二元一次方程组练习及答案之二
二元一次方程组解法练习题精选(含答案)
二元一次方程组解法练习题精选(含答案)【1】一.解答题(共16小题)1.求适合的x,y的值.2.解下列方程组(1)(2)(3)(4).3.解方程组:4.解方程组:5.解方程组:6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?7.解方程组:(1);(2).8.解方程组:9.解方程组:10.解下列方程组:(1)(2)11.解方程组:(1)(2)12.解二元一次方程组:(1);(2).13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.14.15.解下列方程组:(1);(2).16.解下列方程组:(1)(2)17.方程组的解是否满足2x-y=8?满足2x-y=8的一对x,y的值是否是方程组的解?二元一次方程组解法练习题精选(含答案)参考答案与试题解析一.解答题(共16小题)1.求适合的x,y的值.考点:解二元一次方程组.分析:先把两方程变形(去分母),得到一组新的方程,然后在用加减消元法消去未知数x,求出y 的值,继而求出x的值.解答:解:由题意得:,由(1)×2得:3x﹣2y=2(3),由(2)×3得:6x+y=3(4),(3)×2得:6x﹣4y=4(5),(5)﹣(4)得:y=﹣,把y的值代入(3)得:x=,∴.点评:本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法.2.解下列方程组(1)(2)(3)(4).考点:解二元一次方程组.分析:(1)(2)用代入消元法或加减消元法均可;(3)(4)应先去分母、去括号化简方程组,再进一步采用适宜的方法求解.解答:解:(1)①﹣②得,﹣x=﹣2,解得x=2,把x=2代入①得,2+y=1,解得y=﹣1.故原方程组的解为.(2)①×3﹣②×2得,﹣13y=﹣39,解得,y=3,把y=3代入①得,2x﹣3×3=﹣5,解得x=2.故原方程组的解为.(3)原方程组可化为,①+②得,6x=36,x=6,①﹣②得,8y=﹣4,y=﹣.所以原方程组的解为.(4)原方程组可化为:,①×2+②得,x=,把x=代入②得,3×﹣4y=6,y=﹣.所以原方程组的解为.点评:利用消元法解方程组,要根据未知数的系数特点选择代入法还是加减法:①相同未知数的系数相同或互为相反数时,宜用加减法;②其中一个未知数的系数为1时,宜用代入法.3.解方程组:考点:解二元一次方程组.专题:计算题.分析:先化简方程组,再进一步根据方程组的特点选用相应的方法:用加减法.解答:解:原方程组可化为,①×4﹣②×3,得7x=42,解得x=6.把x=6代入①,得y=4.所以方程组的解为.点评:注意:二元一次方程组无论多复杂,解二元一次方程组的基本思想都是消元.消元的方法有代入法和加减法.4.解方程组:考点:解二元一次方程组.专题:计算题.分析:把原方程组化简后,观察形式,选用合适的解法,此题用加减法求解比较简单.解答:解:(1)原方程组化为,①+②得:6x=18,∴x=3.代入①得:y=.所以原方程组的解为.点评:要注意:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法.本题适合用此法.5.解方程组:考点:解二元一次方程组.专题:计算题;换元法.分析:本题用加减消元法即可或运用换元法求解.解答:解:,①﹣②,得s+t=4,①+②,得s﹣t=6,即,解得.所以方程组的解为.点评:此题较简单,要熟练解方程组的基本方法:代入消元法和加减消元法.6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?考点:解二元一次方程组.专题:计算题.分析:(1)将两组x,y的值代入方程得出关于k、b的二元一次方程组,再运用加减消元法求出k、b的值.(2)将(1)中的k、b代入,再把x=2代入化简即可得出y的值.(3)将(1)中的k、b和y=3代入方程化简即可得出x的值.解答:解:(1)依题意得:①﹣②得:2=4k,所以k=,所以b=.(2)由y=x+,把x=2代入,得y=.(3)由y=x+把y=3代入,得x=1.点评:本题考查的是二元一次方程的代入消元法和加减消元法,通过已知条件的代入,可得出要求的数.7.解方程组:(1);(2).考点:解二元一次方程组.分析:根据各方程组的特点选用相应的方法:(1)先去分母再用加减法,(2)先去括号,再转化为整式方程解答.解答:解:(1)原方程组可化为,①×2﹣②得:y=﹣1,将y=﹣1代入①得:x=1.∴方程组的解为;(2)原方程可化为,即,①×2+②得:17x=51,x=3,将x=3代入x﹣4y=3中得:y=0.∴方程组的解为.点评:这类题目的解题关键是理解解方程组的基本思想是消元,掌握消元的方法有:加减消元法和代入消元法.根据未知数系数的特点,选择合适的方法.8.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题应把方程组化简后,观察方程的形式,选用合适的方法求解.解答:解:原方程组可化为,①+②,得10x=30,x=3,代入①,得15+3y=15,y=0.则原方程组的解为.点评:解答此题应根据各方程组的特点,有括号的去括号,有分母的去分母,然后再用代入法或加减消元法解方程组.9.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.解答:解:原方程变形为:,两个方程相加,得4x=12,x=3.把x=3代入第一个方程,得4y=11,y=.解之得.点评:本题考查的是二元一次方程组的解法,方程中含有分母的要先化去分母,再对方程进行化简、消元,即可解出此类题目.10.解下列方程组:(1)(2)考点:解二元一次方程组.专题:计算题.分析:此题根据观察可知:(1)运用代入法,把①代入②,可得出x,y的值;(2)先将方程组化为整系数方程组,再利用加减消元法求解.解答:解:(1),由①,得x=4+y③,代入②,得4(4+y)+2y=﹣1,所以y=﹣,把y=﹣代入③,得x=4﹣=.所以原方程组的解为.(2)原方程组整理为,③×2﹣④×3,得y=﹣24,把y=﹣24代入④,得x=60,所以原方程组的解为.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.11.解方程组:(1)(2)考点:解二元一次方程组.专题:计算题;换元法.分析:方程组(1)需要先化简,再根据方程组的特点选择解法;方程组(2)采用换元法较简单,设x+y=a,x﹣y=b,然后解新方程组即可求解.解答:解:(1)原方程组可化简为,解得.(2)设x+y=a,x﹣y=b,∴原方程组可化为,解得,∴∴原方程组的解为.点评:此题考查了学生的计算能力,解题时要细心.12.解二元一次方程组:(1);(2).考点:解二元一次方程组.专题:计算题.分析:(1)运用加减消元的方法,可求出x、y的值;(2)先将方程组化简,然后运用加减消元的方法可求出x、y的值.解答:解:(1)将①×2﹣②,得15x=30,x=2,把x=2代入第一个方程,得y=1.则方程组的解是;(2)此方程组通过化简可得:,①﹣②得:y=7,把y=7代入第一个方程,得x=5.则方程组的解是.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.考点:解二元一次方程组.专题:计算题.分析:(1)把甲乙求得方程组的解分别代入原方程组即可;(2)把甲乙所求的解分别代入方程②和①,求出正确的a、b,然后用适当的方法解方程组.解答:解:(1)把代入方程组,得,解得:.把代入方程组,得,解得:.∴甲把a看成﹣5;乙把b看成6;(2)∵正确的a是﹣2,b是8,∴方程组为,解得:x=15,y=8.则原方程组的解是.点评:此题难度较大,需同学们仔细阅读,弄清题意再解答.14.考点:解二元一次方程组.分析:先将原方程组中的两个方程分别去掉分母,然后用加减消元法求解即可.解答:解:由原方程组,得,由(1)+(2),并解得x=(3),把(3)代入(1),解得y=,∴原方程组的解为.点评:用加减法解二元一次方程组的一般步骤:1.方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等;2.把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;3.解这个一元一次方程;4.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解.15.解下列方程组:(1);(2).考点:解二元一次方程组.分析:将两个方程先化简,再选择正确的方法进行消元.解答:解:(1)化简整理为,①×3,得3x+3y=1500③,②﹣③,得x=350.把x=350代入①,得350+y=500,∴y=150.故原方程组的解为.(2)化简整理为,①×5,得10x+15y=75③,②×2,得10x﹣14y=46④,③﹣④,得29y=29,∴y=1.把y=1代入①,得2x+3×1=15,∴x=6.故原方程组的解为.点评:方程组中的方程不是最简方程的,最好先化成最简方程,再选择合适的方法解方程.16.解下列方程组:(1)(2)考点:解二元一次方程组.分析:观察方程组中各方程的特点,用相应的方法求解.解答:解:(1)①×2﹣②得:x=1,将x=1代入①得:2+y=4,y=2.∴原方程组的解为;(2)原方程组可化为,①×2﹣②得:﹣y=﹣3,y=3.将y=3代入①得:x=﹣2.∴原方程组的解为.点评:解此类题目要注意观察方程组中各方程的特点,采用加减法或代入法求解.2022年3月23日;第11页共10页。
二元一次方程组练习题含答案
二元一次方程组专题训练1、3x 4y 16 5x 6y 33 3y 2x 105y 2x 62x 3y 52x 7y 15一一2x v 1.513、143.2x 2.4y 5.22 3 62(x 1) 3(x y) 64、6S 275t5、3p7q964x 3y 6、3s 4t184q7p52x y 42x 1 3y 2 门0 15、543x 1 3y 2 0 5 4162x y 1 x y2 32x 3y 43m 2n 7、286x、3y 393a 2b 20、2m n25x9y 44a5b192x 3y 5 3x 2y 113x2y 2 017、3x 2y12x255 2m3n 5126x、5y254m2n 13x2y1010、二元一次方程组练习题、选择题:1下列方程中,是二元一次方程的是( ) 1 A . 3x — 2y=4z B . 6xy+9=0 C . +4y=6 x2.下列方程组中,是二元一次方程组的是( )x y 4 2a 3b 11 2c x9 A . B. C.2x 3y 7 5b 4c 6 y 2xx y 8 x 2y4x 3 x 3 A . B.y 2 y 4 5.若| x — 2 + (3y+2) 2=0, 则的值是( A . —1B . — 2C . 3.二元一次方程 5a — 11b=21 ()A .有且只有一解B .有无数解 4 .方程y=1 — x 与3x+2y=5的公共解是(C . 无解D .有且只有两解)x 3x 3 C. Dy 2y 2)3—3 D—24x 3 y k 6 .方程组 的解与x 与y 的值相等,则k 等于()2x 3y 57.下列各式,属于二兀 次方程的个数有( )① xy+2x — y=7 ; ② 4x+1=x — y ;1 ③一+y=5 ; x ④ x=y ;⑤x 2- y 2=2⑥ 6x — 2y ⑦x+y+z=1 ⑧y (y — 1): =2y 2— y 2+xA . 1B . 2C . 3D . 4&某年级学生共有 246人,其中男生人数 :y 比女生人数x 的2倍少 2人, ?则下面所列的方程组中符合题意的有( )x y 246 x y 246x y 216 x y 246A . B. C.D.2y x 2 2x y 2 y 2x22y x2二、填空题 9.已知方程2x+3y — 4=0 ,用含x 的代数式表示y 为:y= __________ ;用含y 的代数式表示x 为:x= _______ . 10.在二元一次方程— —x+3y=2 中,当 x=4 时,y=2;当 y= — 1 时,x= _____11. __________________________________________ 若 x 3m 3— 2y n 1=5 是二元一次方程,则 m= ,n= ___________________________________________ .x 212. 已知 _________________________________ '是方程x — ky=1的解,那么k= .y 313. 已知 |x — 1 | + (2y+1 ) 2=0,且 2x — ky=4,贝U k= ___ . 14. 二元一次方程 x+y=5的正整数解有 _________________ .x 515. 以__________________________________ 为解的一个二元一次方程是 .y 716. 已知 %2是方程组 mx y 3的解,贝V m= ______________ , n= ______ . y 1 x ny 6三、解答题17. 当y= — 3时,二元一次方程 3x+5y= — 3和3y — 2ax=a+2 (关于x , y 的方程)?有相同的解,求a 的值.18 .如果(a — 2) x+ (b+1) y=13是关于x , y 的二元一次方程,则 a , b 满足什么条件?(2)将若干只鸡放入若干笼中,若每个笼中放 4只,则有一鸡无笼可放;?若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?23.方程组 % y 25的解是否满足2x — y=8 ?满足2x — y=8的一对x , y 的值是否是方程组2x y 8x y 25的解? 2x y 824.(开放题)是否存在整数 m ,使关于x 的方程2x+9=2 —( m — 2) x 在整数范围内有解,你能找到几个m 的值?你能求出相应的 x 的解吗?19.二兀一次方程组 4X 3y 7的解xkx (k 1)y 3y 的值相等,求 k.22.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,?问明明两种邮票各买 了多少枚?20.已知x , y 是有理数,且(|x | — 1) 2+ (2y+1) 2=0,则x — y 的值是多少?21.已知方程 -x+3y=5,请你写出一个二元一次方程,使它与已知方程所组成的方程组的解为2《二元一次方程组》单元测试题一、选择题(每题 1.下列方程组中, 3分,共30分) 是二兀一次方程组的是( (A ) y=- x+2(B ) y=x -2(C ) y=- x -2 (D ) y=x+2x 8.已知y 2是二元--次方程组 mx nx ny my 8 1的解,则2m-n 的算术平方根为 (A ) 2 (B ) 2(C ) 2 (D ) 4x( ) 为( ) (A ) 3x 2 y10x 8y (B )xy 4 x 2y 6 (C )3y(D )x 2y 7x 9y4 iF59.如果二元一次方程组 a 3a的解是二元一次方程3x 5y 7 0的一个解,那2.二兀一次方程组2y 2x 10'的解是(么a 的值是( ) (A ) 3 (B ) 5 (C )10.如图3, 一次函数 y iax(D ) 9y 2 bx a (a ^Q b ^0在同一坐标系的图象.则x (A) y 4, 3; x (B ) y 3, 6; (C ) 2, 4;(D)4, 2. y 1 y 2ax b — x 的解 bx am中( n3.根据图1所示的计算程序计算y 的值,若输入 则输出的y 值是( (A ) 01 4.如果」a 2b 3与 5 (A ) xy 5.已知 y (B) 1 -a 41b(C ) 2 y 是同类项, (D ) 4 图12 3「入JC的值jm > 0, m v 0, n > 0 n > 0则x , y 的值是((C)(D)12是方程组错误!未找到引用源。
人教版七年级数学下册 第八章 二元一次方程组 8.2.2 用加减法解二元一次方程组 同步练习题 含答案
第八章 二元一次方程组 8.2.2 用加减法解二元一次方程组1. 若二元一次方程组的解为则a-b 等于( ) A. B. C. 3 D. 12. 方程组⎩⎪⎨⎪⎧8x -3y =9,8x +4y =-5消去x 得到的方程是( ) A .y =4 B .7y =-14 C .7y =4 D .y =143. 二元一次方程组⎩⎪⎨⎪⎧x +y =6,x -3y =-2的解是( ) A.⎩⎪⎨⎪⎧x =5y =1 B. ⎩⎪⎨⎪⎧x =-5y =-1 C. ⎩⎪⎨⎪⎧x =4y =2 D.⎩⎪⎨⎪⎧x =-4y =-2 4. 若方程组的解满足x+y=0,则k 的值为( )A. -1B. 1C. 0D. 不能确定5. 用加减法解方程组⎩⎪⎨⎪⎧2a +2b =3,①3a +b =4,②最简单的方法是( ) A .①×3-②×2 B .①×3+②×2 C .①+②×2 D .①-②×26.解方程组⎩⎪⎨⎪⎧0.2x -0.3y =2,0.5x -0.7y =-1.5最合适的方法是( ) A .试值法 B .加减消元法 C .代入消元法 D .无法确定7. 某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人.设运动员人数为x 人,组数为y 组,则列方程组为( )A.⎩⎪⎨⎪⎧7y =x -38y =x +5B.⎩⎪⎨⎪⎧7y =x +38y =x -5C.⎩⎪⎨⎪⎧7y =x +38y +5=xD.⎩⎪⎨⎪⎧7y =x +38y =x +5 8. 对于非零的两个实数a,b,规定a ⊕b=am-bn,若3⊕(-5)=15,4⊕(-7)=28,则(-1)⊕2的值为( )A. -13B. 13C. 2D. -29. 已知则= .10. 二元一次方程组x +y 2=2x -y 3=x +2的解是________.11. 观察下列两方程组的特征:①⎩⎪⎨⎪⎧4x -3y =5,4x +6y =4; ②⎩⎪⎨⎪⎧y =3x +4,3x +5y =0. 其中方程组①采用______消元法较简单,而方程组②采用____消元法较简单.12. 已知方程组⎩⎪⎨⎪⎧2x -3y =4,①3x +2y =1,②用加减法消去x 的方法是_____________;用加减法消去y 的方法是______________.13. 根据图中的信息可知,一件上衣的价格是____元,一条短裤的价格是____元.14. 解下列方程组:(1)⎩⎪⎨⎪⎧x -3y =1,x +2y =6;(2)⎩⎪⎨⎪⎧3x +y =7,2x -y =3.15. 用加减法解下列方程组:(1)⎩⎪⎨⎪⎧x +y =5,2x +3y =11;(2)⎩⎪⎨⎪⎧3x +2y =4,4x -3y =11;(3)⎩⎪⎨⎪⎧3(x +y )-5(x -y )=16,2(x +y )+(x -y )=15.16. 甲、乙两人同求方程ax -by =7的整数解,甲正确地求出一组解为⎩⎪⎨⎪⎧x =1,y =-1,乙把ax -by =7看成ax -by =1,求得一组解为⎩⎪⎨⎪⎧x =1,y =2,求a 2-2ab +b 2的值.17. 小丽购买了6支水彩笔和3本练习本共用了21元;小明购买了同样的12支水彩笔和5本练习本共用了39元.已知水彩笔与练习本的单价不同.(1)求水彩笔与练习本的单价;(2)小刚要买4支水彩笔和4本练习本,共需多少钱?18. A,B两地相距20 km,甲从A地向B地前进,同时乙从B地向A地前进,2 h 后两人在途中相遇,相遇后,甲返回A地,乙仍然向A地前进,甲回到A地时,乙离A地还有2 km,求甲、乙两人的速度.19. 某种水果的价格如表:张欣两次共购买了25 kg这种水果(第二次多于第一次),共付款132元.问张欣第一次、第二次分别购买了多少千克这种水果?答案:1---8 ABCBD BAA9. -310. ⎩⎪⎨⎪⎧x =-5y =-111. 加减 代入12. ①×3-②×2 ①×2+②×313. 40 2014. 解:(1)⎩⎪⎨⎪⎧x =4,y =1. (2)⎩⎪⎨⎪⎧x =2,y =1. 15. (1) 解:⎩⎪⎨⎪⎧x +y =5,①2x +3y =11,②①×3-②,得x =4,把x =4代入①,得y =1, ∴方程组的解为⎩⎪⎨⎪⎧x =4,y =1.(2) 解:⎩⎪⎨⎪⎧3x +2y =4,①4x -3y =11,②①×3+②×2,得17x =34,解得x =2, 把x =2代入①,得6+2y =4,解得y =-1,∴方程组的解为⎩⎪⎨⎪⎧x =2,y =-1.(3) 解:⎩⎪⎨⎪⎧3(x +y )-5(x -y )=16,①2(x +y )+(x -y )=15,②①+②×5,得13(x +y)=91,解得x +y =7,把x +y =7代入①,得x -y =1.解方程组⎩⎪⎨⎪⎧x +y =7,x -y =1, 得⎩⎪⎨⎪⎧x =4,y =3,∴方程组的解为⎩⎪⎨⎪⎧x =4,y =3. 16. 解:由题意,得⎩⎪⎨⎪⎧a +b =7,a -2b =1,解得⎩⎪⎨⎪⎧a =5,b =2. ∴a 2-2ab +b 2=52-2×5×2+22=9.17. 解:(1)设水彩笔与练习本的单价分别为x 元和y 元,由题意, 得⎩⎪⎨⎪⎧6x +3y =21,12x +5y =39,解得⎩⎪⎨⎪⎧x =2,y =3. 则水彩笔与练习本的单价分别为2元和3元.(2)小刚买4支水彩笔和4本练习本共需2×4+3×4=20(元).18. 解:设甲的速度为x km/h ,乙的速度为y km/h ,由题意, 得⎩⎪⎨⎪⎧2x +2y =20,(2+2)y +2=20,解得⎩⎪⎨⎪⎧x =5.5,y =4.5. 则甲的速度为5.5 km/h ,乙的速度为4.5 km/h.19. 解:设张欣第一次、第二次分别购买了这种水果x kg ,y kg , 因为第二次购买多于第一次,则x<12.5<y.①当x ≤10时,⎩⎪⎨⎪⎧x +y =25,6x +5y =132,解得⎩⎪⎨⎪⎧x =7,y =18. ②当10<x<12.5时,⎩⎪⎨⎪⎧x +y =25,5x +5y =132,此方程组无解, ∴张欣第一次、第二次分别购买了这种水果7 kg ,18 kg.。
北师版八年级数学(上)第五章二元一次方程组分节练习及答案【含知识点】
八(上) 第五章二元一次方程组 分节练习第1节 认识二元一次方程组01、【基础题】若方程4233=+nmy x 是二元一次方程,那么n m +的值是______. 02、【基础题】下面4组数值中,哪些是二元一次方程102=+y x 的解?(1)⎩⎨⎧==62y x - (2)⎩⎨⎧==43y x (3)⎩⎨⎧==34y x (4)⎩⎨⎧==26-y x2.1、【基础题】二元一次方程组⎩⎨⎧xy y x 2102==+的解是______.(1)⎩⎨⎧==34y x (2)⎩⎨⎧==63y x (3)⎩⎨⎧==42y x (4)⎩⎨⎧==24y x 2.2、【基础题】若⎩⎨⎧2213-=+=m y m x 是二元一次方程1034=-y x 的一个解,求m 的值.3、根据题意列方程组:(1)小明从邮局买了面值50分和80分的邮票共9枚,花了6.3元,小明买了两种邮票各多少枚?(2)周末,8个人去红山公园玩,买门票一共花了34元,已知每张成人票5元,每张儿童票3元,请问8个人中有几个成人、几个儿童?(3)某班共有学生45人,其中男生比女生的2倍少9人,则该班男生、女生各多少人?(4)老牛比小马多驮了2个包裹,如果把小马驮的其中1个包裹放到老牛背上,那么老牛的包裹是小马的2倍,请问老牛和小马开始各驮了多少包裹?(5)将一摞笔记本分给若干同学.每个同学5本,则剩下8本;每个同学8本,又差了7本.共有多少本笔记本、多少个同学?第2节 求解二元一次方程组4、【基础题】 用代入消元法解下列方程组:(1)⎩⎨⎧122=+=y x x y (2)⎪⎩⎪⎨⎧653425=+-=y x y x (3)⎩⎨⎧=711y x y x -=+ (4)⎩⎨⎧=32923y x y x +=- (5)⎩⎨⎧=x y y x 23=- (6)⎩⎨⎧=825y x y x +=+ (7)⎩⎨⎧=42534y x y x -=+ (8)⎪⎩⎪⎨⎧=123222n m n m +=- (9)⎩⎨⎧=31423+=+y x y x (10)⎩⎨⎧=1341632y x y x +=+5、【基础题】 用加减消元法解下列方程组:(1)⎩⎨⎧=1929327-+=-y x y x ; (2)⎩⎨⎧=156356-+=-y x y x ; (3)⎩⎨⎧=52534--=+t s t s ; (4)⎩⎨⎧=547965--=-y x y x ;(5)⎩⎨⎧=17431232y x y x +=+; (6)⎩⎨⎧=)5(3)1(55)1(3+-+=-x y y x ;5.1、【基础题】用加减消元法解下列方程组: (1)⎩⎨⎧=31351434y x y x +=-; (2)⎩⎨⎧=23342152y x y x +=-- ; (3)⎩⎨⎧=17541974y x y x -=-+; (4);(5)⎪⎩⎪⎨⎧=132353y x y x -=-; (6)⎪⎩⎪⎨⎧1)3(3241=--+=+x y x x y ; (7)5.2、【综合Ⅰ】 如果⎩⎨⎧==21y x 是二元一次方程组⎩⎨⎧=+=+21ay bx by ax 的解,那么a ,b 的值是( )(A ).⎩⎨⎧=-=01b a (B ).⎩⎨⎧==01b a (C ).⎩⎨⎧==10b a (D ).⎩⎨⎧-==1b a第3节 应用二元一次方程组——鸡兔同笼6、【综合Ⅰ】 列方程解应用题:(1)小梅家有鸡也有兔,鸡和兔共有头16个,鸡和兔共有脚44只,问:小梅家的鸡与兔各有多少只?(2)今有雉(鸡)兔同笼,上有三十五头,下有九十四足,问雉兔各几何?(3)今有牛五、羊二,直金十两;牛二、羊五,直金八两.请问牛、羊各直金几何? 题目大意是:5头牛和2只羊共价值10两金子,2头牛和5只羊共价值8两金子,每头牛、每只羊各价值多少两金子.(4)《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马? (5)《九章算术》中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元. 问有多少人?该物品价值多少元?6.1、【综合Ⅱ】 列方程解应用题:(1)以绳测井,若将绳三折测之,绳多五尺;若将绳四折测之,绳多一尺.请问,绳长、井深各几何?(2)用一根绳子环绕一棵大树,若环绕大树3周,则绳子还多4尺;若环绕大树4周,则绳子又少了3尺,那么这根绳子有多长?环绕大树一周需要多少尺?第4节 应用二元一次方程组——增收节支7、【综合Ⅱ】列方程解应用题:(1)某工厂去年的利润(总产值减总支出)为200万元. 今年总产值比去年增加20%,总支出比去年减少10%,今年的利润为780万元. 去年的总产值、总支出是多少万元?(2)一、二班共有100名学生,他们的体育达标率(达到标准的百分率)为81%,如果一班学生的体育达标率是87.5%,二班学生的体育达标率为75%,那么一、二两班各有多少名学生?(3)医院用甲、乙两种原料为手术后的病人配制营养品,每克甲原料含0.5单位蛋白质和1单位铁质,每克乙原料含0.7单位蛋白质和0.4单位铁质,若病人每餐需要35单位蛋白质和40单位铁质,那么每餐甲、乙两种原料各多少克恰好满足病人的需要?(4)甲、乙两人从相距36 km的两地相向而行,如果甲比乙先走2 h,那么他们在乙出发2.5 h后相遇;如果乙比甲先走2 h,那么他们在甲出发3 h后相遇,请问甲、乙两人的速度各是多少?7.1、【综合Ⅱ】列方程解应用题:(1)某旅馆的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天35元,一个50人的旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天共花去住宿费1510元,请问两种客房各租住了多少间?(2)某体育场的环形跑道长400 m,甲、乙分别以一定的速度练习长跑和自行车,如果反向而行,那么他们每隔30 s相遇一次;如果同向而行,那么每隔80 s乙就追上甲一次. 甲、乙的速度分别是多少?(3)某一天,蔬菜经营户花90元从蔬菜批发市场批发了黄瓜和茄子共40 kg,到市场去卖,黄瓜和茄子当天的批发价与零售价如下表所示:他当天卖完这些黄瓜和茄子可赚多少元?第5节应用二元一次方程组——里程碑上的数8、【综合Ⅱ】列方程解应用题:(1)小明和小亮做加法游戏,小明在一个加数后面多写了一个0,得到的和为242;而小亮在另一个加数后面多写了一个0,得到的和为341,原来的两个加数分别是多少?(2)有一个两位数,个位上的数字比十位上的数字的3倍多2,若把个位数字与十位数字对调,所得新的两位数比原来的两位数的3倍少2,求原来的两位数.(3)两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边接着写较小的两位数,也得到一个四位数. 已知前一个四位数比后一个四位数大2178,求这两个两位数.(4)一个两位数,减去它的各位数字之和的3倍,结果是23;这个两位数除以它的各位数字之和,商是5,余数是1. 这个两位数是多少?8.1、【综合Ⅱ】列方程解应用题:(1)小颖家离学校1880 m,其中有一段为上坡路,另一段为下坡路,她跑步去学校共用了16 min,已知小颖在上坡路上的平均速度是4.8 km/h,在下坡路上的平均速度是12 km/h. 请问小颖上坡、下坡各用了多长时间?(2)某商店准备用两种价格分别为36 元/ kg 和20元/ kg 的糖果混合成杂拌糖果出售,混合后糖果的价格是28元/ kg 。
二元一次方程组经典练习题+答案解析100道
二元一次方程组练习题100道(卷一)(范围:代数: 二元一次方程组)一、判断1、⎪⎩⎪⎨⎧-==312y x 是方程组⎪⎪⎩⎪⎪⎨⎧=-=-910326523y x y x 的解 …………( ) 2、方程组⎩⎨⎧=+-=5231y x xy 的解是方程3x -2y =13的一个解( )3、由两个二元一次方程组成方程组一定是二元一次方程组( )4、方程组⎪⎪⎩⎪⎪⎨⎧=-++=+++25323473523y x y x ,可以转化为⎩⎨⎧-=--=+27651223y x y x ( )5、若(a 2-1)x 2+(a -1)x +(2a -3)y =0是二元一次方程,则a 的值为±1( )6、若x +y =0,且|x |=2,则y 的值为2 …………( )7、方程组⎩⎨⎧=+-=+81043y x xm my mx 有唯一的解,那么m 的值为m ≠-5 …………( )8、方程组⎪⎩⎪⎨⎧=+=+623131y x y x 有无数多个解 …………( ) 9、x +y =5且x ,y 的绝对值都小于5的整数解共有5组 …………( ) 10、方程组⎩⎨⎧=+=-3513y x y x 的解是方程x +5y =3的解,反过来方程x +5y =3的解也是方程组⎩⎨⎧=+=-3513y x y x 的解 ………( )11、若|a +5|=5,a +b =1则32-的值为b a ………()12、在方程4x -3y =7里,如果用x 的代数式表示y ,则437yx +=( ) 二、选择:13、任何一个二元一次方程都有( ) (A )一个解; (B )两个解; (C )三个解; (D )无数多个解;14、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有( ) (A )5个 (B )6个 (C )7个 (D )8个 15、如果⎩⎨⎧=+=-423y x ay x 的解都是正数,那么a 的取值范围是( )(A )a <2; (B )34->a ; (C )342<<-a ; (D )34-<a ; 16、关于x 、y 的方程组⎩⎨⎧=-=+m y x my x 932的解是方程3x +2y =34的一组解,那么m 的值是( )(A )2; (B )-1; (C )1;(D )-2;17、在下列方程中,只有一个解的是( ) (A )⎩⎨⎧=+=+0331y x y x(B )⎩⎨⎧-=+=+2330y x y x(C )⎩⎨⎧=-=+4331y x y x(D )⎩⎨⎧=+=+3331y x y x18、与已知二元一次方程5x -y =2组成的方程组有无数多个解的方程是( )(A )15x -3y =6 (B )4x -y =7 (C )10x +2y =4 (D )20x -4y =3 19、下列方程组中,是二元一次方程组的是( )(A )⎪⎩⎪⎨⎧=+=+9114y x y x (B )⎩⎨⎧=+=+75z y y x(C )⎩⎨⎧=-=6231y x x(D )⎩⎨⎧=-=-1y x xyy x20、已知方程组⎩⎨⎧-=+=-135b y ax y x 有无数多个解,则a 、b 的值等于( )(A )a =-3,b =-14(B )a =3,b =-7 (C )a =-1,b =9(D )a =-3,b =14 21、若5x -6y =0,且xy ≠0,则yx yx 3545--的值等于( )(A )32 (B )23 (C )1 (D )-122、若x 、y 均为非负数,则方程6x =-7y 的解的情况是( ) (A )无解 (B )有唯一一个解 (C )有无数多个解 (D )不能确定23、若|3x +y +5|+|2x -2y -2|=0,则2x 2-3xy 的值是( )(A )14 (B )-4 (C )-12 (D )12 24、已知⎩⎨⎧-==24y x 与⎩⎨⎧-=-=52y x 都是方程y =kx +b 的解,则k 与b 的值为( ) (A )21=k ,b =-4 (B )21-=k ,b =4 (C )21=k ,b =4(D )21-=k ,b =-4 三、填空:25、在方程3x +4y =16中,当x =3时,y =________,当y =-2时,x =_______ 若x 、y 都是正整数,那么这个方程的解为___________; 26、方程2x +3y =10中,当3x -6=0时,y =_________;27、如果0.4x -0.5y =1.2,那么用含有y 的代数式表示的代数式是_____________; 28、若⎩⎨⎧-==11y x 是方程组⎩⎨⎧-=-=+1242a y x b y ax 的解,则⎩⎨⎧==______________b a ; 29、方程|a |+|b |=2的自然数解是_____________; 30、如果x =1,y =2满足方程141=+y ax ,那么a =____________; 31、已知方程组⎩⎨⎧-=+=+my x ay x 26432有无数多解,则a =______,m =______;32、若方程x -2y +3z =0,且当x =1时,y =2,则z =______;33、若4x +3y +5=0,则3(8y -x )-5(x +6y -2)的值等于_________;34、若x +y =a ,x -y =1同时成立,且x 、y 都是正整数,则a 的值为________; 35、从方程组)0(030334≠⎩⎨⎧=+-=--xyz z y x z y x 中可以知道,x :z =_______;y :z =________;36、已知a -3b =2a +b -15=1,则代数式a 2-4ab +b 2+3的值为__________;四、解方程组□x +5y =13 ①4x -□y =-2 ②37、⎪⎪⎩⎪⎪⎨⎧=-=-1332343n m nm ; 38、)(6441125为已知数a a y x a y x ⎩⎨⎧=-=+;39、⎪⎪⎩⎪⎪⎨⎧=++=+125432y x yx y x ; 40、⎪⎩⎪⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x ; 41、⎪⎪⎩⎪⎪⎨⎧++=++=+=+6253)23(22)32(32523233y x y x yx y x ; 42、⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x ;43、⎪⎩⎪⎨⎧=-+-=-+=-+3113y x z x z y z y x ; 44、⎪⎩⎪⎨⎧=+=+=+101216x z z y y x ;45、⎪⎩⎪⎨⎧=-+=+-=-+35351343z y x z y x z y x ; 46、⎪⎩⎪⎨⎧=+-==30325:3:7:4:z y x z x y x ;五、解答题:47、甲、乙两人在解方程组 时,甲看错了①式中的x 的系数,解得⎪⎪⎩⎪⎪⎨⎧==475847107y x ;乙看错了方程②中的y 的系数,解得⎪⎪⎩⎪⎪⎨⎧==19177681y x ,若两人的计算都准确无误,请写出这个方程组,并求出此方程组的解;48、使x +4y =|a |成立的x 、y 的值,满足(2x +y -1)2+|3y -x |=0,又|a |+a =0,求a 的值;49、代数式ax 2+bx +c 中,当x =1时的值是0,在x =2时的值是3,在x =3时的值是28,试求出这个代数式; 50、要使下列三个方程组成的方程组有解,求常数a 的值。
二元一次方程组练习题(含答案)
二元一次方程组练习题16 小题)一.解答题(共x2y12 1.解下列方程组(9)(10)32x21y1(1)(2)325x11a3)((a为已知数)(4)2 y 6a4 x4 y2.求适合的x,y的值..()(5)6.x3.已知关于,y 的二元一次方程和y=kx+b 的解有(k 1)求,b 的值.(y 的值.时,)当2 x=2(y=3 x )当3为何值时,?x)1) x( y y(1 2)()78(2x y 1) x(x 0..1.解下列方程组(1)(2);(9)(10);)43);((,而得解为时,由于粗心,甲看错了方程组中的2.在解方程组a,乙看错).(6(5)了方程组中的b,而得解为.(1)甲把a 看成了什么,乙把b 看成了什么?(2)求出原方程组的正确解.)7()8(版本word..故原方程组的解为.二元一次方程组解法练习题参精考选答案与试题解析(2)①×3﹣②×2一.解答题(共16 小题)得,﹣13y=﹣39,解得,y=3,的值.x,y 1.求适合的把y=3 代入①得,2x﹣3×3=﹣5,解得x=2.解二元一次方程组.考点:.故原方程组的解为分析:,x,然后在用加减消元法消去未知数先把两方程变形(去分母),得到一组新的方程)原方程组可化为(的值.求出y 的值,继而求出x 3,解答:,6x=36+①②得,,解:由题意得:,x=6,4①﹣②得,8y=﹣),3﹣由(1)×2 得:3x 2y=2(.所以原方程组的解为4),y=﹣6x+y=3 2由()×3 得:(.(4y=4 5),﹣3()×2得:6x)﹣((5 4,﹣)得:y=,)原方程组可化为:(4,)得:3 x=把y 的值代入(,②得,x=①×2+×3x=代入②得,把.∴,﹣4y=6.﹣y=本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法.点评:.解下列方程组2.所以原方程组的解为.()1(2)3)(4()利用消元法解方程组,要根据未知数的系数特点选择代入法还是加减法:点评:①相同未知数的系数相同或互为相反数时,宜用加减法;②其中一个未知时,宜用代入法.解二元一次方程组.:考点1 数的系数为)用代入消元法或加减消元法均可;分析:2 1()()应先去分母、去括号化简方程组,再进一步采用适宜的方法求解.3(4)(.解方程组:3)①﹣②得,﹣解:(解答:1,2﹣x=,解得x=2把,2+y=1代入①得,x=2解二元一次方程组.﹣y=解得考.1版本word..考点:解二元一次方程组.点:专题:计算题;换元法.专计算题.分析:本题用加减消元法即可或运用换元法求解.题:先化简方程组,再进一步根据方程组的特点选用相应的方法:用加减法.分解答:解:,析:解,答:解:原方程组可化为①﹣②,得s+t=4 ,①+②,得s﹣t=6 ,,得﹣②×4 3①×即,,7x=42.解得x=6解得..把x=6 代入①,得y=4所以方程组的解为..所以方程组的解为点评:点;此题较简单,要熟练解方程组的基本方法:代入消元法和加减消元法.二元一次方程组无论多复杂,解二元一次方程组的基本思想都是消元.消元的方法有代入法和加减法.评:6.已知关于x,y 的二元一次方程y=kx+b 的解有和..解方程组:4的值.1)求k,b ((2)当x=2 时,y 的值.(3)当x 为何值时,y=3?解二元一次方程组.:考点考点::专题计算题.解二元一次方程组.专题:计算题.分析:把原方程组化简后,观察形式,选用合适的解法,此题用加减法求解比较简单.分析:解答:(1)将两组x,yk、b 的二元一次方程组,再运用加减消元的值代入方程得出关于)原方程组化为1解:(,法求出k、b 的值.(2)将(1)中的k、b 代入,再把x=2 代入化简即可得出y 的值.,+①②得:6x=18(3)将(1)中的k、b 和y=3 代入方程化简即可得出x 的值..x=3∴解答:解:.代入①得:y=(1)依题意得:①﹣②得:2=4k,.所以原方程组的解为所以k=,要注意:两个二元一次方程中同一未知数的系数相反或相等时,点评:把这两个方程的两边相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法.本题适合用此法.所以b=..解方程组:5,2(y= )由x+版本word..点评:这类题目的解题关键是理解解方程组的基本思想是消元,掌握消元的方法有:加减消元法和代入y= .把x=2 代入,得消元法.根据未知数系数的特点,选择合适的方法.)由y= x+(3.y=3 代入,得x=1把8.解方程组:可得出要求的数.本题考查的是二元一次方程的代入消元法和加减消元法,通过已知条件的代入,点评:.解方程组:7考点:解二元一次方程组.专题:计算题.;)(1分析:本题应把方程组化简后,观察方程的形式,选用合适的方法求解.解答:解:原方程组可化为,.2()①+②,得10x=30,x=3,解二元一次方程组.考点:代入①,得15+3y=15,y=0.)先去括号,再转化为整式方2)先去分母再用加减法,(1(根据各方程组的特点选用相应的方法:分析:程解答.则原方程组的解为.解答:,)原方程组可化为1解:(点评:解答此题应根据各方程组的特点,有括号的去括号,有分母的去分母,然后再用代入法或加减消元法解方程组.﹣②得:①×2,y=﹣1代入①得:﹣将y= 1 9.解方程组:.x=1;∴方程组的解为考点:解二元一次方程组.专题:计算题.分析:本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.,2()原方程可化为解答:解:原方程变形为:,,即两个方程相加,得4x=12,②得:①×2+x=3.,17x=51把x=3 代入第一个方程,得,x=34y=11,代入将x=3 ﹣x4y=3 中得:y=..y=0.∴方程组的解为版本word..化和运用..解之得11.解方程组:消方程中含有分母的要先化去分母,再对方程进行化简、点评:本题考查的是二元一次方程组的解法,元,即可解出此类题目.(1).解下列方程组:101()(2)2)(考点:解二元一次方程组.专题:计算题;换元法.分析:方程组(1)需要先化简,再根据方程组的特点选择解法;方程组(2)采用换元法较简单,设x+y=a,x﹣y=b,然后解新方程组即可求解.解二元一次方程组.:考点解答:计算题.专题:解:(1)原方程组可化简为,此题根据观察可知:分析:)运用代入法,把①代入②,可得出(1的值;y x,)先将方程组化为整系数方程组,再利用加减消元法求解.(2解答:解得.,1)解:(由①,得③,x=4+y代入②,得,(44+y)+2y=﹣1(2)设x+y=a,x﹣y=b,,﹣y=所以∴原方程组可化为,x=4.﹣= 代入③,得﹣把y= 解得,所以原方程组的解为.∴∴原方程组的解为.)原方程组整理为2(,点评:此题考查了学生的计算能力,解题时要细心.,3 2③×﹣④×y= ,得﹣2412 24 ﹣y=把x=60代入④,得,.解二元一次方程组:(1);.所以原方程组的解为此题考查的是对二元一次方程组的解法的运用和理解,点评:学生可以通过题目的训练达到对知识的强版本word...)(2得,解得:.解二元一次方程组.考点:计算题.:专题把代入方程组,)运用加减消元的方法,可求出(1分析:的值;x、y )先将方程组化简,然后运用加减消元的方法可求出(2的值.、y x﹣②,得解答:解:(1)将①×2得,,15x=30,x=2解得:.代入第一个方程,得把x=2.y=1∴甲把 a 看成﹣5;乙把 b 看成6;;则方程组的解是(2)∵正确的a 是﹣2,b 是8,∴方程组为,,(2)此方程组通过化简可得:解得:x=15,y=8.,①﹣②得:y=7则原方程组的解是.代入第一个方程,得把y=7 .x=5点评:此题难度较大,需同学们仔细阅读,弄清题意再解答..则方程组的解是此题考查的是对二元一次方程组的解法的运用和理解,点评:学生可以通过题目的训练达到对知识的强14.化和运用.,而得解为.在解方程组13a时,由于粗心,甲看错了方程组中的,乙看错了方考点:解二元一次方程组.分析:先将原方程组中的两个方程分别去掉分母,然后用加减消元法求解即可.解答:解:由原方程组,得.程组中的,而得解为b看成了什么,乙把 a 1()甲把 b 看成了什么?,)求出原方程组的正确解.(2由(1)+(2),并解得解二元一次方程组.:考点x=(),3计算题.专题:)把甲乙求得方程组的解分别代入原方程组即可;分析:(1把(3)代入(1),解得)把甲乙所求的解分别代入方程②和①,求出正确的2(,然后用适当的方法解方程组.a、b y=解答:,)把1解:(代入方程组版本word..16.解下列方程组:(1)(2).∴原方程组的解为考点:解二元一次方程组.用加减法解二元一次方程组的一般步骤:点评:分析:观察方程组中各方程的特点,用相应的方法求解..方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去1解答:解:(1)①×2﹣②得:x=1,将x=1 代入①得:乘方程的两边,使一个未知数的系数互为相反数或相等;.把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;22+y=4,.解这个一元一次方程;3y=2..将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组4∴原方程组的解为;的解..解下列方程组:15(2)原方程组可化为,;(1)①×2﹣②得:﹣y=﹣3,.)(2y=3.将y=3 代入①得:x=﹣2.解二元一次方程组.考点:将两个方程先化简,再选择正确的方法进行消元.分析:解答:∴原方程组的解为.,1解:()化简整理为③,3①×,得3x+3y=1500点评:解此类题目要注意观察方程组中各方程的特点,采用加减法或代入法求解..x=350②﹣③,得,把350+y=500代入①,得x=350∴y=150..故原方程组的解为,)化简整理为(2③,10x+15y=75,得5①×④,14y=46 10x,得2②×﹣,29y=29 ③﹣④,得y∴.=1,把1=15×2x+3y=1 代入①,得x=6∴..故原方程组的解为方程组中的方程不是最简方程的,最好先化成最简方程,再选择合适的方法解方程.点评:版本word。
新初中数学方程与不等式之二元一次方程组真题汇编及答案解析(2)
新初中数学方程与不等式之二元一次方程组真题汇编及答案解析(2)一、选择题1.如图,10块相同的长方形墙砖拼成一个大长方形,设长方形墙砖的长和宽分别为x 厘米和y 厘米,则依题意所列方程组正确的是( )A .2753x y y x +=⎧⎨=⎩B .2753x y x y +=⎧⎨=⎩C .2753x y y x -=⎧⎨=⎩D .2753x y x y +=⎧⎨=⎩ 【答案】B【解析】【分析】根据图示可得:矩形的宽可以表示为x+2y ,宽又是75厘米,故x+2y=75,矩的长可以表示为2x ,或x+3y ,故2x=3y+x ,整理得x=3y ,联立两个方程即可.【详解】根据图示可得,2753x y x y +=⎧⎨=⎩故选B .【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽.2.二元一次方程3420x y +=的正整数解有( )A .1组B .2组C .3组D .4组【答案】A【解析】【分析】通过将方程变形,得到以x 的代数式,利用倍数逻辑关系,枚举法可得.【详解】 ∵由3420x y += 可得,34y 203, 54x y x =-=- ,,x y 是正整数. ∴根据题意,x 是4的倍数,则05x y ==,(不符题意);4,2x y == 是方程的解,8,1x y ==- (不符题意).故答案是A .【点睛】本题既考查正整数的概念又考查代数式的变形,理解二元一次方程解的概念是本题的关键.3.若(x+y﹣1)2+|x﹣y+5|=0,则x=()A.﹣2 B.2 C.1 D.﹣1【答案】A【解析】【分析】由已知等式,利用非负数的性质列出方程组,求出方程组的解得到x即可.【详解】解:∵(x+y﹣1)2+|x﹣y+5|=0,∴1050 x yx y+-=⎧⎨-+=⎩,解得:23xy=-⎧⎨=⎩,故选:A.【点睛】本题主要考查了非负数的性质和二元一次方程组的解法,根据两个非负数的和为零则这两个数均为零得出方程组是解决此题的的关键.4.已知x、y满足方程组2827x yx y+=⎧⎨+=⎩,则x+y的值是()A.3 B.5 C.7 D.9【答案】B【解析】【分析】把两个方程相加可得3x+3y=15,进而可得答案.【详解】两个方程相加,得3x+3y=15,∴x+y=5,故选B.【点睛】本题主要考查解二元一次方程组,灵活运用整体思想是解题关键.5.x=2y=7⎧⎨⎩是方程mx-3y=2的一个解,则m为( )A.8 B.232C.-232D.-192【答案】B【解析】【分析】把x与y的值代入方程计算即可求出m的值.【详解】解:把x=2y=7⎧⎨⎩代入方程得:2m-21=2,解得:m=232,故选:B.【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.6.二元一次方程2x+y=5的正整数解有()A.一组B.2组C.3组D.无数组【答案】B【解析】【分析】由于要求二元一次方程的正整数解,可分别把x=1、2、3分别代入方程,求出对应的值,从而确定二元一次方程的正整数解.【详解】解:当x=1,则2+y=5,解得y=3,当x=2,则4+y=5,解得y=1,当x=3,则6+y=5,解得y=-1,所以原二元一次方程的正整数解为,.故选B.【点睛】本题考查了解二元一次方程:二元一次方程有无数组解;常常要确定二元一次方程的特殊解.7.已知关于x的方程x-2m=7和x-5=3m是同解方程,则m值为()A.1 B.-1 C.2 D.-2【答案】C【解析】【分析】根据同解方程,可得方程组,根据解方程组,可得答案.【详解】解:由题意,得2753x m x m -=⎧⎨-=⎩①②, 由①得:7+2x m =,由②得:3+5x m =,∴7+23+5m m =,解得:2m =,故选C.【点睛】本题考查了同解方程,利用同解方程得出方程组是解题关键.8.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底40个,一个盒身与两个盒底配成一套罐头盒,现有120张白铁皮,设用x 张制盒身,y 张制盒底,得方程组 ( )A .1204010x y y x +=⎧⎨=⎩B .1201040x y y x +=⎧⎨=⎩C .1204020x y y x +=⎧⎨=⎩D .1202040x y y x +=⎧⎨=⎩【答案】C【解析】【分析】 首先根据题意可以得出以下两个等量关系:①制作盒身的白铁皮张数+制作盒底的白铁皮的张数=120,②盒身的个数×2=盒底的个数,据此进一步列出方程组即可.【详解】∵一共有120张白铁皮,其中x 张制作盒身,y 张制作盒底,∴120x y +=,又∵每张铁皮可制盒身10个或制盒底40个,一个盒身与两个盒底配成一套罐头盒, ∴4020y x =,∴可列方程组为:1204020x y y x +=⎧⎨=⎩, 故选:C.【点睛】本题主要考查了二元一次方程组的实际应用,根据题意正确找出相应的等量关系是解题关键.9.若方程组32232732x y k x y k -=-⎧⎨+=-⎩的解满足2020x y +=,则k 等于( ) A .2018B .2019C .2020D .2021【答案】D【解析】【分析】把两个方程相加,可得5x +5y =5k-5,再根据2020x y +=可得到关于k 的方程,进而求k【详解】解:32232732x y k x y k -=-⎧⎨+=-⎩①② ①+②得 5x +5y =5k-5,∴x +y =k -1.∵2020x y +=,∴k -1=2020,∴k=2021.故选:D .【点睛】本题考查了二元一次方程组的特殊解法,依据方程系数特点整体代入是求值的关键.10.二元一次方程3x+y =7的正整数解有( )组.A .0B .1C .2D .无数 【答案】C【解析】【分析】分别令x=1、2进行计算即可得【详解】解:方程3x+y=7,变形得:y=7-3x ,当x=1时,y=4;当x=2时,y=1,则方程的正整数解有二组故本题答案应为:C【点睛】本题考查了二元一次方程的解,给出一个未知数的值求出另一个未知数的值即可.11.已知2728x y x y +=⎧⎨+=⎩,那么x y -的值是( ) A .-1B .0C .1D .2【答案】A【解析】观察方程组,利用第一个方程减去第二个方程即可求解.【详解】2728x y x y ①②+=⎧⎨+=⎩, ①-②得,x-y=-1.故选A.【点睛】本题考查了二元一次方程的解法,利用整体思想可以是本题解决过程变得简单.12.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-3分,不答的题得-1分.已知欢欢这次竞赛得了72分,设欢欢答对了x 道题,答错了y 道题,则( )A .5372x y -=B .5372x y +=C .6292x y -=D .6292x y +=【答案】C【解析】【分析】设欢欢答对了x 道题,答错了y 道题,根据“每答对一题得+5分,每答错一题得-3分,不答的题得-1分,已知欢欢这次竞赛得了72分”列出方程.【详解】解:设答对了x 道题,答错了y 道题,则不答的题有()20x y -- 道,依题意得:()532072x y x y ----=,化简得:6292x y -=.故选:C .【点睛】本题考查了由实际问题抽象出二元一次方程,关键是读懂题意,根据题目中的数量关系,列出方程,注意:本题中的等量关系之一为:答对的题目数量+答错的题目数量+不答的题目数量=20.13.已知关于x,y 的二元一次方程组323223x y m x y m +=-⎧⎨+=⎩的解适合方程25x y -=,则m 的值为( )A .1B .2C .3D .4 【答案】C【解析】【分析】整理方程为3x+7y=2,与25x y -=组成新的方程组,求解得31x y =⎧⎨=-⎩,代入原方程组中任意一个方程即可求出m.【详解】解:将m=2x+3y 代入3232x y m +=-中得,3x+7y=2,∵x,y 的二元一次方程组323223x y m x y m+=-⎧⎨+=⎩ 的解适合方程25x y -=, ∴联立方程组25372x y x y -=⎧⎨+=⎩,解得:31x y =⎧⎨=-⎩, ∴23m x y =+=3,故选C.【点睛】本题考查解二元一次方程组的方法,属于简单题,熟练掌握加减消元和代入消元的方法是解题关键.14.幼儿园阿姨分别给甲、乙两个小朋友若干颗糖果,她们数了一下,甲说“把你的一半给我,我就有14颗糖果”,乙说:“那把你的一半给我,我就有16颗糖果.”那么原来甲小朋友有糖果( )颗.A .6B .8C .10D .12【答案】B【解析】【分析】设原来甲小朋友有x 颗,乙小朋友有y 颗,根据描述建立二元一次方程组求解.【详解】设原来甲小朋友有x 颗,乙小朋友有y 颗,由题意得: 11421162x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩解得812x y =⎧⎨=⎩∴甲小朋友原来有8颗故选B .【点睛】本题考查二元一次方程组的应用,题目较简单,根据描述建立方程是解题的关键.15.某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x 元,水笔每支为y 元,那么根据题意,下列方程组中,正确的是()A.3201036x yx y-=⎧⎨+=⎩B.3201036x yx y+=⎧⎨+=⎩C.3201036y xx y-=⎧⎨+=⎩D.3102036x yx y+=⎧⎨+=⎩【答案】B【解析】分析:根据等量关系“一本练习本和一支水笔的单价合计为3元”,“20本练习本的总价+10支水笔的总价=36”,列方程组求解即可.详解:设练习本每本为x元,水笔每支为y元,根据单价的等量关系可得方程为x+y=3,根据总价36得到的方程为20x+10y=36,所以可列方程为:3 201036 x yx y+⎧⎨+⎩==,故选:B.点睛:此题主要考查了由实际问题抽象出二元一次方程组,得到单价和总价的2个等量关系是解决本题的关键.16.《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而亦钱五十.问甲乙持钱各几何?”其大意是:今有甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱;如果乙得到甲所有钱的三分之二,那么乙也共有.问甲、乙两人各带了多少钱?设甲带钱为,乙带钱为,根据题意,可列方程组为()A .B .C .D .【答案】A【解析】【分析】设甲需带钱x,乙带钱y,根据题意可得,甲的钱+乙的钱的一半=50,乙的钱+甲所有钱的,据此列方程组可得.【详解】解:设甲需带钱x,乙带钱y,根据题意,得:故选:A.【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.17.小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图请你根据图中的信息,若小明把100个纸杯整齐叠放在一起时,它的高度约是( )A .106cmB .110cmC .114cmD .116cm 【答案】A【解析】【分析】通过观察图形,可知题中有两个等量关系:单独一个纸杯的高度加上3个纸杯叠放在一起高出单独一个纸杯的高度等于9,单独一个纸杯的高度加上8个纸杯叠放在一起高出单独一个纸杯的高度等于14.根据这两个等量关系,可列出方程组,再求解.【详解】解:设每两个纸杯叠放在一起比单独的一个纸杯增高xcm ,单独一个纸杯的高度为ycm , 则29714x y x y +=⎧⎨+=⎩,解得17x y =⎧⎨=⎩则99x +y =99×1+7=106即把100个纸杯整齐的叠放在一起时的高度约是106cm .故选:A .【点睛】本题以实物图形为题目主干,图形形象直观,直接反映了物体的数量关系,这是近年来比较流行的一种命题形式,主要考查信息的收集、处理能力.本题易错点是误把9cm 当作3个纸杯的高度,把14cm 当作8个纸杯的高度.18.若关于x ,y 的方程组3,25x y m x y m -=+⎧⎨+=⎩的解满足x >y >0,则m 的取值范围是( ). A .m >2B .m >-3C .-3<m <2D .m <3或m >2 【答案】A【解析】【分析】先解方程组用含m 的代数式表示出x 、y 的值,再根据x >y >0列不等式组求解即可.【详解】解325x y m x y m -=+⎧⎨+=⎩,得 212x m y m =+⎧⎨=-⎩.∵x >y >0,∴21220m m m +>-⎧⎨->⎩ , 解之得m >2.故选A.【点睛】本题考查了二元一次方程组及一元一次不等式组的应用,用含m 的代数式表示出x 、y 的值是解答本题的关键.19.若关于,x y 的方程组2315x y a x y +=-⎧⎨-=⎩的解满足3,x y +=则a 的值是 ( ) A .4 B .1- C .2 D .1【答案】D【解析】【分析】①2⨯+②得21x y a +=+,再根据3x y +=,即可求出a 的值.【详解】2315x y a x y +=-⎧⎨-=⎩①②①2⨯+②得3363x y a +=+21x y a +=+∵3,x y +=∴1a =故答案为:D .【点睛】本题考查了解二元一次方程组的问题,掌握解二元一次方程组的方法是解题的关键.20.若关于x ,y 的方程组2315x y m x y +=-⎧⎨-=⎩的解满足x +y =3,则m 的值为 ( ) A .-2B .2C .-1D .1 【答案】D【解析】【分析】首先把m 看成常数,然后进一步解关于x 与y 的方程组,求得用m 表示的x 与y 的值后,再进一步代入3x y +=加以求解即可.【详解】由题意得:2315x y m x y +=-⎧⎨-=⎩①②, ∴由①−②可得:()2315x y x y m +--=--,化简可得:336y m =-,即:2y m =-,将其代入②可得:25x m -+=,∴3x m =+∵3x y +=,∴323m m ++-=,∴1m =,故选:D.【点睛】本题主要考查了二元一次方程组的综合运用,熟练掌握相关方法是解题关键.。
二元一次方程组练习题(含答案)
二元一次方程组练习题(含答案) 二元一次方程组练题一.解答题(共16小题)1.解下列方程组:1)x+2y-1=23x-2y=52)1-yx+2/3=1/22y+3=3x3)5x+2y=11a4x-4y=6a4)2x+3y=73x-2y=15)2x-3y=75x+4y=176)2x+3y=13x-2y=57)3x-4y=-12x+5y=138)x(y+1)+y(1-x)=2x(x+1)-y-x^2=09)3x+y=72x-3y=-810)x^2+xy=2y-x+2=02.求适合的x,y的值。
已知关于x,y的二元一次方程y=kx+b的解有和。
1)求k,b的值。
2)当x=2时,y的值。
3)当y=3时,x的值为多少?解答:1.1)将第二个方程变形得到y=(3x-5)/2,代入第一个方程中,得到x=3,y=-2.2)将第一个方程变形得到y=(1/2-1+xy)/x,代入第二个方程中,得到x=3,y=-1.3)将第二个方程变形得到y=x-3/2,代入第一个方程中,得到x=2,y=1.4)将第二个方程变形得到y=(3x-1)/2,代入第一个方程中,得到x=2,y=1.5)将第一个方程变形得到y=(2x-7)/3,代入第二个方程中,得到x=1,y=-1.6)将第二个方程变形得到y=(3x-5)/2,代入第一个方程中,得到x=1,y=-1.7)将第二个方程变形得到y=(3x+1)/4,代入第一个方程中,得到x=5,y=2.8)将第一个方程变形得到y=(2-x^2)/(1-x),代入第二个方程中,得到x=1,y=1.9)将第二个方程变形得到y=(2x+8)/3,代入第一个方程中,得到x=1,y=1.10)将第一个方程变形得到y=2/x-x,代入第二个方程中,得到x=1,y=0.2.1)由于y=kx+b,所以当x=1时,y=k+b;当x=2时,y=2k+b。
又因为已知y=3时,x的值为多少,所以将y=kx+b代入得到kx+b=3,解得x=(3-b)/k。
二元一次方程组练习题(二)(含答案)
二元一次方程组练习题(二)一、选择题:1.下列方程中,是二元一次方程的是()A.3x-2y=4z B.6xy+9=0 C.1x+4y=6 D.4x=24y-2.下列方程组中,是二元一次方程组的是( )A.228 423119 (23754624)x yx y a b xB C Dx y b c y x x y+= +=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩3.二元一次方程5a-11b=21 ( )A.有且只有一解 B.有无数解 C.无解 D.有且只有两解4.方程y=1-x与3x+2y=5的公共解是()A.3333...2422 x x x xB C Dy y y y==-==-⎧⎧⎧⎧⎨⎨⎨⎨===-=-⎩⎩⎩⎩5.若│x-2│+(3y+2)2=0,则的值是( )A.-1 B.-2 C.-3 D.3 26.方程组43235x y kx y-=⎧⎨+=⎩的解与x与y的值相等,则k等于()7.下列各式,属于二元一次方程的个数有( )①xy+2x-y=7;②4x+1=x-y;③1x+y=5;④x=y;⑤x2-y2=2⑥6x-2y ⑦x+y+z=1 ⑧y(y-1)=2y2-y2+xA.1 B.2 C.3 D.48.某年级学生共有246人,其中男生人数y比女生人数x的2倍少2人,•则下面所列的方程组中符合题意的有( )A.246246216246... 22222222 x y x y x y x yB C Dy x x y y x y x+=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨=-=+=+=+⎩⎩⎩⎩二、填空题9.已知方程2x+3y-4=0,用含x的代数式表示y为:y=_______;用含y的代数式表示x为:x=________.10.在二元一次方程-12x+3y=2中,当x=4时,y=_______;当y=-1时,x=______.11.若x3m-3-2y n-1=5是二元一次方程,则m=_____,n=______.12.已知2,3xy=-⎧⎨=⎩是方程x-ky=1的解,那么k=_______.13.已知│x-1│+(2y+1)2=0,且2x-ky=4,则k=_____.14.二元一次方程x+y=5的正整数解有______________.15.以57xy=⎧⎨=⎩为解的一个二元一次方程是_________.16.已知2316x mx yy x ny=-=⎧⎧⎨⎨=--=⎩⎩是方程组的解,则m=_______,n=______.三、解答题17.当y=-3时,二元一次方程3x+5y=-3和3y-2ax=a+2(关于x,y的方程)•有相同的解,求a的值.18.如果(a-2)x+(b+1)y=13是关于x,y的二元一次方程,则a,b满足什么条件?19.二元一次方程组437(1)3x ykx k y+=⎧⎨+-=⎩的解x,y的值相等,求k.20.已知x,y是有理数,且(│x│-1)2+(2y+1)2=0,则x-y的值是多少?21.已知方程12x+3y=5,请你写出一个二元一次方程,•使它与已知方程所组成的方程组的解为41xy=⎧⎨=⎩.22.根据题意列出方程组:(1)明明到邮局买0。
二元一次方程组 浙教版七年级下册期中复习培优卷2(含答案)
2021年浙教版七年级数学下册《第2章二元一次方程组》期中复习优生辅导训练1.小林沿着笔直的公路靠右匀速行走,发现每隔5分钟从背后驶过一辆101路公交车,每隔3分钟从迎面驶来一辆101路公交车.假设每个每辆101路公交车行驶速度相同,而且101路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是()A.3分钟B.3.75分钟C.4分钟D.5分钟2.若方程中的x是y的4倍,则a等于()A.﹣7B.﹣3C.D.﹣3.甲、乙两地相距880千米,小轿车从甲地出发2小时后,大客车从乙地出发相向而行,又经过4小时两车相遇.已知小轿车比大客车每小时多行20千米.设大客车每小时行x 千米,小轿车每小时行y千米,则可列方程组为()A.B.C.D.4.已知且3x﹣2y=0,则a的值为()A.2B.0C.﹣4D.55.已知x,y满足方程组,则无论m取何值,x,y恒有关系式是()A.x+y=1B.x+y=﹣1C.x+y=9D.x+y=﹣96.方程2x+y=5的正整数解有______组()A.1B.2C.3D.无数7.关于x、y的方程组的解为整数,则满足这个条件的整数m的个数有()A.4个B.3个C.2个D.无数个8.已知x,y满足方程组,则x与y的关系是()A.3x+y=4B.3x+y=2C.x﹣3y=4D.x﹣3y=29.已知关于x,y的二元一次方程组的解满足x+y=2,则k=.10.A、B、C三人在甲、乙两块地植树,其中A在甲地植树,C在乙地植树,B先在甲地植树,然后转到乙地,已知A、B、C每小时分别能植树4棵,3课,5棵.若B在甲地植树5小时后立即转到乙地,则两块地同时开始同时结束;若要两块地同时开始,但甲地比乙地晚4.5小时完成,则B应在甲地植树小时后立即转到乙地.11.甲、乙两班为运动会订购一批啦啦球,甲班开始订购的啦啦球数量是乙班订购数量的3倍,后来由于某种原因,甲班决定把自己所订购的啦啦球数量转让7个给乙班,但由于商家失误,寄来的啦啦球总数比甲、乙两班所定购的总数少了七个,最后甲班所购啦啦球数量是乙班所购数量的2倍,那么甲、乙两班最后所得的啦啦球总数最多是.12.已知4a+5b=6,5a+4b=3,则a﹣b=.13.如果以x,y为未知数的二元一次方程组的解满足4x﹣3y=8,那么m =.14.已知方程组的解也是方程3x﹣2y=0的解,则k=.15.用若干个形状、大小完全相同的矩形纸片围成正方形,4个矩形纸片围成如图①所示的正方形,其阴影部分的面积为12;8个矩形纸片围成如图②所示的正方形,其阴影部分的面积为8;12个矩形纸片围成如图③所示的正方形,其阴影部分的面积为.16.若关于x、y的二元一次方程组的解是,则关于a、b的二元一次方程组的解是.17.已知关于x、y的二元一次方程(a﹣3)x+(2a﹣5)y+6﹣a=0,当a每取一个值时就有一个方程,这些方程有一个公共解,则这个公共解是.18.已知关于x,y的二元一次方程组,则x﹣y的值是19.若关于x,y的二元一次方程组的解互为相反数,则a的值是.20.已知x+2y﹣3z=0,2x+3y+5z=0,则=.21.解下列方程组:(1)(2)22.已知关于x,y的二元一次方程组的解满足方程2x﹣y=8,求a的值.23.若方程组与有公共解,求a+b的值.24.阅读感悟:有些关于方程组的问题,需要求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数x,y满足3x﹣y=5①,2x+3y=7②,求x﹣4y和7x+5y的值.本题常规思路是将①②两式联立组成方程组,解得x,y的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①﹣②可得x﹣4y=﹣2,由①+②×2可得7x+5y=19.这样的解题思想就是通常所说的“整体思想”.解决问题:(1)已知二元一次方程组,则x﹣y=,x+y=;(2)“战疫情,我们在一起”,某公益组织计划为老年公寓捐赠一批防疫物资.已知购买20瓶消毒液、3支测温枪、2套防护服共需1180元;购买30瓶消毒液、2支测温枪、8套防护服共需2170元,若该公益组织实际捐赠了100瓶消毒液、10支测温枪、20套防护服,则购买这批防疫物资共需多少元?(3)对于实数x,y,定义新运算:x*y=ax﹣by+c,其中a,b,c是常数,等式右边是通常的加法和乘法运算.已知3*5=15,4*7=28,那么求1*1的值.25.学校准备组织同学参加研学活动,需要租用客车,如果单独租用45座客车若干辆,刚好坐满;如果单独租用60座客车,可少租1辆,且余15个座位.(1)求参加活动的同学人数.(2)已知租用45座客车的租金为每辆500元,60座客车的租金为每辆600元.公司经理问:“你们准备怎样租车?”甲同学说:“我的方案是只租用45座的客车,这样没有空座位,不会浪费”;乙同学说:“我的方案是只租用60座的客车,因为60座的客车每个座位单价少,虽然有空位,但总体可以更省钱”,如果是你,从经济角度考虑,你会如何设计租车方案,并说明理由.26.2021年郑州市中招体育考试统考项目为:长跑、立定跳远、足球运球,选考项目(50米跑或1分钟跳绳).为了备考练习,很多同学准备重新购买足球、跳绳.(1)某校九(1)班有部分同学准备统一购买新的足球和跳绳.经班长统计共需要购买足球的有12名同学,需要购买跳绳的有10名同学.请你根据如图中班长和售货员阿姨的对话信息,分别求出足球和跳绳的单价.(2)由于足球和跳绳的需求量增大,该体育用品商店老板计划再次购进足球a个和跳绳b根(其中a>15),恰好用了1800元,其中足球每个进价为80元,跳绳每根的进价为15元,则有哪几种购进方案?(3)假如(2)中所购进的足球和跳绳全部售出,且单价与(1)中的售价相同,为了使销售获利最多,应选择哪种购进方案?27.在手工制作课上,老师组织班级同学用硬纸制作圆柱形茶叶筒.全班共有学生50人,其中男生x人,女生y人,男生人数比女生人数少2人.已知每名同学每小时剪筒身40个或剪筒底120个.(1)求这个班男生、女生各有多少人?(2)原计划男生负责剪筒底,女生负责剪筒身,若要求一个筒身配两个筒底,请说明每小时剪出的筒身与筒底能否配套?如果不配套,请说明如何调配人员,才能使每小时剪出的筒身与筒底刚好配套?参考答案1.解:设车的速度是a,人的速度是b,每隔t分钟发一班车,两辆车之间的距离是:at,车从背后驶过是一个追及问题,人与车之间的距离也是:at,那么:at=5(a﹣b)①,车从前面来是相遇问题,那么:at=3(a+b)②,①﹣②得:a=4b,所以:at=3.75a,t=3.75,即发车的间隔的时间是3.75分钟,故选:B.2.解:∵x=4y,∴4y+4=y,解得y=﹣,∴x=4×(﹣)=﹣,∴a=[2×(﹣)﹣(﹣)]÷4=(﹣+)÷4=(﹣)÷4=﹣故选:D.3.解:设大客车每小时行x千米,小轿车每小时行y千米,由题意得.故选:B.4.解:原方程组可整理得:,①﹣②得:5y=5a,解得:y=a,把y=a代入①得:x+a=a,解得:x=0,即方程组的解为:,把代入3x﹣2y=0得:﹣2a=0,解得:a=0,故选:B.5.解:,把②代入①得,x+y﹣6=3,整理得,x+y=9,故选:C.6.解:根据题意得:y=5﹣2x,把x=1代入得:y=5﹣2=3,(符合题意),把x=2代入得:y=5﹣4=1,(符合题意),把x=3代入得:y=5﹣6=﹣1,(舍去),把x=4代入得:y=5﹣8=﹣3,(舍去),…即当x≥3时,y<0,即原方程正整数解有2组,故选:B.7.解:,②﹣①得:mx﹣2x=m,解得:x=,由x为整数,得到m=0,1,3,4,8.解:,①+②得:3x+y=4故选:A.9.解:,②﹣①得:5x+5y=3k﹣5,等式两边同时除以5得:x+y=k﹣1,∵x+y=2,∴k﹣1=2,解得:k=5,故答案为:5.10.解:设甲地需要植树x棵,乙地需要植树y棵,由题意得:=,解得:y=2x﹣45,设B应在甲地植树m小时后立即转到乙地,要两块地同时开始,但甲地比乙地早4.5小时完成,根据题意得:+4.5=,即+4.5=,解得:m=9.故B应在甲地植树9小时后立即转到乙地.故答案为:9.11.解:设甲、乙两班最后所得的啦啦球总数为x个,在寄来的啦啦球总数少了七个中,甲少要了y个(0≤y≤7),乙少要了(7﹣y)个则:(x+7)﹣7﹣y=2[(x+7)+7﹣(7﹣y)]∴3(x+7)﹣28﹣4y=2(x+7)+8y3x+21﹣28﹣4y=2x+14+8y∴当y=7时,x的最大值为105故答案为:105.12.解:,①×5﹣②×4得:9b=18,解得:b=2,把b=2代入①得:4a+10=6,解得:a=﹣1,即原方程的解为:,a﹣b=﹣1﹣2=﹣3,故答案为:﹣3.13.解:由题意得:,①+②得x=2.5m,代入①得y=﹣2m,代入4x﹣3y=8得10m+6m=8,解得:m=.故本题答案为:.14.解:根据题意,联立方程,运用加减消元法解得,再把解代入方程4x﹣3y+k=0,得k=﹣5.15.解:由图可得,图①中阴影部分的边长为=2,图②中,阴影部分的边长为=2;设小矩形的长为a,宽为b,依题意得,解得,∴图③中,阴影部分的面积为(a﹣3b)2=(4﹣2﹣6)2=44﹣16,解法二:设小矩形的长为a,宽为b,依题意得由②×2﹣①,得a﹣3b=,∴图③中,阴影部分的面积为(a﹣3b)2=(4﹣2)2=44﹣16,故答案为:44﹣16.16.解:方法一:∵关于x、y的二元一次方程组的解是,∴将解代入方程组可得m=﹣1,n=2∴关于a、b的二元一次方程组可整理为:解得:方法二:关于x、y的二元一次方程组的解是,由关于a、b的二元一次方程组可知解得:故答案为:17.解:原方程可整理得:a(x+2y﹣1)+(6﹣3x﹣5y)=0,根据题意得:,解得:,故答案为:.18.解:,①﹣②×2得:3y=3k﹣3,解得:y=k﹣1,把y=k﹣1代入②得:x﹣2(k﹣1)=﹣k+2,解得:x=k,x﹣y=k﹣(k﹣1)=1,故答案为:119.解:,①+②得:3x+3y=1﹣a,即x+y=,由题意得:x+y=0,即=0,解得:a=1.故答案为:1.20.解:由题意得:,①×2﹣②得y=11z,代入①得x=﹣19z,原式===.故本题答案为:.21.解:(1),①×5﹣②得:2y=35﹣31,解得:y=2,把y=2代入①得:x+2=7,解得:x=5,即原方程组的解为:,(2)原方程组可变形为:,②﹣①得:3y=0,解得:y=0,把y=0代入①得:3x=6,解得:x=2,即原方程组的解为:.22.解:由题意得,,解得,,则2×3﹣3×(﹣2)=7a﹣9,解得,a=3.23.解:因为方程组与有公共解所以方程组的解也是方程组的解,解方程组得,把代入方程组,解得,∴a+b=1+(﹣1)=0.24.解:(1),由②﹣①得:x﹣y=﹣4,①+②得:5x+5y=30,∴x+y=6,故答案为:﹣4,6;(2)设的消毒液单价为m元,测温枪的单价为n元,防护服的单价为p元,由题意得:,由①+②得:50m+5n+10p=3350,∴100m+10n+20p=3350×2=6700,答:购买这批防疫物资共需6700元;(3)由题意得:,由3×①﹣2×②可得:a﹣b+c=﹣11,∴1*1=a﹣b+c=﹣11.25.解:(1)设单独租用45座客车为x辆,单独租用60座客车为y辆,根据题意得:,解得:,∴45x=225,答:参加活动的同学人数为225人;(2)设计租车方案为:租3辆60座的客车和1辆45座的客车,理由如下:∵租用45座客车的租金为每辆500元,60座客车的租金为每辆600元,∴500÷45=(元/人),600÷60=10(元/人),∵>10,∴60座的客车合到每个座位的钱数少,只租用45座的客车,费用为:5×500=2500(元),只租用60座的客车,费用为:4×600=2400(元),又∵60×3+45=225,且600×3+500=2300<2400,∴租3辆60座的客车和1辆45座的客车时,总费用最低.26.解:(1)设足球和跳绳的单价分别为x元、y元,由题意得:,解得:,∴足球和跳绳的单价分别为100元、20元,答:足球和跳绳的单价分别为100元、20元;(2)由题意得:80a+15b=1800,(a>15),当全买足球时,可买足球的数量为:=22.5,∴15<a<22.5,当a=16时,b=(舍去);当a=17时,b=(舍去);当a=18时,b=24;当a=19时,b=(舍去);当a=20时,b=(舍去);当a=21时,b=8;当a=22时,b=(舍去);∴有两种方案:方案一,购进足球18个,跳绳24根;方案二,购进足球21个,跳绳8根;答:有两种方案:方案一,购进足球18个,跳绳24根;方案二,购进足球21个,跳绳8根;(3)方案一利润:(100﹣80)×18+(20﹣15)×24=480(元),方案二利润:(100﹣80)×21+(20﹣15)×8=460(元),∵480元>460元,∴选方案一,购进足球18个,跳绳24根.27.解:(1)由题意得:,解得:,答:这个班有男生有24人,女生有26人;(2)男生剪筒底的数量:24×120=2880(个),女生剪筒身的数量:26×40=1040(个),因为一个筒身配两个筒底,2880:1040≠2:1,所以原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套,设男生应向女生支援a人,由题意得:120(24﹣a)=(26+a)×40×2,解得:a=4,答:原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套;男生应向女生支援4人时,才能使每小时剪出的筒身与筒底配套。
二元一次方程组练习题(含答案)
二元一次方程组练习题(含答案)1.解下列方程组:1) 5x + 2y = 11a,-4y = 6a;2) 4x + 3y - 1 = 0,2x + y - 2 = 0;3) x + 2y/3 - 1/3 = 2,x/3 + 1 - y/2 = 1/2;4) x - y/2 = 1,x + y/2 = 3.2.求解以下方程组:1) 2x + 3y = 7,x - y = 1;2) x + 2y = 5,2x + y = 7;3) 3x + 2y = 8,4x - 3y = -11.3.已知二元一次方程y = kx + b的解有(2,5)和(-1,0)。
1) 求k,b的值;2) 当x = 2时,y的值;3) 当y = 3/5时,x的值。
4.在解方程组2x + y = 5,x - y = 1时,甲看错了方程组中的a,而得到解x = 2,y = 1.乙看错了方程组中的b,而得到解x = 3,y = -1.1) 甲把a看成了什么,乙把b看成了什么?2) 求出原方程组的正确解。
参考答案与解析:1.解下列方程组:1) 5x + 2y = 11a,-4y = 6a。
将第二个方程式化简为y = -3/2a,代入第一个方程式中得到5x + 2(-3/2a) = 11a,化简得到x = (23/10)a,y = (-9/5)a。
2) 4x + 3y - 1 = 0,2x + y - 2 = 0.将第二个方程式中的y用第一个方程式中的x表示,得到y = 2 - 2x,代入第一个方程式中得到4x + 3(2 - 2x) - 1 = 0,化简得到x = 1/2,y = 1.3) x + 2y/3 - 1/3 = 2,x/3 + 1 - y/2 = 1/2.将第二个方程式中的x用第一个方程式中的y表示,得到x = 6 - 2y,代入第一个方程式中得到6 - 4y/3 = 2,化简得到y = 3/2,x = 0.4) x - y/2 = 1,x + y/2 = 3.将两个方程式相加得到2x = 4,化简得到x = 2,代入第一个方程式中得到y = 2.2.求解以下方程组:1) 2x + 3y = 7,x - y = 1.将第二个方程式中的x用第一个方程式中的y表示,得到x = y + 1,代入第一个方程式中得到2(y + 1) + 3y = 7,化简得到y = 1,x = 2.2) x + 2y = 5,2x + y = 7.将第一个方程式中的x用第二个方程式中的y表示,得到x = (7 - y)/2,代入第一个方程式中得到(7 - y)/2 + 2y = 5,化简得到y = 1,x = 2.3) 3x + 2y = 8,4x - 3y = -11.将第一个方程式中的x用第二个方程式中的y表示,得到x = (3y - 11)/4,代入第一个方程式中得到3(3y - 11)/4 + 2y = 8,化简得到y = 1,x = 1.3.已知二元一次方程y = kx + b的解有(2,5)和(-1,0)。
二元一次方程组练习题及答案
《二元一次方程组》测试试题及答案§8.1二元一次方程组一、填空题1、二元一次方程4x-3y=12,当x=0,1,2,3时,y=____2、在x+3y=3中,若用x 表示y ,则y= ,用y 表示x ,则x=3、已知方程(k 2-1)x 2+(k+1)x+(k-7)y=k+2,当k=______时,方程为一元一次方程;当k=______时,方程为二元一次方程。
4、对二元一次方程2(5-x)-3(y-2)=10,当x=0时,则y=____;当y=0时,则x=____。
5、方程2x+y=5的正整数解是______。
6、若(4x-3)2+|2y+1|=0,则x+2= 。
7、方程组⎩⎨⎧==+b xy a y x 的一个解为⎩⎨⎧==32y x ,那么这个方程组的另一个解是 。
8、若21=x 时,关于y x 、的二元一次方程组⎩⎨⎧=-=-212by x y ax 的解互为倒数,则 。
二、选择题1、方程2x-3y=5,xy=3,33=+yx ,3x-y+2z=0,62=+y x 中是二元一次方程的有( )个。
A、1 B、2 C、3 D、4 2、方程2x+y=9在正整数范围内的解有( )A 、1个B 、2个C 、3个D 、4个3、与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是( )A 、10x+2y=4B 、4x-y=7C 、20x-4y=3D 、15x-3y=6 4、若是m y x 25与2214-++n m n y x 同类项,则n m -2的值为 ( )A 、1B 、-1C 、-3D 、以上答案都不对 5、在方程(k 2-4)x 2+(2-3k)x+(k+1)y+3k=0中,若此方程为二元一次方程,则k 值为( ) A 、2 B 、-2 C 、2或-2 D 、以上答案都不对. 6、若⎩⎨⎧-==12y x 是二元一次方程组的解,则这个方程组是( )=-b a 2A 、⎩⎨⎧=+=-5253y x y xB 、⎩⎨⎧=--=523x y x yC 、⎩⎨⎧=+=-152y x y xD 、⎩⎨⎧+==132y x y x7、在方程3)(3)(2=--+x y y x 中,用含x 的代数式表示y ,则 ( )A 、35-=x yB 、3--=x yC 、35+=x yD 、35--=x y 8、已知x=3-k,y=k+2,则y与x的关系是( )A、x+y=5 B、x+y=1 C、x-y=1 D、y=x-1 9、下列说法正确的是( )A、二元一次方程只有一个解 B、二元一次方程组有无数个解C、二元一次方程组的解必是它所含的二元一次方程的解 D、三元一次方程组一定由三个三元一次方程组成10、若方程组⎩⎨⎧=+=+16156653y x y x 的解也是方程3x+ky=10的解,则k的值是( =)A、k=6 = B、k=10 C、k=9 D、k=101三、解答题1、解关于x 的方程)1(2)4)(1(+-=--x a x a a§8.2消元——二元一次方程组的解法一、用代入法解下列方程组 (1)⎩⎨⎧=+=-5253y x y x (2)⎩⎨⎧=--=523x y x y (3)⎩⎨⎧=+=-152y x y x (4)⎩⎨⎧+==-1302y x y x (5)⎩⎨⎧-=+=-14329m n n m (6)⎩⎨⎧=+-=-q p q p 451332二、用加减法解下列方程组(1)⎩⎨⎧=+=-924523n m n m (2)⎩⎨⎧=+=-524753y x y x (3)⎩⎨⎧=--=-7441156y x y x(4)⎩⎨⎧-=+-=-53412911y x y x (5)⎪⎩⎪⎨⎧=-=+2.03.05.0523151y x y x (6)⎩⎨⎧=+=+a y x a y x 343525( a 为常数)三:用适当的方法解方程:1、⎩⎨⎧=-=+-6430524m n n m2、⎪⎪⎩⎪⎪⎨⎧=--=-323113121y x y x 3、⎩⎨⎧=-=+110117.03.04.0y x y x4、⎪⎩⎪⎨⎧=+=+-722013152y x y x 5、⎩⎨⎧-=+=--c y x c y x 72963112(c 为常数)1、代数式by ax +,当2,5==y x 时,它的值是7;当5,8==y x 时,它的值是4,试求5,7-==y x 时代数式by ax -的值。
初三数学二元一次方程组试题答案及解析
初三数学二元一次方程组试题答案及解析1.解方程组。
【答案】【解析】先用加减消元法,再用代入消元法即可求出方程组的解。
试题解析:,①+②得,4x=14,解得x=,把x=代入①得,+2y=9,解得y=。
故原方程组的解为:【考点】解二元一次方程组。
2.方程组的解是()A.B.C.D.【答案】C.【解析】利用加减消元法求出方程组的解即可作出判断:,①﹣②得:3y=30,即y=10,将y=10代入①得:x+10=60,即x=50,则方程组的解为.故选C.【考点】解二元一次方程组.3.在平面直角坐标系中,若点P(x,y)的坐标x、y均为整数,则称点P为格点,若一个多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L,例如图中△ABC是格点三角形,对应的S=1,N=0,L=4.(1)求出图中格点四边形DEFG对应的S,N,L.(2)已知格点多边形的面积可表示为S=N+aL+b,其中a,b为常数,若某格点多边形对应的N=82,L=38,求S的值.【答案】(1)S=3,N=1,L=6;(2)S=100.【解析】(1)理解题意,观察图形,即可求得结论;(2)根据格点多边形的面积S=N+aL+b,结合图中的格点三角形ABC及格点四边形DEFG,建立方程组,求出a,b即可求得S.试题解析:(1)根据图形可得:S=3,N=1,L=6;(2)根据格点三角形ABC及格点四边形DEFG中的S、N、L的值可得,,解得a,∴S=N+L﹣1,将N=82,L=38代入可得S=82+×38﹣1=100.【考点】1.图形的变化规律2.三元一次方程组的应用.4.近年来,雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注,某学校计划在教室内安装空气净化装置,需购进A、B两种设备,已知:购买1台A种设备和2台B种设备需要3.5万元;购买2台A种设备和1台B种设备需要2.5万元.(1)求每台A种、B种设备各多少万元?(2)根据学校实际,需购进A种和B种设备共30台,总费用不超过30万元,请你通过计算,求至少购买A种设备多少台?【答案】(1)0.5万元、1.5万元;(2)15.【解析】(1)根据题意结合“购买1台A种设备和2台B种设备需要3.5万元;购买2台A种设备和1台B种设备需要2.5万元”,得出等量关系求出即可;(2)利用(1)中所求得出不等关系求出即可.试题解析:(1)设每台A种、B种设备各x万元、y万元,根据题意得出:,解得:,答:每台A种、B种设备各0.5万元、1.5万元;(2)设购买A种设备z台,根据题意得出:0.5z+1.5(30-z)≤30,解得:z≥15,答:至少购买A种设备15台.【考点】1.一元一次不等式的应用;2.二元一次方程组的应用.5.某项球类比赛,每场比赛必须分出胜负,其中胜1场得2分,负1场得1分.某队在全部16场比赛中得到25分,求这个队胜、负场数分别是多少?【答案】这个队胜9场,负7场.【解析】设该队胜x场,负y场,就有x+y=16,2x+y=25两个方程,联立方程组求解即可.试题解析:设该队胜x场,负y场,则解得.答:这个队胜9场,负7场.【考点】二元一次方程的应用.6.已知∠1与∠2互补,并且∠1比∠2的3倍还大20°,若设∠1=x°,∠2=y°,则x、y满足的方程组为A.B.C.D.【答案】C.【解析】设∠1=x°,∠2=y°,由题意得:.故选C.【考点】由实际问题抽象出二元一次方程组.7.方程组的解是.【答案】【解析】由两式相加得2x="2" ∴ x="1" ;将x=1代入x+y=3得y=2 ∴【考点】二元一次方程组的解法.8.楠溪江某景点门票价格:成人票每张70元,儿童票每张35元.小明买20张门票共花了1225元,设其中有x张成人票,y张儿童票,根据题意,下列方程组正确的是()A.B.C.D.【答案】B【解析】根据“小明买20张门票”可得方程:x+y=20;根据“成人票每张70元,儿童票每张35元,共花了1225元”可得方程:70x+35y=1225,把两个方程组合即可.设其中有x张成人票,y张儿童票,根据题意得.【考点】由实际问题抽象出二元一次方程组.9.若关于x、y的二元一次方程组的解满足x+y<2,则a的取值范围是()A.a>2B.a<2C.a>4D.a<4【答案】D【解析】将方程组中两方程相加,表示出x+y,代入x+y<2中,即可求出a的范围.解:,(1)+(2)得:4x+4y=a+4,即x+y=,∵x+y=<2,∴a<4.故选D10.以方程组的解为坐标的点在平面直角坐标系中的位置是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A.【解析】①+②得,2y=1,解得,y=.把y=代入①得,=-x+2,解得x=.∵>0,>0,根据各象限内点的坐标特点可知,点(x,y)在平面直角坐标系中的第一象限.故选A.考点: 1.解二元一次方程组;2.点的坐标.11.若是方程2x+y=0的一个解,则6a+3b+2=________.【答案】2【解析】把代入方程,得2a+b=03(2a+b)=06a+3b=0∴6a+3b+2=0+2=2.12.二元一次方程组的解是()A.B.C.D.【答案】D【解析】①+②得,3x=9,解得x=3,把x=3代入①得,3+y=3,解得y=0,所以,原方程组的解是13.关于的方程组,______.【答案】9.【解析】两个方程直接相加,整理即可得解.试题解析:①+②得,x+m+y-3=6+m,所以,x+y=9.考点: 解二元一次方程组.14.解方程组.【答案】解:,①-2×②得,-7y=7,解得y=-1;把y=-1代入②得,x+2×(-1)=-2,解得x=0。
二元一次方程组应用题练习的 2
5、某中学组织初一学生春游,原计划租用45座汽车若干辆,但有15人没有座位:若租用同样数量的60座汽车,则多出一辆,且其余客车恰好坐满。
已知45座客车每日租金每辆220元,60座客车每日租金为每辆300元。
(1)初一年级人数是多少?原计划租用45座汽车多少辆?(2)若租用同一种车,要使每个学生都有座位,怎样租用更合算?6、某酒店的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天 35元,一个50人的旅游团到了该酒店住宿,租了若干间客房,且每间客房恰好住满,一天共花去1510元,求两种客房各租了多少间?7、某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小相同,安全检查中,对4道门进行了测试:当同时开启正门和两道侧门时,2分钟可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟可以通过800名学生。
(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况下时因学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问通过的这4道门是否符合安全规定?请说明理由。
8、现有190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,一个盒身与两个盒底配成一个完整盒子,问用多少张铁皮制成盒身,多少张铁皮制成盒底,可以正好制成一批完整的盒子?10、为了保护生态环境,我省某山区县响应国家“退耕还林”号召,将该县某地一部分耕地改为林地,改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,求改变后林地面积和耕地各为多少平方千米?12、王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元,其中种茄子每亩用去了1700元,获纯利2600元;种西红柿每亩用去了1800元,获纯利2600元,问王大伯一共获纯利多少元?13、某蔬菜公司收购到某种蔬菜140吨,准备加工后上市销售,该公司的加工能力是:每天精加工6吨或者粗加工16吨,现计划用15天完成加工任务,该公司应安排几天粗加工,几天精加工,才能按期完成任务?如果每吨蔬菜粗加工后的利润为1000元,精加工后为2000元,那么该公司出售这些加工后的蔬菜共可获利多少元?14、在一次足球选拔赛中,有12支球队参加选拔,每一队都要与另外的球队比赛一次,记分规则为胜一场记3分,平一场记1分,负一场记0分。
二元一次方程组练习题及答案
二元一次方程组练习题及答案题目一解下列二元一次方程组:2x + 3y = 75x - 2y = 1解答:我们可以使用消元法来解这个方程组。
首先,将第一个方程的两边同时乘以5,得到:10x + 15y = 35然后,将第二个方程的两边同时乘以2,得到:10x - 4y = 2现在我们可以将第一个方程减去第二个方程,消去x的项:(10x + 15y) - (10x - 4y) = 35 - 219y = 33解出y:y = 33 / 19 ≈ 1.737将y的值代入第一个方程中,解出x:2x + 3 * 1.737 = 72x + 5.211 = 72x = 7 - 5.2112x = 1.789x = 1.789 / 2 ≈ 0.895因此,这个方程组的解是:x ≈ 0.895y ≈ 1.737题目二解下列二元一次方程组:3x - 2y = 5x + 4y = 3解答:我们可以使用消元法来解这个方程组。
首先,将第二个方程的两边同时乘以2,得到:2x + 8y = 6然后,将第一个方程的两边同时乘以4,得到:12x - 8y = 20现在我们可以将第一个方程加上第二个方程,消去y的项:(12x - 8y) + (2x + 8y) = 20 + 614x = 26解出x:x = 26 / 14 ≈ 1.857将x的值代入第一个方程中,解出y:3 * 1.857 - 2y = 55.571 - 2y = 5-2y = 5 - 5.571-2y = -0.571y = -0.571 / -2 ≈ 0.286因此,这个方程组的解是:x ≈ 1.857y ≈ 0.286题目三解下列二元一次方程组:2x + 3y = 44x - 6y = -8解答:我们可以使用消元法来解这个方程组。
首先,将第一个方程的两边同时乘以2,得到:4x + 6y = 8然后,将第二个方程的两边同时乘以1/2,得到:2x - 3y = -4现在我们可以将第一个方程减去第二个方程,消去x的项:(4x + 6y) - (2x - 3y) = 8 - (-4)2x + 9y = 12解出y:2x + 9y = 129y = 12 - 2xy = (12 - 2x) / 9将y的值代入第一个方程中,解出x:2x + 3 * ((12 - 2x) / 9) = 42x + 36/9 - 6x/9 = 4(18x + 36 - 6x) / 9 = 418x + 36 - 6x = 3612x = 0x = 0 / 12x = 0因此,这个方程组的解是:x = 0y = (12 - 2 * 0) / 9 = 12 / 9 = 4 / 3 ≈ 1.333以上是三道二元一次方程组的练习题及解答。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∵方程 3x+5y=•-•3•和 3x-2ax=a+2 有相同的解,
∴3×(-3)-2a×4=a+2,∴a=- 11 . 9
18.解:∵(a-2)x+(b+1)y=13 是关于 x,y 的二元一次方程,
∴a-2≠0,b+1≠0,•∴a≠2,b≠-1
解析:此题中,若要满足含有两个未知数,需使未知数的系数不为 0.
A.1
B.2
C.3
D.4
8.某年级学生共有 246 人,其中男生人数 y 比女生人数 x 的 2 倍少 2 人,•则下面所列 的方程组中符合题意的有( )
A.
x 2
y
y
246 x2
x y 246 B.2x y 2
x y 216
C.
y
2x
2
x y 246 D.2y x 2
二、填空题
则这两非负数(│x│-1)2 与(2y+1)2 都等于 0,从而得到│x│-1=0,2y+1=0.
21.解:经验算
x y
4 1
是方程
1 2
x+3y=5
的解,再写一个方程,如
x-y=3.
22.(1)解:设
0.8
元的邮票买了
x
枚,2
元的邮票买了
y
枚,根据题意得
x y 13 0.8x 2y
.
22.根据题意列出方程组:
(1)明明到邮局买 0.8 元与 2 元的邮票共 13 枚,共花去 20 元钱,•问明明两种邮 票各买了多少枚?
(2)将若干只鸡放入若干笼中,若每个笼中放 4 只,则有一鸡无笼可放;•若每个 笼里放 5 只,则有一笼无鸡可放,问有多少只鸡,多少个笼?
23.方程组
x y 25 2x y 8
19.二元一次方程组
4x 3y 7 kx (k 1) y
3
的解
x,y
的值相等,求
k.
20.已知 x,y 是有理数,且(│x│-1)2+(2y+1)2=0,则 x-y 的值是多少?
21.已知方程 1 x+3y=5,请你写出一个二元一次方程,•使它与已知方程所组成的方程 2
组的解为
x
y
4 1
的解是否满足
2x-y=8?满足
2x-y=8
的一对
x,y
的值是否是
方程组
x y 25 2x y 8
的解?
24.(开放题)是否存在整数 m,使关于 x 的方程 2x+9=2-(m-2)x 在整数范围内有 解,你能找到几个 m 的值?你能求出相应的 x 的解吗?
答案:
一、选择题
1.D 解析:掌握判断二元一次方程的三个必需条件:①含有两个未知数;②含有未知 数的项的次数是 1;③等式两边都是整式.
∴x+y=5
的正整数解为
x
y
1 4
x 2
y
3
x 3
y
2
x 4
y
1
15.x+y=12 解析:以 x 与 y 的数量关系组建方程,如 2x+y=17,2x-y=3 等,
此题答案不唯一.
16.1
4
解析:将
x y
2 1
代入方程组
mx x
y3 ny 6
中进行求解.
三、解答题
17.解:∵y=-3 时,3x+5y=-3,∴3x+5×(-3)=-3,∴x=4,
2.A 解析:二元一次方程组的三个必需条件:①含有两个未知数,②每个含未知数的 项次数为 1;③每个方程都是整式方程.
3.B 解析:不加限制条件时,一个二元一次方程有无数个解.
4.C 解析:用排除法,逐个代入验证.
5.C 解析:利用非负数的性质.
6.B
7.C 解析:根据二元一次方程的定义来判定,•含有两个未知数且未知数的次数不超 过 1 次的整式方程叫二元一次方程,注意⑧整理后是二元一次方程.
20.解:由(│x│-1)2+(2y+1)2=0,可得│x│-1=0 且 2y+1=0,∴x=±1,y=- 1 . 2
当 x=1,y=- 1 时,x-y=1+ 1 = 3 ;
2
22
当 x=-1,y=- 1 时,x-y=-1+ 1 =- 1 .
2
22
解析:任何有理数的平方都是非负数,且题中两非负数之和为 0,
20
.
(2)解:设有
x
只鸡,y
个笼,根据题意得
4y 1 x 5( y 1)
x
.
23.解:满足,不一定.
解析:∵
x y 25 2x y 8
的解既是方程
x+y=25
的解,也满足
2x-y=8,•
∴方程组的解一定满足其中的任一个方程,但方程 2x-y=8 的解有无数组,
如
x=10,y=12,不满足方程组
x y 25 2x y 8
.
24.解:存在,四组.∵原方程可变形为-mx=7,
∴当 m=1 时,x=-7;m=-1 时,x=7;m=•7 时,x=-1;m=-7 时 x=1.
12.已知
x
y
2, 3
是方程
x-ky=1
的解,那么
k=_______.
13.已知│x-1│+(2y+1)2=0,且 2x-ky=4,则 k=_____.
14.二元一次方程 x+y=5 的正整数解有______________.
15.以
x
y
5 7
为解的一个二元一次方程是_________.
16.已知
二元一次方程组练习及答案之二
一、选择题:
1.下列方程中,是二元一次方程的是( )
A.3x-2y=4z
B.6xy+9=0
C. 1 +4y=6 x
2.下列方程组中,是二元一次方程组的是( )
D.4x= y 2 4
A.
x y 4 2x 3y
7
2a 3b 11 B.5b 4c 6
3.二元一次方程 5a-11b=21 ( )
B.-2
C.-3
D. 3 2
6.方程组
4x 2x
3y 3y
k 5
的解与
x
与
y
的值相等,则
k
等于(
)
7.下列各式,属于二元一次方程的个数有( )
①xy+2x-y=7; ②4x+1=x-y;
⑥6x-2y
⑦x+y+z=1
③ 1 +y=5; ④x=y; x
⑤x2-y2=2
⑧y(y-1)=2y2-y2+x
1 2
x 1
,把
y
1 2
代入方程
2x-ky=4
中,2+
1 2
k=4,∴k=1.
14.解:
x
y
1 4
x 2
y
3
x 3
y
2
x 4
y
1
解析:∵x+y=5,∴y=5-x,又∵x,y 均为正整数,
∴x 为小于 5 的正整数.当 x=1 时,y=4;当 x=2 时,y=3;
当 x=3,y=2;当 x=4 时,y=1.
9.已知方程 2x+3y-4=0,用含 x 的代数式表示 y 为:y=_______;用含 y 的代数式表示 x 为:x=________.
10.在二元一次方程- 1 x+3y=2 中,当 x=4 时,y=_______;当 y=-1 时,x=______. 2
11.若 x3m-3-2yn-1=5 是二元一次方程,则 m=_____,n=______.
x2 9 C.
y 2x
x y 8D.Fra bibliotekx2y
4
A.有且只有一解 B.有无数解 C.无解
D.有且只有两解
4.方程 y=1-x 与 3x+2y=5 的公共解是( )
A.
x
y
3 2
x 3
B.
y
4
x 3
C.
y
2
5.若│x-2│+(3y+2)2=0,则的值是( )
x 3
D.
y
2
A.-1
x
y
2 1
是方程组
mx x
y3 ny 6
的解,则
m=_______,n=______.
三、解答题
17.当 y=-3 时,二元一次方程 3x+5y=-3 和 3y-2ax=a+2(关于 x,y 的方程)•有相 同的解,求 a 的值.
18.如果(a-2)x+(b+1)y=13 是关于 x,y 的二元一次方程,则 a,b 满足什么条件?
8.B
二、填空题
9. 4 2x 4 3y 10. 4 -10
3
2
3
11. 4 ,2 解析:令 3m-3=1,n-1=1,∴m= 4 ,n=2.
3
3
12.-1
解析:把
x y
2, 3
代入方程
x-ky=1
中,得-2-3k=1,∴k=-1.
13.4 解析:由已知得 x-1=0,2y+1=0,
∴x=1,y=-
(•若系数为 0,则该项就是 0) 19.解:由题意可知 x=y,∴4x+3y=7 可化为 4x+3x=7,
∴x=1,y=1.将 x=1,y=•1•代入 kx+(k-1)y=3 中得 k+k-1=3,
∴k=2 解析:由两个未知数的特殊关系,可将一个未知数用含另一个未知数的代数 式代替,化“二元”为“一元”,从而求得两未知数的值.