新北师大版八年级数学下册第五章《分式方程(2)》学案
北师大版八年级数学下册 第五章 分式与分式方程 5.2 分式的乘除法 教案
数学八年级下北师大版第五章第二节《分式的乘除法》教学设计一、内容分析1. 教材的地位及作用本节课为北师大版数学教材八年级下册第五章《分式与分式方程》第二节《分式的乘除法》的内容,本节课是学生初中阶段代数部分学习的一个重要内容.在知识的联系上,本节是在学习了分式基本性质、分式的约分和因式分解的基础上,进一步学习分式的乘除法;另一方面,又为学习分式加减法和分式方程等知识奠定了基础.在能力的培养上,学生的运算能力和逻辑思维能力得到了发展和提高.在数学思想方法上,本节课是培养学生类比的一个好素材,同时培养了学生的探索精神和用数学的意识.2. 学情分析(1)从心理学的分析来说,初二学生处于逻辑抽象的起点,思维发展的转折点,表现从经验型思维向理论型思维转化的特点.他们身心发展较快,对事物发展的好奇心强,有一定的求知欲,需要我们不断引导.(2)经过七年级的学习,学生已经具备了一定的知识储备知识技能和良好的数学学习习惯,并且学生已经学习分式基本性质、分式的约分和因式分解,通过与分数的乘除法类比,促进知识的正迁移.(3)八年级的学生接受能力、思维能力、自我控制能力都有很大变化和提高,自学能力较强,通过类比学习加快知识的学习.3. 教学目标(1)知识技能:理解分式的乘除运算法则;会进行简单的分式的乘除法运算.(2)数学思考:经历探索分式的乘除法法则的过程,让学生熟悉“数、式通性”“类比、转化”的数学思想方法,感知数学知识具有普遍的联系性.(3)问题解决:会用分式乘除法法则进行分式乘除法运算,并能解决简单的实际问题,增强应用意识,提高实践能力.(4)情感态度:通过师生观察、猜想、讨论、交流、归纳,培养学生合作探究的意识和能力,同时增强学生的创新意识和应用意识,使学生体验在数学学习活动中探索与创造的乐趣,了解数学的价值,同时化简分式的最简结果也让学生感受到数学的简洁美.4.教学重点难点重点:分式乘除法的法则及应用.难点:分子分母是多项式的分式的乘除法运算.二、教法学法1. 教法分析教育的本质在于引导的艺术,为了充分调动学生学习的积极性,培养学生的运算能力,使本节课教学丰富有效,本课的教法为:在教师的引导下学生经历“类比分数――观察猜想――归纳明晰――理解应用”的活动过程,体会知识的形成和应用,感受学习过程中数学方法的渗透.采用ppt辅助课堂教学,直观呈现教学素材,激发学生的学习兴趣,提高学习效率,体验在数学学习活动中探索的乐趣,体会数学的应用价值.2. 学法指导学习过程中,充分引导学生积极思维,让每个学生都动口、动手、动脑,让学生在自主探索、合作交流中加深理解分式的乘除运算,充分发挥学生学习的主动性.三、教学过程环节过程设计学生活动教师活动设计意图情境引入请你来帮忙!同学们,请你们来帮助老师算一算老师在火星上的体重是变重了还是变轻了?学生积极运算并回答.教师根据学生的回答板书算式:162738239183291=⨯⨯=⨯该问题的提出,立刻给课堂注入活力,极大的激发了学生的学习兴趣,同时引出分数的乘除法,为后面类比得到分式的乘除法做好准备,同时数学的应用价值也得以体现.探究新知1.复习分数的乘法法则162738239183291=⨯⨯=⨯叙述法则并填空:两个分数相乘, 把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;2.复习分数的除法法则学生独立运算,回忆并能够语言描述分数的乘除法法则.通过引例得到分数乘法算式,启发引导学生依据算理回顾分数乘法法则.以同样思路复习回顾分数的除法法则.分数的除法运算关键在与将除法运算转化3364823913829183291=⨯⨯=⋅=÷ 叙述法则:两个分数相除, 把除式的分子分母颠倒位置后,再与被除式相乘. 3. 类比得分式的乘法法则归纳分式的乘法法则:两个分式相乘, 把分子相乘的积作为积的分子,把分母相乘的积作为积的分母; 4. 类比得分式的除法法则归纳分式的乘法法则:两个分式相除, 把除式的分子分母颠倒位置后再与被除式相乘. 5.分式乘法拓展-分式乘方:n na ba b 与n⎪⎪⎭⎫ ⎝⎛有什么关系? 分析:教师引导提问,提示学生类比分数的乘除法运算法则.学生全面参与,独立思考,广泛交流,自主归纳出法则.学生思考并解答,教师为乘法运算,体现转化思想.类比分数的乘除法法则得到分式的乘除法则,由学生自己尝试探索猜想、归纳总结,把课堂还给学生,激发学生自主学习的积极性.探索的过程体现了从特殊到一般的思想方法,符合学生的认知规律,易于学生理解、接受,同时培养学生观察分析、猜想、归纳的能力,及有条理的思维和表达的能力.该问题是分式乘法的延伸,即分式的乘方.学生应理解其推导过程,明确算理,同时也是对乘法法则的深入理解.a b a b a b a b a b ⋅⋅⋅⋅⋅=⎪⎪⎭⎫ ⎝⎛n(乘方的意义) a a a a bb b b ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(分式乘法法则)nn a b =(乘方的意义)强调:1. 分式乘除法运算的根据是分式乘除法法则,实质是分式约分,而分式约分的根据是分式的基本性质;2. 当分式的分子分母中有多项式时,先分解因式,再进行乘除运算;3. 分式乘除的最后结果要化成最简分式或整式. 点拨思路.应用新知典例分析 例1 计算:223a 2y 4y 3a )1(⋅ x 6y(2)3xy 22÷ 例2 计算: a 2a 12-a 2a (1)2+⋅+ 4a 1a 44a -a 1-a (2)222--÷+ 教师点拨: 1.分式乘除法运算的根据是分式乘除法法则,实质是分式约分,而分式约分的根据是分式的基本性质.2.当分式的分子分母中有多项式时,先分解因式,再进行乘除运算.3.分式乘除的最后结果要化成最简分式或整式.明确算理,准确运算,结果最简 教师示范例1第(1)题,一位学生板演第(2)题,教师巡视并及时评价. 学生完成后教师点评. 教师示范例2第(1)题,一位学生板演第(2)题,教师巡视批改,学生完成后,全班讲评,明确步骤算理.例1设计的这两道题都是分子分母为单项式的分式乘除法运算,解题过程中,使学生会根据法则,体会并理解每一步的算理,从而进行简单的分式的乘除法运算,达到突破重点的目的.例2设计的这两道题是分子、分母为多单项式的分式乘除法则的运用,通过学生板演,和学生一起详细分析,提醒学生关注易错易漏的环节,学会解题的方法,从而使难点迎刃而解. 两个例题是将课本例题做重新整合编排,学习内容由简至难,符合学生的认知规律,根据学情合理使用教材,使例题具有针对性和有效性.反馈练习A组2abba)1(⋅1-aa)a-a((2)2÷22yx-1y1(3)÷-xxx3x4x96x-x2x(4)2222--÷++B组购买西瓜时,人们总希望西瓜瓤占整个西瓜的比例越大越好. 假如我们把西瓜都看成球形,并且西瓜瓤的分布是均匀的, 西瓜的皮厚都是d .已知球体的体积公式为334RVπ=(其中R为球的半径),那么(1) 西瓜瓤与西瓜的体积各是多少?(2) 西瓜瓤与西瓜的体积的比是多少?(3) 买大西瓜合算还是买小西瓜合算?四位学生板演,其他学生在练习本上独立完成.做完后教师讲评,同桌交换批改,举手看正答情况.教师巡视,了解学生的作答情况,及时评价.学生先猜测结果,认真审题后,结合问题完成讨论.第3小题若课堂时间不够,可留作课下思考题,下节课再讨论.A组四道题目紧扣课本,是对例题中的各个类型题目的巩固练习,第三小题改编自课本习题,遇到分式的分子或分母符号为负数时,可将负号提出后放在分式的前面,便于计算,这也是学生的易错点,则要通过练习加以巩固.四位学生板演既是对这几个学生知识掌握情况的了解,也是以此估计全班学习情况的手段,了解学生知识技能的掌握情况,检查教学目标完成效果.B组通过实例进一步丰富分式乘除运算的实际背景,增强学生的代数推理能力与应用意识.一开始设问“买大西瓜划算还是买小西瓜划算”,引起学生质疑和兴趣,引出计算体积,再与学生共同讨论分析后,根据三个问题的设问层层递进,降低问题的难度,得以顺利解决.此题一方面巩固了分式乘除法法则,应用了nnabab=⎪⎪⎭⎫⎝⎛n的关系进行讨论,培养了学生的钻研精神和发散思维,提高了学生的运算能力,培养了学生的应用意识,体现了数学的价值.小结提升 将本节课知识梳理如下:学生回答相互补充,交流,归纳.课堂小结是对整节课的完整概括,框图形成了完整的知识结构,清晰明了.布置作业1.习题 5.3:第1、2、3、4题;2.预习第三节内容.3.你还有什么问题吗?若有,课下可与同学交流.学生课后认真完成.作业的布置巩固了学生对知识的扎实掌握,训练了学生利用有关概念性质解决问题的能力;预习旨在培养了学生良好的学习习惯.提问是有意识的培养学生发现问题、提出问题的能力和创新意识.课后寄语 祝同学们 今天一路奋斗、一路付出、一路坚持;明天一份欢欣、一份成长、一份收获!给学生美好祝愿!四、板书设计5.2 分式的乘除法分式乘除法法则: 例1:(1) 例2:(1)bcad c d b a =⨯bcad c d b a b a =⨯=÷d c (2) (2)。
新北师大版八年级数学下册第5章《分式与分式方程》教案
新北师大版八年级数学下册第5章《分式与分式方程》教案教学目标学习分式及分式的概念、性质和运算法则,并掌握简单分式的变形和分式方程的解法。
教学重难点重点•分式的概念、性质和运算法则•分式的变形•分式方程的解法难点•分式方程的解法教学过程导入(10分钟)1.调查课前练习,询问学生对分式的了解和学习情况。
2.引入分式的概念,让学生举例说明分式的实际应用。
提高课堂参与度(10分钟)1.通过多项式的例子,引入分式。
2.分小组讨论分式与多项式的联系和区别,并展示讨论成果。
理论课(30分钟)1.分式的定义和性质。
2.分式的约分、通分和加减法。
3.分式与整式的加减法。
实践课(50分钟)1.分式的变形:分解、合并及简化。
2.分式方程的概念及解法。
3.通过实例让学生掌握分式方程的解法。
课堂总结(10分钟)1.小结本节课的重点内容。
2.引导学生对本节课的学习成果进行分享。
作业布置1.抄写本节课的重点内容以及实例。
2.完成课后练习。
教学方法1.演示法2.分组讨论3.实践操作4.个别指导教学资源1.教材:新北师大版八年级数学下册2.PPT:分式与分式方程参考文献1.《初中数学》2.《分式与分式方程教育同行》教学反思本节课通过实例和讨论等方式,激发了学生的学习兴趣,真正意义上实现了知识与实践相结合。
在教学过程中,我进一步提高了自己的教学能力,尤其是关注学生的理解进程,帮助学生掌握分式方程的解法,提高其数学素养。
八年级数学下册第五章第四节5.4分式方程(2)导学案(北师大)
_________________________________________________
_________________________________________________
A. B.
C. D.
2、九年级学生从学校出发,去相距10km的博物馆参观,第一组学生骑自行车先走,过了20分钟后,第二组学生乘汽车出发,结果两组学生同学到达,第二组学生的速度是第一组学生速度的2倍,那么两组学生的速度分别是多少km/h?
班级__________姓名____________学号____________
初二数学下册5.4分式方程(2)导学案(北师大)
学习目标:
经历“实际问题—分式方程模型—求解—解释解的合理性”的过程,发展学生分析问题、解决问题能力,培养学生的应用意识。
重点、难点:会列出分式方程解决应用题。
学案
知识方法策略
一、预习训练
1、解分式方程:
(1) (2)
2、列一元一次方程解应用题的一般步骤:
(1)______________, (2)________________ (3)______________,
(4)______________, (5)_______________, (6)______________
小丽今年7月份的用水量为:__________,去年12月的用水量为:__________.
解:设该市去年居民用水的价格为 元/ ,则今年的水价为元/ ,
依题意列方程得:
解这个方程得
经检验,是所列方程的根
答:
对应练习:
北师大版数学初二下册《分式方程(二)》教案
北师大版数学初二下册《分式方程(二)》教案一. 教材分析北师大版数学初二下册《分式方程(二)》主要讲述了分式方程的解法与应用。
通过本节课的学习,使学生掌握分式方程的解法,提高学生解决实际问题的能力。
教材以实例引入,引导学生探究分式方程的解法,并总结出解题规律。
此外,教材还提供了丰富的练习题,帮助学生巩固所学知识。
二. 学情分析初二的学生已经学习了分式的相关知识,对分式有一定的理解。
但是,对于分式方程的解法,学生可能还存在一定的困难。
因此,在教学过程中,需要引导学生逐步理解分式方程的解法,并能够运用到实际问题中。
三. 教学目标1.理解分式方程的概念,掌握分式方程的解法。
2.能够运用分式方程解决实际问题。
3.培养学生的数学思维能力,提高学生的解决问题的能力。
四. 教学重难点1.分式方程的概念。
2.分式方程的解法。
3.分式方程在实际问题中的应用。
五. 教学方法1.实例导入:以实际问题引入分式方程的概念,激发学生的学习兴趣。
2.自主探究:引导学生通过小组合作,探讨分式方程的解法。
3.讲解示范:教师对分式方程的解法进行讲解,让学生明确解题思路。
4.练习巩固:学生独立完成练习题,巩固所学知识。
5.拓展应用:引导学生运用分式方程解决实际问题。
六. 教学准备1.教学课件:制作课件,展示分式方程的解法。
2.练习题:准备适量的练习题,巩固学生的学习效果。
3.教学素材:准备一些实际问题,作为拓展应用的素材。
七. 教学过程1.导入(5分钟)利用实例引入分式方程的概念,激发学生的学习兴趣。
2.呈现(10分钟)展示分式方程的解法,引导学生自主探究。
3.操练(10分钟)学生独立完成练习题,巩固所学知识。
4.巩固(5分钟)教师对学生的练习情况进行讲评,解答学生的疑问。
5.拓展(5分钟)引导学生运用分式方程解决实际问题,提高学生的应用能力。
6.小结(5分钟)总结本节课所学内容,让学生明确分式方程的概念和解法。
7.家庭作业(5分钟)布置适量的家庭作业,巩固学生的学习效果。
八年级数学下册 5.4.2 分式方程教案1 (新版)北师大版-(新版)北师大版初中八年级下册数学教案
课题:(2)教学目标:1.探索分式方程的解法,体会解分式方程的必要步骤,会解可化为一元一次方程的分式方程.2.知道增根的意义,知道增产生的原因,会检验方程的根是不是增.3.运用“转化”的思想,将分式方程转化为整式方程,培养学生在学习中转化未知问题为已知问题的能力,从而获得一种成就感和学习数学的自信心.教学重点与难点:重点:分式方程的解法.难点:分式方程的增根.课前准备:教师准备多媒体课件.教学过程:一、复习回顾,引入新课问题1:什么叫分式方程?问题2:下列方程中,哪些是分式方程?并给出理由.(1)223x x-=;(2)12105xx-+=;(3)32x xπ-=;(4)132x x=-.问题3:解一元一次方程有哪些步骤?如何解一元一次方程211 324x x++=?处理方式:出示问题,引导学生讨论回答,对于问题3要求学生说出步骤及依据,教师略作点评.预设学生回答.1.分母中含有未知数的方程叫做分式方程.2.(4),分母中含有未知数.3.去分母、去括号、移向、合并同类项、系数化为1.解:211 121212324x x+⨯+⨯=⨯8x+6=3(x+1)8x-3x=3-65x=-335x=-设计意图:简单回顾上节课知识及解一元一次方程的方法步骤,强调去分母的方法和注意事项,为学生过渡到解分式方程做好铺垫.二、合作探究,获取新知(一)解分式方程的基本思想问题:什么是方程的解?你能设法求出分式方程1400140092.8x x-=的解吗?处理方式:引导学生结合已有知识展开小组讨论,并适当提示学生利用分式的基本性质,等式的基本性质等尝试解方程,教师巡视指导,展示学生合作成果(说出解题思路),对学生的不同回答给予点评,总结解分式方程的基本思想.预设学生回答.解法1:140050090099=100xx x x-==,,.(1400与2.8约分后,变成同分母,在根据分式的基本性质求解.解法2:1400 2.81400 2.892.891400 1.8100x x x⨯-=⨯⨯=⨯=,,.(根据分式基本性质,两边同时乘以x,去分母后变成一元一次方程,然后求解.解分式方程的基本思想:把分式方程化为整式方程求解.设计意图: 通过学生的小组学习,引导学生仔细观察,采用类比的方法找出解分式方程的关键――去分母,把分式方程转化为整式方程即一元一次方程.在解决问题的过程中对学生的不同见解要及时鼓励,做好引导,顺利的展开教学.(二)例题解析例1:解方程132x x=-.处理方式:引导学生讨论,自主解题,1生黑板板演,其余学生独立完成后同位交流点评,教师适时提醒学生注意最间公分母的确定及解题的步骤和格式.(多媒体展示解题过程).解:方程两边都乘以x(x-2),得x=3(x-2) .解这个方程,得x=3.检验:将x=3带入原方程,得左边=1,右边=1,左边=右边.所以,x=3是原方程的根.设计意图:通过例题的练习,进一步引导学生体会采用类比的方法找出解分式方程的关键――去分母,把分式方程转化为整式方程即一元一次方程.在解决问题的过程中注重对学生解题步骤和格式的要求.(三)议一议:在解分式方程11222xx x-=---时,小亮的解法如下:你认为x=2是原方程的根吗?为什么?与同伴交流.处理方式:让学生先观察小亮的解题过程,然后结合自己解分式方程的初步经验,小组间讨论、交流.由学生展示讨论结果,教师对学生的回答点评,总结得出分式方程的增根,及增根产生的原因.在讨论过程中,教师注意引导学生所求未知数的值要满足分母的值不为零,因此解分式方程时,验根是必要的步骤.预设学生回答.1.x=2不是原方程的根.2.因为它使得原分式方程的分母值为零,相应的分式无意义.总结:1.增根:使原分式方程的分母为零的未知数的值,我们称它为原方程的增根.2.增根产生的原因:去分母时,我们在方程的两边同时乘了一个使分母为零的整式.3.注意:解分式方程可能产生增根,所以解分式方程必须验根;增根不是计算过程中的失误造成的,而是在从分式方程转化为整式方程过程中产生的;验根只需把求的根带入最简公分母中,看其是否为零.设计意图:有交流才会发现问题,有问题才能引起思维冲突,才能有思考与分析.通过交流,让学生理解解分式方程与整式方程的不同,得到的未知数的值未必是原方程的根,不仅得出增根的意义,也引入对增根产生原因的讨论,由于增根产生的原因目前学生接受起来尚有一定困难,在此不做深究.经过对解分式方程过程的探究不仅培养了学生提出问题、分析解决问题能力还提高了逻辑推理能力和严谨的求学态度.(四)例题解析例2 解方程:480600452x x-=.处理方式:学生观察、分析、小组讨论,学生代表口述解题思路,师生共同完成解题过程,教师多媒体展示步骤,.解:方程两边都乘以2x,得960-600=90 x.解这个方程,得x=4.经检验,x=4是原方程的解.注意:去分母时,不要漏乘整式项.设计意图:进一步体会如何解分式方程,增强学生的认知能力,提高学生的解决问题能力.(五)想一想解分式方程一般需要经过那几个步骤?处理方式:引导学生结合例题的解题步骤,展开讨论,小组总结回答,教师多媒体出示.解分式方程步骤:1. 去分母,把分式方程转化为整式方程;2. 解这个整式方程;3. 检验:将未知数的值代入原方程,检验方程左右两边是否相等或代入最简公分母,检验最简公分母是否为0.4.写出分式方程的根.设计意图:使学生进一步体会并熟悉分式方程的解法,并强调检验方程的解.由于可能产生增根,因此检验非常必要.通过对不同解法的简繁程度的切身体会,总结出解分式方程的基本步骤,有利于学生对基本解法的接受与理解.三、强化基础,技能提升1.解分程:(1)341x x=-;(2)3542332xx x-+=--.2.若关于x方程322x mx x-=--有增根,求m的值.处理方式:32题,学生可能会有困难,教师适时提示方程有增根,则最简公分母必须为零,展示第2题解答过程.1.(1)x=4;(2)x=1.2.解:方程两边都乘以(x-2),得x-3=m.因为方程322x mx x-=--有增根,所以x-2=0,即x=2,所以x=2是整式方程x-3=m的解,所以2-3=m,解得m=−1.注意:增根不是分式方程的根,是分式方程去分母后转化成的整式方程的根.设计意图:分式方程是本节课的一个重点,也是学生应该掌握的一项基本技能.习题设置在学生对解分式方程的基本步骤及增根产生的原因后,不仅加强基础技能的训练,也加强对知识的应用和拓展.让学生结合具体练习,进一步提高学生的运算能力.四、课堂小结,畅谈收获通过本节课的学习,你有哪些收获?说出来大家共享.处理方式:让学生先思考,然后归纳总结,教师适当补充.预设学生回答.1.解分式方程的基本思想是把分式方程化为整式方程.2.什么是增根,增根产生的原因.3.解分式方程的步骤.4.去分母时漏乘不含分母的项.……设计意图:使学生对本节课所学知识的结构有一个清晰的认识,能抓住重点进行课后复习..以及通过对学习过程的反思,掌握学习与研究的方法,学会学习,学会思考.五、知识反馈,达标检测A组:1. 要把分式方程45242x x=-化为整式方程,方程两边需同时乘最简分式( ) A.2x B.2x -4C.2x (2x -4)D.2x (x -2) 2.已知x =1是分式方程131kx x=+的根,则实数k =_____. 3.若关于x 的方程1101ax x +-=-有增根,则a 的值为_______. 4.解分式方程:11222x x x -+=--.B 组:5. 解分式方程:243111xx x -+=---. 6.若关于x 的方程11mx =+的解是负数,求m 的取值X 围.处理方式:学生练习,教师出示答案并适当点拨,学生矫正.答案:1. D. 2.16. 3.a =-1. 4.x =4. 5.x =-3. 6.10m m <≠且.设计意图:通过学生的反馈练习,使老师能全面了解学生对分式方程解法的掌握程度,以及对增根的理解,以便老师能及时进行查漏补缺. 六、布置作业,落实目标必做题:课本128页 第1、2题. 选做题:课本128页 第3、4题. 板书设计:。
春八年级数学下册 第5章 分式与分式方程 2 分式的乘除法教案 (新版)北师大版-(新版)北师大版初
2 分式的乘除法教学目标一、基本目标1.能正确理解分式乘除法的法则,能类比分数乘除法的法则得出分式乘除法的法则.2.能解决一些与分式乘除法有关的简单的实际问题.3.会进行简单分式的乘除运算,具有一定的代数化归能力.二、重难点目标【教学重点】利用法则计算分式乘除法,并解决简单的实际问题.【教学难点】类比分数的乘除法,归纳得到分式乘除法的法则.教学过程环节1 自学提纲,生成问题【5 min 阅读】阅读教材P114~P115的内容,完成下面练习.【3 min 反馈】1.分式乘除法的法则:(1)两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母,用字母表示为b a ·c d =bc ad. (2)两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字母表示为b a ÷d c=b a ·c d =bc ad. 2.计算x y ·y 2x 的结果是12. 3.化简m -1m ÷m -1m 2的结果是m . 4.下列计算正确吗?若错误,要怎样改正?(1)b a ·a b =1;(2)b a÷a =b ; (3)x 2b ·6b x 2=3b x ;(4)4x 3a ÷a 2x =23.解:(1)正确.(2)错误.正确的是b a 2.(3)错误.正确的是3x .(4)错误.正确的是8x 23a 2. 环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】计算下列各式:(1)3xy 24z 2·⎝ ⎛⎭⎪⎫-8z 2y ; (2)-3xy ÷2y 23x . 【互动探索】(引发学生思考)利用分式的乘除法法则进行计算.【解答】(1)3xy 24z 2·⎝ ⎛⎭⎪⎫-8z 2y =-6xy . (2)-3xy ÷2y 23x =-3xy ·3x 2y 2=-9x 22y. 【互动总结】(学生总结,老师点评)根据分式乘除法法则进行计算即可.活动2 巩固练习(学生独学)1.若式子x +1x +2÷x +3x +4有意义,则x 的取值X 围是( C ) A .x ≠-2,x ≠-4B .x ≠-2C .x ≠-2,x ≠-3,x ≠-4D .x ≠-2,x ≠-32.计算:(1)3a 4b ·16b 9a 2; (2)12xy 5a÷8x 2y ; (3)-3xy ÷2y 23x. 解:(1)43a . (2)310ax . (3)-9x 22y. 3.计算: (1)x 2-4x 2-4x +3÷x 2+3x +2x 2-x; (2)2x +64-4x +x 2÷(x +3)·x 2+x -63-x. 解:(1)x x -2x -3x +1.(2)-2x +3x -2x -3. 活动3 拓展延伸(学生对学)【例2】老王家种植两块正方形土地,边长分别为a 米和b 米(a ≠b ),老李家种植一块长方形土地,长为2a 米,宽为b 米.他们种的都是花生,并且总产量相同,试问老王家种植的花生单位面积产量是老李家种植的单位面积产量的多少倍?【互动探索】不妨设花生的总产量是1,老王家种植的总面积为(a 2+b 2)平方米,老李家种植的总面积为2ab 平方米,分别求出单位面积产量,再相除即可.【解答】设花生的总产量是1,1a 2+b 2÷12ab =2ab a 2+b 2. 即老王家种植的花生单位面积产量是老李家种植的单位面积产量的2ab a 2+b 2倍. 【互动总结】(学生总结,老师点评)此题考查分式乘除运算的运用,注意理清题意,正确列式计算即可.环节3 课堂小结,当堂达标(学生总结,老师点评)1.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.2.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相除. 练习设计请完成本课时对应练习!。
八年级数学下册51认识分式第2课时学案北师大版
认识分式课题:第五章分式与分式方程第1节认识分式(第2课时)学习目标1、熟练掌握分式的基本性质和最简分式的概念。
2、利用分式的基本性质对分式进行恒等变形。
3、了解分式约分的步骤和依据,掌握分式约分的方法。
重点1、分式的基本性质2、利用分式的基本性质约分,将一个分式化简为最简分式。
难点利用分式的基本性质对分式进行约分。
教学流程学校年级组二备教师课前备课自主学习,尝试解决一、预习析知:1、分数的基本性质:分数的分子与分母都,分数的值不变。
表示为:mambab••=,)0(≠÷÷=mmambab2、分式基本性质:(1)2163=的依据是什么?答:(2)你认为2aa21与相等吗?mnn2与mn呢?为什么?解:因为0≠a,aa⨯⨯=2121= 。
所以2aa21与(填“相等”或“不相等”)。
因为0≠n,=÷÷=nmnnnmnn22。
所以mnn2与mn(填“相等”或“不相等”)。
(3)分式的基本性质:分式的和都同时乘以(或除以)同.一个不等于零的整式.........,分式的值不变。
用字母表示为:,mambab••=,mambab÷÷=(m是整式,且m≠0)。
3.叫做约分.4.叫做最简分式.5、想一想:(1).yx--与yx有什么关系?(2).yx-,yx-与yx-有什么关系?二、预习检测:1、填空:()aba =1, ()162=a a , ()bc ab =, ()y x xyxy x +=+2。
2.下列等式不正确的是( )A.x x y y-=- B. x x y y -=- C.x x y y -=- D. x x y y -=-- 3.根据分式的基本性质,分式a ab --可变形为( ) A .a a b -- B .a a b+ C .-a a b - D .a a b+ 4.下列公式中是最简分式的是( )A .21227b aB .22()a b b a --C .22x y x y ++D .22x y x y-- 合作学习,信息交流 三、探究提升: 1、化简下列各式:(1)532164xyz yz x - (2)x x x 3222+ (3)96922++-x x x (4)y x y xy x 33612622-+- 2、不改变分式的值,使下列分式的分子与分母都不含负号:(1)a b 2- (2)dabc -- (3)q p 43-- 3、化简下列各式:(1)11--a a (2)44--+m m (3)2224x x x -- (4)2)2(2m m m -- (5)xy y x --3)(2 4、化简求值:1222+--m m m m ,其中m=3。
八年级数学下册 5.1 认识分式(二)学案(新版)北师大版
八年级数学下册 5.1 认识分式(二)学案(新版)北师大版八年级数学下册5.1认识分式(二)学案(新版)北师大版第五章分式与分式方程第一节分式(二)【学习目标】1.让学生初步掌握分式的基本性质;2.掌控分式约分后方法,娴熟展开约分后;3.了解什么是最简分式,能将分式化为最简分式;【自学方法】独立自主探究与小组合作交流结合.【自学重难点】重点:掌控分式的概念及其基本性质;难点:运用分式的基本性质来化简分式。
【自学过程】模块一独立自主自学一、自学准备工作1.阅读教材(p110-112)2.分式的基本性质:分式的和都同时除以(或除以)同一个不等于零的整式,分式..........的值维持不变。
用字母则表示为:3.约分后:(1)概念:把一个分式的分子和分母的公因式约去,这种变形称为__________(2)约分的关键:找出分子分母的公因式;..约分的依据:分式的基本性质;..约分的方法:先把分子.分母分解因式(分子.分母为多项式时),然后约去它们的公因式,约..分的最后结果是将一个分式变为最简分式或整式。
4.最珍分式:分子与分母没____________的分式叫作最珍分式。
二.教材精读aa?maa?m,?(m就是整式,且m≠0)。
?bb?mbb?m?a?b? x2?xyx?y分析:?1基准1 利用分式的基本性质填空题:?;2?? ?aba2bx2求解有关分式并集变形的填空题,通常从分子或分母的未知项抓起,观测变化方式,再把未明项作适当的变形。
本题中a?0,x?0就是暗含条件。
注意:(1)要深刻理解“都”与“同”的含义,“都”的意思是分子与分母必须同时乘(或除以)同一个整式,“同”表明分子与分母都乘坐(或除以)的整式必须就是同一个整式。
(2)在分式的基本性质中,必须注重m?0这个条件,例如xy?y,隐含着x?0这个条件,所以等x式是正确的,但不正确。
1y?,分子.分母同乘y,由于没表明y?0这个条件,所以这个等式变形xxy(3)若原分式的分子或分母就是多项式,运用分式的基本性质时,必须先把分式的分子或分母用括号内加11111x?y(x?y)?60y12x?30y2?522?5上,再乘或除以整式m,如:。
北师大版数学八下5.4《分式方程(2)》教学教案
5.4 分式方程(2)教材分析:本节课是北师大版八年级数学第五章第4节《分式方程》第二课时内容。
本节教材是在学生学习了分式的基本性质和分式约分、通分,以及分式的乘除运算基础上进行的。
本节课的教学,要引导学生对分式方程和整式方程进行类比、对照,给学生渗透数学中的转化思想。
并且要让学生通过分式的意义及分式的基本性质理解分式方程无解的原因。
让学生在比较、探究中达到知识和能力、过程和方法、情感态度价值观三个维度的全面落实。
学情分析:本班学生解一元一次方程的基础较好,因此,本堂课“类比、化规”思想显得更为重要。
应引导学生分组讨论分式方程的解法,强化学生的合作意识和交流能力。
教学目标:知识与技能:1、掌握解分式方程的一般步骤;2、了解分式方程验根的必要性。
过程与方法:1.通过具体例子,让学生独立探索方程的解法,经历和体会解分式方程的必要步骤;2.使学生进一步了解数学思想中的“转化”思想,认识到能将分式方程转化为整式方程,从而找到解分式方程的途径。
情感态度价值观:1.培养学生自觉反思求解过程和自觉检验的良好习惯,培养严谨的治学态度;2.运用“转化”的思想,将分式方程转化为整式方程,从而获得一种成就感和学习数学的自信。
教学重难点:教学重点:熟练掌握解分式方程的一般步骤,明确分式方程验根的必要性。
教学难点:明确分式方程验根的必要性;教学过程:一、游戏导入:1、抢答小游戏:[师] 出示以下问题:(1)什么是方程?什么是分式方程?(2)什么是方程的解?(3)解一元一次方程的步骤?要求学生以小组为单位,以抢答的形式回答。
[生] 积极在组内讨论,抢答出下面答案:(1)、方程的解:使方程的左右两边相等的未知数的值。
(2)、解一元一次方程的步骤:去分母、去括号、移项、合并同类项、系数化为1。
设计意图:通过抢答环节提高学生的学习兴趣,同时复习了与本节课相关的内容,一举两得!二、新知探究:[师]课件出示解方程:3x−1 2+5x+23=2−4x−26[师生共解]:(1)、去分母,方程两边同时乘以分母的最小公倍数6,得3(3x−1)+2(5x+2)=6×2−(4x−2)(2)、去括号,得:9x−3+10x+4=12−4x+2(3)、移项,得:9x+10x+4x=12+2+3−4(4)、合并同类项,得:23x=13(5)、使x的系数化为1,两边同除以23,x=13 23设计意图:师生共解,为解分式方程做好铺垫。
北师大版八年级下册数学第五章 分式与分式方程第2节《分式的乘除法》导学案1
第二节 分式的乘除法【学习目标】1、经历探索分式的乘除法法则的过程,并结合具体情境说明其合理性;2、会进行简单分式的乘除法计算,具有一定的化归能力;3、在学知识的同时学到类比转化的思想方法,受到思维训练,能解决与分式有关的简单实际问题;【学习方法】自主探究与小组合作交流相结合.【学习重难点】重点:掌握分式的乘除法法则;难点:熟练地运用法则进行计算,提高运算能力。
【学习过程】模块一 预习反馈一、学习准备1、分式的乘除法法则(与分数的乘除法法则类似):两个分式相乘,把分子相乘的积作为积的 ,把分母相乘的积作为积的 ;两分式相除,把除式的分子和分母颠倒位置后再与被除式 。
2、分式乘除法运算步骤和运算顺序:(1)步骤:对分式进行乘除运算时,先观察各分式,看各分式的分子、分母能否分解因式,若能分解因式的应先分解因式。
当分解因式完成以后,要进行____________,直到分子、分母没有______________时再进行乘除。
(2)顺序:分式乘除法与整式乘除法运算顺序相同,一般从左向右,有除法的先把除法转化为乘法。
二、教材精读3、()222244229164311y x x y y xy x y x x y y x +-∙+--∙2 ) 计算:(例 分析:(1)题中分子、分母都是单项式,可直接运用法则计算;(2)应先分解因式,然后约分,但需注意符号的变化。
模块二 合作探究4、计算:(1)222c a b ab c ⋅ (2)223425n m m n-⋅ (3)2222412144a a a a a a --⋅-+++(4)285y xy x -÷ (5) 27y x x ⎛⎫÷- ⎪⎝⎭(6) 269(3)2y y y y -+÷-+5、计算:)22(22)1(11)1(1)1(22222ab ab b a a b ab ab a x x x x -÷-÷+--+∙-÷--) (模块三 形成提升1、计算:(1)231x y x y ⎛⎫⋅- ⎪⎝⎭ (2)2510321b bc ac a ⎛⎫÷- ⎪⎝⎭(3)222432a b ab ab a b-⋅-(4)x y y x x y y x -÷-⋅--9)()()(3432 (5)22222)(x y x xy y xy x x xy -⋅+-÷-2、计算: (1))6(4382642z y x y x y x -÷⋅- (2)9323496222-⋅+-÷-+-a a b a b a a(3)229612316244y y y y y y --÷+⋅-+- (4)xyy xy y x xy x xy x -÷+÷-+222)(模块四小结评价一、本课知识点:1、分式的乘除法法则(与分数的乘除法法则类似):两个分式相乘,把分子相乘的积作为积的,把分母相乘的积作为积的;两分式相除,把除式的分子和分母颠倒位置后再与被除式。
八年级数学下册第五章分式与分式方程2分式的乘除法教案(新版)北师大版
2 分式的乘除法1.类比分数的乘除运算法则,探究分式的乘除法法则,研究分式的运算算理.2.会利用分式的乘除法运算法则,进行简单的分式的乘除法运算.3.提升学生的思维迁移能力,发展符号运算水平.重点会进行简单的分式的乘除法运算.难点解决一些与分式有关的简单的实际问题.一、情境导入有一次,鲁班的手不慎被一片小草割破了,他发现小草叶子的边缘布满了密集的小齿,于是便产生联想,根据小草的结构发明了锯子.鲁班在这里就运用了“类比”的思想方法,“类比”也是数学学习中常用的一种重要方法.上节课,我们学习了分式的基本性质,我们可以发现它与分数的基本性质类似,那么分式的运算是否也和分数的运算类似呢?今天我们研究“分式的乘除法”.(板书课题)二、探究新知1.探究分式的乘法法则(1)计算,并说出分数的乘法法则:①23×45; ②57×29. 分数乘分数,用分子的积作为积的分子,分母的积作为积的分母.(2)猜一猜:b a ×d c=________. 你能总结分式的乘法法则吗?与同伴交流.b a ×dc =b×d a×c. 分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.2.探究分式的除法法则(1)计算,并说出分数的除法法则.①23÷45; ②57÷29. 分数除以分数,把除数的分子分母颠倒位置,与被除数相乘.(2)猜一猜:b a ÷d c=________. 你能总结分式的除法法则吗?与同伴交流.b a ÷dc =b a ×cd =b×c a×d. 分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.三、举例分析例1 计算:(1) 3a 4y ·2y 23a 2; (2) a +2a -2·1a 2+2a. 处理方式:师生共同完成解题过程.解:(1) 3a 4y ·2y 23a 2=3a·2y 24y ·3a 2=y 2a .(2)a +2a -2·1a 2+2a =a +2(a -2)·a(a +2)=1a 2-2a. 注意:①分子、分母有多项式的,一般是分子和分母先分解因式,并在运算过程中约分;②运算结果要化成最简分式.例2 计算:(1) 3xy 2÷6y 2x; 处理方式:学生自主完成计算过程.解:3xy 2÷6y 2x =3xy 2·x 6y 2=3xy 2·x 6y 2=12x 2. 提出问题:就计算过程谈谈你的想法?引导学生得出计算分式除法的步骤:① 除法变乘法; ②再按乘法法则运算;③结果为最简分式.(2) a -1a 2-4a +4÷a 2-1a 2-4. 处理方式:师生共同完成计算过程.解:原式=a -1a 2-4a +4·a 2-4a 2-1=(a -1)(a 2-4)(a 2-4a +4)(a 2-1)=(a -1)(a +2)(a -2)(a -2)2(a -1)(a +1)=a +2(a -2)(a +1). 注意:①分式的分子和分母是多项式,先要对分子和分母进行因式分解;②结果要化为最简分式或整式.四、练习巩固1.计算:(1)b a 2-9·a +3b 2-b ;(2)a a -b ·(b -a b)2. 2.购买西瓜时,人们总是希望西瓜瓤占整个西瓜的比例越大越好.假如我们把西瓜都看成球形,并且西瓜瓤的分布是均匀的,西瓜皮的厚度都是d ,已知球的体积公式为V =43πR 3 (其中R 为球的半径).那么(1)西瓜瓤与整个西瓜的体积各是多少?(2)西瓜瓤与整个西瓜的体积的比是多少?(3)你认为买大西瓜合算还是买小西瓜合算?与同伴交流.3.对于a÷b·1b ,小明是这样计算的:a÷b·1b= a÷1=a.他的计算过程正确吗?为什么?五、课堂小结通过这节课的学习,你学到了哪些知识?要注意什么问题?六、课外作业1.教材第115页“随堂练习”.2.教材第116页习题5.3第1、2、4题.本节课中的运算法则的运用不难,但有的学生在运用法则计算时遇到单项式乘单项式、单项式乘多项式或多项式乘多项式即整式的乘法运算时,情况较差.另外,部分学生在结果的化简上存在问题,化简意识不够,因此在本节课的教学中应该在复习分数的乘除法时复习分数的约分,通过对分数的约分类比分式的约分,加强化简意识.还有些学生因式分解的基础知识不扎实,这些直接影响这节课的学习,这充分体现了数学知识是相关联的,所以课前有必要巩固分式的约分和因式分解这两方面的知识,进行有针对的练习.。
北师大版八年级下册数学教案设计:5.4分式方程(二)
北师大版八年级下第五章第四节分式方程(二)一、教学内容解析本节共三个课时,探索分式方程的概念、解分式方程、以及分式方程在实际问题中的应用.本节课是第二课时,在前面几节陆续介绍了分式,分式的乘除,分式的加减,为本节解分式方程打下了扎实的基础. 教学中注意对学生进行过程性评价,要延迟评价学生运算的熟练程度,允许学生经过一定时间达到《标准》要求的目标,把评价重点放在对算理的理解上.同时分式方程也为进一步学习研究反比例函数提供了知识与方法的储备,因此它在教材中起着呈上启下的作用.本节课渗透了类比与转化的数学思想.教学重点:了解解分式方程的一般步骤,熟练掌握分式方程的解法,明确分式方程验根的必要性.二、教学目标设置1.了解解分式方程的一般步骤,以及解分式方程验根的必要性.2.让学生独立探索可化为一元一次方程的分式方程解法,经历和体会解分式方程的必要步骤.3.运用转化的思想,将分式方程转化为整式方程,培养学生反思求解的过程和自学检验的良好习惯.三、学生学情分析分式方程是在学生学习了分式及分式的基本性质,分式的加、减、除的运算;会解一元一次方程;经历了探究一元一次方程解法的教程.获得了初步的数学活动经验和体验.这些都是本节课的基础.教学难点:分式方程验根的必要性.针对教学难点采取的措施是:1.利用四人小组合作讨论;2.教师及时明晰小结.四、教学策略分析1、利用类比的方法,获得解分式方程的解法;2、借助多媒体手段及时展示学生解题中所出现的问题,规范学生的书写过程.五、教学过程活动一、创设情境引入新课1、不解方程说出解方程的步骤【设计意图】通过类比的思想为得到分式方程的解题步骤做好铺垫.2.什么叫做分式方程?它有哪些特点?教师归纳总结:分母中含有未知数的方程叫分式方程,特点:未知数在分母中。
教师导入新课:那么怎么解这个分式方程呢?活动二、解分式方程:【设计意图】让学生经历探究数学的过程.学生四人一小组,面对面的沟通、交流,有利于寻求解决问题的思路和方法。
数学北师大版八年级下册《分式方程2》教学案
§5.4.2 分式方程(2)
学习目标:1、经历探索分式方程解法的过程,能熟练解分式方程;
2.明确解分式方程验根的必要性.
3、体会分式方程化为整式方程求解的转化思想。
复习回顾:
(1)
213x x -,2ax
的最简公分母是 (2)32a a b -,12b a --的最简公分母是 (3)(3)(3)
a a a +-,21(3)a a -+的最简公分母是 自学探究:
1、根据解一元一次方程的步骤填表:见表格一
2.阅读教材P88例1、例2,仿例完成表格二
3.阅读教材P89“议一议”,回答下列问题
(1) x =2是原方程的根吗?
(2)什么是分式方程的增根?
(3) 解分式方程为什么有时会产生增根呢? 归纳总结:
解分式方程的一般步骤是:原方程两边同乘以 转化为 然后解这个 最后检验,简称一化二解 三检验
针对性练习:
214
(3)416x x =--
巩固拓展:1、关于x 的方程01
11=----x x x m 若有增根,增根可能是几? 【变式练习】2、若关于x 的方程
9331-=--x m x x 有增根,求m 的值.
课堂小结:
通过本节课的学习,我的收获是 特别需要注意的是
当堂检测:
1、解关于x 的方程 311
x m x x -=-- 产生增根,则常数m 的值等于( ) A 、-2 B 、-1 C 、 1 D 、 2
3、解分式方程 65(2)1(1)
x x x x +=++
34(1)1x x =-11(2)3,22x x x -=---5(1) 4.2332x x x +=--。
北师大版数学初二下册《分式方程(二)》教学设计
北师大版数学初二下册《分式方程(二)》教学设计一. 教材分析北师大版数学初二下册《分式方程(二)》的内容主要包括分式方程的解法、检验解的方法以及分式方程的应用。
这部分内容是学生在学习了分式方程的基础上进一步深化和应用,旨在培养学生的逻辑思维能力和解决实际问题的能力。
二. 学情分析初二的学生已经掌握了分式的基本知识,对分式方程有一定的了解,具备了一定的数学思维能力。
但在解决实际问题时,部分学生可能会对如何建立方程和求解方程感到困惑。
因此,在教学过程中,需要关注学生的个体差异,有针对性地进行教学。
三. 教学目标1.理解分式方程的解法及其应用;2.学会检验分式方程的解是否正确;3.培养学生的逻辑思维能力和解决实际问题的能力。
四. 教学重难点1.分式方程的解法;2.检验分式方程的解是否正确;3.将实际问题转化为分式方程,并求解。
五. 教学方法1.讲授法:讲解分式方程的解法、检验解的方法及应用;2.案例分析法:分析实际问题,引导学生建立方程并求解;3.小组讨论法:分组讨论,分享解题心得和方法。
六. 教学准备1.PPT课件:展示分式方程的解法、检验解的方法及应用;2.实际问题案例:提供给学生进行分析和练习;3.练习题:巩固所学知识。
七. 教学过程1.导入(5分钟)利用PPT课件,简要回顾分式方程的基本知识,引导学生思考分式方程在实际问题中的应用。
2.呈现(15分钟)展示实际问题案例,引导学生分析问题,建立分式方程。
同时,讲解分式方程的解法,让学生初步掌握解题方法。
3.操练(15分钟)学生分组讨论,分享解题心得和方法。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示练习题,让学生独立完成。
教师选取部分学生的作业进行点评,指出解题中的优点和不足。
5.拓展(10分钟)出示一些具有挑战性的问题,引导学生运用所学知识进行解决。
同时,鼓励学生发挥创新精神,探索解决问题的新方法。
6.小结(5分钟)教师总结本节课的主要内容,强调分式方程的解法、检验解的方法及应用。
北师大版数学八年级下册5.4《分式方程》教学设计2
北师大版数学八年级下册5.4《分式方程》教学设计2一. 教材分析《分式方程》是北师大版数学八年级下册第5章第4节的内容。
本节课的主要任务是让学生掌握分式方程的解法,理解分式方程的解法在实际问题中的应用。
教材通过引入实际问题,让学生感受分式方程的重要性,进而学习分式方程的解法。
教材内容由浅入深,循序渐进,符合学生的认知规律。
二. 学情分析学生在学习本节课之前,已经学习了分式的概念、性质和运算。
他们具备了一定的数学基础,能够理解和掌握分式方程的基本概念和解法。
但是,学生对分式方程在实际问题中的应用可能还不够清晰,需要通过实例让学生感受和理解。
三. 教学目标1.知识与技能:学生会解分式方程,理解解分式方程的思路和方法。
2.过程与方法:学生通过自主学习、合作交流,培养解决问题的能力。
3.情感态度与价值观:学生感受数学与生活的紧密联系,提高学习数学的兴趣。
四. 教学重难点1.重点:分式方程的解法。
2.难点:理解分式方程的解法在实际问题中的应用。
五. 教学方法1.启发式教学:通过提问、引导,激发学生的思考,培养学生的解决问题的能力。
2.案例教学:通过实际问题的引入,让学生感受分式方程的重要性,提高学生的学习兴趣。
3.合作学习:学生分组讨论,培养学生的团队合作意识和沟通能力。
六. 教学准备1.教学课件:制作课件,展示分式方程的解法及实际问题。
2.教学素材:准备一些实际问题,用于引导学生学习分式方程的解法。
3.黑板:用于板书 key points 和解题步骤。
七. 教学过程1.导入(5分钟)教师通过提问,回顾分式的概念和性质,为学生学习分式方程做好铺垫。
2.呈现(10分钟)教师展示一些实际问题,引导学生思考如何用数学方法解决这些问题。
学生通过讨论,发现这些问题可以用分式方程来表示。
3.操练(10分钟)教师引导学生学习分式方程的解法,让学生通过自主学习、合作交流,掌握解分式方程的方法。
教师在这个过程中给予学生适当的指导,帮助学生克服解题过程中的困难。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)只要是分式方程,一定出现增根.()
(4)方程 = -3的两边 都乘以 (x-2),得1=(x-1)-3.( )
2.若 的值为-1,则x等于()
A.- B. C. D.-
3.若分式 的值为零,则x等于()
A.2 B.-2 C. D.0
4.若分式方程 (其中k为常数)产生增根,则增根是________.
新北师大版八年级数学下册第五章《分式方程(2)》学案
辅备人:课题
5.8分式方程(2)
课时
一课时
课型
导学+展示
学生活动(自主参与、合作探究、展示交流)
学习目标
掌握解分式1.判断下列各题,正确的在题后括号内打“√”,错误的打“×”.
(1) = 是关于y的分式方程.( )
5.解下列方程:
(2) (3)
四、总结归纳:
作业布置:习题5.8第1、2题
7.先化简,再求值: ,其中
重难点
重点:掌握解分式方程的一般步骤。
难点:了解分式方程验根的必要性。
学生活动(自主参与、合作探究、展示交流)
预习交流
1、解一元一次方程 的第一步是.
2、解分式方程的基本步骤是.
3、使方程的叫方程的增根.检验时通常只需..
4.对于分式 ,当x=________时,分式的值为零,当x=________时,分式无意义.
5.如果方程 有增根,那么增根的值为()
A. 0B.-1C.3D.1
6.解方程: 7.解分式方程
二、探究释疑
例:解下列方程(1)
后记