MAX266中文资料

合集下载

KM266 系列主板 说明书

KM266 系列主板 说明书

版权声明著作人依著作权法享有并保留一切著作权之专属权利,非经著作人之事前同意,不得就本手册之部分或全部从事增删、改编、节录、翻印或仿制之行为。

本手册中所提及之厂牌及其产品名称皆为各公司之注册商标。

本手册之内容,仅在说明本公司生产制造之主板之使用方法。

有关本手册之内容,本公司不负任何明示或暗示之保证或担保责任。

本手册虽经详细检查及校对,唯仍可能发生文字错误与技术描述疏漏的情形,恳请消费者及业界先进不吝赐教指正,以利于本手册之修正工作,力求手册内容之正确性。

本使用手册受到著作权法的保护,本公司保留所有权利及手册内容的使用权。

未经本公司同意,不得任意擅自翻印、抄袭、复制、传送、改编、拍摄、拷贝、压制本使用手册之内容。

任何未经本公司授权之使用本手册内容的侵害著作权行为,本公司必定依法追究,决不宽怠。

责任声明本公司不对使用手册提供任何品质上及实质上的保证。

本使用手册之内容若有任何错误,请使用者见谅,本公司将视情况需要而修改或更新手册内容,但恕不另行通知使用者。

若因本使用手册内容的错误而导致使用者遭受损害,本公司恕不提出任何赔偿,亦不负任何责任。

i目录第一章 简介......................................................................................................................1 1.1 主板简介..................................................................................................................1 1.2 KM266 系列主板的特色:.......................................................................................1 第二章 主板规格简介......................................................................................................2 2.1 硬件部分..................................................................................................................2 2.2 BIOS 部分................................................................................................................2 2.3 软件部分..................................................................................................................2 2.4 包装内容与配件......................................................................................................2 第三章 主板安装介绍......................................................................................................3 3.1 安装中央处理器 (CPU)..........................................................................................5 Socket-A 处理器安装步骤:.......................................................................................5 CPU 跨接器设定.......................................................................................................6 第四章 跨接器、接头、连接器以及插槽......................................................................8 4.1 前面板指示灯连接器: SW/LED.............................................................................8 4.2 扬声器接头SPEAKER (S PEAKER C ONNECTOR )....................................................9 4.3 红外线传输接头I R DA (I NFRARED C ONNECTOR ).................................................10 4.4 ATX 电源输入连接器(ATX 20-PIN P OWER C ONNECTOR ): ATX_PWR...............10 4.5 网络唤醒接头 (W AKE O N LAN H EADER ): WOL..................................................11 4.6 前置USB 接头 (F RONT USB H EADERS ): USB2/ USB3.......................................11 4.7 前置串行埠接头 (F RONT S ERIAL INTERFACE H EADER ): COM2............................11 4.8 CPU 外频选择跨接器 (CPU F REQUENCY S ELECTION ): JP2.................................12 4.9 清除CMOS 功能选择跨接器: JP1.......................................................................12 4.10 机壳打开警告功能: CASE OPEN......................................................................13 4.11 软盘机连接器 (F LOPPY D ISK C ONNECTOR ): FDC...............................................13 4.12 硬盘机连接器(H ARD D ISK C ONNECTORS ): IDE1/IDE2......................................13 4.13 扩充插槽 (S LOTS )................................................................................................14 第五章 音效功能介绍....................................................................................................15 5.1 S/PDIF (S ONY /P HILIPS D IGITAL I NTERFACE ) 连接器: SPDIF...............................16 5.2 CD-ROM A UDIO -I N 接头: CD-IN.........................................................................17 5.3 前置音效接头 (F RONT P ANEL A UDIO H EADER ): FRONT AUDIO.. (17)第六章后面板连接埠 (18)第七章系统内存安装介绍 (21)7.1 DDR DIMM内存模块插槽规格 (21)7.2安装DIMM 内存模块的步骤 (21)第八章主板基本输入输出系统(BIOS)设定 (22)8.1 主选单(M AIN M ENU) (25)8.2 BIOS 进阶功能设定(A DVANCED) (27)8.3 整合外围系统设定(P ERIPHERALS) (38)8.4 电源管理模式设定(P OWER) (43)8.5 计算机硬件监控功能(HW M ONITOR) (49)8.6 输入默认值(D EFAULTS) (50)8.7 退出选单(E XIT) (51)第九章安装软件设定 (52)9.1 软件列表 (52)9.2 安装软件步骤 (53)第十章疑难排解 (57)故障问题一: (57)故障问题二: (57)故障问题三: (58)故障问题四: (58)故障问题五: (58)故障问题六: (59)故障问题七: (59)故障问题八: (60)故障问题九: (60)故障问题十: (60)故障问题十一: (61)故障问题十二: (61)故障问题十三: (61)故障问题十四: (62)故障问题十五: (62)ii第一章简介1.1 主板简介感谢您购买本产品!这本使用手册将可以帮助您迅速地了解并使用本产品。

MAX262中文资料

MAX262中文资料

M A X262中文资料(总5页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除在电子电路中,滤波器是不可或缺的部分,其中有源滤波器更为常用。

一般有源滤波器由运算放大器和RC元件组成,对元器件的参数精度要求比较高,设计和调试也比较麻烦。

美国Maxim公司生产的可编程滤波器芯片MAX262可以通过编程对各种低频信号实现低通、高通、带通、带阻以及全通滤波处理,且滤波的特性参数如中心频率、品质因数等,可通过编程进行设置,电路的外围器件也少。

本文介绍MAX262的情况以及由它构成的程控滤波器电路。

1 MAX262芯片介绍MAX262芯片是Maxim公司推出的双二阶通用开关电容有源滤波器,可通过微处理器精确控制滤波器的传递函数(包括设置中心频率、品质因数和工作方式)。

它采用CMOS工艺制造,在不需外部元件的情况下就可以构成各种带通、低通、高通、陷波和全通滤波器。

图1是它的引脚排列情况。

图1 MAX262引脚V+ ——正电源输入端。

V- ——负电源输入端。

GND ——模拟地。

CLKA ——外接晶体振荡器和滤波器A 部分的时钟输入端,在滤波器内部,时钟频率被2分频。

CLKB ——滤波器B 部分的时钟输入端,同样在滤波器内部,时钟频率被2分频。

CLKOUT ——晶体振荡器和R-C振荡的时钟输出端。

OSCOUT ——与晶体振荡器或R-C振荡器相连,用于自同步。

INA、INB ——滤波器的信号输入端。

BPA、BPB——带通滤波器输出端。

LPA、LPB——低通滤波器输出端。

HPA、HPB——高通、带阻、全通滤波器输出端。

WR ——写入有效输入端。

接V+时,输人数据不起作用;接V-时,数据可通过逻辑接口进入一个可编程的内存之中,以完成滤波器的工作模式、f0及Q的设置。

此外,还可以接收TTL电平信号,并上升沿锁存输人数据。

A0、A1、A2、A3 ——地址输人端,可用来完成对滤波器工作模式、f0和Q的相应设置。

MAX2605-MAX2609中文资料

MAX2605-MAX2609中文资料

General DescriptionThe MAX2605–MAX2609 evaluation kits (EV kits) simplify evaluation of this family of voltage-controlled oscillators (VCOs). These kits enable testing of the devices’ per-formance and require no additional support circuitry.Both signal outputs use SMA connectors to facilitate connection to RF test equipment.These EV kits are fully assembled and tested. Their oscil-lation frequencies are set to approximately the midrange of the respective VCOs.Featureso Easy Evaluationo Complete, Tunable VCO Test Board with Tank Circuit o Low Phase Noiseo Fully Assembled and TestedEvaluate: MAX2605–MAX2609MAX2605–MAX2609 Evaluation Kits19-1673 Rev 0; 9/00Ordering InformationComponent SuppliersFor free samples and the latest literature, visit or phone 1-800-998-8800.For small orders, phone 1-800-835-8769.MAX2606 Component ListMAX2605 Component ListE v a l u a t e : M A X 2605–M A X 2609MAX2605–MAX2609 Evaluation Kits 2_______________________________________________________________________________________Quick StartThe MAX2605–MAX2609 evaluation kits are fully assembled and factory tested. Follow the instructions in the Connections a nd Setup section for proper device evaluation.Test Equipment Required•Low-noise power supplies (these are recommended for oscillator noise measurement). Noise or ripple will frequency-modulate the oscillator and cause spectral spreading. Batteries can be used in place of power supplies, if necessary.– Use a DC power supply capable of supplying +2.7V to +5.5V. Alternatively, use two or three 1.5V batteries.– Use a DC power supply capable of supplying +0.4V to +2.4V, continuously variable, for TUNE.Alternatively, use two 1.5V batteries with a resistive voltage divider or potentiometer.•An RF spectrum analyzer that covers the operating frequency range of the MAX2605–MAX2609• A 50Ωcoaxial cable with SMA connectors •An ammeter (optional)Connections and Setup1)Connect a DC supply (preset to +3V) to the V CC and GND terminals (through an ammeter, if desired) on the EV kit.2)Turn on the DC supply. If used, the ammeter readingMAX2607 Component ListMAX2608 Component ListEvaluate: MAX2605–MAX2609MAX2605–MAX2609 Evaluation Kits_______________________________________________________________________________________3approximates the typical operating current specified in the MAX2605–MAX2609 data sheet.3)Connect the VCO output (OUT+ or OUT-) to a spec-trum analyzer with a 50Ωcoaxial cable.4)Apply a positive variable DC voltage between 0.4V and 2.4V to TUNE.5)Check the tuning bandwidth on the spectrum analyz-er by varying the tuning voltage (+0.4V to +2.4V).Layout ConsiderationsThe EV kit PC board can serve as a guide for laying out a board using the MAX2605–MAX2609. Generally, the VCC pin on the PC board should have a decoupling capacitor placed close to the IC. This minimizes noisecoupling from the supply. Also, place the VCO as far away as possible from the noisy section of a larger sys-tem, such as a switching regulator or digital circuits.The VCO ’s performance is strongly dependent on the availability of the external tuning inductor. For best per-formance, use high-Q components and choose their val-ues carefully. To minimize the effects of parasitic ele-ments, which degrade circuit performance, place the tuning inductor and C BYP close to the VCO. For higher-frequency versions, include the parasitic PC board inductance and capacitance when calculating the oscillation frequency. In addition, remove the ground plane around and under the tuning inductor to minimize the effect of parasitic capacitance.Noise on TUNE translates into FM noise on the outputs;therefore, keep the trace between TUNE and the control circuitry as short as possible. If necessary, use an RC filter to further suppress noise, as done on the EV kits.E v a l u a t e : M A X 2605–M A X 2609MAX2605–MAX2609 Evaluation Kits 4_______________________________________________________________________________________Figure 2. MAX2608/MAX2609 EV Kits SchematicFigure 1. MAX2605/MAX2606/MAX2607 EV Kits SchematicEvaluate: MAX2605–MAX2609MAX2605–MAX2609 Evaluation Kits_______________________________________________________________________________________5Figure 3. MAX2605/MAX2606/MAX2607 EV Kits ComponentPlacement Guide—Top Silk ScreenFigure 4. MAX2608/MAX2609 EV Kits Component PlacementGuide—Top Silk ScreenFigure 5. MAX2605/MAX2606/MAX2607 EV Kits PC BoardLayout—Component SideFigure 6. MAX2608/MAX2609 EV Kits PC Board Layout—Component SideMa xim ca nnot a ssume responsibility for use of a ny circuitry other tha n circuitry entirely embodied in a Ma xim product. No circuit pa tent licenses a re implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.6_____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2000 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.E v a l u a t e : M A X 2605–M A X 2609MAX2605–MAX2609 Evaluation Kits Figure 7. MAX2605/MAX2606/MAX2607/MAX2608/MAX2609EV Kits PC Board Layout—Ground Plane。

MAX210-MAX249部分中文翻译

MAX210-MAX249部分中文翻译

MAX220--MAX249.PDF PAGE14翻译详细说明MAX220–MAX249 包含4个部件:双路电荷泵DC-DC 电压转换器、RS-232 驱动器、RS-232 接收器,以及接收器与发送器使能控制输入。

双路电荷泵电压转换器MAX220–MAX249内部有两个电荷泵,将+5V转换为±10V (空载),为RS-232驱动器提供工作电压。

第一个转换器利用电容C1将+5V 输入加倍,得到V+输出端C3上的+10V.第二个转换器利用电容C2 将+10V转换为V- 输出端C4 上的-10V。

可以从+10V (V+) 和-10V (V-) 输出端获取少量的电量,为外部电路供电( 参见典型工作特性部分) ;但MAX225与MAX245–MAX247例外,因为它们不提供这些引脚。

V+ 与V-未经稳压,所以输出电压会随负载电流的增大而下降。

V +和V -端不稳定,因此,输出电压随着负载电流下降.当V+、V-为外部电路提供电流时,注意不要因为所加负载的原因使V+ 、V- 低于EIA/TIA-232E 驱动器输出电压最小值±5V的限制。

使用MAX222、MAX225、MAX230、MAX235、MAX236、MAX240、MAX241以及MAX245–MAX249上的关断功能时,应避免V+与V-为外部电路供电。

这些器件关断时,V-降至0V,V+降至+5V。

对于那些能够将+10V外部电源提供到V+ 引脚(而不是使用内部电荷泵来产生+10V)的应用,一定不要安装电容C1,并且必须将SHDN 引脚连接至VCC,这是因为在关断模式下V+ 被内部连接到VCC。

RS-232 驱动器如果负载是标称值为5kΩ的RS-232接收器,并且VCC = +5V时,驱动器输出电压摆幅的典型值为±8V 。

输出摆幅确保符合EIA/TIA-232E 和V.28 规范,该规范要求在最糟糕的情况下能够满足±5V驱动器输出电压最小值的要求,其中包括3kΩ的负载电阻最小值,Vcc = +4.5V,以及最高工作温度。

MAXIM MAX3266 MAX3267 说明书

MAXIM MAX3266 MAX3267 说明书

现货库存、技术资料、百科信息、热点资讯,精彩尽在鼎好!For free samples & the latest literature: , or phone 1-800-998-8800.For small orders, phone 1-800-835-8769.General DescriptionThe MAX3266 is a transimpedance preamplifier for 1.25Gbps LAN fiber optic receivers. The circuit features 200nA input-referred noise, 920MHz bandwidth, and 1mA input overload.The MAX3267 provides a pin-for-pin compatible solu-tion for communications up to 2.5Gbps. It features 500nA input-referred noise, 1.9GHz bandwidth, and 1mA input overload.Both devices operate from a single +3.0V to +5.5V sup-ply and require no compensation capacitor. They also include a space-saving filter connection that provides positive bias for the photodiode through a 1.5k Ωresistor to V CC . These features allow easy assembly into a TO-46or TO-56 header with a photodiode.The 1.25Gbps MAX3266 has a typical optical dynamic range of -24dBm to 0dBm in a shortwave (850nm)configuration or -27dBm to -3dBm in a longwave (1300nm) configuration. The 2.5Gbps MAX3267 has a typical optical dynamic range of -21dBm to 0dBm in a shortwave configuration or -24dBm to -3dBm in a long-wave configuration.ApplicationsGigabit Ethernet1.0Gbps to2.5Gbps Optical Receivers Fibre ChannelFeatureso 200nA Input-Referred Noise (MAX3266)500nA Input-Referred Noise (MAX3267)o 920MHz Bandwidth (MAX3266)1900MHz Bandwidth (MAX3267)o 1mA Input Overloado Single +3.0V to +5.5V Supply VoltageMAX3266/MAX3267, Low-Noise Transimpedance Preamplifiers for LANs________________________________________________________________Maxim Integrated Products 1Typical Application Circuit*Dice are designed to operate with junction temperatures of 0°C to +100°C but are tested and guaranteed only at T A = +25°C.Pin ConfigurationOrdering InformationM A X 3266/M A X 32671.25Gbps/2.5Gbps, 3V to 5.5V , Low-Noise Transimpedance Preamplifiers for LANs 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS(V CC = +3.0V to +5.5V, T A = 0°C to +70°C, 100Ωload between OUT+ and OUT-. Typical values are at T A = +25°C, V CC = 3.3V,source capacitance = 0.85pF, unless otherwise noted.) (Note 1)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Supply Voltage (V CC - GND).................................-0.5V to +6.0V IN Current..............................................................-4mA to +4mA FILTER Current......................................................-8mA to +8mA Voltage at OUT+, OUT-...................(V CC - 1.5V) to (V CC + 0.5V)Continuous Power Dissipation (T A = +70°C)SO package (derate 6.7mW/°C above +70°C).............533mWStorage Temperature Range.............................-55°C to +150°C Operating Junction Temperature (die)..............-55°C to +150°C Processing Temperature (die).........................................+400°C Lead Temperature (soldering, 10sec).............................+300°CNote 1:Source Capacitance represents the total capacitance at the IN pin during characterization of noise and bandwidth parame-ters. Figure 1 shows the typical source capacitance vs. reverse voltage for the photodiode used during characterization of TO-56 header packages. Noise and bandwidth will be affected by the source capacitance. See the Typical Operating Characteristics for more information.Note 2:Input-Referred Noise is calculated as RMS Output Noise / (Gain at f = 10MHz). Noise Density is (Input-Referred Noise) /√bandwidth . No external filters are used for the noise measurements.Note 3:Deterministic Jitter is measured with the K28.5 pattern applied to the input [00111110101100000101].MAX3266/MAX32671.25Gbps/2.5Gbps, 3V to 5.5V , Low-Noise Transimpedance Preamplifiers for LANs_______________________________________________________________________________________31701801902002102202302402500255075100MAX3266INPUT-REFERRED NOISE vs. TEMPERATUREJUNCTION TEMPERATURE (°C)I N P U T -R E F E R R E D N O I S E (n A )4204404604805005205405605806006206400255075100MAX3267INPUT-REFERRED NOISE vs. TEMPERATUREJUNCTION TEMPERATURE (°C)I N P U T -R E F E R R E D N O I S E (n A )5060557065751M10M100M 1G10GFREQUENCY RESPONSEFREQUENCY (Hz)T R A N S I M P E D A N C E (d B )1000101001000DETERMINISTIC JITTER vs. INPUT AMPLITUDE2010PEAK-TO-PEAK AMPLITUDE (µA)P E A K -T O -P E A K J I T T E R (p s )40306070508090740890840790940990104010900255075100MAX3266BANDWIDTH vs. TEMPERATUREJUNCTION TEMPERATURE (°C)B A N D W I D T H (M H z )30020010040050060070080090010001101001000INPUT-REFERRED RMS NOISE CURRENTvs. DC INPUT CURRENTDIFFERENTIAL DC INPUT CURRENT (µA)I N P U T -R E F E R R E D N O I S E (n A)60636261646566676869701020304050607080SMALL-SIGNAL TRANSIMPEDANCEvs. TEMPERATUREAMBIENT TEMPERATURE (°C)T R A N S I M P E DA N C E (dB )20026024022028030032034036038040020406080MAX3266/MAX3267OUTPUT AMPLITUDE vs. TEMPERATUREAMBIENT TEMPERATURE (°C)A M P L I T U D E (m V )Typical Operating Characteristics(V CC = +3.3V, T A = +25°C, MAX3266/MAX3267 EV kit, source capacitance = 0.85pF, unless otherwise noted.)150017001800190020002100220023002400255075100MAX3267BANDWIDTH vs. TEMPERATUREJUNCTION TEMPERATURE (°C)B A N D W I D T H (M H z )1600Pin DescriptionM A X 3266/M A X 32671.25Gbps/2.5Gbps, 3V to 5.5V , Low-Noise Transimpedance Preamplifiers for LANs 4_______________________________________________________________________________________Typical Operating Characteristics (continued)(V CC = +3.3V, T A = +25°C, MAX3266/MAX3267 EV kit, source capacitance = 0.85pF, unless otherwise noted.)-150-100-50050100150-200-100-150-50050100150200DC TRANSFER FUNCTIONINPUT CURRENT (µA)O U T P U T V O L T A G E (m V p -p )80ps/div MAX3267EYE DIAGRAM (INPUT = 1mAp-p)M A X 3266/67-1230mV/divINPUT: 27-1 PRBS160ps/divMAX3266EYE DIAGRAM (INPUT = 1mAp-p)M A X 3266/67-1030mV/div INPUT: 27-1 PRBS80ps/divMAX3267EYE DIAGRAM (INPUT = 20µAp-p)M A X 3266/67-115mV/divINPUT: 27-1 PRBS160ps/divMAX3266EYE DIAGRAM (INPUT = 10µAp-p)M A X 3266/67-094mV/divINPUT: 27-1 PRBSMAX3266/MAX32671.25Gbps/2.5Gbps, 3V to 5.5V , Low-Noise Transimpedance Preamplifiers for LANs_______________________________________________________________________________________5General DescriptionThe MAX3266 is a transimpedance amplifier designed for 1.25Gbps fiber optic applications. Figure 2 is a func-tional diagram of the MAX3266, which comprises a trans-impedance amplifier, a voltage amplifier, an output buffer, an output filter, and a DC cancellation circuit.The MAX3267, a transimpedance amplifier designed for 2.5Gbps fiber optic applications, shares similar architecture with the MAX3266.Transimpedance AmplifierThe signal current at the input flows into the summing node of a high-gain amplifier. Shunt feedback through R F converts this current to a voltage with gain of approx-imately 2.2k Ω(1.0k Ωfor MAX3267). Schottky diodes clamp the output voltage for large input currents, as shown in Figure 3.Voltage AmplifierThe voltage amplifier converts single-ended signals to differential signals and introduces a voltage gain.Output BufferThe output buffer provides a reverse-terminated volt-age output. The buffer is designed to drive a 100Ωdif-ferential load between OUT+ and OUT-. The output current is divided between internal, 50Ωload resistors and the external load resistor. In the typical operating circuit, this creates a voltage divider with gain of 1/2.The MAX3266 can also be terminated with higher out-put impedances, which increases gain and output volt-age swing.For optimum supply-noise rejection, the MAX3266should be terminated with a differential load. If a single-ended output is required, the unused output should be similarly terminated. The MAX3266 will not drive a DC-coupled, 50Ωgrounded load.Figure 2. MAX3266 Functional DiagramFigure 1. Typical Photodiode Capacitance vs. Bias VoltageM A X 3266/M A X 32671.25Gbps/2.5Gbps, 3V to 5.5V , Low-Noise Transimpedance Preamplifiers for LANs 6_______________________________________________________________________________________Output FilterThe MAX3266 includes a 1-pole lowpass filter which limits the circuit bandwidth and improves noise perform-ance.DC Cancellation CircuitThe DC cancellation circuit uses low-frequency feed-back to remove the DC component of the input signal (Figure 4). This feature centers the input signal within the transimpedance amplifier’s linear range, thereby reducing pulse-width distortion on large input signals.The DC cancellation circuit is internally compensated and therefore does not require external capacitors. This circuit minimizes pulse-width distortion for data sequences that exhibit a 50% duty cycle. A duty cycle significantly different from 50% will cause the MAX3266to generate pulse-width distortion.DC cancellation current is drawn from the input and creates noise. For low-level signals with little or no DC component, this is not a problem. Amplifier noise will increase for signals with significant DC component (see Typical Operating Characteristics ).Applications InformationOptical Power RelationsMany of the MAX3266 specifications relate to the inputsignal amplitude. When working with fiber optic receivers, the input is usually expressed in terms of aver-age optical power and extinction ratio. Figure 5 showsrelations that are helpful for converting optical power to input signal when designing with the MAX3266.Optical power relations are shown in Table 1; the defini-tions are true if the average duty cycle of the input data is 50%.Optical Sensitivity CalculationThe input-referred RMS noise current (I N ) of the MAX3266 generally determines the receiver sensitivity.To obtain a system bit error rate (BER) of 1E-12, the signal-to-noise ratio must always exceed 14.1. The input sensitivity, expressed in average power, can beWhere ρis the photodiode responsivity in A/W.Input Optical OverloadThe overload is the largest input that the MAX3266accepts while meeting specifications. The optical over-load can be estimated in terms of average power with the following equation:Figure 3. MAX3266 Limited Output Figure 4 . DC Cancellation Effect On InputMAX3266/MAX32671.25Gbps/2.5Gbps, 3V to 5.5V , Low-Noise Transimpedance Preamplifiers for LANs_______________________________________________________________________________________7Optical Linear RangeThe MAX3266 has high gain, which limits the output when the input signal exceeds 30µAp-p (40µAp-p for MAX3267). The MAX3266 operates in a linear range forLayout ConsiderationsUse good high-frequency design and layout tech-niques. The use of a multilayer circuit board with sepa-rate ground and power planes is recommended.Connect the GND pins to the ground plane with the shortest possible traces.Noise performance and bandwidth will be adversely affected by capacitance at the IN pin. Minimize capaci-tance on this pin and select a low-capacitance photodi-ode. Assembling the MAX3266 in die form using chip and wire technology provides the best possible perform-ance. Figure 6 shows a suggested layout for a TO header.The SO package version of the MAX3266 is offered as an easy way to characterize the circuit and become familiar with the circuit’s operation, but it does not offer optimum performance. When using the SO version of the MAX3266, the package capacitance adds approxi-mately 0.3pF at the input. The PC board between the MAX3266 input and the photodiode also adds parasitic capacitance. Keep the input line short, and remove power and ground planes beneath it.Photodiode FilterSupply voltage noise at the cathode of the photodiode produces a current I = C PD ∆V/∆t, which reduces the receiver sensitivity (C PD is the photodiode capaci-tance.) The filter resistor of the MAX3266, combined with an external capacitor, can be used to reduce this noise (refer to the Typical Application Circuit ). Current generated by supply noise voltage is divided between C FILTER and C PD . The input noise current due to supply noise is (assuming the filter capacitor is much larger than the photodiode capacitance):I NOISE = (V NOISE )(C PD ) / (R FILTER )(C FILTER )If the amount of tolerable noise is known, the filter capacitor can be easily selected:C FILTER= (V NOISE )(C PD ) / (R FILTER )(I NOISE )For example, with maximum noise voltage = 100mVp-p,C PD = 0.85pF, R FILTER = 1.5k Ω, and I NOISE selected to be 100nA (1/2 of the MAX3266’s input noise):C FILTER = (100mV)(0.85pF) / (1500Ω)(100nA) = 570pFWire BondingFor high current density and reliable operation, the MAX3266 uses gold metalization. Connections to the die should be made with gold wire only, using ball bonding techniques. Wedge bonding is not recom-mended. Die thickness is typically 15 mils (0.375mm).Figure 5. Optical Power RelationsM A X 3266/M A X 32671.25Gbps/2.5Gbps, 3V to 5.5V , Low-Noise Transimpedance Preamplifiers for LANs Figure 6. Suggested Layout for TO-56 HeaderChip Topographies0.030"(0.75mm) GND OUT-INPUTV 0.030"(0.75mm)GND OUT-INPUTMAX3266MAX3267TRANSISTOR COUNT: 320SUBSTRATE CONNECTED TO GNDMaxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.8_____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©1999 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.。

MAX2680-MAX2682中文资料

MAX2680-MAX2682中文资料

ICC
ICC VIH VIL ISHDN
MAX2680 MAX2681 MAX2682 SHDN = 0.5V
0 < SHDN < VCC
5.0
7.7
8.7
12.7
mA
15.0 21.8
0.05
5
µA
2.0
V
0.5
V
0.2
µA
AC ELECTRICAL CHARACTERISTICS
(MAX2680/1/2 EV Kit, VCC = SHDN = +3.0V, TA = +25°C, unless otherwise noted. RFIN and IFOUT matched to 50Ω. PLO = -5dBm, PRFIN = -25dBm.)
DC ELECTRICAL CHARACTERISTICS
(VCC = +2.7V to +5.5V, SHDN = +2V, TA = TMIN to TMAX unless otherwise noted. Typical values are at VCC = +3V and TA = +25°C. Minimum and maximum values are guaranteed over temperature by design and characterization.)
10
500 MHz
Conversion Power Gain
fRF = 400MHz, fLO = 445MHz, fIF = 45MHz fRF = 900MHz, fLO = 970MHz, fIF = 70MHz fRF = 1950MHz, fLO = 1880MHz, fIF = 70MHz (Note 1) fRF = 2450MHz, fLO = 2210MHz, fIF = 240MHz

MAX2606中文资料

MAX2606中文资料
IND 1
Pin Configuration/ Functional Diagram
TOP VIEW
GND 2
MAX2605 MAX2606 MAX2607 MAX2608 MAX2609
6
OUT+
5
VCC
TUNE 3
4
OUT-
SOT23-6
________________________________________________________________ Maxim Integrated Products
MAX2605–MAX2609
Ordering Information
PART TEMP. RANGE -40°C to +85°C -40°C to +85°C -40°C to +85°C -40°C to +85°C -40°C to +85°C PINPACKAGE 6 SOT23-6 6 SOT23-6 6 SOT23-6 6 SOT23-6 6 SOT23-6 TOP MARK AABB AABC AABD AABE AABF
元器件交易网
19-1673; Rev 0a; 4/02
L MANUA ION KIT T A U L EVA BLE AVAILA
45MHz to 650MHz, Integrated IF VCOs with Differential Output
Features
o Small Size o Integrated Varactor for Tuning o Low Phase Noise o Wide Application Frequency Range o Differential or Single-Ended Outputs o Single +2.7V to +5.5V Supply o Ultra-Small SOT23-6 Package o On-Chip Temperature-Stable Bias o Low-Current Operation

MAX2566EVKIT中文资料

MAX2566EVKIT中文资料

General DescriptionThe MAX2560/MAX2566/MAX2572 evaluation kits (EV kits) simplify testing of the MAX2560/MAX2566/MAX2572. The EV kits provide 50ΩSMA connectors for all RF inputs, baseband inputs, and RF outputs. On-board VCOs are provided for the on-chip PLLs.The EV kits allow evaluation of the MAX2560/MAX2566/MAX2572s’ I/Q modulator, RF upconverter, IF and RF VGAs, IF and RF PLLs, 3-wire programmable interface,and power-management features.The MAX2560/MAX2566/MAX2572 support CDMA,TDMA, and EDGE modes for US PCS and cellular bands, as well as W-CDMA mode for UMTS band. The MAX2566/MAX2572 also support GSM-GPRS mode for all four bands.Features♦On-Board PCS and Cellular VCOs♦WCDMA, GSM900, DCS1800, GSM1900 Modes (MAX2566/MAX2572 EV Kits)♦50ΩSMA Connectors on All RF and Baseband Ports♦Low-Power Shutdown Mode♦EV-Kit Control Software Available at ♦SPI TM /QSPI TM /MICROWIRE TM CompatibleEvaluate: MAX2560/MAX2566/MAX2572MAX2560/MAX2566/MAX2572 Evaluation Kits________________________________________________________________Maxim Integrated Products 1MAX2560 Component ListOrdering Information19-3368; Rev 0; 7/04For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .Component SuppliersSPI and QSPI are trademarks of Motorola, Inc.Microwire is a trademark of National Semiconductor Corp.E v a l u a t e : M A X 2560/M A X 2566/M A X 2572MAX2560/MAX2566/MAX2572 Evaluation Kits 2_______________________________________________________________________________________MAX2560 Component List (continued)Evaluate: MAX2560/MAX2566/MAX2572MAX2560/MAX2566/MAX2572 Evaluation Kits_______________________________________________________________________________________3MAX2560 Component List (continued)E v a l u a t e : M A X 2560/M A X 2566/M A X 2572MAX2560/MAX2566/MAX2572 Evaluation Kits 4_______________________________________________________________________________________Evaluate: MAX2560/MAX2566/MAX2572MAX2560/MAX2566/MAX2572 Evaluation Kits_______________________________________________________________________________________5MAX2566 Component List (continued)E v a l u a t e : M A X 2560/M A X 2566/M A X 2572MAX2560/MAX2566/MAX2572 Evaluation Kits 6_______________________________________________________________________________________MAX2566 Component List (continued)Evaluate: MAX2560/MAX2566/MAX2572MAX2560/MAX2566/MAX2572 Evaluation Kits_______________________________________________________________________________________7E v a l u a t e : M A X 2560/M A X 2566/M A X 2572MAX2560/MAX2566/MAX2572 Evaluation Kits 8_______________________________________________________________________________________Quick Start The MAX2560/MAX2566/MAX2572 EV kits are fully assembled and factory tested. Follow the instructions in the Connections and Setup section.Test Equipment Required This section lists the recommended test equipment to verify the operation of the MAX2560/MAX2566/ MAX2572. It is intended as a guide only, and substitu-tions may be possible.•One RF signal generator capable of delivering -5dBm of output power in the 1GHz to 3GHz frequency range (HP8648 or equivalent) for the external RF LO •An RF spectrum analyzer with optional digital modu-lation personality (Rohde & Schwarz FSEA30 or equivalent)• A power supply capable of providing 200mA at +5V • A power supply capable of providing 50mA at 6.8V • A power supply capable of providing -50mA at -3.2V •I/Q arbitrary waveform generator (Agilent E4433B or equivalent)•PC (486DX33 or better) with Windows TM95/98, 2000, NT 4.0 or later operating system and an available parallel port•INTF2300 interface board (supplied with EV kit)Connections and Setup This section provides step-by-step instructions for get-ting the EV kit up and running in CDMA, WCDMA, and GSM modes.1)Verify shunts JU6–JU22 and JU28–JU31 are in place.2)Connect the INTF2300 interface cable to the EV kit.Note:Pin 1 of the interface cable corresponds to the red wire. Pin 1 is designated in silkscreen on each of the PC boards.3)With the power supply turned off, connect a +5.0Vpower supply to the header labeled V5.0 (J31).Connect the power-supply ground to the header labeled GND (J5). (The MAX2560 requires two additional power supplies. Connect the +6.8V power supply to JU28, and connect the -3.2V to TP2. Connect the grounds to GND (J5) or GND (J20), or both.)4)Install and run the MAX2560/MAX2572 control soft-ware. The MAX2566 has its own control software.Software is available for download on the Maxim website at .5)With MAX2560/MAX2566/MAX2572 control softwareactive in the REG screen, set the SHDN box to 0 toplace the IC in shutdown mode.6)Turn on the power supplies.Cellular CDMA Mode Perform the following steps to evaluate the MAX2560 inthe cellular CDMA mode:1)Verify shunt JU24 is in the LOTDMA position.2)With MAX2560/MAX2566/MAX2572 control softwareactive in the REG screen, use Table 1 to set the oper-ating mode to cellular CDMA. Also, change the refer-ence frequency to 19.2MHz in the control software.3)Connect the I and Q outputs of the arbitrary wave-form generator to the I (J15) and Q (J16) ports. Setthe generator to reverse-channel CDMA settings.Set the output voltage level to 400mV PK.4)Connect RFL (J9) to the spectrum analyzer.Configure the spectrum analyzer to measure ACPRfor the reverse-channel CDMA. Set the center fre-quency to 836MHz with 50MHz span and a+10dBm reference level.5)Adjust the R6 (VGCIF) to obtain an output power of+8dBm after accounting for cable and connectorloss. The ACPR in 30kHz bandwidth at ±885kHzoffset should be -54dBc, and the ACPR in 30kHzbandwidth at ±1.98MHz offset should be -65dBc.PCS CDMA Mode Perform the following steps to evaluate the MAX2560 inthe PCS CDMA mode:1)Verify shunt JU24 is in the LOTDMA position.2)With MAX2560/MAX2566/MAX2572 control softwareactive in the REG screen, use Table 1 to set theoperating mode to PCS CDMA. Also, change the ref-erence frequency to 19.2MHz in the control software.3)Connect the I and Q outputs of the arbitrary wave-form generator to the I (J15) and Q (J16) ports. Setthe generator to reverse-channel CDMA settings.Set the output voltage level to 400mV PK.4)Connect RFH0 (J1) to the spectrum analyzer.Configure the spectrum analyzer to measure ACPRfor the reverse-channel CDMA. Set the center fre-quency to 1880MHz with 50MHz span and a+10dBm reference level.5)Adjust the R6 (VGCIF) to obtain an output power of+8dBm after accounting for cable and connectorloss. The ACPR in 30kHz bandwidth at ±1.25MHzoffset should be -54dBc, and the ACPR in 30kHzbandwidth at ±1.98MHz offset should be -65dBc. Evaluate: MAX2560/MAX2566/MAX2572MAX2560/MAX2566/MAX2572 Evaluation Kits _______________________________________________________________________________________9 Windows is a trademark of Microsoft.E v a l u a t e : M A X 2560/M A X 2566/M A X 2572WCDMA ModePerform the following steps to evaluate the MAX2566/MAX2572 in the WCDMA mode:1)Verify shunt JU24 is in the LOUMTS position.2)With MAX2560/MAX2566/MAX2572 control softwareactive in the REG screen, use Tables 2 and 3 to set the operating mode to WCDMA.3)Connect the I and Q outputs of the arbitrary wave-form generator to the I (J15) and Q (J16) ports. Set the generator to WCDMA settings. Verify 300mV peak baseband signal on Q+/Q- (JU2) and I+/I-(JU1), or 600mV peak-to-peak differential.4)The MAX2566 EV kit requires an external LO input.Apply an external LO 1565MHz at -10dBm to the LOH port.5)Connect RFH0 (J1) to the spectrum analyzer.Configure the spectrum analyzer to measure ACPR for the uplink WCDMA. Set the center frequency to 1950MHz with 50MHz span and a +10dBm refer-ence level.6)Adjust the R1 (VGCRF) and R6 (VGCIF) (only adjustVGCIF if VGS = 1) to obtain an output power of +8dBm after accounting for cable and connector loss.The ACPR in 3.84MHz bandwidth at ±5MHz offset should be -49dBc, and the ACPR in 3.84MHz band-width at ±10MHz offset should be -62dBc. Note that C112–C115 are disconnected for this measurement.GSM 900 ModePerform the following steps to evaluate the MAX2566/MAX2572 in the GSM 900 mode:1)Verify shunts JU23–JU26 and JU33 positions withTable 4.2)With MAX2560/MAX2566/MAX2572 control softwareactive in the REG screen, use Tables 2 and 3 to set the operating mode to GSM 900 mode.3)Connect the I and Q outputs of the arbitrary wave-form generator to the I (J15) and Q (J16) ports. Set the generator to GSM settings. Verify 300mV peak baseband signal on Q+/Q- (JU2) and I+/I- (JU1), or 600mV peak-to-peak differential.4)The MAX2566 EV kit requires an external LO input.Apply an external LO 1190MHz at -10dBm to the LOH port.5)Connect GSM (J3) to the spectrum analyzer.Configure the spectrum analyzer to measure spec-tral mask for the GSM signal. Set the center fre-quency to 900MHz with 50MHz span and a +10dBm reference level.MAX2560/MAX2566/MAX2572 Evaluation KitsDCS 1800 Mode Perform the following steps to evaluate the MAX2566/MAX2572 in the DCS 1800 mode:1)Verify shunts JU23–JU26 and JU33 positions withTable 4.2)With MAX2560/MAX2566/MAX2572 control softwareactive in the REG screen, use Tables 2 and 3 to set the operating mode to DCS 1800 mode.3)Connect the I and Q outputs of the arbitrary wave-form generator to the I (J15) and Q (J16) ports. Set the generator to GSM settings. Verify 300mV peak baseband signal on Q+/Q- (JU2) and I+/I- (JU1), or 600mV peak-to-peak differential.4)The MAX2566 EV kit requires an external LO input.Apply an external LO 1510MHz at -10dBm to the LOH port.5)Connect GSM (J33) to the spectrum analyzer.Configure the spectrum analyzer to measure spec-tral mask for the GSM signal. Set the center fre-quency to 1800MHz with 50MHz span and a +10dBm reference level.GSM 1900 Mode Perform the following steps to evaluate the MAX2566/MAX2572 in the GSM 1900 mode:1)Verify shunts JU23–JU26 and JU33 positions withTable 4.2)With MAX2560/MAX2566/MAX2572 control softwareactive in the REG screen, use Tables 2 and 3 to set the operating mode to GSM 1900 mode.3)Connect the I and Q outputs of the arbitrary wave-form generator to the I (J15) and Q (J16) ports. Setthe generator to GSM settings. Verify 300mV peakbaseband signal on Q+/Q- (JU2) and I+/I- (JU1), or600mV peak-to-peak differential.4)The MAX2566 EV kit requires an external LO input.Apply an external LO 1610MHz at -10dBm to theLOH port.5)Connect GSM (J33) to the spectrum analyzer.Configure the spectrum analyzer to measure spec-tral mask for the GSM signal. Set the center fre-quency to 1900MHz with a +10dBm reference level.Layout ConsiderationsThe MAX2560/MAX2566/MAX2572 EV kits can serve as guides for board layout. Keep PC board trace lengthsas short as possible to minimize parasitics. Also, keep decoupling capacitors as close to the IC as possiblewith a direct connection to the ground plane.INTF2300 SPI Interface BoardThe INTF2300 interface board is used to interface 3-wire SPI protocol from a PC’s parallel port to the EV kit.This board level translates 5V logic from the PC to VCCof the EV kit (typically, this is 2.85V logic). The INTF2300also provides buffering and EMI filtering. Its absolute maximum supply voltage is 4.6V, limited by the break-down of the buffer IC. The recommended operating supply voltage range is +2.7V to +3.6V.Evaluate: MAX2560/MAX2566/MAX2572MAX2560/MAX2566/MAX2572 Evaluation KitsE v a l u a t e : M A X 2560/M A X 2566/M A X 2572MAX2560/MAX2566/MAX2572 Evaluation KitsFigure 1. MAX2560 EV Kit Schematic (Sheet 1 of 3)MAX2560/MAX2566/MAX2572 Evaluation KitsEvaluate: MAX2560/MAX2566/MAX2572Figure 1. MAX2560 EV Kit Schematic (Sheet 2 of 3)E v a l u a t e : M A X 2560/M A X 2566/M A X 2572MAX2560/MAX2566/MAX2572 Evaluation KitsFigure 1. MAX2560 EV Kit Schematic (Sheet 3 of 3)MAX2560/MAX2566/MAX2572 Evaluation KitsEvaluate: MAX2560/MAX2566/MAX2572Figure 2. MAX2566 EV Kit Schematic (Sheet 1 of 3)E v a l u a t e : M A X 2560/M A X 2566/M A X 2572MAX2560/MAX2566/MAX2572 Evaluation KitsFigure 2. MAX2566 EV Kit Schematic (Sheet 2 of 3)MAX2560/MAX2566/MAX2572 Evaluation KitsEvaluate: MAX2560/MAX2566/MAX2572Figure 2. MAX2566 EV Kit Schematic (Sheet 3 of 3)E v a l u a t e : M A X 2560/M A X 2566/M A X 2572MAX2560/MAX2566/MAX2572 Evaluation KitsFigure 3. MAX2572 EV Kit Schematic (Sheet 1 of 3)MAX2560/MAX2566/MAX2572 Evaluation KitsEvaluate: MAX2560/MAX2566/MAX2572Figure 3. MAX2572 EV Kit Schematic (Sheet 2 of 3)E v a l u a t e : M A X 2560/M A X 2566/M A X 2572MAX2560/MAX2566/MAX2572 Evaluation KitsFigure 3. MAX2572 EV Kit Schematic (Sheet 3 of 3)Evaluate: MAX2560/MAX2566/MAX2572MAX2560/MAX2566/MAX2572 Evaluation Kits ______________________________________________________________________________________21Figure 5. MAX256_/MAX257_ EV Kit Component Placement Guide—Solder SideFigure 4. MAX256_/MAX257_ EV Kit Component PlacementGuide—Component SideFigure 7. MAX256_/MAX257_ EV Kit PC Board Layout—Ground PlaneFigure 6. MAX256_/MAX257_ EV Kit PC Board Layout—Component SideE v a l u a t e : M A X 2560/M A X 2566/M A X 2572MAX2560/MAX2566/MAX2572 Evaluation Kits Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.22____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2004 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.Figure 8. MAX256_/MAX257_ EV Kit PC Board Layout—Inner Layer Figure 9. MAX256_/MAX257_ EV Kit PC Board Layout—SolderSide。

MAX6675中文数据手册

MAX6675中文数据手册
图 1a 是串行接口协议图,图 1b 是串行接 口时序图。图 2 为 SO 输出数据格式。
热电偶开路检测
位 D2 一般情况下为 0,在热电偶开路时 跳变为 1。为了使热电偶开路检测器能够 正常运行,T-必须接地,且接地点需尽可 能靠近 GND 引脚。
温升的考虑
在某些应用中器件自身发热会降低 MAX6675 的精度。温度误差的大小取决于 MAX6675 封装的热传导性、安装技术、和 气流的影响。使用一个大的地平面可以提 高 MAX6675 的温度测量精度。
100
ns
100 ns
100 ns
100 ns
Note 1: 所有参数都是在 TA=25℃下 100%测试。温度超过极限 (TA = TMIN to TMAX) 的参 数只从设计和特性上保证,没有产品测试。 Note 2: 从设计上保证,没有产品测试。
(没有特别指出,VCC=+3.3V,TA=+25℃) 输出码误差和环境温度
使用适当的保护套保护热电偶
仅仅在低温、温度波动小的区域使用 补偿导线
保存事件日志和热电偶阻抗的记录
噪声方面的考虑
MAX6675 的精确度易受电源耦合噪声的影 响。电源噪声的影响可以通过放置 1 个 0.1μ F 的陶瓷电容消弱,电容应靠近器 件的电源引脚。
减小拾取噪声的影响
输入放大器(A1)是一个低噪声的放大器, 它被设计为能够放大高精度的传感器输入 信号。确保热电偶和与其想接的导线远离 电子噪声源。
可以用以下措施改善热电偶系统的测量精 度:
使用尽可能粗的导线,这样的导线不 至于从测量区域分流来大量的热
如果要求使用比较细的导线在,则仅 仅在测量区使用这种线,在没有温升 的地方使用补偿导线

LM2665M6中文资料

LM2665M6中文资料

LM2665Switched Capacitor Voltage ConverterGeneral DescriptionThe LM2665CMOS charge-pump voltage converter oper-ates as a voltage doubler for an input voltage in the range of +2.5V to +5.5V.Two low cost capacitors and a diode (needed during start-up)are used in this circuit to provide up to 40mA of output current.The LM2665can also work as a voltage divider to split a voltage in the range of +1.8V to +11V in half.The LM2665operates at 160kHz oscillator frequency to re-duce output resistance and voltage ripple.With an operating current of only 650µA (operating efficiency greater than 90%with most loads)and 1µA typical shutdown current,the LM2665provides ideal performance for battery powered systems.The device is in SOT-23-6package.Featuresn Doubles or Splits Input Supply Voltage n SOT23-6Packagen 12ΩTypical Output Impedancen 90%Typical Conversion Efficiency at 40mA n1µA Typical Shutdown CurrentApplicationsn Cellular Phones n Pagers n PDAsn Operational Amplifier Power Suppliers n Interface Power Suppliers nHandheld InstrumentsBasic Application CircuitsVoltage DoublerDS100049-1Splitting V in in HalfDS100049-2November 1999LM2665Switched Capacitor Voltage Converter©1999National Semiconductor Corporation Absolute Maximum Ratings (Note 1)If Military/Aerospace specified devices are required,please contact the National Semiconductor Sales Office/Distributors for availability and specifications.Supply Voltage (V+to GND,or GND to OUT) 5.8VSD(GND −0.3V)to (V++0.3V)V+and OUT Continuous Output Current 50mA Output Short-Circuit Duration to GND (Note 2)1sec.Continuous PowerDissipation (T A =25˚C)(Note 3)600mW T JMax (Note 3)150˚C θJA (Note 3)210˚C/W Operating Junction Temperature Range −40˚to 85˚C Storage Temperature Range −65˚C to +150˚CLead Temp.(Soldering,10seconds)300˚C ESD Rating2kVElectrical CharacteristicsLimits in standard typeface are for T J =25˚C,and limits in boldface type apply over the full operating temperature range.Un-less otherwise specified:V+=5V,C 1=C 2=3.3µF.(Note 4)Symbol ParameterConditionMin TypMax Units V+Supply Voltage 2.55.5V I Q Supply CurrentNo Load 6501250µA I SD Shutdown Supply Current 1µAV SDShutdown Pin Input VoltageShutdown Mode 2.0(Note 5)VNormal Operation0.8(Note 6)I L Output Current40mA R SW Sum of the R ds(on)of the four internal MOSFET switches I L =40mA 3.58ΩR OUT Output Resistance (Note 7)I L =40mA 1225Ωf OSC Oscillator Frequency (Note 8)80160kHz f SW Switching Frequency (Note 8)4080kHz P EFFPower EfficiencyR L (1.0k)between GND and OUT8693%I L =40mA to GND 90V OEFF Voltage Conversion EfficiencyNo Load9999.96%Note 1:Absolute maximum ratings indicate limits beyond which damage to the device may occur.Electrical specifications do not apply when operating the device beyond its rated operating conditions.Note 2:OUT may be shorted to GND for one second without damage.However,shorting OUT to V+may damage the device and should be avoided.Also,for tem-peratures above 85˚C,OUT must not be shorted to GND or V+,or device may be damaged.Note 3:The maximum allowable power dissipation is calculated by using P DMax =(T JMax −T A )/θJA ,where T JMax is the maximum junction temperature,T A is the ambient temperature,and θJA is the junction-to-ambient thermal resistance of the specified package.Note 4:In the test circuit,capacitors C 1and C 2are 3.3µF,0.3Ωmaximum ESR capacitors.Capacitors with higher ESR will increase output resistance,reduce output voltage and efficiency.Note 5:The minimum input high for the shutdown pin equals 40%of V+.Note 6:The maximum input low of the shutdown pin equals 20%of V+.Note 7:Specified output resistance includes internal switch resistance and capacitor ESR.See the details in the application information for positive voltage doubler.Note 8:The output switches operate at one half of the oscillator frequency,f OSC =2f SW .L M 2665 2Test CircuitTypical Performance Characteristics(Circuit of Figure 1,V+=5V unless otherwise specified)DS100049-3FIGURE 1.LM2665Test CircuitSupply Current vs Supply VoltageDS100049-4Supply Current vs TemperatureDS100049-5Output SourceResistance vs Supply VoltageDS100049-6Output Source Resistance vs TemperatureDS100049-7LM26653Typical Performance Characteristics(Circuit of Figure 1,V+=5V unless otherwisespecified)(Continued)Output Voltage Drop vs Load CurrentDS100049-8Efficiency vs Load CurrentDS100049-9Oscillator Frequency vs Supply Voltage DS100049-10Oscillator Frequency vs TemperatureDS100049-11Shutdown Supply Current vs TemperatureDS100049-12L M 2665 4Connection DiagramOrdering InformationOrder Number Package Number Package Marking Supplied asLM2665M6MA06A SO4A (Note 9)Tape and Reel (1000units/rail)LM2665M6XMA06ASO4A (Note 9)Tape and Reel (3000units/rail)Note 9:The first letter ″S ″identifies the part as a switched capacitor converter.The next two numbers are the device number.The fourth letter ″A ″indicates the grade.Only one grade is rger quantity reels are available upon request.Pin DescriptionPin NameFunctionVoltage DoublerVoltage Split1V+Power supply positive voltage input.Positive voltage output.2GND Power supply ground inputSame as doubler 3CAP−Connect this pin to the negative terminal of the charge-pump capacitorSame as doubler.4SD Shutdown control pin,tie this pin to ground in normal operation.Same as doubler.5OUT Positive voltage output.Power supply positive voltage input6CAP+Connect this pin to the positive terminal of the charge-pump capacitor.Same as doublerCircuit DescriptionThe LM2665contains four large CMOS switches which are switched in a sequence to double the input supply voltage.Energy transfer and storage are provided by external capaci-tors.Figure 2illustrates the voltage conversion scheme.When S 2and S 4are closed,C 1charges to the supply volt-age V+.During this time interval,switches S 1and S 3are open.In the next time interval,S 2and S 4are open;at the same time,S 1and S 3are closed,the sum of the input volt-age V+and the voltage across C 1gives the 2V+output volt-age when there is no load.The output voltage drop when a load is added is determined by the parasitic resistance (R d -s(on)of the MOSFET switches and the ESR of the capacitors)and the charge transfer loss between capacitors.Details will be discussed in the following application information section.Application InformationPositive Voltage DoublerThe main application of the LM2665is to double the input voltage.The range of the input supply voltage is 2.5V to 5.5V.The output characteristics of this circuit can be approximated by an ideal voltage source in series with a resistance.The6-Lead SOT(M6)DS100049-13Top View With PackageMarkingApplication Information(Continued)voltage source equals 2V+.The output resistance R out is a function of the ON resistance of the internal MOSFET switches,the oscillator frequency,the capacitance and ESR of C 1and C 2.Since the switching current charging and dis-charging C 1is approximately twice as the output current,the effect of the ESR of the pumping capacitor C 1will be multi-plied by four in the output resistance.The output capacitor C 2is charging and discharging at a current approximately equal to the output current,therefore,its ESR only counts once in the output resistance.A good approximation of R out is:where R SW is the sum of the ON resistance of the internal MOSFET switches shown in Figure 2.The peak-to-peak output voltage ripple is determined by the oscillator frequency,the capacitance and ESR of the output capacitor C 2:High capacitance,low ESR capacitors can reduce both the output resistance and the voltage ripple.The Schottky diode D 1is only needed for start-up.The inter-nal oscillator circuit uses the OUT pin and the GND pin.Volt-age across OUT and GND must be larger than 1.8V to insure the operation of the oscillator.During start-up,D 1is used to charge up the voltage at the OUT pin to start the oscillator;also,it protects the device from turning-on its own parasitic diode and potentially latching-up.Therefore,the Schottky di-ode D 1should have enough current carrying capability to charge the output capacitor at start-up,as well as a low for-ward voltage to prevent the internal parasitic diode from turning-on.A Schottky diode like 1N5817can be used for most applications.If the input voltage ramp is less than 10V/ms,a smaller Schottky diode like MBR0520LT1can be used to reduce the circuit size.Split V+in HalfAnother interesting application shown in the Basic Applica-tion Circuits is using the LM2665as a precision voltage di-vider..This circuit can be derived from the voltage doubler by switching the input and output connections.In the voltage divider,the input voltage applies across the OUT pin and the GND pin (which are the power rails for the internal oscillator),therefore no start-up diode is needed.Also,since the off-voltage across each switch equals V in /2,the input voltage can be raised to +11V.Shutdown ModeA shutdown (SD)pin is available to disable the device and reduce the quiescent current to 1µA.In normal operating mode,the SD pin is connected to ground.The device can be brought into the shutdown mode by applying to the SD pin a voltage greater than 40%of the V+pin voltage.Capacitor SelectionAs discussed in the Positive Voltage Doubler section,the output resistance and ripple voltage are dependent on the capacitance and ESR values of the external capacitors.The output voltage drop is the load current times the output resis-tance,and the power efficiency isWhere I Q (V+)is the quiescent power loss of the IC device,and I L 2R out is the conversion loss associated with the switch on-resistance,the two external capacitors and their ESRs.The selection of capacitors is based on the specifications of the dropout voltage (which equals I out R out ),the output volt-age ripple,and the converter efficiency.Low ESR capacitors (Table 1)are recommended to maximize efficiency,reduce the output voltage drop and voltage ripple.Low ESR Capacitor ManufacturersManufacturer Phone Capacitor TypeNichicon Corp.(708)-843-7500PL &PF series,through-hole aluminum electrolytic AVX Corp.(803)-448-9411TPS series,surface-mount tantalumSprague (207)-324-4140593D,594D,595D series,surface-mount tantalum Sanyo (619)-661-6835OS-CON series,through-hole aluminum electrolytic Murata (800)-831-9172Ceramic chip capacitors Taiyo Yuden (800)-348-2496Ceramic chip capacitors Tokin(408)-432-8020Ceramic chip capacitorsOther ApplicationsParalleling DevicesAny number of LM2665s can be paralleled to reduce the out-put resistance.Each device must have its own pumping ca-pacitor C 1,while only one output capacitor C out is needed as shown in Figure 3.The composite output resistance is:L M 2665 6Other Applications(Continued)Cascading DevicesCascading the LM2665s is an easy way to produce a greater voltage (A two-stage cascade circuit is shown in Figure 4).The effective output resistance is equal to the weighted sum of each individual device:R out =1.5R out_1+R out_2Note that,the increasing of the number of cascading stages is pracitically limited since it significantly reduces the effi-ciency,increases the output resistance and output voltage ripple.Regulating V OUTIt is possible to regulate the output of the LM2665by use of a low dropout regulator (such as LP2980-5.0).The whole converter is depicted in Figure 5.A different output voltage is possible by use of LP2980-3.3,LP2980-3.0,or LP2980-adj.Note that,the following conditions must be satisfied simulta-neously for worst case design:2V in_min >V out_min +V drop_max (LP2980)+I out_max x R out_max (LM2665)2V in_max <V out_max +V drop_min (LP2980)+I out_min x R out_min (LM2665)DS100049-19FIGURE 3.Lowering Output Resistance by Paralleling DevicesDS100049-20FIGURE 4.Increasing Output Voltage by Cascading DevicesDS100049-21FIGURE 5.Generate a Regulated +5V from +3V Input VoltageLM26657Physical Dimensionsinches (millimeters)unless otherwise notedLIFE SUPPORT POLICYNATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION.As used herein:1.Life support devices or systems are devices or systems which,(a)are intended for surgical implant into the body,or (b)support or sustain life,and whose failure to perform when properly used in accordance with instructions for use provided in the labeling,can be reasonably expected to result in a significant injury to the user.2.A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system,or to affect its safety or effectiveness.National Semiconductor Corporation AmericasTel:1-800-272-9959Fax:1-800-737-7018Email:support@National Semiconductor EuropeFax:+49(0)180-5308586Email:europe.support@Deutsch Tel:+49(0)180-5308585English Tel:+49(0)180-5327832Français Tel:+49(0)180-5329358Italiano Tel:+49(0)180-5341680National Semiconductor Asia Pacific Customer Response Group Tel:65-2544466Fax:65-2504466Email:sea.support@National Semiconductor Japan Ltd.Tel:81-3-5639-7560Fax:81-3-5639-75076-Lead Small Outline Package (M6)NS Package Number MA06AFor Order Numbers,refer to the table in the ″Ordering Information ″section of this document.L M 2665S w i t c h e d C a p a c i t o r V o l t a g e C o n v e r t e rNational does not assume any responsibility for use of any circuitry described,no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.。

MAX232中文资料(官方版)

MAX232中文资料(官方版)

新一代 器件特性 ____________________________
♦ 对于低电压、集成 ESD 保护的应用 MAX3222E/MAX3232E/MAX3237E/MAX3241E/ MAX3246E:+3.0V 至 +5.5V、低功耗、速率高达 1Mbps、利用四个 0.1µF 电容实现真正的 RS-232 收发器 (MAX3246E 提供 UCSPTM 封装 )。 ♦ 对于低成本应用 MAX221E:±15kV ESD 保护、+5V、1µA、 具有 AutoShutdownTM 功能的单芯片 RS-232。
________________________________ 应用
便携式计算机 低功耗调制解调器 接口转换 电池供电 RS-232 系统 多点 RS-232 网络
_____________________________ 定购信息
PART MAX220CPE MAX220CSE MAX220CWE MAX220C/D MAX220EPE MAX220ESE MAX220EWE MAX220EJE MAX220MJE TEMP RANGE 0°C to +70°C 0°C to +70°C 0°C to +70°C 0°C to +70°C -40°C to +85°C -40°C to +85°C -40°C to +85°C -40°C to +85°C -55°C to +125°C PIN-PACKAGE 16 Plastic DIP 16 Narrow SO 16 Wide SO Dice* 16 Plastic DIP 16 Narrow SO 16 Wide SO 16 CERDIP 16 CERDIP

MAX6675中文翻译资料

MAX6675中文翻译资料
MAX6675 是一个复杂的热电偶数字转换器,带有一个内置的 12 位模拟数字转 换器模数转换器(ADC)。MAX6675 还包含了冷结补偿传感和校正,数字控制器, 一个 SPI 兼容接口,以及相关的控制逻辑。在 MAX6675 的目的是一起工作的外部 微控制器或其他情报,恒温,过程控制,或监测应用。
该器件采用 8 引脚 SO 帖片封装。引脚排列如右图所示, 2 工作原理 该器件是一复杂的单片热电偶数字转换器,内部具有信号调节放大器。12 位 的模拟/数字化热电偶转换器。冷端补偿传感和校正。数字控制器。1 个 SPI 兼容 接口和 1 个相关的逻辑控制。 图 2 MAX6675 内部结构框图
MAX6675 内部结构框图
85℃范围内变化。当冷端温度波动时,MAX6675 仍能精确检测热端的温度变化。 图 3 MAX6675 SO 端输出数据的格式 MAX6675 是通过冷端补偿检测和校正周围温度变化的。该器件可将周围温度通过 内部的温度检测二极管转换为温度补偿电压,为了产生实际热电偶温度测量值 , MAX6675 从热电偶的输出和检测二极管的输出测量电压。该器件内部电路将二极 管电压和热电偶电压送到 ADC 中转换,以计算热电偶的热端温度。当热电偶的冷 端与芯片温度相等时,MAX6675 可获得最佳的测量精度。因此在实际测温应用时, 应尽量避免在 MAX6675 附近放置发热器件或元件,因为这样会造成冷端误差。 2.3 热补偿 在测温应用中,芯片自热将降低 MAX6675 温度测量精度,误大小依赖于 MAX6675 封装的热传导性。安装技术和通风效果。为降低芯片自热引起的测量误差,可在 布线时使用大面积接地技术提高 MAX6675 温度测量精度。 2.4 噪声补偿 MAX6675 的测量精度对电源耦合噪声较敏感。为降低电源噪声影响,可 在 MAX6675 的电源引脚附近接入 1 只 0.1μF 陶瓷旁路电容。 2.5 测量精度的提高 热电偶系统的测量精度可通过以下预防措施来提高:①尽量采用不能从测量区域 散热的大截面导线;②如必须用小截面导线,则只能应用在测量区域,并且在无 温度变化率区域用扩展导线;③避免受能拉紧导线的机械挤压和振动;④当热电 偶距离较远时,应采用双绞线作热电偶连线;⑤在温度额定值范围内使用热电偶 导线;⑥避免急剧温度变化;⑦在严劣环境中,使用合适的保护套以保证热电偶 导线;⑧仅在低温和小变化率区域使用扩展导线;⑨保持热电偶电阻的事件记录 和连续记录。 2.6 SPI 串行接口 MAX6675 采用标准的 SPI 串行外设总线与 MCU 接口, 且 MAX6675 只能作为从设备。 MAX6675 SO 端输出温度数据的格式如图 3 所示,MAX6675 SPI 接口时序如图 4 所 示。MAX6675 从 SPI 串行接口输出数据的过程如下:MCU 使 CS 变低并提供时钟信 号给 SCK,由 SO 读取测量结果。CS 变低将停止任何转换过程;CS 变高将启动一个 新的转换过程。一个完整串行接口读操作需 16 个时钟周期,在时钟的下降沿读 16 个输出位,第 1 位和第 15 位是一伪标志位,并总为 0;第 14 位到第 3 位为以 MSB 到 LSB 顺序排列的转换温度值;第 2 位平时为低,当热电偶输入开放时为高, 开放热电偶检测电路完全由 MAX6675 实现,为开放热电偶检测器操作,T-必须接 地,并使能地点尽可能接近 GND 脚;第 1 位为低以提供 MAX6675 器件身份码,第 0 位为三态。 3 测温应用 下面给出 MAX6675 应用于嵌入式系统的具体方法。 这里以 AT89C2051 单片机为例, 给出 MAX6675 与单片机接口构成的测温电路及相应的温度值读娶转换程序。 MAX6675 为单片数字式热电偶放大器,其工作时无需外接任何的外围元件,这里 为降低电源耦合噪声, 在其电源引脚和接地端之前接入了 1 只容量为 0.1μF 的电 容。

EM266(DT266) SERIES DIGITAL CLAMP METER 说明书

EM266(DT266) SERIES DIGITAL CLAMP METER 说明书

OWNERS MANUALRead this owners manual thoroughly before useEM266(DT266) SERIES DIGITAL CLAMP METERWARRANTYThis instrument is warranted to be free from defects in material and workmanship for a period of one year. Any instrument found defective within one year from the delivery date and returned to the factory with transportation charges prepaid, will be repaired, adjusted, or replaced at no charge to the original purchaser. This warranty does not cover expandable items such as battery.If the defect has been caused by a misuse or abnormal operating conditions, the repair will be billed at a nominal cost.SAFETY INFORMATIONThe digital multimeter has been designed according to IEC-61010 concerning electronic measuring instruments with a measurement category (CAT II ) and pollution degree 2.ELECTRICAL SYMBOLSAlternating CurrentDirect CurrentCaution, risk of danger, refer to the operating manualbefore use.Caution, risk of electric shock.Earth (ground) TerminalFuseConforms to European Union directivesThe equipment is protected throughout by doubleinsulation or reinforced insulation.A WARNINGTo avoid possible electric shock or personal injury, follow these guidelines:• Do not use the meter if it is damaged. Before you use the meter, inspect the case. Pay particular attention to the insulationsurrounding the connectors.• Inspect the test leads for damaged insulation or exposed metal.Check the test leads for continuity. Replace damaged test leads before you use the meter.• Do not use the meter if it operates abnormally. Protection may be impaired. When in doubt, have the meter serviced.• Do not operate the meter around explosive gas, vapor, or dust. • To avoid damages to the instrument, do not exceed the maximum limits of the input values shown on the meter.• Before use, verify the meter's operation by measuring a known voltage.• When servicing the meter, use only specified replacement parts. • Use with caution when working above 30V AC RMS, 42V peak, or 60V DC. Such voltages pose a shock hazard.• When using the probes, keep your fingers behind the finger guards on the probes.• Connect the common test lead before you connect the live test lead. When you disconnect test leads, disconnect the live test lead first.• Remove the test leads from the meter before you open the battery door.• Do not operate the meter with the battery door or portions of thecover removed or loosened.•To avoid false readings, which could lead to possible electric shock or personal injury, replace the batteries as soon as the low battery indicator (" ") appears.•When an input terminal is connected to dangerous live potential it is to be noted that this potential at all other terminals can occur! •After you press the Data Hold button to enter Data Hold mode, caution must be used because hazardous voltage may be present. •CATII-Measurement Category II is for measurements performed on circuits directly connected to low voltage installation.(Examples are measurements on household appliances, portable tools and similar equipments.) Do not use the meter formeasurements within Measurement Categories III and IV.CAUTIONTo avoid possible damage to the meter or to the equipment under test, follow these guidelines:•Disconnect circuit power and discharge all capacitors beforetesting resistance, insulation resistance, continuity or diode. •Use the proper terminals, function, and range for your easurements. •Never measure current while the test leads are inserted into the input jacks.•Before rotating the range switch to change functions, disconnect test leads from the circuit under test.•Remove test leads from the meter before opening the meter case.FRONT PANEL DESCRIPTION1. Transformer JawsPick up the AC current flowing through the conductor.2. "DATA HOLD" ButtonPress this button to hold the present reading on the display, press again to release the display.For model 260D, this button is used for holding peak.3. Functio n / Range Switc hFunction / Range switch for selecting measuremen t functio n and range.4. Displa y3 1/2 digits LCD, Max. reading 1999.5. Drop-proof Wrist Strap:Prevent the instrumen t from slipping off the hand while in use.6. "EXT" Jac kPlug-in connecto r for the banana plug "EXT" from the extensional insulation resistance tester unit.7. "COM" Jac kPlug-in connecto r for the black test lead while measuring voltage, resistanc e and continuity; and for connectin g the banana plug "COM" from the insulation tester unit while measuring insulation resistance.8. V/ΩInput Jac kPlug-i n connecto r for the red test lead while measuring voltage, resistanc e and continuity; and for connectin g the banana plug "V/Ω" from the insulation tester unit while measuring insulation resistance.9. Trigge rPress the level to open the transforme r jaws; when the finger pressing on the level is released, the jaws will close again.MODEL S AND FUNCTIONSACV ACA DCV ΩInsulationTEM PF200mV200V750V20A200A1000A200mV2V20V200V1000V200Ω2kΩ20kΩ200kΩ2MΩ20MΩ-2000MΩ°C, °F2kHz1mA, 2.8V<50Ω266********266C***************266C+****************260D*****************266F*****************266F T***************INTRODUCTIONThe meter is a portable, 3-1/2 digits LCD clamp meter with insulation test function (with optional 500V insulation tester unit), designed for being used by electricians, technicians, serviceman and hobbyists who need an instrument that is accurate, reliable, and always ready for use. It is powered by a standard 9V battery, and can provide150-200 operating hours, which depends on the type of battery and using conditions. It has rugged structure design, good feeling held in operator's hand and convenient use.TECHNICAL SPECIFICATIONSThe following specifications assume a l-year calibration cycle and operating conditions of temperature scale of 18°C to 28°C (64°F to 82°F) with relative humidity up to 80% unless otherwise noted. Accuracy specifications take the form of:± [(% of Reading)+(Number of Least Significant Digits)]Range 20A 200A1000A Resolution10mA100mA1AAccuracy(50Hz - 60Hz)+ (2.5% + 8)+ (2.5% + 5)+ (2.5% + 5) for 800A and belowIf >800A, the reading is only for reference.AC CurrentFrequency response: 50~60HzIndication: Average (rms of sine wave) Overload protection: 1200A within 60seconds, Jaw opening: 2"(5cm)Frequency range: 45 - 400Hz I nput impedance: 9MΩ Indication: Average (rms of sine wave) Overload protection: 200mV range: 250V AC;the other ranges: 750V rms ACOverload protection: 200mV range: 250V AC;the other ranges: 1000V DC/AC peak. Input impedance: 9MΩInsulation Test (with optional 500V insulation tester unit)AC VoltageDC VoltageRange 20MΩ 2000MΩResolution 10kΩ 1MΩAccuracy +(2% + 2 )500MΩ: +(4% + 2) >500MΩ: +(5%+ 2)Range 200mV 200V 750VResolution 0.1mV 100mV 1VAccuracy +(1.2% + 5) +(2.0% + 5)Range 200mV 2V 20V 200V 1000V| Resolution0.1mV 1mV 10mV 100mV1VAccuracy+(0.8% + 3) +(1.2%+ 5)ResistanceUse K type thermocoupleNote:1. Accuracy does not include error of the thermocouple probe.2. Accuracy specification assumes ambient temperature is stableto ±1°C. For ambient temperature changes of ±5ic, ratedaccuracy applies after 1 hour.Range 2 kHz Resolution1HzAccuracy+(1.5%+ 5)Range 200Ω 2kΩ 20 kΩ 200 kΩ 2MΩ Resolution0.1Ω1Ω10Ω100Ω1kΩAccuracy+(1.2% + 5)+(1.0% +3)+(1.5%+ 5)Range 0°C - 750°C 32°F~1382°F Resolution1°C1°FAccuracy0^-400^: ±(1%+5)400r~750lC: ±(2%+5)32T-752T: ±(1%+9)752T-1382T: ±(2%+9)TemperatureOverload protection: 250V rms ACDiode and Continuity TestGENERAL SPECIFICATIONSDisplay: 3 1/2-digit LCD, with a max. reading of 1999Overrange Indication: only figure" 1 " displayed on the LCD Negative Polarity Indication: " - " displayed automatically Sampling Rate: about 2-3 times/secOperating Temperature: 0°C~40°C, <75%RHStorage Temperature: -10°C~50°C, <85%RHBattery: 9V, 6F22 or equivalentLow Battery Indication: " " shown on the displayDimensions: 240 X 102 X 47mmWeight: about 300g (including battery) 10Range DescriptionThe approx. forward voltage drop of the diode wil Ibe displayed on the LCD.When the resistance is less than about 50Ω, the built-inbuzzerwill sound.OPERATING INSTRUCTIO NAC Curren t Measuremen t1. Make sure the "Data Hold" switch is not pressed.2. Set the Function/Rang e switch to the desired ACA range.3. Press the trigge r to open the transforme r jaws and clamp oneconducto r only. It is impossible to make measurement s when two or three conductor s are clamped at the same time.4. The value displayed on the LCD is the AC current flowing throug hthe conductor.Insulatio n Resistanc e Test1. Set the rotary switch of the clamp meter to the 2000MΩrange.In this condition, it is normal that the reading is unstable.2. Insert the three banana plugs V/Q, COM, EX T of the insulationtester unit to the correspondin g V/Q, COM, EX T input jacks on the clamp meter.3. Set the range switch of the insulation tester unit to the 2000MΩposition.4. Connect the test leads from the insulation tester unit to theapplianc e to be tested.5. Set the insulation tester Power switch to the "ON" position.6. Push the " 500V" button, the red LE D "500V" will light. Thereading on the LCD of the clamp meter is the insulation resistance value; if the reading is below 19MΩ, set the rotary switch of the the clamp meter and the range switch of the insulation tester unit to 20MΩ range position to increase the measuremen t accuracy.117. If the insulation tester unit is not used, the power switch mustset to OFF position. And the test leads must be removed from the input jacks; this can extend the battery life and prevent electrical shock hazard.DC Voltage Measurement1. Connect the red test lead to the "V/Ω" jack and the black testlead to the "COM" jack.2. Set the rotary switch to the desired DCV range. If the voltage tobe measured is not known beforehand, set the range switch to the highest range and then turn down range by range untilsatisfactory resolution is obtained.3. Connect the test leads to the source or load to be measured.4. Read the voltage value displayed on the LCD along with thepolarity of the red test lead.AC Voltage Measurement1. Connect the red test lead to the "V/Ω" jack and the black testlead to the "COM" jack.2. Set the rotary switch to the desired ACV range. If the voltage tobe measured is not known beforehand, set the range switch to the highest range and then turn down range by range untilsatisfactory resolution is obtained.3. Connect the test leads to the source or load to be measured.4. Read the voltage value displayed on the LCD.12Resistanc e Measuremen t1. Connect the red test lead to the "V/Ω" jack and the black testlead to the "COM" jack.2. Set the rotary switch to the desired Ω. range.3.Connect the test leads to the resisto r to be measured andread the value displayed on the LCD.Note:For resistance about 1 Mfi and above, the meter may take a few second s to stabilize. This is normal for high resistance readings.Diode Test1. Connect the red test lead to the "V/Ω" jack and the black testlead to the "COM" jack. (The polarity of the red test lead ispositive"+".)2. Set the rotary switch to range.3. Connect the red test lead to the anode of the diode to be testedand the black test lead to the cathode of the diode. The approximat e forwar d voltage drop of the diode will be displayed on the LCD.If the connectio n is reversed, only figure "1" will be shown.13Audible Continuity Test1. Connect the red test lead to the "V/Ω" jack and the black testlead to the "COM" jack.2. Set the rotary switch to range.3. Connect the test leads to the two terminals of the circuit to betested. If the resistance Is less than about 50Ω, the built-in buzzer will sound.Temperature MeasurementNoteTo avoid possible damage to the meter or otherequipment, remember that while the meter is ratedfor 0°C to +750°C and 32°F to 1382°F, the K TypeThermocouple provided with the meter is rated to250°C. For temperatures out of that range, use ahigher rated thermocouple.The K Type Thermocouple provided with the meteris a present, it is not professional and can only beused for non-critical reference measurements.For accurate measurements, use a professionalthermocouple.1. Connect the K type thermocouple to the correspondingmeasurement socket.2. Set the rotary switch to the desired temperature range.3. Touch the K type thermocouple to the object to be measured.4. Wait a while, read the temperature value displayed on the LCD.14Frequenc y Measuremen t1. Connect the red test lead to the "V/Ω" jack and the black testlead to the "COM" jack.2. Set the rotary switch to the frequenc y (2kHz) range.Connect the test leads to the source or load to be measured. 3. Read the frequenc y value displayed on the LCD.MAINTENANC E•Before opening the case, always disconnec t the test leads from all live circuits.•Periodically wipe the case with a damp cloth and mild detergent.Do not use abrasives or solvents.BATTERY REPLACEMEN TWhen the symbol" " appears on the display, it shows that the batter y should be replaced. To replace the battery, open the batter y door, replace the exhausted battery with a new one of the same type, reinstall the battery door. Some models of this series use screws for fastening the door, please install the screws.15ACCESSORIESInstruction manual: 1 copyTest leads: 1 pairNote:In normal condition, the insulation tester is not provided. If needed, you can buy from our company.PRESENTK Type Thermocouple: 1 piece (only 266C, 266C+, 266FT) NOTE1. This manual is subject to change without notice.2. Our company will not take the other responsibilities for any loss.3. The content of this manual can not be used as the reason to use the meter for any special applications.DISPOSAL OF THIS ARTICLEDear Customer, If you at some point intend to dispose of this article, then please keep in mind that many of its components consist of valuable materials, which can be recycled. Please do not discharge it in the garbage bin, but check with your local council for recycling facilities in your area.16 。

LM2660MX中文资料

LM2660MX中文资料

LM2660/LM2661Switched Capacitor Voltage ConverterGeneral DescriptionThe LM2660/LM2661CMOS charge-pump voltage con-verter inverts a positive voltage in the range of 1.5V to 5.5V to the corresponding negative voltage.The LM2660/LM2661uses two low cost capacitors to provide 100mA of output current without the cost,size,and EMI related to inductor based converters.With an operating current of only 120µA and operating efficiency greater than 90%at most loads,the LM2660/LM2661provides ideal performance for battery powered systems.The LM2660/LM2661may also be used as a positive voltage doubler.The oscillator frequency can be lowered by adding an exter-nal capacitor to the OSC pin.Also,the OSC pin may be used to drive the LM2660/LM2661with an external clock.For LM2660,a frequency control (FC)pin selects the oscillator frequency of 10kHz or 80kHz.For LM2661,an external shutdown (SD)pin replaces the FC pin.The SD pin can be used to disable the device and reduce the quiescent current to 0.5µA.The oscillator frequency for the LM2661is 80kHz.Featuresn Inverts or doubles input supply voltage n Narrow SO-8and Mini SO-8Package n 6.5Ωtypical output resistancen 88%typical conversion efficiency at 100mAn (LM2660)selectable oscillator frequency:10kHz/80kHz n(LM2661)low current shutdown modeApplicationsn Laptop computers n Cellular phones n Medical instrumentsn Operational amplifier power supplies n Interface power supplies nHandheld instrumentsBasic Application CircuitsVoltage InverterPositive Voltage Doubler0129110301291104Splitting V IN in Half01291126September 1999LM2660/LM2661Switched Capacitor Voltage Converter©2004National Semiconductor Corporation Absolute Maximum Ratings (Note 1)If Military/Aerospace specified devices are required,please contact the National Semiconductor Sales Office/Distributors for availability and specifications.Supply Voltage (V+to GND,or GND to OUT)6VLV (OUT −0.3V)to (GND +3V)FC,OSCThe least negative of (OUT −0.3V)or (V+−6V)to (V++0.3V)V+and OUT Continuous Output Current 120mA Output Short-Circuit Duration to GND (Note 2)1sec.PackageMMM Power Dissipation (T A =25˚C)(Note 3)735mW 500mW T J Max (Note 3)150˚C 150˚C θJA (Note 3)170˚C/W250˚C/WOperating Junction Temperature Range−40˚C to +85˚C Storage Temperature Range−65˚C to +150˚CLead Temperature 300˚C (Soldering,10seconds)ESD Rating2kVElectrical CharacteristicsLimits in standard typeface are for T J =25˚C,and limits in boldface type apply over the full operating temperature range.Un-less otherwise specified:V+=5V,FC =Open,C 1=C 2=150µF.(Note 4)Symbol ParameterConditionMin TypMax UnitsV+Supply VoltageR L =1kInverter,LV =Open 3.5 5.5Inverter,LV =GND 1.5 5.5V Doubler,LV =OUT2.55.5I QSupply CurrentNo Load FC =Open (LM2660)0.120.5mA LV =OpenFC =V+(LM2660)or 13SD =Ground (LM2661)I SD Shutdown Supply Current 0.52µA (LM2661)V SD Shutdown Pin Input Voltage Shutdown Mode 2.0(Note 5)V (LM2661)Normal Operation 0.3I L Output CurrentT A ≤+85˚C,OUT ≤−4V 100mA T A >+85˚C,OUT ≤−3.8V 100R OUT Output Resistance (Note 6)I L =100mA T A ≤+85˚C 6.510ΩT A >+85˚C 12f OSC Oscillator Frequency (Note 7)OSC =Open FC =Open 510kHz FC =V+4080f SW Switching Frequency (Note 8)OSC =Open FC =Open 2.55kHz FC =V+2040I OSC OSC Input Current FC =Open ±2µAFC =V+±16P EFFPower EfficiencyR L (1k)between V +and OUT 9698R L (500)between GND and OUT 9296%I L =100mA to GND88V OEFFVoltage Conversion EfficiencyNo Load9999.96%Note 1:Absolute maximum ratings indicate limits beyond which damage to the device may occur.Electrical specifications do not apply when operating the device beyond its rated operating conditions.Note 2:OUT may be shorted to GND for one second without damage.However,shorting OUT to V+may damage the device and should be avoided.Also,for temperatures above 85˚C,OUT must not be shorted to GND or V+,or device may be damaged.Note 3:The maximum allowable power dissipation is calculated by using P DMax =(T JMax −T A )/θJA ,where T JMax is the maximum junction temperature,T A is the ambient temperature,and θJA is the junction-to-ambient thermal resistance of the specified package.Note 4:In the test circuit,capacitors C 1and C 2are 0.2Ωmaximum ESR capacitors.Capacitors with higher ESR will increase output resistance,reduce output voltage and efficiency.Note 5:In doubling mode,when V out >5V,minimum input high for shutdown equals V out −3V.Note 6:Specified output resistance includes internal switch resistance and capacitor ESR.Note 7:For LM2661,the oscillator frequency is 80kHz.Note 8:The output switches operate at one half of the oscillator frequency,f OSC =2f SW .L M 2660/L M 2661 2Test CircuitsTypical Performance Characteristics(Circuit of Figure 1)Supply Current vs Supply Voltage Supply Current vs Oscillator FrequencyOutput Source Resistance vs SupplyVoltage012911070129110801291109Output Source Resistance vs TemperatureEfficiency vs LoadCurrent Output Voltage Drop vs Load Current0129111001291111012911120129110501291106FIGURE 1.LM2660and LM2661Test CircuitsLM2660/LM26613Typical Performance Characteristics (Circuit of Figure 1)(Continued)Efficiency vs Oscillator FrequencyOutput Voltage vs Oscillator FrequencyOscillator Frequencyvs External Capacitance012911130129111401291115Oscillator Frequency vs Supply Voltage(FC =V+)Oscillator Frequency vs Supply Voltage (FC =Open)Oscillator Frequency vs Temperature(FC =V+)012911160129111701291118Oscillator Frequency vs Temperature (FC =Open)Shutdown SupplyCurrent vs Temperature (LM2661Only)0129111901291120L M 2660/L M 2661 4Connection Diagrams8-Lead SO (M)or Mini SO (MM)0129110101291102Top ViewOrder Number LM2660M,LM2661M,LM2660MM or LM2661MMSee NS Package Number M08A and MUA08AOrdering InformationOrder Number Package Number Package Marking Supplied AsLM2660MM08ADatecode Rail (95units/rail)LM2660MLM2660MXM08ADatecode Tape and Reel (2500units/rail)LM2660MLM2660MM MUA08A S01A (Note 9)Tape and Reel (250units/rail)LM2660MMX MUA08A S01A (Note 9)Tape and Reel (3500units/rail)LM2661MM08ADatecode Rail (95units/rail)LM2661MLM2661MXM08ADatecode Tape and Reel (2500units/rail)LM2661MLM2661MM MUA08A S02A (Note 9)Tape and Reel (250units/rail)LM2661MMXMUA08AS02A (Note 9)Tape and Reel (3500units/rail)Note 9:The first letter “S”identifies the part as a switched capacitor converter.The next two numbers are the device number:“01”for a LM2660device,and “02”for a LM2661device.The fourth letter “A”indicates the grade.Only one grade is rger quantity reels are available upon request.LM2660/LM26615Pin DescriptionPin NameFunctionVoltage InverterVoltage Doubler1FC Frequency control for internal oscillator:Same as inverter.(LM2660)FC =open,f OSC =10kHz (typ);FC =V+,f OSC =80kHz (typ);FC has no effect when OSC pin is driven externally.1SD (LM2661)Shutdown control pin,tie this pin to the ground in normal operation,and to V+for shutdown.Same as inverter.2CAP+Connect this pin to the positive terminal of charge-pump capacitor.Same as inverter.3GND Power supply ground input.Power supply positive voltage input.4CAP−Connect this pin to the negative terminal of charge-pump capacitor.Same as inverter.5OUT Negative voltage output.Power supply ground input.6LVLow-voltage operation input.Tie LV to GND when input voltage is less than 3.5V.Above 3.5V,LV can be connected to GND or left open.When driving OSC with an external clock,LV must be connected to GND.LV must be tied to OUT.7OSCOscillator control input.OSC is connected to aninternal 15pF capacitor.An external capacitor can be connected to slow the oscillator.Also,an external clock can be used to drive OSC.Same as inverter except that OSC cannot be driven by an external clock.8V+Power supply positive voltage input.Positive voltage output.Circuit DescriptionThe LM2660/LM2661contains four large CMOS switches which are switched in a sequence to invert the input supply voltage.Energy transfer and storage are provided by exter-nal capacitors.Figure 2illustrates the voltage conversion scheme.When S 1and S 3are closed,C 1charges to the supply voltage V+.During this time interval switches S 2and S 4are open.In the second time interval,S 1and S 3are open and S 2and S 4are closed,C 1is charging C 2.After a number of cycles,the voltage across C 2will be pumped to V+.Since the anode of C 2is connected to ground,the output at the cathode of C 2equals −(V+)assuming no load on C 2,no loss in the switches,and no ESR in the capacitors.In reality,the charge transfer efficiency depends on the switching fre-quency,the on-resistance of the switches,and the ESR of the capacitors.Application InformationSIMPLE NEGATIVE VOLTAGE CONVERTERThe main application of LM2660/LM2661is to generate a negative supply voltage.The voltage inverter circuit uses only two external capacitors as shown in the Basic Applica-tion Circuits.The range of the input supply voltage is 1.5V to 5.5V.For a supply voltage less than 3.5V,the LV pin must be connected to ground to bypass the internal regulator cir-cuitry.This gives the best performance in low voltage appli-cations.If the supply voltage is greater than 3.5V,LV may be connected to ground or left open.The choice of leaving LV open simplifies the direct substitution of the LM2660/LM2661for the LMC7660Switched Capacitor Voltage Con-verter.The output characteristics of this circuit can be approximated by an ideal voltage source in series with a resistor.The voltage source equals −(V+).The output resistance R out is a function of the ON resistance of the internal MOS switches,the oscillator frequency,and the capacitance and ESR of C 1and C 2.A good approximation is:where R SW is the sum of the ON resistance of the internal MOS switches shown in Figure 2.High value,low ESR capacitors will reduce the output resis-tance.Instead of increasing the capacitance,the oscillator frequency can be increased to reduce the 2/(f osc x C 1)term.Once this term is trivial compared with R SW and ESRs,further increasing in oscillator frequency and capacitance will become ineffective.01291121FIGURE 2.Voltage Inverting PrincipleL M 2660/L M 26616Application Information(Continued)The peak-to-peak output voltage ripple is determined by the oscillator frequency,and the capacitance and ESR of the output capacitor C 2:Again,using a low ESR capacitor will result in lower ripple.POSITIVE VOLTAGE DOUBLERThe LM2660/LM2661can operate as a positive voltage dou-bler (as shown in the Basic Application Circuits).The dou-bling function is achieved by reversing some of the connec-tions to the device.The input voltage is applied to the GND pin with an allowable voltage from 2.5V to 5.5V.The V+pin is used as the output.The LV pin and OUT pin must be connected to ground.The OSC pin can not be driven by an external clock in this operation mode.The unloaded output voltage is twice of the input voltage and is not reduced by the diode D 1’s forward drop.The Schottky diode D 1is only needed for start-up.The internal oscillator circuit uses the V+pin and the LV pin (connected to ground in the voltage doubler circuit)as its power rails.Voltage across V+and LV must be larger than 1.5V to insure the operation of the oscillator.During start-up,D 1is used to charge up the voltage at V+pin to start the oscillator;also,it protects the device from turning-on its own parasitic diode and potentially latching-up.Therefore,the Schottky diode D 1should have enough current carrying capability to charge the output capacitor at start-up,as well as a low forward voltage to prevent the internal parasitic diode from turning-on.A Schottky diode like 1N5817can be used for most applications.If the input voltage ramp is less than 10V/ms,a smaller Schottky diode like MBR0520LT1can be used to reduce the circuit size.SPLIT V+IN HALFAnother interesting application shown in the Basic Applica-tion Circuits is using the LM2660/LM2661as a precision voltage divider.Since the off-voltage across each switch equals V IN /2,the input voltage can be raised to +11V.CHANGING OSCILLATOR FREQUENCYFor the LM2660,the internal oscillator frequency can be selected using the Frequency Control (FC)pin.When FC is open,the oscillator frequency is 10kHz;when FC is con-nected to V+,the frequency increases to 80kHz.A higher oscillator frequency allows smaller capacitors to be used for equivalent output resistance and ripple,but increases the typical supply current from 0.12mA to 1mA.The oscillator frequency can be lowered by adding an exter-nal capacitor between OSC and GND.(See Typical Perfor-mance Characteristics.)Also,in the inverter mode,an exter-nal clock that swings within 100mV of V+and GND can be used to drive OSC.Any CMOS logic gate is suitable for driving OSC.LV must be grounded when driving OSC.The maximum external clock frequency is limited to 150kHz.The switching frequency of the converter (also called the charge pump frequency)is half of the oscillator frequency.Note:OSC cannot be driven by an external clock in the voltage-doublingmode.TABLE 1.LM2660Oscillator Frequency Selection FC OSCOscillator Open Open 10kHz V+Open80kHz Open or V+External CapacitorSee Typical Performance Characteristics N/A External Clock External Clock (inverter mode only)FrequencyTABLE 2.LM2661Oscillator Frequency SelectionOSCOscillatorOpen80kHzExternal Capacitor See Typical Performance CharacteristicsExternal Clock External Clock Frequency(inverter mode only)SHUTDOWN MODEFor the LM2661,a shutdown (SD)pin is available to disable the device and reduce the quiescent current to 0.5µA.Applying a voltage greater than 2V to the SD pin will bring the device into shutdown mode.While in normal operating mode,the SD pin is connected to ground.CAPACITOR SELECTIONAs discussed in the Simple Negative Voltage Converter section,the output resistance and ripple voltage are depen-dent on the capacitance and ESR values of the external capacitors.The output voltage drop is the load current times the output resistance,and the power efficiency isWhere I Q (V+)is the quiescent power loss of the IC device,and I L 2R OUT is the conversion loss associated with the switch on-resistance,the two external capacitors and their ESRs.Since the switching current charging and discharging C 1is approximately twice as the output current,the effect of the ESR of the pumping capacitor C 1is multiplied by four in the output resistance.The output capacitor C 2is charging and discharging at a current approximately equal to the output current,therefore,its ESR only counts once in the output resistance.However,the ESR of C 2directly affects the output voltage ripple.Therefore,low ESR capacitors (Table 3)are recommended for both capacitors to maximize effi-ciency,reduce the output voltage drop and voltage ripple.For convenience,C 1and C 2are usually chosen to be the same.The output resistance varies with the oscillator frequency and the capacitors.In Figure 3,the output resistance vs.oscillator frequency curves are drawn for three different tan-talum capacitors.At very low frequency range,capacitance plays the most important role in determining the output re-sistance.Once the frequency is increased to some point (such as 20kHz for the 150µF capacitors),the output resistance is dominated by the ON resistance of the internal switches and the ESRs of the external capacitors.A lowLM2660/LM26617Application Information(Continued)value,smaller size capacitor usually has a higher ESR com-pared with a bigger size capacitor of the same type.For lower ESR,use ceramic capacitors.TABLE 3.Low ESR Capacitor ManufacturersManufacturer Phone FAX Capacitor TypeNichicon Corp.(708)-843-7500(708)-843-2798PL,PF series,through-hole aluminum electrolytic AVX Corp.(803)-448-9411(803)-448-1943TPS series,surface-mount tantalumSprague (207)-324-4140(207)-324-7223593D,594D,595D series,surface-mount tantalum Sanyo(619)-661-6835(619)-661-1055OS-CON series,through-hole aluminum electrolyticOther ApplicationsPARALLELING DEVICESAny number of LM2660s (or LM2661s)can be paralleled to reduce the output resistance.Each device must have its own pumping capacitor C 1,while only one output capacitor C out is needed as shown in Figure 4.The composite output resis-tance is:01291132FIGURE 3.Output Source Resistance vs Oscillator Frequency01291122FIGURE 4.Lowering Output Resistance by Paralleling DevicesL M 2660/L M 2661 8Other Applications(Continued)CASCADING DEVICESCascading the LM2660s (or LM2661s)is an easy way to produce a greater negative voltage (as shown in Figure 5).If n is the integer representing the number of devices cas-caded,the unloaded output voltage V out is (−nV in ).The effective output resistance is equal to the weighted sum of each individual device:A three-stage cascade circuit shown in Figure 6generates −3V in ,from V in .Cascading is also possible when devices are operating in doubling mode.In Figure 7,two devices are cascaded to generate 3V in .An example of using the circuit in Figure 6or Figure 7is generating +15V or −15V from a +5V input.Note that,the number of n is practically limited since the increasing of n significantly reduces the efficiency and in-creases the output resistance and output voltage ripple.01291123FIGURE 5.Increasing Output Voltage by Cascading Devices01291124FIGURE 6.Generating −3V in from +V inLM2660/LM26619Other Applications(Continued)REGULATING V outIt is possible to regulate the output of the LM2660/LM2661by use of a low dropout regulator (such as LP2951).The whole converter is depicted in Figure 8.This converter can give a regulated output from −1.5V to −5.5V by choosing the proper resistor ratio:where,V ref =1.235VThe error flag on pin 5of the LP2951goes low when the regulated output at pin 4drops by about 5%.The LP2951can be shutdown by taking pin 3high.Also,as shown in Figure 9by operating LM2660/LM2661in voltage doubling mode and adding a linear regulator (such as LP2981)at the output,we can get +5V output from an input as low as +3V.01291125FIGURE 7.Generating +3V in from +V in01291127FIGURE bining LM2660/LM2661with LP2951to Make a Negative Adjustable RegulatorL M 2660/L M 2661 10LM2660/LM2661 Other Applications(Continued)01291128FIGURE9.Generating+5V from+3V Input Voltage11Physical Dimensionsinches (millimeters)unless otherwise noted8-Lead SO (M)Order Number LM2660M or LM2661MNS Package Number M08A8-Lead Mini SO (MM)Order Number LM2660MM or LM2661MMNS Package Number MUA08AL M 2660/L M 2661 12NotesNational does not assume any responsibility for use of any circuitry described,no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.For the most current product information visit us at .LIFE SUPPORT POLICYNATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION.As used herein:1.Life support devices or systems are devices or systemswhich,(a)are intended for surgical implant into the body,or(b)support or sustain life,and whose failure to perform whenproperly used in accordance with instructions for use provided in the labeling,can be reasonably expected to result in a significant injury to the user.2.A critical component is any component of a life supportdevice or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system,or to affect its safety or effectiveness.BANNED SUBSTANCE COMPLIANCENational Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification(CSP-9-111C2)and the Banned Substances and Materials of Interest Specification(CSP-9-111S2)and contain no‘‘Banned Substances’’as defined in CSP-9-111S2.National Semiconductor Americas CustomerSupport CenterEmail:new.feedback@ Tel:1-800-272-9959National SemiconductorEurope Customer Support CenterFax:+49(0)180-5308586Email:europe.support@Deutsch Tel:+49(0)6995086208English Tel:+44(0)8702402171Français Tel:+33(0)141918790National SemiconductorAsia Pacific CustomerSupport CenterEmail:ap.support@National SemiconductorJapan Customer Support CenterFax:81-3-5639-7507Email:jpn.feedback@Tel:81-3-5639-7560 LM2660/LM2661 Switched Capacitor Voltage Converter。

TNY266PN中文资料

TNY266PN中文资料

TNY266PN中文资料TNY266PN-芯片离线开关用500—2型万能表1K档测试各脚内阻:(只供参考)1脚(BP)接黑表笔——2、3、7、8脚(S)接红表笔=130KΩ;1脚(BP)接红表笔——2、3、7、8脚(S)接黑表笔=3.8KΩ;1脚(BP)接黑表笔——5脚(D)接红表笔=220KΩ;1脚(BP)接红表笔——5脚(D)接黑表笔=24KΩ;1脚(BP)接黑表笔——4脚(EN/UV)接红表笔=220KΩ;1脚(BP)接红表笔——4脚(EN/UV)接黑表笔=35KΩ;4脚(EN/UV)接红表笔——2、3、7、8脚(S)接黑表笔=5.2KΩ;4脚(EN/UV)接黑表笔——2、3、7、8脚(S)接红表笔=35KΩ;4脚(EN/UV)接红表笔——5脚(D)接黑表笔=2MΩ;4脚(EN/UV)接黑表笔——5脚(D)接红表笔=42KΩ;号输出通道:1输出电压:700V输出电流:560mA封装类型:双列直插针脚数:8工作温度范围:-40°C 到+150°C封装类型:DIP工作温度敏:-40°C工作温度最高:150°C器件标号:266电源电压最小:50V电源芯片类型:脱机交换机芯片标号:266表面安装器件:通孔安装输入电压最大:265VAC输出电压最大:700V输出电流最大:100µA逻辑功能号:266频率:132kHz在电阻RDS(上):14ohm温度 @ 电流测量:25°C漏极电压峰值(最大):700V漏极电压峰值(最小):-0.3V电流消耗:35mA电流消耗, 峰值:0.56A电源类型:离线开关耐温性能:25°C输出功率, 开架(OF) @ 230VAC:15W输出功率, 开架(OF) @ 85-265VAC:9.5WTNY266P 是一款10 W高效小功率隔离式开关电源用集成电路,该系列产品包括TNY264P/G,TNY266P/G,TNY267P/G,TNY268P/G,共8种型号。

74LS266+中文资料

74LS266+中文资料

54/74266四2输入异或非门(OC )简要说明:54/74LS266为集电极开路输出的异或非门,其主要电特性的典型值如下(具体厂家有可能不是完全一至):型号t PHL t PLHP D54LS266/74LS266 18ns 18ns10mW引出端符号:1A~4A,1B~4B 输入端 1Z ~4Z 输出端外接端口:真值表:极限值: 电源电压 …………………………………………. 7V 输入电压 …………………………………………. 7V 工作环境温度54S266 …………………………………. -55~125℃ 74S266 …………………………………. 0~70℃ 存储温度 …………………………………………. -65~150℃ww w .t ai -ya n .c o m/bb s推荐工作条件:54S266/74S266最小 额定 最大 单位544.5 55.5电源电压Vcc74 4.75 5 5.25 V输入高电平电V iH2 V 54 0.7输入低电平电V iL 74 0.8 V输出截止态电压V O(OFF)5.5 V 54 4输出低电平电流I OL748mA动态特性:LS266 参 数【2】测 试 条 件最大 单位t PLH30 t PHLA,B 到Z 非被测试输入为低电平30 ns t PLH30 t PHLA,B 到ZVcc =5VR L =2k ΩC L =15pF 非被测试输入为高电平30nst PLH 输出由低到高传输延迟时间 t PHL 输出由高到低传输延迟时间静态特性(TA 为工作环境温度范围)LS266 单位参 数测 试 条 件【1】最大V IK 输入嵌位电压 Vcc=最小,I ik =-18mA-1.2V I O(OFF)输出截止态电流Vcc=最小,V IH =2V ,V IL =最大,V 0=5.5V 100 uA 540.4 V OL 输出低电平电压Vcc =最小,V IL =最大,I OH =最大,V IH =2V740.5VI I 最大输入电压时输入电流 Vcc=最大,V IH =7V0.2 mA I IH 输入高电平电流 Vcc =最大,V IH =2.7V40 uAI IL 输入低电平电流 Vcc =最大,V IL =0.4V-0.8 mA I CC 电源电流Vcc =最大,每个门输入接4.5V,另一个输入接地13 mA [1]: 测试条件中的“最小”和“最大”用推荐工作条件中的相应值。

MAX2620中文手册

MAX2620中文手册

有效的评估工具具有缓冲输出的10M到1050M完整的无线电频率振荡器综合描述:MAX2620是一个结合了低成本低成本、塑料表面装配,微型µMAX封装、具有两个缓冲输出的低噪声的振荡器。

这个设备集成功能通常与离散的组件实现。

当加在适当的成对的外部变容二极管谐振回路时,振荡器展现出很低相位的噪声。

两个缓冲输出提供驱动混频器或预分频器。

缓冲区提供负载隔离,防止由于负载阻抗变化引起的频率变化。

当工作在3V时,功率消耗仅为27mW,等待状态的时候消耗更是低于0.3uW。

MAX2620工作在+2.7v到+5.25v 单电源环境下。

产品特色:低相噪振荡器:-110dBc/Hz (25kHz的频率补偿)可达到的工作在+2.7v到+5.25v单电源环境低成本的硅双极型设计两个输出缓冲区提供负载隔离不敏感的供应变化功耗低,27mW(VCC = 3.0 v)0.1uA弱电流关断模式应用:模拟移动电话数字移动电话900MHz无线电话900MHz ISM频段应用程序地面无线移动无线通信窄频带的PCS (NPCS)订购信息:典型应用电路:10 MHz到1050 MHz具有缓冲输出的集成射频振荡器绝对的最大限度参数:强调:除了那些列在“绝对最大额定值”可能会造成永久性损坏设备。

这些都是压力评级,和功能操作设备的在这些或任何其他条件的操作部分超过规范并影响。

暴露在绝对最大额定值条件下长时间可能影响设备的可靠性。

直流电气特性:注1:规范生产测试和保证TA = + 25°C和TA = + 85°C。

规范担保设计和描述TA = -40°C。

交流电气特性:注2:保证了设计和描述在10 mhz,650 mhz、900 mhz和1050 mhz。

在这个频率范围内, 负的实际阻抗测量槽的大小大于十分之一活性的大小阻抗在YANK。

这意味着适当的振荡器启动在使用外部谐振器储能电路与Q > 10时。

C3 和C4必须调优操作所需的频率典型的操作电路性能--900MHz带宽和陶瓷晶振情况下除非另有注明典型操作电路,VCC = + 3.0 v,VTUNE = 1.5 v,SHDN = VCC,50Ω负载,L1 =同轴陶瓷谐振器:Trans-Tech SR8800LPQ1357BY、 C6 = 1 pf、TA = + 25°C,除非另有注明典型操作电路,VCC = + 3.0 v,VTUNE = 1.5 v,SHDN = VCC,= 50Ω负载,负载了= 50ΩL1 nh = 5 (C oilcraft A02T)、C6 = 1.5 pf TA = + 25°C典型工作特征没有说明的情况下、对应图一每个测试电路工作环境如下 VCC = +3.0V, SHDN = VCC, ZLOAD = ZSOURCE = 50Ω, PIN = -20dBm/50Ω, fTEST = 900MHz, TA = +25°C,表一:建议的最佳功率输出阻抗典型工作特征(持续工作时)工作环境 VCC = +3.0V, VTUNE = 1.5V, SHDN = VCC, load at OUT = 50Ω, load at OUT = 50Ω, L1 = coaxialceramic resonator: Trans-Tech SR8800LPQ1357BY, C6 = 1pF, TA = +25°C功率效率。

SCRN266R资料

SCRN266R资料

Type SCR Commutating CapacitorsSpecificationsType SCRN Film-Paper/Extended Foil Commutating CapacitorType SCRN capacitors are for SCR (silicon controlled rectifier) commutating applications that require high peak and rms current capability. These capacitors are ideal for other high frequency and pulsed applications. The SCRN is supplied in oval or rectangular metal cases with 1/4 x 20 threaded stud and insulated terminals to withstand high current and high peak voltages.HighlightsConforms to EIA RS401 for power semiconductor applicationsNon ferrous covers available for high frequency applications40,000 hours life at full rated voltage and temperatureHigh voltage, high current and high frequency••••0.25 µF to 50.0 µF 200 Vpk to 2000 Vpk ±10%–40 ºC to +65 ºC +80 ºCRatingsCapacitance Range:Voltage Range:Capacitance Tolerance:Temperature Range:Surface Temperature:CapCatalogCaseHMax V AMax(µF)Part Number Code (In.)(65 ºC)(Arms)200 Vpk (Paper Dielectric)3SCRN201R-F A 2.13400605SCRN202R-F A 2.634656010SCRN203R-F A 3.886256015SCRN205R-F A 4.757656020SCRN206R-F B 4.258756030SCRN208R-F C 5.2512006040SCRN209R-F C 6.7515006050SCRN210R-F D 5.75159060400 Vpk (Film and Paper Dielectric)2SCRN211R-F A 2.63790603SCRN212R-F A 2.63970605SCRN213R-F A 3.8811306010SCRN214R-F B 4.7519306015SCRN215R-F C 4.7522406020SCRN216R-F C 6.2528006030SCRN217R-F D 6.7537206040SCRN218R-F D 8.0043306050SCRN219R-F E 6.256050100600 Vpk (Film and Paper Dielectric)2SCRN220R-F A 2.63815603SCRN221R-F A 3.131200605SCRN222R-F A 4.2514206010SCRN224R-F C 4.2520406015SCRN226R-F C 5.7528006020SCRN227R-F D 5.7532606025SCRN229R-F D 6.7537206030SCRN230R-F D 8.0043306040SCRN231R-F E 6.25606010050SCRN232R-F E 7.256850100Cap Catalog Case H Max V A Max(µF)Part Number Code (In.)(65 ºC)(Arms)600 Vpk (Film Dielectric for Low-loss)1SCRN262R-F A 2.382200602SCRN263R-F A 2.382060603SCRN264R-F A 3.883190605SCRN265R-F A 4.2543806010SCRN266R-F C 4.256060601000 Vpk (Film and Paper Dielectric)1SCRN233R-F A 2.13790602SCRN234R-F A 3.131070603SCRN235R-F A 3.881455605SCRN236R-F B 4.2517856010SCRN237R-F C 5.7525706015SCRN238R-F D 5.7531706020SCRN239R-F E 5.1352001001500 Vpk (Film and Paper Dielectric).5SCRN240R-F A 2.13990601SCRN241R-F A 2.881240602SCRN242R-F B 3.501890603SCRN243R-F C 4.252550605SCRN244R-F C 5.7532506010SCRN245R-F E 5.1365001002000 Vpk (Film and Paper Dielectric).25SCRN246R-F A 2.1399060.33SCRN257R-F A 2.13100060.5SCRN247R-F A 2.631180601SCRN248R-F A 3.131300602SCRN249R-F B 4.252230603SCRN251R-F C 4.752800605SCRN253R-F D 5.7540206010SCRN256R-F F 5.757600100Complies with the EU Directive 2002/95/ECrequirement restricting the use of Lead (Pb), Mercury (Hg), Cadmium (Cd), Hexavalent chromium (Cr(VI)), PolyBrominated Biphenyls (PBB) and PolyBrominatedDiphenyl Ethers (PBDE).Type SCR Commutating CapacitorsOutline Drawings RoHS CompliantFigure 2Figure 1Mounting HardwareSee catalog page 5.000 for hardwareB ±.03”B ±.03”D ±.06”±.03”D ±.06”±.03”1/4 - 20 THD 2 Plcs)1/4 - 20 THD 2 Plcs) A ±.03”A ±.03”H ±.06”H ±.06”C ±.06”±.03”C ±.06”±.03”F ±.03”F ±.03”Case Dimensions Inches Code ABCDFHFigureA 1.31 2.160.56 1.190.81see table Fig. 1B 1.56 2.690.50 1.13 1.25see table Fig. 1C 1.91 2.910.50 1.13 1.38see table Fig. 1D 1.97 3.660.50 1.13 1.38see table Fig. 1E 2.84 4.560.50 1.13 2.00see table Fig. 2F3.754.560.561.192.00see tableFig. 2��Type SCR Commutating Capacitors How to Choose a Commutating Capacitor1. From circuit analysis or measurement, determine application values for these six parameters:Nominal capacitance in µFCurrent pulse width in µsCurrent pulse period in µsMaximum peak voltageContinuous AC voltage in VrmsMaximum volt-amps (V A)2. Choose a capacitor from the ratings table of the desired nominal capacitance with a peak voltage rating no less than your maximum peak voltage.3. Check that your application’s rms current is no more than the capacitor’s Max. Amps RMS. You can calculate the current from your Vrms using the equations in the following section.4. Check that your application’s volt-amperes is not more than the capacitor’s V A capability. The V A capability is the max V A rating times the V olt-Ampere multiplier from Figure 2 (Current Pulse Width) and that times the Volt-Ampere Multiplier from Figure 3 (Ambient Temperature). See the following section for more on using volt-ampere multipliers .If you need a greater V A capability, repeat these steps for a higher peak voltage capacitor or consider connecting units in parallel to divide the V A required. For up to peak voltage of 600 V, you may also consider polypropylene film dielectric units, Catalog Numbers SCRN262R through SCRN266R, with higher V A capability.Using Volt-Ampere RatingsT he capacitors maximum V A rating is the maximum product of the sine wave voltage and current that may be applied at 65 ºC without overheating the capacitor and reducing its expected life. For other temperatures and pulsed current, use the multipliers of Figures 2 and 3 to derate the Max V A rating.The Max Amps RMS rating is set by the capability of the capacitor terminals. Exceeding this limit can damage theterminals and cause capacitor failure.Calculate the capacitor’s actual V A load as the product of the rms voltage across the capacitor and the rms current through the capacitor. To calculate rms current for an applied sine wave or squarewave voltage, use these equations.For a sinewave voltage the current is:Irms = 2π fCVrmsX10-6and for a squarewave the current is:Irms = C∆V/[0.64(tT)0.5] = Ipeak(t/T)0.5where (f) is repetition frequency in Hz, C is nominal capacitance in µF, �V the peak-to-peak squarewave amplitude in volts, (t) is the pulse width in µs and T is the pulse period in µs.T he peak current for the square wave voltage is:Ipeak = C∆V/0.64tFigure 1Pulse Wave ApplicationsFigure 2Figure 3 PolypropylenePP Film/PaperPaperV peakΔVVoltageI peakCurrent。

DBX266中文

DBX266中文

DBX -266压限器内外俱佳的组合市面上充斥著各式各样的周边设备。

要在芸芸产品中找出最佳选择并非易事。

尤其是周边设备的表面功能大都差不多,唯一办法分辨优劣就是比较和聆听。

一些平价的劣等周边设备都有一个漂亮的外壳,貌似非常复杂的操作面板,但只要你一听声音,你就会为之气结。

它们不独没有履行信号处理器的责任,更把音源糟挞到惨不忍睹。

266压缩器/噪声门,秉承dbx的传统风格,永远把声音效果放在第一位。

266是一个双通道的设备。

采用了dbx最新专利设计AutoDynamic(自动变化)于上升和恢复电路上,改善音质和加强音乐感。

我们深知你们不会满足这些抽象的,我们对自己产品很有信心,不怕比试,欢迎同任何其他产品比较。

兼顾了两者的需要许多其他产品在匹配压缩器与噪声门的上升和恢复的关系时未有做好。

令产品欠缺音乐感或甚至把混响或衰变信号的尾巴砍掉。

dbx拥有20年生产高质素广播级设备经验,对于如何匹配压缩器与噪声门,以达最佳声音效果,这是绝对有信心之事。

非一般的压缩效果 266采用了最新的AutoDynamic(自动变化)上升和恢复电路。

当你使用266在中央位置时,它给你典型的dbx压缩效果。

但你跑出这范围时,你将会感受至新效果的风格。

AutoDynamic电路会检测节目内容,自动修正上升及恢复电路之调校。

用户不需局限只用在峰值位置,改变调校电平后,可作为限幅器或效果器等。

先进的门电路266应采用不了最新的噪声门电路,电路懂得分析不同的节目而运算一个最平滑的恢复特性。

就算非常复杂的信号包括人声和含有很多混响的信号,亦能胜任。

dbx工程师利用了本厂专利的VCA(压控放大器)的技术优点——更阔的动态,更准确的放大线性。

确保dbx产品的门限和噪声门能优于对手。

简易的操作和调整面板设置了许多LED显示名项工作状态,令操作更简易快捷。

就算初次接触266XL 的使用者亦能轻易地弄平起伏不定的电平;延长吉他音符连续的时间;令鼓声更丰满;令声音更具紧迫感,可通过立体声耦合选择将两个单声道合为一个立体声通道。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档