电磁感应现象的发现

合集下载

电磁感应现象

电磁感应现象

电磁感应现象电磁感应现象是由法拉第发现的一种重要的物理现象,揭示了电磁场与运动磁场之间的相互作用。

在当今的科学与技术领域中,电磁感应现象被广泛应用于各种设备和系统中,具有重要的理论和实际意义。

一、发现和原理1831年,英国科学家法拉第通过实验证明了电磁感应现象的存在。

他发现当导体穿过磁场或磁场穿过导体时,都会在导体中产生感应电流。

这种现象被称为电磁感应。

根据法拉第的法则,当磁通量通过闭合电路时,感应电动势的大小与磁通量的变化率成正比。

具体来说,感应电动势的大小等于磁通量的变化率与导线的匝数之积。

这个原理被写成以下公式:ε = -dΦ/dt其中,ε表示感应电动势,Φ表示磁通量,dt表示时间的微小变化。

由于感应电动势的产生需要变化的磁场,因此需要一个运动的磁场或者通过电流的变化来改变磁场。

这就是电磁感应现象的基本原理。

二、应用领域电磁感应现象在现代社会中被广泛应用于各个领域,其中一些重要的应用包括但不限于以下几个方面。

1. 发电机和电动机:电磁感应现象是发电机和电动机工作的基础原理。

通过导体在磁场中的运动与磁通量的变化,可以产生感应电流和电动势,实现能量的转换和传输。

2. 变压器:变压器是利用电磁感应原理工作的电力设备。

通过交变电流在线圈中产生交变磁场,从而使得磁通量发生变化,进而感应出交变电动势。

通过调整线圈的匝数比例,可以实现电压的升降。

3. 电磁感应传感器:电磁感应原理也被应用于各种传感器中,如接近传感器、速度传感器等。

这些传感器可以通过探测磁场的变化来感知物体的位置、速度等信息,并将其转化为电信号进行处理。

4. 无线充电技术:利用电磁感应原理,可以实现无线充电技术。

将电能通过磁场进行传输,可以使电子设备无需插拔充电器,实现便捷的充电方式。

5. 非接触式信号传输:电磁感应原理还被应用于无线通信系统中。

通过改变电流或磁场的变化来传输信号,实现非接触式的信号传输和通信。

三、未来发展随着科技的不断进步和应用领域的扩大,电磁感应现象的研究和应用也在不断深化和拓展。

法拉第电磁感应现象

法拉第电磁感应现象

法拉第电磁感应现象
法拉第电磁感应现象,是一种物理现象,由意大利物理学家安东尼·法拉第亼现,他发现在一个带电体中,当它在电磁
场中移动时,会产生电流,这称为“电磁感应”。

法拉第电磁感应现象是这样发现的:法拉第用一个发电机,通过磁铁来控制电流的方向,以模拟一个磁场,将磁铁的极性改变,发现当磁铁接近电线时,电线中产生了电流,电流的方向和磁铁的极性有关。

他认为,这是由磁场在电线中产生的电磁感应作用,而磁场是由发电机电流产生的。

法拉第电磁感应现象也被称为“电磁感应电流”,它是一种自发电流,因为它不需要外部电源,也不需要消耗外部电能。

电磁感应电流可以通过不同的电路元件来控制,如变压器、电流互感器、电动机等。

法拉第电磁感应现象应用广泛,它是电气设备的基础,如电动机、发电机、变压器等,在电力系统中,它可以用来检测电力网络中的故障,以及用于电动机控制、电力系统的安全保护。

它还可以用于制造电磁兼容的设备,以及电子设备的调节、调整等功能。

总之,法拉第电磁感应现象是一种重要的物理现象,它在电气、电子和电力工程中均有重要作用,并且它对人类文明有重要的意义。

电磁感应现象的发现及其原理

电磁感应现象的发现及其原理

电磁感应现象的发现及其原理1. 引言电磁感应现象是电磁学领域的基石之一,它的发现标志着人类进入了电气时代。

本篇文章将详细介绍电磁感应现象的发现过程及其原理。

2. 电磁感应现象的发现电磁感应现象的发现要归功于英国科学家迈克尔·法拉第。

在1831年,法拉第经过十年的努力,终于发现了电磁感应现象。

他发现当磁场的强度或方向发生改变时,会在导体中产生电动势,从而产生电流。

3. 电磁感应现象的原理电磁感应现象的原理可以根据法拉第电磁感应定律来解释。

法拉第电磁感应定律表明,闭合导体回路中感应电动势的大小与磁通量的变化率成正比,方向与磁通量的变化率方向相反。

3.1 磁通量磁通量是磁场穿过某一面积的总量。

用符号Φ表示,单位是韦伯(Wb)。

磁通量可以形象地理解为磁场线穿过某一区域的数目。

3.2 磁通量的变化率磁通量的变化率表示磁通量随时间的变化情况。

它可以分为两种:•磁通量的增加:当磁场强度、导体面积或磁场与导体面积的夹角发生变化时,磁通量会增加。

•磁通量的减少:当磁场强度、导体面积或磁场与导体面积的夹角发生变化时,磁通量会减少。

3.3 感应电动势感应电动势是指在电磁感应现象中,导体中产生的电动势。

它的计算公式为:= -其中,ε表示感应电动势,Φ表示磁通量,t表示时间。

3.4 感应电流当导体中存在感应电动势时,如果导体是闭合的,就会产生感应电流。

感应电流的产生遵循楞次定律,即感应电流的方向总是使得其磁场对原磁场的变化产生阻碍作用。

4. 电磁感应现象的应用电磁感应现象在现代科技领域中有着广泛的应用,以下是一些常见的应用实例:•发电机:通过旋转磁场和固定线圈的方式,将机械能转化为电能。

•变压器:利用电磁感应原理,实现电压的升降转换。

•感应电炉:通过高频电磁场对导体进行加热,广泛应用于金属加工领域。

•无线充电:利用电磁感应原理,实现无线传输电能。

5. 结语电磁感应现象的发现及其原理是电磁学领域的基础知识。

通过对电磁感应现象的研究,人类得以深入了解电磁场的本质,并将其应用于各种科技领域,为人类社会的发展做出了巨大贡献。

高中物理:电磁感应知识点归纳

高中物理:电磁感应知识点归纳

高中物理:电磁感应知识点归纳一、电磁感应的发现1.“电生磁”的发现奥斯特实验的启迪:丹麦物理学家奥斯特发现电流能使小磁针偏转,即电流的磁效应2.“磁生电”的发现(1)电磁感应现象的发现法拉第根据他的实验,将产生感应电流的原因分成五类:①变化的电流;②变化的磁场;③运动中的恒定电流;④运动中的磁铁;⑤运动中的导线。

(2)电磁感应的发现使人们找到了“磁生电”的条件,开辟了人类的电气化时代。

二、感应电流产生的条件1. 探究实验实验一:导体在磁场中做切割磁感线的运动实验二:通过闭合回路的磁场发生变化2. 感应电流产生的条件:穿过闭合电路的磁通量发生变化时,这个闭合电路中就有感应电流产生三、感应电动势1. 定义:由电磁感应产生的电动势,叫感应电动势。

产生电动势的那部分导体相当于电源。

2. 产生条件:只要穿过电路的磁通量发生变化,无论电路是否闭合,电路中都会有感应电动势。

3. 方向判断:在内电路中,感应电动势的方向是由电源的负极指向电源的正极,跟内电路中的电流的方向一致。

产生感应电动势的那部分导体相当于电源。

【关键一点】感应电流的产生需要电路闭合,而感应电动势的产生电路不一定需要闭合四、法拉第电磁感应定律1. 定律内容:感应电动势的大小,跟穿过这个电路的磁通量的变化率成正比。

2. 表达式:说明:①式中N为线圈匝数,是磁通量的变化率,注意它与磁通量以及磁通量的变化量的区别。

②E与无关,成正比③在图像中为斜率,所以斜率的意义为感应电动势五、导体切割磁感线时产生的电动势公式中的l为有效切割长度,即导体与v垂直的方向上的投影长度.图中有效长度分别为:甲图:l=cdsin β(容易错算成l=absin β).乙图:沿v1方向运动时,l=MN;沿v2方向运动时,l=0.丙图:沿v1方向运动时,沿v2方向运动时,l=0;沿v3方向运动时,l=R.六、右手定则1. 内容:将右手手掌伸平,使大拇指与其余并拢的四指垂直,并与手掌在同一平面内,让磁感线从手心穿入,大拇指指向导体运动方向,这时四指的指向就是感应电流的方向,也就是感应电动势的方向2. 适用情况:导体切割磁感线产生感应电流七、楞次定律1.内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。

电磁感应现象

电磁感应现象

电磁感应现象电磁感应现象是电磁学中重要的现象之一,指在磁场变化或电场变化的情况下会感应出相应的电场或磁场,这种现象被广泛应用于发电、电磁波传播等领域。

历史背景电磁感应现象最早由英国物理学家迈克尔·法拉第在1831年发现。

法拉第在实验中用一根导体线圈和磁铁交替摆动,发现导体线圈内会产生电流。

这个实验结果表明在改变磁场的情况下,会在导体内产生电势差,从而产生电流,这就是电磁感应现象的雏形。

磁感应强度在导体中产生的感应电动势与磁感应强度有关,磁感应强度越大则感应出的电动势就越大。

磁感应强度是一个向量,用大写字母B表示,单位是特斯拉(T)。

在国际单位制下,1T的定义是,在垂直于磁感线的方向上,每米中通过一安培的电流所受到的恒定力为一牛。

实际上,在我们日常使用的电器中,磁感应强度普遍很小,一般小于0.1T。

例如,家用电视机和电脑屏幕产生的磁场一般只有10 mT左右。

法拉第电磁感应定律法拉第电磁感应定律是描述电磁感应现象的一个基本定律,也称为法拉第电磁感应法则。

它的表述如下:当导体中的磁通量发生变化时,会在导体两端产生感应电动势,且电动势的大小与磁通量的变化率成正比。

其中磁通量的大小与导体所包围的磁场和面积有关,表示为Φ,单位是韦伯(Wb)。

感应电动势的大小表示为ε,单位是伏特(V)。

根据法拉第电磁感应定律,感应电动势的大小可以表示为:ε = -dΦ/dt其中,dΦ/dt表示磁通量随时间的变化率。

负号表示感应电动势的方向与磁通量的变化方向相反。

电磁感应的应用电磁感应现象在工业生产和科学实验中有广泛的用途,其中最重要的应用是电力的发电和输送。

电发电厂利用燃料、水力、核能等能源,驱动发电机转动,通过导体线圈产生电动势,从而产生电能。

这个过程是通过电磁感应原理实现的。

除了发电以外,在电子产品、通讯设备、磁共振成像等领域,电磁感应也发挥着重要的作用。

例如,手持电磁铁、电动汽车、电子表中都用到了电磁感应的原理。

1831年8月29日,法拉第发现电磁感应现象。

1831年8月29日,法拉第发现电磁感应现象。

1831年8⽉29⽇,法拉第发现电磁感应现象。

1831年8⽉29⽇,英国物理学家法拉第和往常⼀样来到位于皇家研究院的实验室,为了验证 “磁可以产⽣电”的假设,他已经努⼒了10年。

变化的磁场可以产⽣感应电流,这是每⼀个中学⽣都知道的原理。

⽽在当时,相继有安培、菲涅⽿、德拉⾥夫、科拉顿在验证这⼀假设的路上栽了跟头。

这⼀次,法拉第⽤⼀根长为220 英尺的铜丝绕在⼀个圆筒上,线圈的两端连着⼀个电流计。

当他⽤⼀根磁铁插⼊或抽出线圈时,电流计就会发⽣偏转;如果磁铁在线圈中不动时,电流计就不动。

于是他得出结论:只有磁铁在线圈中运动时才能产⽣电流,并把它称作电磁感应现象,这种电流叫做感应电流。

后来,法拉第⼜改变了实验⽅法,他把线圈放在磁铁的两极之间,当线圈不断旋转时,线圈中就能产⽣持续不断的电流。

这⼀重⼤发现,为发电机的诞⽣奠定了基础。

滴⽔穿⽯不是靠⼒,⽽是因为它不舍昼夜。

这样的坚持,能让每⼀个未知,终有揭开谜底的⼀天。

电磁感应的发现和原理

电磁感应的发现和原理

电磁感应的发现和原理电磁感应是物理学中的一个核心概念,其发现与研究对于现代电子技术的发展起到了至关重要的作用。

本文将介绍电磁感应的发现历程以及其原理,以帮助读者更好地理解电磁感应的基本知识。

一、发现历程电磁感应的发现可以追溯到19世纪初,当时的科学家穆尔斯(Michael Faraday)和亨利(Joseph Henry)分别独立地进行了相关实验。

他们注意到当通过一个回路中的导线传递电流时,附近的磁场会发生变化,这导致在导线中会产生电流。

这一现象被称为电磁感应。

穆尔斯在1831年进行了一系列的实验,他发现当改变通过回路的磁场强度或者导线和磁场之间的相对运动时,导线中都会产生电动势。

亨利在穆尔斯的实验基础上进一步深化了电磁感应的研究,他发现导线中产生的电动势的大小和磁场的变化速率有关。

这些实验结果为电磁感应的理论奠定了基础,以后的科学家在此基础上进一步发展了电磁感应的理论。

二、原理解析电磁感应的原理可以通过法拉第电磁感应定律来解释。

法拉第电磁感应定律指出:当一个导体在磁场中运动时,会在导体两端产生感应电动势,其大小与导体速度、磁场强度以及导体长度有关。

具体而言,当导体以速度v与磁感应强度B垂直运动时,导体两端将会产生电势差。

这个电势差可以用下式表示:ε = B*l*v其中,ε表示感应电动势,B表示磁感应强度,l表示导体的长度,v表示导体的速度。

同样,当磁场强度B不变,导体相对于磁场的面积发生变化时,也会产生感应电动势。

此时,感应电动势可以用下式表示:ε = B*A*sinθ/t其中,ε表示感应电动势,B表示磁感应强度,A表示导体的面积,θ表示导体与磁场方向之间的夹角,t表示变化的时间。

通过这两个公式,我们可以了解到电磁感应的基本原理。

当导体相对于磁场发生运动或者磁场强度发生变化时,导体中就会产生感应电动势。

进一步,根据欧姆定律,当导体形成闭合回路时,导体中的感应电动势就会产生电流。

三、应用领域电磁感应的发现与原理对现代科学和技术领域产生了深远的影响,广泛应用于以下几个方面:1. 发电机:发电机正是通过电磁感应原理将机械能转化为电能,实现电力的生产和输送。

电磁感应现象

电磁感应现象

科目一考试 / 2016年科目一模 拟考试题
科目二考试 2016年科目二考试技巧 、考试内容、考试视频
二、产生感应电流的条件 实验探究感应电流产生的条件 (1)利用蹄形磁铁的磁场 如图 3-1-1 所示,将导体 ab 和电流表连接组成闭合电路.
电磁感应现象
【典例 1】 下列现象中,属于电磁感应现象的是( A.小磁针在通电导线附近发生偏转 B.通电线圈在磁场中转动 C.因闭合线圈在磁场中运动而产生电流 D.磁铁吸引小磁针 ).
解析 电磁感应是指“磁生电”的现象,而小磁针和通电线圈 在磁场中转动及受磁场力的作用,反映了磁场力的性质.所以 A、B、D 不是电磁感应现象,C 是电磁感应现象. 答案 C
4.如图 3-1-8 所示,两个线圈分别绕在一个铁环上,线圈 A 接 直流电源,线圈 B 接灵敏电流表,下列哪种情况不可能使线圈 B 中产生感应电流( ).
A.将开关 S 接通或断开的瞬间 B.开关 S 接通一段时间之后 C.开关 S 接通后,改变变阻器滑片的位置时 D.拿走铁环,再做这个实验,开关 S 接通或断开的瞬间
解析
产生感应电流有两个必要条件Fra bibliotek一是闭合电路,二是回路中磁通量发生变化,二 者缺一不可.导体相对磁场运动或导体做切 割磁感线运动时,不一定组成闭合电路,故 A、B 错误. 即使是闭合回路做切割磁感线运动,回路中磁通量也不一定发 生变化,如右图所示,闭合导体虽然切割磁感线,但回路中磁 通量始终未变,故无感应电流产生,C 错误. 答案 D
感应电流有无的判断 1.通电直导线穿过闭合线圈 L,如图 3-1-6 所示,则( A.当电流 I 增大时,线圈 L 中有感应电流 B.当 L 左右平动时,L 中有感应电流 C.当 L 上下平动时,L 中有感应电流 D.以上各种情况都不会产生感应电流 ).

电磁感应现象的发现感应电流产生的条件

电磁感应现象的发现感应电流产生的条件

答案 (1)1.256×10-4 Wb 1.256×10-4 Wb (2)8.4×10-6 Wb 借题发挥 磁通量是指穿过某一面积的磁感线的条数,与线圈匝数无关.若线圈所围面 积大于磁场面积,则以磁场区域面积为准.本题中B线圈与A线圈中的磁通量始终一样,故它们 的改变量也一样.
20
【变式1】面积为S的矩形线框abcd处在磁感应强度为B的均强磁场中,磁场方向与线框 面成θ角,如图1-1、2-9所示,当线框以ab为轴顺时针转90°时,穿过abcd面的磁通量的变化 量ΔΦ=________.
图 1-1、2-6
图 1-1、2-7
17
【典例1】有一个垂直纸面向里的匀强磁场,如图1-1、2-8所示,磁感应强度B=0.8 T, 磁场有明显的圆形边界,圆心为O,半径为1 cm.现在纸面内先后放上圆线圈,圆心均在O处,A 线圈半径为1 cm,10匝;B线圈半径为2 cm,1匝;C线圈半径为0.5 cm,1匝.问:
1
1 电磁感应现象的发现 2 感应电流产生的条件
2
1.了解电磁感应现象的发现过程,知道电和磁的联系. 2.通过实验探究归纳感应电流的产生条件.(重点) 3.能运用感应电流的产生条件判断回路中是否有感应电流产生.(重点+难点) 4.体会科学家对待科学的严谨态度和非凡意志力.
3
一、奥斯特实验的启迪 1.电流的磁效应 1820 年,丹麦物理学家奥斯特 发现载流导线能使小磁针发生 偏转,我们把这种现象称为电流的磁效应. 2.意义 电流磁效应的发现证实了 电和磁 存在着必然的联系,突破了 人类对电与磁认识的局限性,掀起了一场研究电与磁关系的革命.
27
【典例3】如图1-1、2-12所示,把一条大约10 m长电线的两端连在一个灵敏电流表的 两个接线柱上,形成闭合电路.两个同学迅速摇动这条电线,可以发电吗?简述你的理由.

电磁感应的发现

电磁感应的发现

麦克斯韦说:科学 家其实也有许多粗糙的 想法和不成功的经验。 他们是伟大的,但并不 是高不可攀的。
伟大的转折 1831年8月29日 电池组
开关
电流计
著名的科学文物:法拉第线圈
进一步地思考和探索:
铁芯
铁芯和线圈A是产生这一效应的必要条件吗?
1831年11月24日,法拉第向皇家学会提交 了一个报告,把这种现象定名为电磁感应,产 生的电流叫做感应电流。“磁生电”是一种在 变化、运动的过程中才能出现的效应。
一、奥斯特实验的启迪
电与磁是有联系的! 艰辛探索(1807-1820) : 静电——没感觉 改变中的突破:1820 发现小磁针偏转 安培的华丽转身:安培定则、电动力学
法拉第:“它突然打开了科学 中一个黑暗领域的大门,使其 充满光明。”
二、电磁感应现象的发现
对称性的思考……
英国物理学家法拉第认为: 电和磁是一对和谐对称的自 然现象。 依据:磁化和静电感应现象 猜想:磁铁应该可以感应 出电流!
法拉第提出了“电场”、“磁场” 和“力线”的概念。暗示了电磁波存在 的可能性,并预言了光可能是一种电磁 振动的传播。 爱因斯坦的评价:场的思想是法拉 第最富创造性的思想,是牛顿以来最重 要的发现。麦克斯韦正是继承和发展了 场的思想,为之找到了完美的数学表示 形式从而建立了电磁场理论。
对以往知识的熟知 和对新鲜事物及其发展 前景的敏感,是一个人 的创造力的源泉。
现及其对社会发展意义。
科学史上许多重要发现和发明,常被人们有意无意地 罩上神秘的光环,似乎科学家都是呼风唤雨的魔术师。但 是我们在这里看到,具有闪光思维的奥斯特和法拉第,在 做出伟大发现的过程中也受着历史局限性的束缚,也有过
“可笑”的疏忽与失误。他们是伟大的,但也是可以学习

2.1电磁感应现象的发现

2.1电磁感应现象的发现
第一节:电磁感应现象的发现
第一节:电磁感应现象的发现
1、磁通量计算公式是什么?
Φ =BS
(B垂直于S)
2、改变磁通量的方法有哪几种? ⑴改变B ⑵改变S ⑶改变B与S的夹角
第一节:电磁感应现象的发现
• 奥斯特1820年发现了电能生磁. • 英国物理学家法拉第坚信,电与磁决不孤立,有着密 切的联系.为此,他做了许多实验,历时10年,终于 在1831年发现了磁生电的条件和规律,从而开辟了物 理学又一崭新天地.
第一节:电磁感应现象的发现
第一节:电磁感应现象的发现
第一节:电磁感应现象的发现
第一节:电磁感应现象的发现
第一节:电磁感应现象的发现
第一节:电磁感应现象的发现Βιβλιοθήκη 第一节:电磁感应现象的发现
第三节 认识磁场
一. 磁感线 如何形象地描述磁场中各点的磁场方向? 1、磁感线: 是在磁场中画出一些有方向的曲线,使曲线上 每一点的切线方向都跟这点的磁感应强度的方向一致。
四、磁通量: 1、定义:在磁感应强度为B的匀 强磁场中,有一个与磁场方向垂 直的平面,面积为S,我们把B 与S的乘积叫做穿过这个面积的 磁通量,简称磁通。用字母Φ表 示磁通量。 2、在匀强磁场中,公式为 Φ=BS⊥ (S⊥表示某一面积在垂直于磁场 方向上的投影面积).
3、单位:在SI制中是韦伯,简称韦,符号Wb 1Wb=1T〃m2 4、磁通量是有正负的,若在某个面积有方向相反的磁场通过, 求磁通量,应考虑相反方向抵消以后所剩余的磁通量,即应求 该面积各磁通量的代数和.
第三节 认识磁场
二、磁感应强度B 1.物理意义 描述磁场强弱和方向的物理量. 2.单位:特斯拉 符号T
3.矢量性:B的方向与该点磁场方向相同
即磁感线的切线方向

电磁感应现象和法拉第电磁感应定律

电磁感应现象和法拉第电磁感应定律

电磁感应现象和法拉第电磁感应定律电磁感应现象是指当导体相对于磁场发生运动时,或磁场相对于导体发生变化时,会在导体中产生感应电流和感应电动势的现象。

这个现象的发现和理解,对于现代电磁学的发展具有重要的意义。

其中,法拉第电磁感应定律是描述电磁感应现象的数学表达式,它为我们理解和应用电磁感应现象提供了重要的理论依据。

一、电磁感应现象电磁感应现象最早是由迈克尔·法拉第于1831年发现的。

他的实验设备是一个螺线管和一个磁铁。

当磁铁被带有电流的电线靠近或远离螺线管时,他观察到螺线管两端会出现电压差,并且如果将电路闭合,还可以产生电流。

这个实验结果表明,磁场的变化引发了螺线管中的感应电流。

根据法拉第的实验结果,我们可以得出以下几点关于电磁感应的重要结论:1. 当导体相对于磁场运动或磁场相对于导体变化时,会在导体中产生感应电流和感应电动势。

2. 电磁感应的结果还会导致导体两端产生电压差,形成感应电流。

3. 电磁感应现象遵循能量守恒定律,感应电流的生成是由磁场对导体的作用所导致的。

二、法拉第电磁感应定律法拉第电磁感应定律是对电磁感应现象的定量描述,它可以用数学表达式表示。

法拉第根据大量的实验观测,总结出了以下两种情况下感应电动势的大小:1. 当导体相对于磁场匀速运动时,感应电动势的大小与导体在磁场中所受磁力的大小、运动速度、导体长度及磁场的强度有关。

具体表达式为:ε = B * v * l * sinθ其中,ε代表感应电动势,B代表磁场的强度,v代表导体相对于磁场的运动速度,l代表导体的长度,θ代表磁场和导体运动方向之间的夹角。

2. 当磁场相对于导体发生变化时,感应电动势的大小与磁场变化速率、导体的面积有关。

具体表达式为:ε = -N * ΔΦ / Δt其中,ε代表感应电动势,N代表导体的匝数,ΔΦ代表磁通量的变化量,Δt代表时间的变化量。

根据法拉第电磁感应定律,我们可以得出以下几点结论:1. 感应电动势的方向遵循右手定则。

电磁感应的发展历程电磁感应的重要里程碑

电磁感应的发展历程电磁感应的重要里程碑

电磁感应的发展历程电磁感应的重要里程碑电磁感应的发展历程:电磁感应的重要里程碑电磁感应是指当磁场变化时,产生感应电动势的现象。

它是电磁学的一个重要分支,对于现代科技和社会的发展起到了至关重要的作用。

本文将围绕电磁感应的发展历程,介绍几个重要里程碑。

1. 法拉第发现电磁感应电磁感应的历史可以追溯到19世纪初,当时英国科学家迈克尔·法拉第进行了一系列的实验。

1831年,他发现当一个导体线圈在磁场中移动时,会产生电流。

这一重大发现被称为法拉第电磁感应现象,为电磁感应的研究奠定了基础。

2. 麦克斯韦方程组的建立19世纪中期,苏格兰物理学家詹姆斯·克拉克·麦克斯韦提出了麦克斯韦方程组,系统地描述了电磁现象的规律。

麦克斯韦方程组归纳了电场和磁场之间的关系,对电磁感应的研究起到了重要的推动作用。

3. 电磁感应在发电中的应用电磁感应的重要意义之一就是其在发电领域的应用。

1873年,法国物理学家迪伦发明了第一个有效的发电机。

他利用电磁感应的原理,将导体线圈通过磁场转动,从而产生了稳定的电流。

这一发明大大促进了电力工业的发展,丰富了人们的能源选择。

4. 电磁感应推动电磁波的研究电磁感应与电磁波之间的关系也是电磁学发展的里程碑之一。

19世纪末,德国物理学家海因里希·赫兹通过实验证明了电磁波的存在和传播。

他使用了电磁感应的原理,通过产生和接收电磁波,验证了麦克斯韦方程组中的预言。

这一研究成果奠定了无线通信和无线电广播的基础。

5. 磁动势定律的提出磁动势定律是电磁感应的重要理论基础之一。

1873年,法国物理学家亨利·阿伦发现了磁动势定律。

他的实验表明,闭合线圈中的电动势与磁场中磁通量变化的速率成正比。

磁动势定律为电磁感应现象提供了定量描述的方法,促进了该领域的深入研究。

6. 可变磁通量的应用可变磁通量是一项重要的电磁感应应用技术。

通过改变线圈中磁场的强度或方向,可以控制感应电动势的大小和方向。

电磁感应现象法拉第电磁感应定律

电磁感应现象法拉第电磁感应定律

发现过程
1831年,英国物理学家迈克尔·法拉第在一次实验中意外地发现了电磁感应现象。
当他改变一个线圈中的磁场强度时,在另一个线圈中产生了电流。这一发现证明了 变化的磁场可以产生电流。
法拉第进一步研究了这一现象,并总结出了法拉第电磁感应定律,即变化的磁场会 产生电场,从而产生电流。
对社会的影响
电磁感应现象的发现为发电机的 发明奠定了基础。
磁悬浮列车
总结词
磁悬浮列车是一种利用磁力使列车悬浮于轨道上的高速列车。
详细描述
磁悬浮列车通过在列车底部和轨道上分别安装磁铁和线圈,利用法拉第电磁感应定律产生磁力,使列 车悬浮于轨道上。磁悬浮列车具有高速、低噪音、低能耗等优点,是未来交通工具的重要发展方向之 一。
磁约束核聚变
总结词
磁约束核聚变是一种利用磁场约束高温 等离子体实现核聚变反应的能源技术。
THANKS FOR WATCHING
感谢您的观看
电磁感应定律的提出
法拉第提出了著名的法拉第电磁感应定律,即变化的磁场 会产生电场,从而进一步揭示了电磁相互作用的本质。
磁场的定量描述
法拉第引入了磁力线的概念,通过磁力线描述磁场分布, 为后来的磁场研究提供了直观的工具。
法拉第的精神遗产
01
坚持实验验证
法拉第坚信科学必须以实验为基础,他的研究过程充满了实验验证,这
VS
详细描述
磁约束核聚变利用法拉第电磁感应定律产 生的强磁场,将高温等离子体约束在特定 的磁场结构中,实现核聚变反应。该技术 被认为是未来清洁能源的重要发展方向之 一,对于解决能源危机和环境污染问题具 有重要意义。
05
法拉第的贡献与影响
法拉第的科学贡献
电磁感应现象的发现

电磁感应是谁发现的

电磁感应是谁发现的

电磁感应是谁发现的
电磁感应现象是英国物理学家迈克尔?法拉第发现的。

电磁感应定律也叫法拉第电磁
感应定律,电磁感应现象是指因磁通量变化产生感应电动势的现象。

电磁感应现象的发现,是电磁学领域中最伟大的成就之一。

1820年,丹麦著名物理学家奥斯特发现了电流的磁效应,揭开了研究电磁本质联系的序幕,他的这个重大发现很快便传遍了欧洲,并被许多物理学家所证实。

因此,人们确信
电流能够产生磁场。

在法拉第之前的一些物理学家已经开始探索磁产生电的途径。

安培于1821年到1822
年间做了探求感应电流的实验,但他未能发现电磁感应现象。

从1821年到1831年,法拉第整整耗费了10年时间,从设想到实验,漫长的岁月,
失败的痛苦,生活的艰辛,法拉第饱尝了各种辛酸,经过无数次反复的研究实验,终于发
现了电磁感应现象,于1831年确定了电磁感应的基本定律,取得了磁感应生电的重大突破。

闭合电路的一部分导体在磁场中做切割磁感线的运动时,导体中就会产生电流,这种
现象叫电磁感应现象。

迈克尔?法拉第(MichaelFaraday,1791—1867),世界著名的自学成才的科学家,
英国物理学家、化学家,发明家即发电机和电动机的发明者。

1831法拉第发现第一块磁铁穿过一个闭合线路时,线路内就会有电流产生,这个效应叫电磁感应。

一般认为法拉第的
电磁感应定律是他的一项最伟大的贡献。

感谢您的阅读,祝您生活愉快。

()首次发现电磁感应现象。

()首次发现电磁感应现象。

()首次发现电磁感应现象。

法拉第()首次发现电磁感应现象。

当导线在磁场中做切割磁力线的运动,导体内就会产生感应电流。

这种情况如果只有一条导线,那么它就会被无限地分割下去,永远也不能完成整个回路。

可是两条平行放置、互相排斥的金属线就组成闭合回路了。

这样,由于磁力线的“缩短”和“增长”作用而引起感应电流的变化过程叫做电磁感应。

电磁感应现象说明:通电导体周围存在着磁场;磁场对放入其中的磁体产生作用力的性质叫做磁场对放入其中的磁体的作用力。

在研究电磁感应时,法拉第把磁场想像为一根能够缠绕任何导线的绳子,或者想像为具有弹性的橡皮膜。

法拉第设想,磁铁外面的磁场会使磁针偏转。

然后,他把电流的方向改变,从正北极朝南极移动,看电流会产生什么效果?结果电流在线圈里自己形成了一个旋涡,所以大家都称这种旋涡为“电流涡旋”。

这些同学听得很仔细,认真地做记录。

教室里静悄悄的,没有人敢出声。

只见法拉第手拿一块小玻璃片走上讲台,轻轻地将一段圆铁棒放进电流涡旋中,突然,法拉第脸色骤变,惊恐万状,甚至嘴唇发紫。

只见电流涡旋急速收缩,仿佛要马上关掉闸门似的。

然后又迅速打开闸门。

法拉第显然是受了电磁波的影响,他激动地喊道:“产生了电磁波!我发现了电磁波!”此话一出,全班同学爆发出热烈的掌声。

因为法拉第所提示的问题实际上就是当今物理学界探索的课题——电磁波。

到了1866年,德国科学家赫兹证实了法拉第的预言。

原来,法拉第早已经注意到,当电流沿着闭合曲线流动时,在与磁场垂直的方向上,电流密度会减少。

但是,如果让电流反方向流动呢?奇迹出现了,电流密度并未随之减少,而且还略微增加了。

这表明,除了磁场以外,电流本身也具有某种特殊的性质。

这种新的电磁现象就是电磁波。

1831年,英国科学家麦克斯韦建立了统一电磁场理论,即电磁场理论。

这一理论包括电荷的电场、磁场及电磁波三部分。

麦克斯韦指出,电场和磁场都是由电荷激发的。

在电场中,电荷激发电场;在磁场中,磁荷激发磁场。

谁发现了电磁感应现象

谁发现了电磁感应现象

谁发现了电磁感应现象?现在我们知道,电磁感应现象英国科学家法拉第在1831年发现的。

但与之失之交臂的科学家,还有很多……在1822年阿拉果和德国物理学家洪堡在英国格林威治的一座小山上测量地磁强度的时候偶然发现了金属阻尼磁针的振荡。

于是在1824年阿拉果做了著名的“阿拉果圆盘实验”:他把一个铜质圆盘装在一个垂直轴上,让其可以自由旋转,在通盘上方自由悬挂一根小磁针,悬丝柔软且扭力很小。

当通盘转动时小磁针一起转动,但是稍微滞后;反之,小磁针转动时通盘也跟随转动。

这个实验震动了欧洲的物理学家,谁也不能解释这个现象。

这就是电磁阻尼作用,可是阿拉果和洪堡并没有因此研究出电磁感应定律。

直到后来,法拉第提出电磁感应定律后,才解释了这个实验,在他著名的《电学实验研究》一书的第2节中,称誉它为"非凡的实验",在第4节中表示他的电磁感应实验是"完满解释阿拉果现象的钥匙",并把长达69节的第4章命名为“阿拉果磁现象的解释”,可见这一实验影响之深远。

同一年,安培也做了同样类似的实验,他用通电螺线管代替阿拉果圆盘实验中的小磁针,自然他也发现了同样的结果。

这个时候离发现电磁感应定律只有一步之遥了。

但是很遗憾的是安培认为运动中的圆盘分离出来的是电流体而不是磁流体,它和螺线管中的电流(或者小磁针中的分子电流)相互作用使螺线管(或者小磁针)跟随旋转。

由于安培坚持“二元电流”的观点,认为电流是由两种电流体沿相反方向运动构成的,把原来不属于电动力学范畴的东西归入到了该理论内,结果失去了发现电磁感应定律的机会。

1825年,一位科学家科拉顿做了这样一个实验,他将一个磁铁插入连有灵敏电流计的螺旋线圈,想要观察在线圈中是否有电流产生,这跟我们今天演示电磁感应现象的实验装置一模一样。

但是在实验时,科拉顿为了排除磁铁对灵敏电流计的小磁针的影响,把电流计放在了另外一个房间,中间通过很长的导线连接。

他先把磁铁插进线圈,然后连忙跑到放电流计的房间,观察电流计指针是否有偏转,也就是是否有电流产生。

电磁感应现象的发现与归因

电磁感应现象的发现与归因

电磁感应现象的发现与归因1、奥斯特电流磁效应的发觉与启发长期以来,人们一直认为电和磁是彼此独立的。

1820年丹麦物理学家奥斯特发觉了电流的磁效应,这一惊人发觉使当时整个科学界受到专门大的震动,从此掀开了研究电磁联系的序幕。

既然电流能在其周围产生磁效应,那么磁体或电流也应能在邻近导体中感应出电流来。

但如何从实验中去找到这种前所未有的感应现象呢?从1820年到1831年,当时许多闻名的科学家如法国的安培、菲涅尔、阿拉果和英国的沃拉斯顿等都纷纷投身于探究磁与电的关系之中。

他们用各种专门强的磁铁试图产生电流,但均无结果。

究其缘故,差不多上由于思想方法上的片面性,受思维定势的负迁移作用阻碍,他们认为奥斯特的磁效应是一种稳固效应,因此在研究磁生电时,也差不多上从稳固条件动身,而没有考虑到这是一种动态成效。

2、值得玩味两个实验:安培与科拉顿的实验研究安培曾做了专门多实验,以期能实现“磁生电”,但各个实验都毫无例外地失败了。

1822年,为了验证他的分子电流假说,安培有设计了如此一个实验。

事实上验装置如图所示,a是一个固定在支架上的线圈,由专门多匝导线绕成并与电池连接;b是一个由专门细的铜条弯成的铜环,并用一根穿过线圈的细线L把铜环悬挂在O点,铜环正好在线圈b中且使两者同心。

将一个强磁体放在铜环邻近。

在未接通电流时,铜环与线圈之间没有相互作用,当线圈中通以电流时,发觉铜环发生了偏转。

安培认为,在电流通过线圈时,在铜环中感应出了分子电流,铜环被磁化了,铜环的偏转是由于强磁场对磁化了的铜环作用的结果。

他竟没有发觉环中显现了电流,更未意识到这一电流确实是感应电流。

安培未能发觉电磁感应的缘故是他把分子电流理论看的过分重要,完全被自己的理论囚禁起来了。

1823年,瑞士物理学家科拉顿曾妄图用磁铁在线圈中运动获得电流。

他把一个线圈与电流计连成一个闭合回路。

为了使磁铁不至于阻碍电流计中的小磁针,专门将电流计用长导线连后放在隔壁的房间里,他用磁棒在线圈中插入或拔出,然后一次又一次地跑到另一房间里去观看电流计是否偏转。

电磁感应现象

电磁感应现象
一、划时代的发现
奥斯特在1820年发现的电流磁效应,使整个科学界受到了 极大的震动,它证实电现象与磁现象是有联系的。探究电与磁 关系的崭新领域,突然展开在人们面前,激发了科学家们的探 索热情。一个接一个的新发现,象热浪一样冲击欧洲大陆,也 激励着英国的科学界。
电能生磁,磁能生电吗?
英国 科学家法拉第敏锐地觉察到,磁与电流之间应该有联 系。他在1822年的日记中写下了“由磁产生电”的设想。他做 了多次尝试,经历了一次次失败,但他坚信电与磁有联系,经 十年努力,终于发现磁能生电。
这是一个划时代的发现
奥斯特实验 【实验现象 】 ?【实验结论 】 ?
猜想: 1、既然电能生磁,那么,磁是否能生电呢? 2、如果磁能生电,那么,怎样才能实现呢?
二、电磁感应现象
1、电磁感应: 闭合电路的一部分导体在磁场中做切割磁感线运 动时,导体中就产生电流。
物理学中把这种现象叫 做电磁感应 由电磁感应产生的电流 叫做感应电流
3、电磁感应产生的电流叫做感应电流。
二、产生感应电流条件: 穿过闭合电路的磁通量发生变化。 “Φ变”
“Φ变”的原因:可能是B变、S变、B与S间的夹角 变
法拉第(1791—1876)是
英国著名的物理学家、化学家。 他发现了电磁感应现象,提出 电场和磁场的概念。场的概念 对近代物理的发展的重大意义。
他家境贫寒,出身于铁匠 家庭,未受过系统的正规教育, 但却在众多领域中作出惊人成 就,堪称刻苦勤奋、探索真理、 不计个人名利的典范,对于青 少年富有教育意义。
2、重大贡献的科学家: 法拉第

三、磁通量
为了说清楚产生电磁感应 的条件,要用到一个物理 量——磁通量φ 。
定义:穿过闭合回路的磁 感线的条数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1821年,法拉第发现电磁旋转,该实验装置是第一 年 法拉第发现电磁旋转, 个将电能转换为机械能的装置,是电动机的雏形。 个将电能转换为机械能的装置,是电动机的雏形。 1823年,法拉第通过一系列的电磁旋转实验想到: 年 法拉第通过一系列的电磁旋转实验想到: 既然电流对磁有作用,则一定有磁对电的反作用; 既然电流对磁有作用,则一定有磁对电的反作用;既然 电能产生磁,则磁也一定能产生电(对称原理)。 )。为实 电能产生磁,则磁也一定能产生电(对称原理)。为实 现磁产生电, 年起, 现磁产生电,自1824年起,法拉第做了大量实验,但一 年起 法拉第做了大量实验, 个一个接连失败。历经8年失败后 年失败后, 个一个接连失败。历经 年失败后,1831年8月29日,法 年 月 日 拉第终于成功了。 拉第终于成功了。
法拉第指出:感应电流与原电流的变化有关, 法拉第指出:感应电流与原电流的变化有关,而不是与原 电流本身有关.为了解释电磁感应现象,他曾提出过“电张力” 电流本身有关.为了解释电磁感应现象,他曾提出过“电张力” 的概念.后来在考虑了电磁感应的各种情况后, 的概念.后来在考虑了电磁感应的各种情况后,认为可以把感 应电流的产生归因于导体“切割磁力线”.在电磁感应现象发现 应电流的产生归因于导体“切割磁力线” 在电磁感应现象发现 二十年后,直到1851年才得出了电磁感应定律. 年才得出了电磁感应定律. 二十年后,直到 年才得出了电磁感应定律 1852年 1852年1月11日,法拉第发表《关于磁力的物理线》,强调 11日 法拉第发表《关于磁力的物理线》 力线是一种物理存在,提出了场的概念.认为引力、电力、 力线是一种物理存在,提出了场的概念.认为引力、电力、磁 力都不能视为超距作用,而应该是“ 力都不能视为超距作用,而应该是“通过媒介传播的近距作用 这种传播需要时间,但他认为这种媒介是“以太” 力”,这种传播需要时间,但他认为这种媒介是“以太”,即 便如此, 便如此,他提出的力线和场的概念对电磁学乃至整个物理学的 发展都有重大而深远的影响。 发展都有重大而深远的影响。 “自然界统一”的哲学思想,指导和影响了法拉第的科 自然界统一”的哲学思想, 学研究,他深信电和磁的统一,即它们能相互作用和转化。 学研究,他深信电和磁的统一,即它们能相互作用和转化。 这种思想至今还支配着物理学的发展, 这种思想至今还支配着物理学的发展,人们还在努力寻求大 统一理论、超大统一理论。 统一理论、超大统一理论。
电磁感应现象的发现
1820年奥斯特发现电流的磁效应,受到科学界 年奥斯特发现电流的磁效应, 年奥斯特发现电流的磁效应 的关注,促进了科学的发展. 年英国《 的关注,促进了科学的发展.1821年英国《哲学年 年英国 的主编邀请戴维撰写一篇文章, 鉴》的主编邀请戴维撰写一篇文章,评述奥斯特发 现以来电磁学实验和理论发展概况. 现以来电磁学实验和理论发展概况.戴维把这一工 作交给了法拉第.法拉第在收集资料的过程中, 作交给了法拉第.法拉第在收集资料的过程中,对 电磁现象的研究产生了极大的热情, 电磁现象的研究产生了极大的热情,重复做了这些 论文中的大多数实验。 论文中的大多数实验。1821-10-1,这篇论文以《电 ,这篇论文以《 磁学发展概况》为题,发表在《哲学年鉴》 磁学发展概况》为题,发表在《哲学年鉴》上,这 是法拉第发表的第一篇电磁学论文, 是法拉第发表的第一篇电磁学论文,也是他由化学 转向电磁学研究的开始。 转向电磁学研究的开始。 法拉第仔细地分析了电流的磁效应等现象, 法拉第仔细地分析了电流的磁效应等现象,认 为既然电流能产生磁,磁能否产生电呢? 为既然电流能产生磁,磁能否产生电呢
实验.扁平铜盘在两磁极间旋转, 实验.扁平铜盘在两磁极间旋转,从铜 盘中心和边缘各引一导线接在检流计 指针持续偏转,产生了持续电流, 上,指针持续偏转,产生了持续电流, 这就是原始发电机. 这就是原始发电机. 1831年10月24日 1831年10月24日,法拉第在提交给 皇家学会的论文中,他把产生感应电流的情况概括成五类:变化 皇家学会的论文中,他把产生感应电流的情况概括成五类: 产生感应电流的情况概括成五类 着的电流;变化着的磁场;运动的恒定电流;运动的磁场; 着的电流;变化着的磁场;运动的恒定电流;运动的磁场;在 磁场中运动的导体.他将这一现象与导体上的静电感应类比, 磁场中运动的导体.他将这一现象与导体上的静电感应类比, 把它取名为“电磁感应” 把它取名为“电磁感应”. 同一时期,其他物理学家发现了/自感、互感现象” 同一时期,其他物理学家发现了/自感、互感现象”。 1832年 俄国物理学家楞次(1804-1865) 1832年,俄国物理学家楞次(1804-1865)通过实验发现了 楞次定律:感应电流的效果总是反抗引起感应电流的原因。 楞次定律:感应电流的效果总是反抗引起感应电流的原因。或表 述为:闭合回路中感应电流的方向, 述为:闭合回路中感应电流的方向,总是使得它所激发的磁场来 阻止或补偿引起感应电流的磁通量的变化。 阻止或补偿引起感应电流的磁通量的变化。
他在软铁环的使用,也可单独使用.在B边绕了 可串联使用,也可单独使用. 两个同样方向的线圈, 两个同样方向的线圈,把B边的线圈接 上检流计,A边的线圈接上电池。 ,A边的线圈接上电池 上检流计,A边的线圈接上电池。当电路 接通时,检流计明显偏转, 接通时,检流计明显偏转,断开时检流 计反向偏转,接着他又做了大量实验.10 计反向偏转,接着他又做了大量实验.10 月底到11月初,法拉第做了著名的圆盘 月底到11月初, 11月初
相关文档
最新文档