点A 为圆心,AE 为半径画圆弧交AC 于点F ,连结EF ,则∠1的度数为__.25.如图,小靓用七巧板拼成一幅装饰图,放入长方形ABCD 内,装饰图中的三角形顶点E ,F 分别在边AB ,BC 上,三角形∠的边GD 在边AD 上,若图1正方形中MN=1,则CD=____.26.如图,在正方形ABCD 中,点E ,F 分别是BC ,CD 上的点,连接AE ,EF ,AF ,若DF BE EF +=,则EAF ∠=______︒.27.如图,已知抛物线24=-+的顶点为D,与y轴交于点C,过点C作x轴的y x x c平行线AC交抛物线于点A,过点A作y轴的平行线AB交射线OD于点B,若OA OB=,则c的值为_____________.28.如图,点E、F、G、H分别是矩形ABCD边AB、BC、CD、DA上的点,且HG 与EF交于点I,连接HE、FG,若AB=7,BC=6,EF//AD,HG//AB,则HE+FG的最小值是______.29.在□ABCD中,∠A:∠B=2:3,则∠B=____,∠C=_____,∠D=____.30.如图,菱形ABCD中,∠BCD=50°,BC的垂直平分线交对角线AC于点F,垂足为E,连接BF、DF,则∠DFC的度数是_____.'沿对角线AC折叠,得到如图所示的图形.若∠BAO=34°,则31.把长方形AB CD∠BAC的大小为_______.32.如图,M 是▭ABCD 的AB 的中点,CM 交BD 于E ,则图中阴影部分的面积与▱ABCD 的面积之比为_____.33.如图,矩形ABCD 中,AD=6,P 为边AD 上一点,且AP=2,在对角线BD 上寻找一点M ,使AM+PM 最小,则AM+PM 的最小值为_____.34.如图,在▱ABCD 中,BE 、CE 分别平分∠ABC 、∠BCD ,E 在AD 上,BE=12cm ,CE=5cm .则▱ABCD 的周长为_____,面积为_____.35.在平面直角坐标系中,对于不在坐标轴上的任意一点(),P x y ,我们把点11,Q y x ⎛⎫ ⎪⎝⎭称为点P 的“逆倒数点”.如图,在矩形OABC 中,点B 的坐标为(48),,反比例函数()0k y x x =>的图象经过矩形对角线交点M .点D 是该反比例函数图象上的点,点E 是对角线上的一点,且点E 是点D 的“逆倒数点”,点E 的坐标为______.36.如图,正方形ABCD 的对角线AC ,BD 交于点O ,M 是边AD 上一点,连接OM ,过点O 作ON ∠OM ,交CD 于点N .若四边形MOND 的面积是1,则AB 的长为 _____.37.如图,点E 为正方形ABCD 外一点,且ED CD =,连接AE ,交BD 于点F .若40CDE ∠=,则∠DCF 的度数为_______.38.如图,在矩形ABCD 中,5,3AB BC ==,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连接CE ,则CE 的长是 _____ .39.如图,点E 、F 分别为正方形ABCD 的边AB 、BC 上的点,满足∠EDF =45°.连接DE 、DF 分别交正方形对角线AC 于点H 、G ,再连接EG ,有如下结论:∠AE CF EF +>;∠ED 始终平分∠AEF ;∠∠AEH ∠∠DGH ;∠DE ;∠14DGH DEF S S =△△.在上述结论中,正确的有______.(请填正确的序号)三、解答题40.如图,方格纸中每个小正方形的边长均为1,ABC 的顶点和线段的端点均在小正方形的顶点上.(利用格点和没有刻度的直尺作图,保留作图痕迹)(1)在方格纸1中画出ADC △,使ADC △与ABC 关于直线AC 对称;(2)在方格纸2中画出以EF 线段为一边的平行四边形(点G ,点H 均在小正方形的顶点上),且平行四边形面积为4;(3)在方格纸3中,连接FM ,在FM 上确定一点P ,使得点P 为FM 中点. 41.如图,在平行四边形ABCD 中,∠BAD 的平分线交CD 于点E ,连接BE 并延长交AD 延长线于点F ,若AB =AF .(1)求证:点D 是AF 的中点;(2)若∠F =60︒,CD =6,求∠ABF 的面积.42.如图1,在等腰ABO 中,AB AO =,分别延长AO 、BO 至点C 、点D ,使得CO AO =、DO BO =,连接AD 、BC .()1如图1,求证:AD BC =;()2如图2,分别取边AD 、CO 、BO 的中点E 、F 、H ,猜想EFH 的形状,并说明理由.43.如图,在矩形ABCD 中,M ,N 分别是AD ,BC 的中点,E ,F 分别是线段BM ,CM 的中点,若AB=8,AD=12,则四边形ENFM 的周长是多少?44.如图∠,在矩形OACB 中,点A 在x 轴正半轴上,点B 在y 轴正半轴上,点C 在第一象限,8OA =,6OB =.(1)直接写出点C 的坐标:________;(2)如图∠,点G 在BC 边上,连接AG ,将ACG 沿AG 折叠,点C 恰好与线段AB 上一点C '重合,求线段CG 的长度;(3)如图∠,P 是直线26y x =-上一点,PD PB ⊥交线段AC 于D .若P 在第一象限,且PB PD =,试求符合条件的所有点P 的坐标.45.直线443y x =-+与x 轴交于点A ,与y 轴交于点B ,菱形ABCD 如图放置在平面直角坐标系中,其中点D 在x 轴负半轴上,直线y =x +m 经过点C ,交x 轴于点E .(1)请直接写出点C ,点D 的坐标,并求出m 的值;(2)点P (0,t )是线段OB 上的一个动点(点P 不与O 、B 重合),经过点P 且平行于x 轴的直线交AB 于M ,交CE 于N .当四边形NEDM 是平行四边形时,求点P 的坐标;(3)点P (0,t )是y 轴正半轴上的一个动点,Q 是平面内任意一点,t 为何值时,以点C 、D 、P 、Q 为顶点的四边形是菱形?46.如图,在Rt ∠ABC 中,∠C =90°,AC =8,BC =6.动点P 从点A 出发,沿AB 以每秒5个单位长度的速度向终点B 运动.当点P 不与点A 重合时,过点P 作PD ∠AC 于点D ,以AP ,AD 为边作▱APED .设点P 的运动时间为t 秒.(1)线段AD的长为(用含t的代数式表示).(2)当点E落在BC边上时,求t的值.(3)连结BE,当tan∠CBE=13时,求t的值.(4)若线段PE的中点为Q,当点Q落在∠ABC一边垂直平分线上时,直接写出t的值.47.如图,BC为∠O的直径,BD平分∠ABC交∠O于点D,DA∠AB于点A.(1)求证:AD是∠O的切线;(2)∠O交AB于点E,若AD=2AE,求sin ABC∠的值.48.如图1,已知在四边形ABCD中,AB//CD,90ABC∠=︒,8BC=,6CD=,1tan2A=.动点P从点D DA方向运动,到A点结束;点Q同时从点A出发,以3个单位的速度沿射线AB运动,点P停止运动后,点Q 也随之停止.以AP,AQ为边作平行四边形AQGP.设运动时间为t.(1)求AB的长;(2)连接GC 、GB ,当CGB △为等腰三角形时,求t 的值;(3)如图2,以PQ 为直径作圆与AD 、PG 分别交于点M 、N ,连接MQ 交PG 于点F ,连接NQ 、DG ,∠当点N 为弧MQ 的中点时,求PMQPNQ S S △△的值;∠当PQM CDG ∠=∠时,求PQ =______(请直接写出答案).49.思维启迪:(1)如图1,A ,B 两点分别位于一个池塘的两端,小亮想用绳子测量A ,B 间的距离,但绳子不够长,聪明的小亮想出一个办法:先在地上取一个可以直接到达B 点的点C ,连接BC ,取BC 的中点P (点P 可以直接到达A 点),利用工具过点C 作CD∠AB 交AP 的延长线于点D ,此时测得CD =100米,那么A ,B 间的距离是_____米.思维探索:(2)在∠ABC 和∠ADE 中,AC =BC ,AE =DE ,且AE <AC ,∠ACB =∠AED =90°,将∠ADE 绕点A 逆时针方向旋转,把点E 在AC 边上时∠ADE 的位置作为起始位置(此时点B 和点D 位于AC 的两侧),设旋转角为α,连接BD ,点M 是线段BD 的中点,连接MC ,ME .∠如图2,当∠ADE 在起始位置时,猜想:MC 与ME 的数量关系和位置关系分别是______;∠如图3,当α=90°时,点D 落在AB 边上,请判断MC 与ME 的数量关系和位置关系,并证明你的结论;参考答案:1.B【详解】分析:利用任意凸多边形的外角和均为360°,正多边形的每个外角相等即可求出答案.详解:∠多边形的每个外角相等,且其和为360°,∠这个正多边形的边形为3602415o o ÷=,∠这个正多边形是正十五边形.故选B.点睛:考查了正多边形外角和的知识,正多边形的每个外角相等,且其和为360°,用360除以一个外角的度数,结果即为正多边形的边形.2.C【分析】根据平行四边形的性质来解答即可.【详解】解:∠平行四边形,∠两个相邻内角互补,又∠两个相邻内角的度数比为1:2,∠两个相邻的内角为60°、120°,∠较小的内角为60°.故选:C .【点睛】本题考查平行四边形的性质,熟练掌握平行四边形的相关性质是解题的关键. 3.C【分析】根据相似多边形的对应角相等以及四边形的内角和为360︒解答即可.【详解】解:∠四边形ABCD ∽四边形EFGH∠120H D ∠=∠=︒∠360()70B F E G H ∠=∠=︒-∠+∠+∠=︒故选:C .【点睛】本题考查了相似多边形的性质、多边形的内角和;理解相似多边形的对应角相等是解题的关键.4.B【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出三角形的三边,再求解即可.【详解】解:∠三角形的三条中位线分别为3cm、4cm、6cm,∠三角形的三边分别为6cm,8cm,12cm,∠这个三角形的周长=6+8+12=26cm.故选:B.【点睛】本题考查了三角形中位线的性质,解题的关键是熟记三角形中位线的性质定理.5.B【分析】延长AF交BC的延长线于点H,证明∠ADF∠∠HCF,得到CH=AD,设AE=3x,则DE=4x,AD=7x,证得∠AEG∠∠HBG,得到AE AGBH HG==314,即可求出AGGF【详解】解:延长AF交BC的延长线于点H,∠四边形ABCD是正方形,∠∠D=∠DCH=90°,AD∥BC,∠∠DAF=∠H,∠DF CF=,∠∠ADF∠∠HCF(AAS),∠CH=AD,设AE=3x,则DE=4x,AD=7x,∠CH=AD=BC=7x,∠AD∥BC,∠∠AEG∠∠HBG,∠AE AGBH HG==314,∠AGGF =6 11,故选:B.【点睛】此题考查了正方形的性质,相似三角形的性质,全等三角形的判定及性质,熟记各定理是解题的关键.6.D【详解】解:∠四边形ABCD是平行四边形,∠∠D=∠B=60°.故A成立;∠AD△BC,∠∠A+∠B=180°,∠∠A=180°-∠B=120°,故B成立;∠AD△BC,∠∠C+∠D=180°,故C成立;∠四边形ABCD是平行四边形,∠∠C=∠A=120°,故D不成立,故选D.7.B【分析】根据各四边形的性质对各个选项进行分析从而得出最后答案.【详解】解:A、对角线互相平分的四边形是平行四边形,正确;B、错误,对角线相等的四边形不一定是矩形,对角线相等的平行四边形才是矩形;C、对角线互相垂直的矩形是正方形,正确;D、对角线互相垂直的平行四边形是菱形,正确.故选:B.【点睛】本题主要考查了正方形、平行四边形、菱形的判定方法.解决此题的关键是熟练掌握运用这些判定.8.B【分析】根据平行四边形的判定与矩形的判定定理,即可求得答案.【详解】∠对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形,∠对角线相等且互相平分的四边形一定是矩形.故选B.【点睛】此题考查了平行四边形,矩形,菱形以及等腰梯形的判定定理.此题比较简单,解题的关键是熟记定理.9.A【分析】如图,连接OD ,可得90ODP OBP ∠=∠=︒,再利用四边形的内角和定理求解BOD ∠,从而可得答案.【详解】解:如图,连接OD ,∠过O 外一点P 作O 的两条切线PD 、PB ,∠90ODP OBP ∠=∠=︒,∠80P ∠=︒,∠360909080100DOB ∠=︒-︒-︒-︒=︒, ∠1502A DOB ∠=∠=︒, 故选A .【点睛】本题考查的是切线的性质,四边形的内角和定理的应用,圆周角定理的应用,作出过切点的半径是解本题的关键.10.C【分析】首先证明四边形AEPF 为矩形,可得AM =12AP ,最后利用垂线段最短确定AP 的位置,利用面积相等求出AP 的长,即可得AM .【详解】在△ABC 中,因为AB 2+AC 2=BC 2,所以△ABC 为直角三角形,∠A =90°,又因为PE ∠AB ,PF ∠AC ,故四边形AEPF 为矩形,因为M 为 EF 中点,所以M 也是 AP 中点,即AM =12AP ,故当AP ∠BC 时,AP 有最小值,此时AM 最小, 由1122ABC S AB AC BC AP ∆=⨯⨯=⨯⨯,可得AP =125,AM =12AP =6 1.25= 故本题正确答案为C.【点睛】本题考查了矩形的判定和性质,确定出AP ∠BC 时AM 最小是解题关键.11.A【分析】根据折叠、平行四边形的性质,三角形的内角和定理,即可求出答案.【详解】解:由折叠得,45∠=∠,∠四边形ABCD 是平行四边形,∠AB CD ,∠53∠=∠,∠3=4∠∠,又∠13448∠=∠+∠=︒, ∠154348242∠=∠=∠=⨯︒=︒, 在ABC 中,180521802432124B ∠=︒-∠-∠=︒-︒-︒=︒,故选:A .【点睛】本题考查折叠的性质、平行四边形的性质,三角形的内角和定理等知识,由图形直观得出各个角之间的关系是正确解答的关键.12.D【分析】根据矩形、菱形、平行四边形、等腰梯形的性质进行逐一分析解答即可.【详解】A 、错误,矩形的对角线相等;B 、错误,菱形的对角线相互垂直;C 、错误,平行四边形是中心对称图形;D 、正确,等腰梯形的对角线相等.故选D . 【点睛】此题考查命题与定理,解题关键在于掌握正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉其性质定理.13.C【分析】∠由正方形的性质和翻折的性质可证明Rt△ABG∠Rt△AFG(HL),推出∠BAG=∠F AG,根据∠DAE=∠F AE,可得∠EAG=12∠BAD=45°;∠由题意得EF=DE,GB=CG=GF=6,设DE=EF=x,则CE=12-x,在Rt△ECG中,(12-x)2+36=(x+6)2,求出x,则可得到CE=2DE;∠由CG=BG,BG=GF,可得CG=GF,则∠GFC=∠GCF,因为∠AGB+∠AGF=2∠AGB=∠GFC+∠GCF=2∠GCF,可推出∠AGB=∠GCF,则AG∠CF;∠由S△GCE=12×GC×CE,又因为△GFC和△FCE等高,可得S△GFC:S△FEC=3:2,S△GFC=3 5×24=725.【详解】解:∠∠正方形ABCD,∠AB=BC=CD=AD=12,∠B=∠GCE=∠D=90°,由折叠的性质可得,AF=AD,∠AFE=∠D=90°,∠∠AFG=90°=∠B,AB=AF,又∠AG=AG,∠Rt△ABG∠Rt△AFG(HL),∠∠BAG=∠F AG,∠∠DAE=∠F AE,∠∠EAG=12∠BAD=45°,故∠正确;∠由题意得EF=DE,GB=CG=GF=6,设DE=EF=x,则CE=12-x,在Rt∠ECG中,(12-x)2+62=(x+6)2,∠x=4,∠DE=4,CE=8,∠CE=2DE,故∠错误;∠∠CG=BG,BG=GF,∠CG=GF,∠∠GFC=∠GCF,∠Rt∠ABG∠Rt∠AFG,∠∠AGB=∠AGF,∠∠AGB+∠AGF=2∠AGB=∠GFC+∠GCF=2∠GCF,∠∠AGB=∠GCF,∠AG∠CF,故∠正确;∠∠S△GCE=12×GC×CE=12×6×8=24,又∠GF=6,EF=4,∠GFC和∠FCE等高,∠S△GFC:S△FEC=3:2,∠S△GFC=35×24=725,故∠正确;综上,正确的是∠∠∠,共3个.故选:C.【点睛】本题考查翻折变换的性质、正方形的性质,本题综合性很强,熟练掌握全等三角形的判定和性质,勾股定理,三角形面积的计算方法是解题的关键.14.B【详解】试题分析:根据平行四边形的性质可知AB=CD,AD∠BC,AD=BC,然后根据平行线的性质和角平分线的性质可知AB=AF,DE=CD,因此可知AF+DE=AD+EF=2AB=12,解得AD=BC=12-2=10.故选B.点睛:此题主要考查了平行四边形的性质和等腰三角形的性质,解题关键是把所求线段转化为题目中已知的线段,根据等量代换可求解.15.B【分析】根据三角形的中位线定理得出EF=12DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,此时根据勾股定理求得DN=DB=6,从而求得EF的最大值为3.【详解】解:∠ED=EM,MF=FN,∠EF=12DN,∠DN最大时,EF最大,∠N与B重合时DN最大,此时DN=DB=6,∠EF的最大值为3.故选:B.【点睛】本题考查了三角形中位线定理,勾股定理的应用,熟练掌握定理是解题的关键.16.C【分析】根据有关的定理和定义找到错误的命题即可得到答案;【详解】A、菱形的面积等于对角线乘积的一半,故正确,不符合题意;B、矩形的对角线相等,正确,不符合题意;C、对角线平分且相等的平行四边形是矩形,错误,符合题意;D、对角线相等的菱形是正方形,正确,不符合题意;故选C.【点睛】考查了命题与定理的知识,在判断一个命题正误的时候可以举出反例.17.B【分析】利用正多边形的性质求出∠EOF,∠BOC,∠BOE即可解决问题.【详解】解:由题意:∠EOF=108°,∠BOC=120°,∠OEB=72°,∠OBE=60°,∠∠BOE=180°﹣72°﹣60°=48°,∠∠COF=360°﹣108°﹣48°﹣120°=84°,故选:B.【点睛】本题考查正多边形,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于常考题型.18.C【分析】利用相似三角形的性质求出AE的长,再利用勾股定理求解即可.【详解】解:∠ABE DEF,∠AB AE DE DF,∠623AE =,∠9AE=,∠矩形ABCD中,90A∠=︒,∠BE故选:C.【点睛】本题考查了矩形的性质、相似三角形的性质、勾股定理,解题关键是求出AE的长后利用勾股定理求解.19.B【分析】先根据翻折的性质可得CF=FH,∠HFE=∠CFE,可证∠FEH是等腰三角形,可得HE=HF=FC,判断出四边形CFHE是平行四边形,然后根据邻边相等的平行四边形是菱形证明,判断出∠正确;根据菱形的对角线平分一组对角线可得∠BCH=∠ECH,然后求出只有∠DCE=30°时CE平分∠DCH,判断出∠错误;过点F作FM∠AD于M,点H与点A 重合时,设BF=x,表示出AF=FC=8﹣x,利用勾股定理列出方程求解得到BF的最小值,点G与点D重合时,CF=FM=MD=CD,求出BF=4,然后写出BF的取值范围,判断出∠正确;求出ME,再利用勾股定理列式求解得到EF,判断出∠正确.【详解】解:∠将纸片ABCD沿直线EF折叠,∠FC=FH,∠HFE=∠CFE,∠AD△BC,∠∠HEF=∠EFC=∠HFE,HE△FC,∠∠HFE为等腰三角形,∠HE=HF=FC,∠EH与CF都是矩形ABCD的对边AD、BC的一部分,∠EH△CF,且HE=FC,∠四边形CFHE是平行四边形,∠FC=FH,∠四边形CFHE是菱形,故∠正确;∠HC为菱形的对角线,∠∠BCH=∠ECH,∠BCD=90°,∠只有∠DCE=30°时CE平分∠DCH,故∠错误;过点F作FM∠AD于M,点H与点A重合时,BF最小,设BF=x,则AF=FC=8﹣x,在Rt∠ABF中,AB2+BF2=AF2,即42+x2=(8﹣x)2,解得:x=3,点G与点D重合时,点H与点M重合,BF最大,CF=FM=DM=CD=4,∠BF=4,∠线段BF的取值范围为3≤BF≤4,故∠正确;当点H与点A重合时,由∠中BF=3,∠AF=AE=CF=EC=8-3=5,则ME=5﹣3=2,由勾股定理得,EF=∠错误;综上所述,结论正确的有∠∠共2个,故B正确.故选:B.【点睛】本题考查矩形折叠性质,等腰三角形的判定,菱形的判定与性质,勾股定理,掌握矩形折叠性质,菱形的判定与性质,勾股定理是解题关键.20.112.5【分析】根据正方形的性质有∠ACD=∠ACB=45°=∠CAE+∠AEC,根据CE=AC就可以求出∠CAE=22.5°,在△AFC中由三角形的内角和就可以得出∠AFC的度数.【详解】解:∠四边形ABCD是正方形,∠∠ACD=∠ACB=45°.∠∠ACB═∠CAE+∠AEC,∠∠CAE+∠AEC=45°.∠CE=AC,∠∠CAE=∠AEC,∠∠CAE=22.5°.∠∠CAE+∠ACD+∠AFC=180°,∠∠AFC=180°-22.5°-45°=112.5°.故答案为112.5°.【点睛】本题考查了正方形的性质的运用,等腰三角形的性质的运用,三角形的外角与内角的关系的运用及三角形内角和定理的运用.21.12AB BC =##2BC AB =【详解】∠在矩形ABCD 中,M 为AD 边的中点,AB=12BC ,∠AB =DC =AM =MD ,∠A =∠D =90°,∠∠ABM =∠MCD =45°,∠∠BMC =90°,又∠PE ∠MC ,PF ∠MB ,∠∠PFM =△PEM =90°,∠四边形PEMF 是矩形.故答案为:AB =12BC .22.3【分析】连接,EP DP ,根据折叠的性质得出三角形全等,根据三角形全等的性质得出对应边相等,由ED EP PD =+,利用等量代换分别求出,EP PD .【详解】解:连接,EP DP 如下图所示:根据A ,B ,C 恰好都落在同一点P 上及折叠的性质,有,,AQE PQE EBF EPF FPD FCD ≌≌≌,1,1,AE PE EB EP CD PD ∴=====,2AB AE EB =+=,根据正方形的性质得:2AB DC ==,2PD ∴=,ED EP PD =+,123ED ∴=+=,故答案是:3.【点睛】本题考查了翻折的性质,三角形全等的性质,解题的关键是添加辅助线,通过等量代换的思想进行解答.23.4【分析】证明△OAB 是等边三角形,OA ∠BC 即可推出OE =AE ,再利用三角形中位线定理即可解决问题.【详解】解:∠AB =AC ,∠AB AC =,∠OA ∠BC ,BE =EC ,AB =AC∠∠ABC 是等腰三角形∠∠BAE =∠CAE =12∠BAC =60°,∠OA =OB ,∠∠OAB 是等边三角形,∠BE ∠OA ,∠OE =AE ,∠OB =OD ,BE =EC ,∠ OE是△BCD的中位线∠OE=AE=12CD=4.故答案为:4.【点睛】本题考查三角形的外接圆与外心,圆周角定理,垂径定理,三角形的中位线定理,等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.54°【分析】根据五边形的内角和公式求出∠ABC,根据等腰三角形的性质,三角形内角和的定理计算∠BAC,再求∠EAF,利用圆的性质得AE=AF,最后求出∠1即可.【详解】解:∠五边形ABCDE是正五边形,∠∠EAB=∠ABC=()5-21805⨯︒=108°,∠BA=BC,∠∠BAC=∠BCA=180-1082︒︒=36°,∠∠EAF=108°﹣36°=72°,∠以点A为圆心,AE为半径画圆弧交AC于点F,∠AE=AF,∠∠1=180-722︒︒=54°.故答案为:54°.【点睛】本题考查了正多边形的内角与圆,熟练掌握正多边形的内角的计算公式、和圆的性质,等腰三角形的性质是解题的关键.25122【分析】根据七巧板中图形分别是等腰直角三角形和正方形计算PH的长,即FF'的长,作高线GG',根据直角三角形斜边中线的性质可得GG'的长,即AE的长,可得结论.【详解】解:如图:∠四边形MNQK是正方形,且MN=1,∠∠MNK=45°,在Rt△MNO中,OM=ON∠NL=PL=OL∠PN=12,∠PQ=12,∠∠PQH是等腰直角三角形,∠PH=FF'BE,过G作GG'∠EF',∠GG'=AE=12MN=12,∠CD=AB=AE+BE=12122.故答案为122.【点睛】本题主要考查了正方形的性质、七巧板、等腰直角三角形的性质及勾股定理等知识.熟悉七巧板是由七块板组成的,完整图案为一正方形:五块等腰直角三角形(两块小形三角形、一块中形三角形和两块大形三角形)、一块正方形和一块平行四边.26.45【分析】延长CB到G,使BG=DF,根据正方形的性质得到AD=AB,∠D=∠ABE=90°,求得∠ABG=∠D=90°,根据全等三角形的性质得到AG=AF,∠GAB=∠DAF,求得GE=EF,推出∠AGE∠∠AFE(SSS),根据全等三角形的性质得到∠GAE=∠EAF,根据全等三角形的性质即可得到结论.【详解】解:延长CB到G,使BG=DF,∠四边形ABCD是正方形,∠AD=AB,∠D=∠ABE=90°,∠∠ABG =∠D =90°,在∠ADF 与∠ABG 中,AB AD ABG D BG DF =⎧⎪∠=∠⎨⎪=⎩,∠∠ADF ∠∠ABG (SAS ),∠AG =AF ,∠GAB =∠DAF ,∠DF +BE =EF ,EG =BG +BE =DF +BE ,∠GE =EF ,在∠AGE 与∠AFE 中,AG AF AE AE GE EF =⎧⎪=⎨⎪=⎩,∠∠AGE ∠∠AFE (SSS ),∠∠GAE =∠EAF ,∠∠GAE =∠GAB +∠BAE =∠DAF +∠BAE =∠EAF ,∠∠BAD =90°,∠∠EAF =45°,故答案为:45.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,正确的作出辅助线构造全等三角形是解题的关键.27.83【分析】根据抛物线的解析式求得4DH c =-,BF AF OC c ===,然后根据三角形中位线定理得到142c c -=,解得即可. 【详解】解:作抛物线的对称轴,交OA 于E ,交x 轴于H ,∠224()42y x x c x c =-+=-+-,∠顶点为(2)4c -,,∠4DH c =-,∠AC x ∥轴,∠AF OC c AB x ==⊥,轴,∠OA OB =,∠AF BF c ==,∠OH FH =, ∠12DH BF =, ∠142c c -= ∠83c =, 故答案为:83. 【点睛】本题考查了二次函数与几何的综合运用,熟练掌握三角形的中位线定理是解决本题的关键.28【分析】由EF ∠AD ,HG ∠AB ,结合矩形的性质可得四边形AHIE 和四边形IFCG 为矩形,然后根据矩形的性质可的HE +FG 的长度即为AI +CI 的长度,最后利用两点之间,线段最短,求出AC 的长即可.【详解】解:如图所示,连接AI ,CI ,AC ,在矩形ABCD 中,∠BAD =∠BCD =∠B =90°,AB ∠CD ,AD ∠BC ,又∠EF ∠AD ,HG ∠AB ,∠四边形AHIE和四边形IFCG为矩形,∠HE=AI,FG=CI,∠HE+FG的长度即为AI+CI的长度,又∠AI+CI≥AC,∠当A,I,C三点共线时,AI+CI最小值等于AC的长度,在Rt∠ABC中,AC∠HE+FG【点睛】本题考查矩形的判定和性质以及两点之间,线段最短的运用,正确判定四边形AHIE和四边形IFCG为矩形,运用矩形的对角线相等是解题的关键.29.108º,72º,108º【详解】解:∠平行四边形ABCD中,∠A+∠B=180°,又∠∠A:∠B=2:3,∠∠A=72°,∠B=108°,∠∠D=∠B=108°,∠C=∠A=72°.故答案为108º,72º,108º.30.130°【分析】首先求出∠CFB=130°,再根据对称性可知∠CFD=∠CFB即可解决问题.【详解】∠四边形ABCD是菱形,∠BCD=25°,∠∠ACD=∠ACB=12∠EF垂直平分线段BC,∠FB=FC,∠∠FBC=∠FCB=25°,∠∠CFB=180°﹣25°﹣25°=130°,根据对称性可知:∠CFD=∠CFB=130°,故答案为130°.【点睛】本题考查菱形的性质、线段的垂直平分线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.31.62°【分析】先利用AAS 证明∠AOB∠∠COD ,得出∠BAO=∠DCO=34°,∠B′CO=68°,结合折叠的性质得出∠B′CA=∠BCA=34°,则∠BAC=∠B′AC=56°.【详解】由题意,得∠B′CA∠∠BCA ,∠AB′=AB ,∠B′CA=∠BCA ,∠B′AC=∠BAC .∠长方形AB′CD 中,AB′=CD ,∠AB=CD .在∠AOB 与∠COD 中,90B D AOB COD AB CD ∠∠︒⎧⎪∠∠⎨⎪⎩==== , ∠∠AOB∠∠COD (AAS ),∠∠BAO=∠DCO=34°,∠∠B′CO=90°-∠DCO=56°,∠∠B′CA=∠BCA=28°,∠∠B′AC=90°-∠B′CA=62°,∠∠BAC=∠B′AC=62°.【点睛】考查了折叠的性质、矩形的性质和全等三角形的判定与性质,解题关键是证明∠AOB∠∠COD ,得出∠BAO=∠DCO=34°是解题的关键.32.1:3【详解】试题解析:设平行四边形的面积为1,∠四边形ABCD 是平行四边形, ∠12DAB ABCD S S =,又∠M 是ABCD 的AB 的中点, 则1124DAM DAB ABCD S S S ==,1,2BE MB DE CD == ∠EMB △上的高线与DAB 上的高线比为1.3BE BD ==∠1113212 EMB DABS S=⨯=,∠143 DEC MEBS S,==S阴影面积1111141233 =---=,则阴影部分的面积与▱ABCD的面积比为13.故填空答案:13.33.【详解】分析:作DH平分∠BDC交BC于H.连接AH交BD于M.首先证明P、H关于BD对称,连接AH交BD于M,则AM+PM的值最小,最小值=AH.详解:作DH平分∠BDC交BC于H.连接AH交BD于M.∠四边形ABCD是矩形,∠∠C=∠BAD=∠ADC=90°,∠tan∠ADB=ABAD∠∠ADB=30°,∠∠BDC=60°,∠∠CDH=30°,∠CD∠CH2,△DH=2CH=4,∠DP=DH,∠∠MDP=∠MDH,∠P、H关于BD对称,连接AH交BD于M,则AM+PM的值最小,最小值=AH=点睛:本题考查了矩形的性质,解直角三角形,勾股定理,含30º角的直角三角形的性质,轴对称的性质,作DH平分∠BDC交BC于H.连接AH交BD于M.说明P和H关于BD成轴对称是解答本题的关键.34.39cm60cm2【分析】根据角平分线的定义和平行线的性质得到等腰三角形ABE和等腰三角形CDE和直角三角形BCE.根据直角三角形的勾股定理得到BC=13cm,根据等腰三角形的性质得到AB=CD=12AD=12CD=6.5cm,从而求得该平行四边形的周长;根据直角三角形的面积可以求得平行四边形BC边上的高.【详解】∠BE、CE分别平分∠ABC、∠BCD,∠∠1=∠3=12∠ABC,∠DCE=∠BCE=12∠BCD,在▱ABCD中,AB=CD,AD=BC,AD∠BC,AB∠CD,∠AD∠BC,AB∠CD,∠∠2=∠3,∠BCE=∠CED,∠ABC+∠BCD=180°,∠∠1=∠2,∠DCE=∠CED,∠3+∠BCE=90°,∠AB=AE,CD=DE,∠BEC=90°,在Rt△BCE中,根据勾股定理得:BC=13cm,∠平行四边形的周长等于:AB+BC+CD+AD=6.5+13+6.5+13=39cm;作EF∠BC于F,根据直角三角形的面积公式得:EF=·6013BE CEBC=cm,∠平行四边形ABCD的面积=BC·EF=601313⨯=60cm2,故答案为39cm,60cm2.【点睛】本题考查了平行四边形的性质、等腰三角形的判定与性质、勾股定理等,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.。
中考复习之—三角形与四边形练习题(含答案)
中考复习之——三角形与四边形1、三角形与平行四边形联手1,在平行四边形ABCD中, ∠ABC的平分线交C D于点E, ∠ADC的平分线交A B于例1、如图点F. 试判断A F与CE是否相等,并说明理由.解:∵四边形ABCD 为平行四边形∴AB=CD ,∠A=∠C,∠ADC= ∠CBA∵DF 平分∠ADC ,BE 平分∠CBA∴∠ADF=1/2 ∠ADC=1/2 ∠CBA= ∠CBE在△ADF 和△CBE 中∠A=∠CAD=BC∠ADF= ∠CBE∴△ADF ≌△CBE (ASA )∴AF=CE2、三角形与矩形联手5,矩形ABCD 中,点 E 是BC 上一点,AE =AD ,DF⊥AE于例2、如图F,连结DE,求证:DF=DC.证明:∵AE=AD∴∠AED=∠ADE∵AD‖BC ∴∠CED=∠ADE∴∠CED=∠AED∵∠DFE=∠C=90∠CED=∠AED(已证)DE=DE(公共边)∴△DFE≌△DCE(AAS)∴DF=DC例3、如图4所示,四边形ABCD是矩形,E是AB上一点,且DE=AB,过C作CF⊥DE,垂足为 F.(1)猜想:AD与CF的大小关系;(2)请证明上面的结论.解:∵AB平行DC ∴∠AED=∠EDC∵CF⊥DE ∴∠DFC=∠DAE又∵DE=AB且AB=DC ∴DE=DC∵∠AED=∠EDC ∠DAE=∠DFC DE=DC∴△AED全等于△FCD∴AD=CF例4、如图6,矩形ABCD 中,O 是AC 与BD 的交点,过O点的直线EF与AB,CD 的延长线分别交于E,F .(1)求证:△BOE ≌△DOF ;(2)当EF 与AC 满足什么关系时,以A,E,C,F 为顶点的四边形.是菱形?证明你的结论证明:1、证明:∵矩形ABCD∴OA=OC,AB∥CD∴∠E=∠F,∠EBO=∠FDO∴△BOE≌△DOF (AAS)2、EF⊥AC时,四边形AECF为菱形∵△BOE≌△DOF∴OE=OF又∵OA=OC∴平行四边形AECF∵EF⊥AC∴菱形AECF(对角线互相垂直平分的四边形是菱形)例5、在矩形ABCD 中,AB=2,AD= 3.(1)在边CD 上找.一点E,使EB 平分∠AEC,并加以说明;F.E P 并延长交A B 的延长线于(2)若P 为BC 边上一点,且B P=2CP,连接①求证:点 B 平分线段A F;②△PAE 能否由△PFB 绕P 点按顺时针方向旋转而得到,若能,加以证明,并求出旋转度数;若不能,请说明理由.解:(1)∵∠AEB= ∠BEC=∠ABE∴∠AEB= ∠ABEAB=AE=2DE=1( 勾股定理计算)∴DE=EC=1E 是DC 的中点(2)∵⊿ECP∽⊿FBP∴EC/BF=PC/PB=1/2∴BF=2A F点B 平分线段②由(1)知⊿AED ≌⊿BEC⊿ABE 是等边三角形在⊿PEC 中tan∠PEC=√3/3∴∠PEC=30 o=∠F∴⊿AEF 是直角三角形∴AF=2AE=2AB3、三角形与正方形联手点(点G 与C、D 不重例6、如图8 所示,四边形ABCD 是正方形,G 是CD 边上的一个动合),以CG 为一边在正方形ABCD 外作正方形CEFG,连结B G,DE.我们探究下列B G、线段D E 的长度关系及所在直线的位置关系:图中线段D E 的长度关系及所在直线的位置关系;B G、线段(1)①猜想如图 1 中线段②将图 1 中的正方形CEFG 绕着点 C 按顺时针(或逆时针)方向旋转任意角度,得到如图2、如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断.(2)将原题中正方形改为矩形(如图4—6),且AB=a,BC=b,CE=ka,CG=kb(a b,k0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由.(08年义乌市)(3)在第(2)题图5中,连结DG、BE,且a=3,b=2,k=12,求22BE DG的值.解:(1)①BG⊥DE,BG=D;E②∵四边形ABCD和四边形CEFG是正方形,∴BC=D,C CG=C,E∠BCD=∠ECG=9°0,∴∠BCG∠=DCE,∴△BCG≌△DCE,∴BG=D,E∠CBG∠=CDE,又∵∠CBG∠+BHC=9°0,∴∠CDE+∠DHG=9°0,∴BG⊥DE.(2)∵AB=a,BC=b,CE=ka,CG=kb,∴BC/DC=CG/CE =b/a ,又∵∠BCG∠=DCE,∴△BCG∽△DCE,∴∠CBG=∠CDE,又∵∠CBG∠+BHC=9°0,∴∠CDE+∠DHG=9°0,∴BG⊥DE.B E、DG.(3)连接根据题意,得A B=3,BC=2,CE=1.5,CG=1,∵BG⊥DE,∠BCD=∠ECG=9°0∴BE2+DG2=BO2+OE2+DO2+OG2=BC2+CD2+CE2+CG2=9+4+2.25+1=16.25A D ,以线BC 上一动点,连接9- 甲,在△ ABC 中,∠ACB 为锐角.点 D 为射例 7、如图AD 为一边且在AD 的右侧作正方形A DEF .解答下列问题:(1)如果AB=AC ,∠BAC=90o.①当点 D 在线段B C 上时(与点 B 不重合),如图9- 乙,线段C F、BD 之间的位置关系为▲,数量关系为▲.②当点D 在线段B C 的延长线上时,如图9- 丙,①中的结论是否仍然成立,为什么?B C 上运动.试探究:当△ABC 满足一个(2)如果AB ≠AC ,∠BAC ≠90o,点D 在线段什么条件时,CF⊥BC(点C、F 重合除外)?画出相应图形,并说明理由.(画图不写作法)(3)若AC =4 2 ,BC=3,在(2)的条件下,设正方形ADEF 的边D E 与线段C F 相.交于点P,求线段C P 长的最大值解:(1)①CF 与BD位置关系是垂直、数量关系是相等;②当点D在BC的延长线上时①的结论仍成立.由正方形ADEF得AD=AF ,∠DAF=90o.∵∠BAC=90,o∴∠DAF=∠BAC,∴∠DAB=∠FAC,又AB=AC,∴△DAB≌△FAC ,∴CF=BD∠ACF=∠ABD.∵∠BAC=90,o AB=AC ,∴∠ABC=45,o∴∠ACF=45o,∴∠BCF=∠ACB+∠ACF= 90o.即CF⊥BD(2)画图正确当∠BCA=45o时,CF⊥BD(如图丁).理由是:过点 A 作AG⊥AC交BC于点G,∴AC=AG可证:△GAD≌△CAF ∴∠ACF=∠AGD=45o∠BCF=∠ACB+∠ACF= 90o.即CF⊥BD(3)当具备∠BCA=45o 时,过点A作AQ⊥BC交BC的延长线于点Q,(如图戊)∵DE与CF交于点P 时,∴此时点D位于线段C Q上,∵∠BCA=45,o可求出AQ= CQ=4.设C D=x ,∴DQ=4―x,容易说明△AQD∽△DCP,∴,∴,.∵0<x≤ 3 ∴当x=2时,CP有最大值1.4三角形与梯形联手11,梯形ABCD 中,AD ∥BC ,点E是CD 的中点,BE的延长线与AD 例8、已知:如图的延长线相交于点 F .(1)求证:△BCE 和△FDE 全等(2)连结BD,CF ,判断四边形BCFD 的形状,并证明你的结论.1、证明:∵AD∥BC∴∠CFE=∠BAE,∠FCE=∠ABE∵E是BC的中点∴BE=CE∴△ABE≌△FCE (AAS)∴AB=CF2、菱形ABFC证明:∵AD∥BC,AB=CF∴平行四边形ABFC∵△ADC沿AE折叠至△AEC,∠D=90∴∠AEC=∠D=90∴AF⊥BC∴菱形ABFC例9、如图12,在等腰梯形ABCD 中,AD ∥BC ,M 是AD 的中点,求证:MB MC .(1)证明:∵四边形ABCD 是等腰梯形,∴AB=DC ,∠A=∠D.∵M 是AD 的中点,∴AM=DM .在△ABM 和△DCM 中,AB =DC ∠A=∠D AM =DM ∴△ABM ≌△DCM (SAS).∴MB=MC .例10、如图13 所示,已知等腰梯形ABCD 中,AD∥BC,AB=DC,AC 与BD 相交于点O.请在图中找出一对全等的三角形,并加以证明.解:∵ABCD 是等腰梯形∴AB=DC ∠ABC= ∠DCBBC 是公共边∴△ABC ≌△DCB(SAS)还有△ABD ≌△DCA(SAS)∵AD ‖BC ∠ABC= ∠DCB∴∠BAD= ∠CDAAD 是公共边且AB=DC∴△ABD ≌△DCA(SAS)14,在梯形ABCD 中,AD ∥BC,BC=DC ,CF 平分∠BCD ,DF∥AB ,例11、已知:如图BF 的延长线交DC 于点E。
初三数学角度练习题
初三数学角度练习题角度是数学中的重要概念,我们在几何学、三角学等领域中经常会用到角度的计算和应用。
本文将为大家提供一些初三数学角度练习题,帮助大家巩固对角度的理解和运用能力。
题一:已知一个角的度数是40°,请问它的补角是多少度?解析:补角是指两个角的度数相加等于90°。
因此,该角的补角是90°减去40°,即50°。
题二:三角形ABC中,∠B=60°,∠C=30°,请问∠A的度数是多少?解析:三角形内角和为180°,因此∠A=180°-∠B-∠C=180°-60°-30°=90°。
题三:已知一个角的度数是120°,请问它的余角是多少度?解析:余角是指两个角的度数相加等于180°。
因此,该角的余角是180°减去120°,即60°。
题四:在直角坐标系中,点P(3, 4)与原点O(0, 0)之间的线段与正半轴x轴之间的角为α,求α的度数。
解析:根据直角坐标系的定义,点P与原点O之间的线段的斜率k可以通过计算纵坐标之差与横坐标之差的比值得到。
斜率k=4/3。
由此可得,tanα=4/3。
通过查表或使用计算器函数,可以得到α≈53.13°(保留两位小数)。
题五:已知角α的度数是65°,角β是角α的一半,求角β的度数。
解析:由题意可知,角α=65°,角β=角α/2=65°/2=32.5°。
题六:等腰直角三角形ABC中,∠B=90°,AB=AC=6 cm,请问∠A的度数是多少?解析:由等腰直角三角形的性质可知,∠A=90°/2=45°。
题七:平行线m和n被一条穿过的直线t所截,已知∠1=120°,求∠2的度数。
解析:由平行线的特性可知,∠1=∠2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学三角形四边形求角度专项复习题含答
案
Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998
中考数学复习非圆几何求角度
1、【基础题】(2015呼和浩特)如左下图,已知∠1=70°,如果CD∥BE,那么∠B的度数为()
A.70°B.100°C.110°D.120°
2、【基础题】(2015山西)如右上图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放
置.
若∠1=55°,则∠2的度数为()
A.105°B.110°C.115°D.120°
3、【基础题】(2015徐州)如右图,在△A BC中,∠C=31°,∠A BC的平分线BD交A C于点D,
如果DE垂直平分BC,那么∠A= °.
4、【综合Ⅰ】在△ABC中,∠A:∠B:∠C=1:2:3,
求△ABC各角的度数.
5、【综合Ⅰ】(2015辽宁丹东)如左下图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,
∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()
A. 15°
B. °
C. 20°
D. °
6、【综合Ⅱ】(2015南京)如右上图,△ABC中,CD是边AB上的高,且AD CD CD BD
.
(1)求证:△ACD ∽△CBD;(2)求∠ACB的大小.
7、【综合Ⅲ】如左下图,点O是△ABC内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC等于_______
8、【基础题】(2015北京)右上图是由射线AB、BC、CD、DE、EA,组成的平面图形,则∠1+
∠2+∠3+∠4+∠5=_____.
9、【综合Ⅱ】(2015河北)如左下图,平面上,将边长相等的正三角形、正方形、正五边形、正
六边形的一边重合并叠在一起,则∠3+∠1-∠2= °
10、【基础题】(2015营口)如右上图,□ABCD中,对角线AC与BD交于点O,∠DAC=42o,∠CBD=23o,
则∠COD的度数是()
A.61o B.63o C.65o D.67o
11、【综合Ⅱ】如右图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,E
为垂足,
连接DF,则∠CDF的度数为.
12、【综合Ⅱ】(2010襄阳)菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为
()
A.3:1 B.4:1 C.5:1 D.6:1
13、【综合Ⅲ】如左下图,在矩形ABCD中,AC与BD相交于一点O,AE平分∠BAD,若∠EAO =15°,
求∠BOE的度数.
14、【综合Ⅱ】(2015上海)如右上图,已知点E是正方形ABCD的对角线AC上一点,AE=AD,
过点E作AC的垂线,交边CD于点F,那么∠FAD=______度.
15、【综合Ⅱ】(2015黄冈)如左下图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若
∠CBF=20°,则∠AED等于度.
16、【综合Ⅲ】(2015淄博)如右上图,等腰直角三角形BDC的顶点D在等边三角形ABC的内部,
∠BDC=90°,连接AD,过点D作一条直线将△ABD分割成两个等腰三角形,则分割出的这两个等腰三角形的顶角分别是度.
17、【综合Ⅲ】(2014四川南充)如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,
则∠B的度数为()
A.30°B.36° C.40° D.45°
18、【综合Ⅲ】(2015湖北襄阳)在□ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,则∠A的度数为.
19、【提高题】如左下图,等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是()
A. 45°
B. 60°
C. 75°
D. 80°
E
D
A
20、【提高题】(2015常德)如右上图,在△ABC中,∠B=40°,三角形的外角∠DAC和∠ACF 的平分线交于点E,
则∠AEC=度。
21、【提高题】(2014天津)如图,在Rt△ABC中,点D、E为斜边AB上的两个点,且BD=BC,AE=AC,
则∠DCE的大小为______.
中考数学复习非圆几何求角度【答案与解析】
1、【答案】选C
2、【答案】选C
3、【答案】 87
4、【答案】∠A=30°,∠B=60°,∠C=90°
5、【答案】选A
6、【答案】(1)证明:CD是边AB上的高.
∴∠ACD=∠CDB=90︒.
又AD CD CD BD
=,
∴△ACD∽△CBD. (2)解,△ACD∽△CBD,
∴∠A =∠BCD .
在△ACD 中,∠ADC =90︒,∴∠A +∠ADC =90°.,∴∠BCD +∠ACD =90°,即∠ACB =90°.
7、【答案】 135°
8、【答案】 360° 9、【答案】 24 10、【答案】 选C
11、【答案】 60° 12、【答案】 C
13、【答案】 ∠BOE=○75
【提示】 ∵AE 平分∠BAD ,∠BAD=○90, ∴∠BAE=○45,
又∵∠EAO=15°,∴∠BAO=○60, 再根据OA=OB ,所以△ABO 为等边三角形,可得AB=BO. 又∵∠BEA=○45,∴BE=AB ,∴BE=BO. 在△BEO 中,∠EBO=○30,BE=BO ,根据三角形内角和性质可求出∠BOE=○75.
14、【答案】 15、【答案】 65 16、【答案】 120和150
17、【答案】 选B
【解析】分析:求出∠BAD =2∠CAD =2∠B =2∠C 的关系,利用三角形的内角和是180°,列方程求∠B ,
∵AB =AC ,∴∠B =∠C ,∵AB =BD ,∴∠BAD =∠BDA ,
∵CD =AD ,∴∠C =∠CAD ,
∵∠BAD +∠CAD +∠B +∠C =180°,∴5∠B =180°,∴∠B =36°, 故选:B .
【总结】 为简化关系式,此题可设∠B =x ,并用x 表示其他角,再列方程.
18、【答案】 55°或35°
【提示】此题的图形有两种情况,情形一:当E 点在线段AD 上时;情形二:当E 点在AD 的延长线上时。
19、【答案】选B
20、【答案】 70°
21、【答案】45°
【解法一】
【解法二】可设∠DCE=x,∠CDE=m,∠CED=n;
又因为BD=BC,AE=AC;
所以∠DCB=∠CDE=m,∠ACE=∠CED=n;根据题意可列方程组m+n+x=180°(1)
m+n-x=90°(2)
(1)式减(2)式得 2 x =90°,x=45°.。