广州大学大学物理练习册参考答案与解题过程 下 电磁学与热学
大学物理练习册(下)答案解析
练习一1、C ,2、C ,3、C ,4、D,5、()j y a qy2/322042+πε, (j 为y 方向单位矢量), 2/a ± ,6、()30220824R qdd R R qd εεπ≈-ππ,从O 点指向缺口中心点. 7、解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为λ=q / L ,在x 处取一电荷元d q = λd x = q d x / L , 它在P 点的场强: ()204d d x d L q E -+π=ε()204d x d L L x q -+π=ε总场强为 ⎰+π=Lx d L xL q E 020)(d 4-ε()d L d q +π=04ε 方向沿x 轴,即杆的延长线方向.8、解:把所有电荷都当作正电荷处理. 在θ处取微小电荷 d q = λd l = 2Q d θ / π它在O 处产生场强θεεd 24d d 20220RQR q E π=π=按θ 角变化,将d E 分解成二个分量:θθεθd sin 2sin d d 202R Q E E x π==,θθεθd cos 2cos d d 202R Q E E y π-=-=对各分量分别积分,积分时考虑到一半是负电荷⎥⎦⎤⎢⎣⎡-π=⎰⎰πππθθθθε2/2/0202d sin d sin 2R QE x =02022/2/0202d cos d cos 2R Q R Q E y εθθθθεππππ-=⎥⎦⎤⎢⎣⎡-π-=⎰⎰ 所以 j R Q j E i E E y x202επ-=+=练习二1、D ,2、C ,3、A ,4、C,5、不变、变,6、-3σ / (2ε0) ,-σ / (2ε0), 3σ / (2ε0)7、解: (1) 由对称分析知,平板外两侧场强大小处处相等、方向垂直于平面且背离平面.设场强大小为E . 作一柱形高斯面垂直于平面.其底面大小为S ,如图所示. 按高斯定理∑⎰=⋅0ε/d q S E S,即22d d 12εερεkSbx x kSx S SE bb===⎰⎰得到 E = kb 2 / (4ε0) (板外两侧) (2)过P 点垂直平板作一柱形高斯面,底面为S .设该处场强为E ',如图所示. 按高斯定理有 ()022εεkSbxdx kSS E E x==+'⎰xS P SEESSEd x b E 'd qR O xyθd θθPLdd q x (L+d -x )d ExO得到 ⎪⎪⎭⎫ ⎝⎛-='22220b x k E ε (0≤x ≤b ) (3) E '=0,必须是0222=-b x , 可得2/b x = 6、解:挖去电荷体密度为ρ 的小球,以形成球腔时的求电场问题,可在不挖时求出电场1E,而另在挖去处放上电荷体密度为-ρ的同样大小的球体,求出电场2E,并令任意点的场强为此二者的叠加,即可得 210E E E +=在图(a)中,以O 点为球心,d 为半径作球面为高斯面S ,则可求出O '与P 处场强的大小.ρε302113414d d d E S E S π⋅=π⋅=⋅⎰ 有 E 1O’=E 1P =d E 013ερ= 方向分别如图所示. 在图(b)中,以O '点为小球体的球心,可知在O '点E 2=0. 又以O ' 为心,2d 为半径作球面为高斯面S '可求得P 点场强E 2P()032223/)(4)(24d ερ-π=π⋅='⋅⎰'r d E S E S203212dr E P ερ-= (1) 求O '点的场强'O E. 由图(a)、(b)可得 E O ’ = E 1O’ =03ερd, 方向如图(c)所示.(2) 设空腔任一点P 相对O '的位矢为r ',相对O 点位矢为r则3ερr E PO =, 03ερr E O P '-=' , ∴ 0003'3)(3ερερερdOO r r E E E O P PO P=='-=+=' ∴腔内场强是均匀的.练习三1、D ,2、B ,3、C,4、C,5、q / (6πε0R )6、负,增加7、解:由高斯定理可得场强分布为:E =-σ / ε0 (-a <x <a ) E = 0 (-∞<x <-a ,a <x <+∞=E 1P ρ PE 2P E P 图(d) O O ' P E 1O’ ρ 图(a) O ρO ' d E O’=E 1 图(c)O P E 2P -ρ O 'r E 2O’=0图(b)E 1P由此可求电势分布:在-∞<x ≤-a 区间⎰⎰⎰---+==000/d d 0d aa xxx x x E U εσ0/εσa -=在-a ≤x ≤a 区间 00d d εσεσxx x E U x x =-==⎰⎰ 在a ≤x <∞区间 0000d d 0d εσεσax x x E U a a x x =-+==⎰⎰⎰8、解:设x 轴沿细线方向,原点在球心处,在x 处取线元d x ,其上电荷为x q d d λ=', 该线元在带电球面的电场中所受电场力为: d F = q λd x / (4πε0 x 2) 整个细线所受电场力为: ()l r r lq x x q F l r r +π=π=⎰+00024d 400ελελ 方向沿x 正方向.电荷元在球面电荷电场中具有电势能: d W = (q λd x ) / (4πε0 x ) 整个线电荷在电场中具有电势能: ⎪⎪⎭⎫ ⎝⎛+π=π=⎰+0000ln 4d 400r l r q x x q W l r r ελελ练习四1、D ,2、D ,3、B ,4、C ,5、U C C C C C q U C C C C C 21212221211)(,)(+-=+-,6、r εεσσ0,, 7、解:金属球的电势r d r d 221⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=22220π44πdr R R Rr r Qdrr Q εεε)11(π4210R R Q r r -+=εεε8、解:令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ∵ AB AC U U =,即-a +a O x UO R x r 0 r 0+ld xx∴ AB AB AC AC E E d d = ∴2d d 21===ACABAB AC E E σσ 且 1σ+2σSq A=得 ,32S q A =σ Sq A 321=σ 而 7110232-⨯-=-=-=A C q S q σC C 10172-⨯-=-=S q B σ (2)301103.2d d ⨯===AC AC AC A E U εσV练习五1、πR 2c2、 5.00×10-5 T , 3、20d 4a lI πμ , 平行z 轴负向 ; 4、)11(4120R R I -μ,垂直纸面向外 ,2/122210)11(4R R I+μ ,12arctg R R +π21,5、)3231(40ππμ-+R I , 6、C, 7、解:因为金属片无限长,所以圆柱轴线上任一点P 的磁感应强度方向都在圆柱截面上,取坐标如图所示,取宽为l d 的一无限长直电流l R II d d π=,在轴上P 点产生B d 与R 垂直,大小为RI R R R I R I B 20002d 2d 2d d πθμ=πθπμ=πμ= RI B B x 202d cos cos d d πθθμ=θ=RI B B y 202d sin )2cos(d d πθθμ-=θ+π=∴ 520202221037.6)]2sin(2[sin 22d cos -ππ-⨯=πμ=π--ππμ=πθθμ=⎰RI R I R I B x T 0)2d sin (2220=πθθμ-=⎰ππ-RI B y∴ i B51037.6-⨯= T8、解:(1) 对r ~r +d r 段,电荷 d q = λ d r ,旋转形成圆电流.则 r dq I d 22d π=π=λωω 它在O 点的磁感强度rrr IB d 42d d 000π==λωμμ⎰⎰+π==b a a r r B B d 4d 000λωμa ba +π=ln 40λωμ 方向垂直纸面向内. r r I r p m d 21d d 22λω=π=⎰⎰+==ba am m r r p p d 21d 2λω 6/])[(33a b a -+=λω 方向垂直纸面向内.练习六1、B2、)2(120I I -μ3、320μI , 4、Rihπμ20,5、)2/(210R rI πμ ,0 6、解:取同轴闭合圆环r l π2= )(b r a <<则 ⎰π=⋅lr B l B 2d2222)(a b Ia r I ππππ--=∑∴ )(2)(22220a b r a r I B --=πμ 7、解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小, 由安培环路定律可得:)(220R r r R IB ≤π=μ因而,穿过导体内画斜线部分平面的磁通Φ1为⎰⎰⋅==S B S B d d 1 Φr r RIRd 2020⎰π=μπ=40I μ在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为 )(20R r rIB >π=μ因而,穿过导体外画斜线部分平面的磁通Φ2为⎰⋅=S B d 2Φr r I R Rd 220⎰π=μ2ln 20π=Iμ穿过整个矩形平面的磁通量 21ΦΦΦ+=π=40I μ2ln 20π+IμOarbd r ω1、A ,2、B ,3、)/(cos 2eB m θv π, )/(sin eB m θv ,4、alB 2,5、铁磁质,顺磁质,抗磁质,6、 0.226 T ,300 A/m7、解: (1) 0=⨯=B l I F bcB l I F ab⨯= 方向⊥纸面向外,大小为866.0120sin ==︒IlB F ab NB l I F ca⨯=方向⊥纸面向里,大小866.0120sin ==︒IlB F ca N(2)IS P m =B P M m⨯= 沿O O '方向,大小为221033.443-⨯===B l I ISB M m N ⋅(3)磁力功 )(12ΦΦ-=I A∵ 01=Φ B l 2243=Φ ∴ 221033.443-⨯==B l IA J 8、解:在直线电流2I 上任意取一个小电流元dl I 2,此电流元到长直线 的距离为x ,无限长直线电流1I 在小电流元处产生的磁感应强度 xI B πμ210=21021060cos 22dxx I I dl x I I dF ⋅==πμπμ ab I I dxx I I F ba ln 60cos 22100210πμπμ=⋅=⎰1、D ,2、C ,3、A ,4、0.40 V , 0.5 m 2/s ,5、 5×10-4 Wb ,6、解:2IB xμπ=ln 22d adIl Id a ldx x dμμππ++Φ=⋅=⎰0l n c o s 2N I l d d a Nt dt dμωεωπΦ+=-=- 7、解: ⎰==︒=⋅=22212160cos d klvt lv kt Blvt S B m Φ∴ klvt tm-=-=d d Φε 即沿abcd 方向顺时针方向.练习九1、28/104.0s m ⨯顺时针 2、 πBnR 2 ,O 3、dtdBR221π, 4、等于零,不等于零;不等于零,等于零 5、RBfr 22π6、解: 作辅助线MN ,则在MeNM 回路中,沿v方向运动时0d =m Φ ∴ 0=MeNM ε 即 MN MeN εε= 又∵ ⎰+-<+-==ba ba MN ba ba Iv l vB 0ln 2d cos 0πμπε 所以MeN ε沿NeM 方向,大小为ba ba Iv -+ln 20πμ M 点电势高于N 点电势,即ba ba Iv U U N M -+=-ln 20πμ 7、解: ∵ bc ab ac εεε+=tBR B R t t ab d d 43]43[d d d d 21=--=-=Φε=-=t abd d 2ΦεtB R B R t d d 12π]12π[d d 22=--∴ tBR R acd d ]12π43[22+=ε ∵0d d >tB∴ 0>ac ε即ε从c a →练习十1、C ,2、C ,3、0,4、 垂直纸面向里 , 垂直OP 连线向下 ,5、(4)(2)(1) 5、解:圆柱形电容器电容 12ln 2R R lC πε=12ln 2R R lUCU q πε== 1212ln ln 22R R r U R R r lU S q D εππε===∴ 12ln R R r ktDj ε=∂∂=6、如图10-17图所示,取r l S d d = 则 ⎰⎰-----=--=-+=ad aad aad da a d Il r r r Ilr l r Ir πI)ln (ln 2πd )d 11(π2d ))d (π22(0000μμμμΦ aad Il-=lnπ0μ ∴ aad lIL -==lnπ0μΦ练习十一1、A2、 B3、B ,4、D ,5、2π (n -1) e / λ , 4×103 ;6、解: (1)由λk d D x =明知,λ22.01010.63⨯⨯=, ∴ 3106.0-⨯=λmm oA 6000=(2) 3106.02.010133=⨯⨯⨯==∆-λd D x mm7、解:(1) ∆x =20 D λ / a =0.11 m(2) 覆盖云玻璃后,零级明纹应满足 (n -1)e +r 1=r 2设不盖玻璃片时,此点为第k 级明纹,则应有 r 2-r 1=k λ所以 (n -1)e = k λk =(n -1) e / λ=6.96≈7 零级明纹移到原第7级明纹处练习十二1、A ,2、 C ,3、C ,4、 1.40 ,5、0.6mm 。
(完整版)大学物理学上下册习题与答案
习题九一、选择题9.1 关于高斯定理的理解有下面几种说法,其中正确的是:(A) 如果高斯面上E处处为零,则该面内必无电荷.(B) 如果高斯面内无电荷,则高斯面上E处处为零.(C) 如果高斯面上E处处不为零,则高斯面内必有电荷.(D) 如果高斯面内有净电荷,则通过高斯面的电场强度通量必不为零.[A(本章中不涉及导体)、 D ] 9.2有一边长为a 的正方形平面,在其中垂线上距中心O 点a /2处,有一电荷为q 的正点电荷,如图所示,则通过该平面的电场强度通量为(A)03 q . (B) 04 q (C) 03 q . (D) 06 q [D ]q题图9.19.3面积为S 的空气平行板电容器,极板上分别带电量q ,若不考虑边缘效应,则两极板间的相互作用力为(A)S q 02(B)S q 022 (C) 2022S q (D) 202Sq [B ]9.4 如题图9.2所示,直线MN 长为2l ,弧OCD 是以N 点为中心,l 为半径的半圆弧,N 点有正电荷q ,M 点有负电荷q .今将一试验电荷0q 从O 点出发沿路径OCDP 移到无穷远处,设无穷远处电势为零,则电场力作功(A) A <0 , 且为有限常量. (B) A >0 , 且为有限常量.(C) A =∞. (D) A =0. [D ,0O V ]-题图9.29.5静电场中某点电势的数值等于 (A)试验电荷q 0置于该点时具有的电势能.(B)单位试验电荷置于该点时具有的电势能. (C)单位正电荷置于该点时具有的电势能.(D)[C ]9.6已知某电场的电场线分布情况如题图9.3所示.现观察到一负电荷从M 点移到N 点.有人根据这个图作出下列几点结论,其中哪点是正确的?(A) 电场强度M N E E . (B) 电势M N U U .(C) 电势能M N W W . (D) 电场力的功A >0.[C ] 二、计算题9.7 电荷为q 和2q 的两个点电荷分别置于1x m 和1x m 处.一试验电荷置于x 轴上何处,它受到的合力等于零? x2q q 0解:设试验电荷0q 置于x 处所受合力为零,根据电力叠加原理可得022220000(2)(2)ˆˆ0041414141q q q q q q i i x x x x 即:22221(2)0121011x x x x22212210x x x x2610(322)x x x m 。
(完整版)大学物理热学习题附答案
一、选择题1.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。
根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值 (A) m kT x 32=v (B) m kT x 3312=v (C) m kT x /32=v (D) m kT x /2=v2.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。
根据理想气体分子模型和统计假设,分子速度在x 方向的分量的平均值 (A) m kT π8=x v (B) m kT π831=x v (C) m kT π38=x v (D) =x v 03.温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系:(A) ε和w都相等 (B) ε相等,w 不相等 (C) w 相等,ε不相等 (D) ε和w 都不相等4.在标准状态下,若氧气(视为刚性双原子分子的理想气体)和氦气的体积比V 1 / V 2=1 / 2 ,则其内能之比E 1 / E 2为:(A) 3 / 10 (B) 1 / 2 (C) 5 / 6 (D) 5 / 35.水蒸气分解成同温度的氢气和氧气,内能增加了百分之几(不计振动自由度和化学能)?(A) 66.7% (B) 50% (C) 25% (D) 06.两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内的气体质量ρ,分别有如下关系:(A) n 不同,(E K /V )不同,ρ不同 (B) n 不同,(E K /V )不同,ρ相同(C) n 相同,(E K /V )相同,ρ不同 (D) n 相同,(E K /V )相同,ρ相同7.一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们(A) 温度相同、压强相同 (B) 温度、压强都不相同(C) 温度相同,但氦气的压强大于氮气的压强(D) 温度相同,但氦气的压强小于氮气的压强8.关于温度的意义,有下列几种说法:(1) 气体的温度是分子平均平动动能的量度;(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义;(3) 温度的高低反映物质内部分子运动剧烈程度的不同;(4) 从微观上看,气体的温度表示每个气体分子的冷热程度。
大学物理(下)练习题及答案
xyoa•••a-(0,)P y qq-大学物理(下)练习题第三编 电场和磁场 第八章 真空中的静电场1.如图所示,在点((,0)a 处放置一个点电荷q +,在点(,0)a -处放置另一点电荷q -。
P 点在y 轴上,其坐标为(0,)y ,当y a ?时,该点场强的大小为(A) 204q y πε; (B) 202q y πε;(C)302qa y πε; (D)304qa y πε.[ ]2.将一细玻璃棒弯成半径为R 的半圆形,其上半部均匀分布有电量Q +, 下半部均匀分布有电量Q -,如图所示。
求圆心o 处的电场强度。
3.带电圆环的半径为R ,电荷线密度0cos λλφ=,式中00λ>,且为常数。
求圆心O 处的电场强度。
4.一均匀带电圆环的半径为R ,带电量为Q ,其轴线上任一点P 到圆心的距离为a 。
求P 点的场强。
5.关于高斯定理有下面几种说法,正确的是(A) 如果高斯面上E r处处为零,那么则该面内必无电荷;(B) 如果高斯面内无电荷,那么高斯面上E r处处为零;(C) 如果高斯面上E r处处不为零,那么高斯面内必有电荷;(D) 如果高斯面内有净电荷,那么通过高斯面的电通量必不为零; (E) 高斯定理仅适用于具有高度对称性的电场。
[ ]6.点电荷Q 被闭合曲面S 所包围,从无穷远处引入另一点电荷q 至曲面S 外一点,如图所示,则引入前后(A) 通过曲面S 的电通量不变,曲面上各点场强不变;(B) 通过曲面S 的电通量变化,曲面上各点场强不变;(C) 通过曲面S 的电通量变化,曲面上各点场强变化;(D) 通过曲面S 的电通量不变,曲面上各点场强变化。
[ ]7.如果将带电量为q 的点电荷置于立方体的一个顶角上,则通过与它不相邻的每个侧面的电场强度通量为xq g S Q g(A)06q ε; (B) 012q ε; (C) 024q ε; (D) 048q ε. [ ]8.如图所示,A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上的电荷面密度721.7718A C m σ--=-⨯⋅,B 面上的电荷面密度723.5418B C m σ--=⨯⋅。
大学物理电磁学题库及标准答案
大学物理电磁学题库及答案————————————————————————————————作者:————————————————————————————————日期:一、选择题:(每题3分)1、均匀磁场的磁感强度B垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为 (A) 2πr 2B . (B) πr 2B .(C) 0. (D) 无法确定的量. [ B ]2、在磁感强度为B的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n与B 的夹角为α ,则通过半球面S 的磁通量(取弯面向外为正)为(A) πr 2B . (B) 2 πr 2B .(C) -πr 2B sin α. (D) -πr 2B cos α. [ D ]3、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为 (A) 0.90. (B) 1.00.(C) 1.11. (D) 1.22. [ C ]4、如图所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度(A) 方向垂直环形分路所在平面且指向纸内.(B) 方向垂直环形分路所在平面且指向纸外. (C) 方向在环形分路所在平面,且指向b .(D) 方向在环形分路所在平面内,且指向a .(E) 为零. [ E ]5、通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为: (A) B P > B Q > B O . (B) B Q > B P > B O .(C) B Q > B O > B P . (D) B O > B Q > B P .[ D ]6、边长为l 的正方形线圈,分别用图示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为 (A) 01=B ,02=B . (B) 01=B ,l I B π=0222μ.(C) lIB π=0122μ,02=B .nBα Sc Id b aa I I I a aa a 2a I P Q O I aIB 1IB 12abc dI(D) l I B π=0122μ,lIB π=0222μ. [C ]7、在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的磁感强度为(A) R 140πμ. (B) R120πμ.(C) 0. (D) R140μ. [ D ]9、电流I 由长直导线1沿垂直bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点沿垂直ac 边方向流出,经长直导线2返回电源(如图).若载流直导线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用1B 、2B和3B 表示,则O 点的磁感强度大小(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B,B 3 = 0.(C) B ≠ 0,因为虽然B 3= 0,但021≠+B B.(D) B ≠ 0,因为虽然021=+B B,但B 3≠ 0. [ A ]10、电流由长直导线1沿半径方向经a 点流入一电阻均匀的圆环,再由b 点沿切向从圆环流出,经长导线2返回电源(如图).已知直导线上电流强度为I ,圆环的半径为R ,且a 、b 与圆心O 三点在同一直线上.设直电流1、2及圆环电流分别在O 点产生的磁感强度为1B 、2B及3B ,则O 点的磁感强度的大小 (B) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为021=+B B,B 3 = 0.(C) B ≠ 0,因为虽然B 1 = B 3 = 0,但B 2≠ 0. (D) B ≠ 0,因为虽然B 1 = B 2 = 0,但B 3≠ 0.(E) B ≠ 0,因为虽然B 2 = B 3 = 0,但B 1≠ 0. [ C ]11、电流I 由长直导线1沿垂直bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点流出,经长直导线2沿cb 延长线方向返回电源(如图).若载流直导线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用1B 、2B和3B 表示,则O 点的磁感强度大小ab cI O 12a b2I1OabcI O1 2 I(C) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B,B 3 = 0. (C) B ≠ 0,因为虽然B 3 = 0、B 1= 0,但B 2≠ 0.(D) B ≠ 0,因为虽然021≠+B B,但3B ≠ 0. [ C ]12、电流由长直导线1沿平行bc 边方向经过a 点流入由电阻均匀的导线构成的正三角形线框,由b 点流出,经长直导线2沿cb 延长线方向返回电源(如图).已知直导线上的电流为I ,三角框的每一边长为l .若载流导线1、2和三角框中的电流在三角框中心O 点产生的磁感强度分别用1B 、2B和3B 表示,则O 点的磁感强度大小(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为021=+B B,B 3= 0.(C) B ≠0,因为虽然021=+B B,但B 3≠ 0.(D) B ≠0,因为虽然B 3= 0,但021≠+B B. [ D ]13、电流由长直导线1沿半径方向经a 点流入一电阻均匀的圆环,再由b 点沿半径方向流出,经长直导线2返回电源(如图).已知直导线上电流为I ,圆环的半径为R ,且a 、b与圆心O 三点在一直线上.若载流直导线1、2和圆环中的电流在O 点产生的磁感强度分别用1B 、2B和3B 表示,则O 点磁感强度的大小为(D) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B,B 3 = 0.(C) B ≠ 0,因为虽然021=+B B,但B 3≠ 0.(D) B ≠ 0,因为虽然B 3 = 0,但021≠+B B. [ A ] 15、电流由长直导线1沿半径方向经a 点流入一由电阻均匀的导线构成的圆环,再由b 点沿半径方向从圆环流出,经长直导线2返回电源(如图).已知直导线上电流强度为I ,∠aOb =30°.若长直导线1、2和圆环中的电流在圆心O 点产生的磁感强度分别用1B 、2B、3B 表示,则圆心O 点的磁感强度大小(E) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B,B 3 = 0.(C) B ≠ 0,因为虽然B 3= 0,但021≠+B B.(D) B ≠ 0,因为B 3≠ 0,021≠+B B,所以0321≠++B B B . [ A ]a bcI IO 1 2Oa b12a b 1O Ic216、如图所示,电流由长直导线1沿ab 边方向经a 点流入由电阻均匀的导线构成的正方形框,由c 点沿dc方向流出,经长直导线2返回电源.设载流导线1、2和正方形框中的电流在框中心O 点产生的磁感强度分别用1B 、2B 、3B 表示,则O 点的磁感强度大小 (A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B.B 3 = 0(C) B ≠ 0,因为虽然021=+B B,但B 3≠ 0.(D) B ≠ 0,因为虽然B 3= 0,但021≠+B B. [ B ]17、 如图所示,电流I 由长直导线1经a 点流入由电阻均匀的导线构成的正方形线框,由b 点流出,经长直导线2返回电源(导线1、2的延长线均通过O 点).设载流导线1、2和正方形线框中的电流在框中心O 点产生的磁感强度分别用 1B、2B、3B 表示,则O 点的磁感强度大小(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0、B 3≠ 0,但0321=++B B B.(C) B ≠ 0,因为虽然021=+B B,但B 3≠ 0.(D) B ≠ 0,因为虽然B 3= 0,但021≠+B B. [ A ]19、如图,边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度ω 绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度ω绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感强度的大小为B 2,则B 1与B 2间的关系为(A) B 1 = B 2. (B) B 1 = 2B 2.(C) B 1 = 21B 2. (D) B 1 = B 2 /4. [C ]20、边长为L 的一个导体方框上通有电流I ,则此框中心的磁感强度 (A) 与L 无关. (B) 正比于L 2. (C) 与L 成正比. (D) 与L 成反比. (E) 与I 2有关. [ D ]21、如图,流出纸面的电流为2I ,流进纸面的电流为I ,则下述各式中哪一个是正确的? (A) I l H L 2d 1=⎰⋅ . (B) I l H L =⎰⋅2d(C) I l H L -=⎰⋅3d . (D) I l H L -=⎰⋅4d .II ab1 2c d OII ab 12OA C q q qq OL 2 L 1 L 3L 42II[ D ]22、如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理可知(A) 0d =⎰⋅Ll B,且环路上任意一点B = 0. (B) 0d =⎰⋅Ll B,且环路上任意一点B ≠0. (C) 0d ≠⎰⋅Ll B,且环路上任意一点B ≠0.(D)0d ≠⎰⋅Ll B,且环路上任意一点B =常量. [ B ]23、如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感强度B沿图中闭合路径L 的积分⎰⋅Ll Bd(A) I 0μ. (B) I 031μ.(C) 4/0I μ. (D) 3/20I μ. [ D ]24、若空间存在两根无限长直载流导线,空间的磁场分布就不具有简单的对称性,则该磁场分布(A) 不能用安培环路定理来计算. (B) 可以直接用安培环路定理求出. (C) 只能用毕奥-萨伐尔定律求出.(D) 可以用安培环路定理和磁感强度的叠加原理求出. [ D ] 25、取一闭合积分回路L ,使三根载流导线穿过它所围成的面.现改变三根导线之间的相互间隔,但不越出积分回路,则(A) 回路L 内的∑I 不变,L 上各点的B不变.(B) 回路L 内的∑I 不变,L 上各点的B改变.(C) 回路L 内的∑I 改变,L 上各点的B不变.(D) 回路L 内的∑I 改变,L 上各点的B改变. [ B ] 27、在图(a)和(b)中各有一半径相同的圆形回路L 1、L 2,圆周内有电流I 1、I 2,其分布相同,且均在真空中,但在(b)图中L 2回路外有电流I 3,P 1、P 2为两圆形回路上的对应点,则:(A) =⎰⋅1d L l B ⎰⋅2d L l B , 21P P B B = (B) ≠⎰⋅1d L l B ⎰⋅2d L l B, 21P P B B =. (C) =⎰⋅1d L l B⎰⋅2d L l B, 21P P B B ≠.(D) ≠⎰⋅1d L l B⎰⋅2d L l B , 21P P B B ≠. [ C ]L OIIIabc dL120°L 1 L 2P 1 P 2I 1 I 2 I 3I 1 I 2 (a)(b)⊙⊙ ⊙⊙ ⊙28、如图,一个电荷为+q 、质量为m 的质点,以速度v沿x 轴射入磁感强度为B 的均匀磁场中,磁场方向垂直纸面向里,其范围从x = 0延伸到无限远,如果质点在x = 0和y = 0处进入磁场,则它将以速度v -从磁场中某一点出来,这点坐标是x = 0 和(A) qB m y v +=. (B) qB m y v 2+=. (C) qB m y v 2-=. (D) qB m y v-=. [ B ]30、A 、B 两个电子都垂直于磁场方向射入一均匀磁场而作圆周运动.A 电子的速率是B 电子速率的两倍.设R A ,R B 分别为A 电子与B 电子的轨道半径;T A ,T B 分别为它们各自的周期.则(A) R A ∶R B =2,T A ∶T B =2. (B) R A ∶R B 21=,T A ∶T B =1.(C) R A ∶R B =1,T A ∶T B 21=. (D) R A ∶R B =2,T A ∶T B =1. [ D ]31、一铜条置于均匀磁场中,铜条中电子流的方向如图所示.试问下述哪一种情况将会发生?(A) 在铜条上a 、b 两点产生一小电势差,且U a > U b . (B) 在铜条上a 、b 两点产生一小电势差,且U a < U b . (C) 在铜条上产生涡流. (D) 电子受到洛伦兹力而减速. [ A ]32、一电荷为q 的粒子在均匀磁场中运动,下列哪种说法是正确的? (A) 只要速度大小相同,粒子所受的洛伦兹力就相同.(B) 在速度不变的前提下,若电荷q 变为-q ,则粒子受力反向,数值不变. (C) 粒子进入磁场后,其动能和动量都不变. (D) 洛伦兹力与速度方向垂直,所以带电粒子运动的轨迹必定是圆.[ B ] 34、图为四个带电粒子在O 点沿相同方向垂直于磁感线射入均匀磁场后的偏转轨迹的照片.磁场方向垂直纸面向外,轨迹所对应的四个粒子的质量相等,电荷大小也相等,则其中动能最大的带负电的粒子的轨迹是(A) Oa . (B) Ob .(C) Oc . (D) Od . [ C ]xy+q, m v BOO Bdc b aabB × × × ×× × × × × × × ×大学物理 电磁学35、如图所示,在磁感强度为B的均匀磁场中,有一圆形载流导线,a 、b 、c 是其上三个长度相等的电流元,则它们所受安培力大小的关系为(A) F a > F b > F c . (B) F a < F b < F c .(C) F b > F c > F a . (D) F a > F c > F b . [ C ]36、如图,长载流导线ab 和cd 相互垂直,它们相距l ,ab 固定不动,cd 能绕中点O 转动,并能靠近或离开ab .当电流方向如图所示时,导线cd 将 (A) 顺时针转动同时离开ab .(B) 顺时针转动同时靠近ab . (C) 逆时针转动同时离开ab .(D) 逆时针转动同时靠近ab . [ D ]37、两个同心圆线圈,大圆半径为R ,通有电流I 1;小圆半径为r ,通有电流I 2,方向如图.若r << R (大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为(A) R r I I 22210πμ. (B) R r I I 22210μ.(C) rR I I 22210πμ. (D) 0. [ D ]339、有一N 匝细导线绕成的平面正三角形线圈,边长为a ,通有电流I ,置于均匀外磁场B中,当线圈平面的法向与外磁场同向时,该线圈所受的磁力矩M m 值为 (A) 2/32IB Na . (B) 4/32IB Na . (C) ︒60sin 32IB Na . (D) 0. [ B ]40、有一矩形线圈AOCD ,通以如图示方向的电流I ,将它置于均匀磁场B 中,B的方向与x 轴正方向一致,线圈平面与x 轴之间的夹角为α,α < 90°.若AO 边在y轴上,且线圈可绕y 轴自由转动,则线圈将(A) 转动使α 角减小.(B) 转动使α角增大. (C) 不会发生转动.(D) 如何转动尚不能判定. [ D ]41、若一平面载流线圈在磁场中既不受力,也不受力矩作用,这说明: (A) 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向平行.bBa cI Iab cd II O Or R I 1I 2y zx AO CDInBα大学物理 电磁学(B) 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向平行. (C) 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向垂直.(D) 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向垂直.[ A ]42、图示一测定水平方向匀强磁场的磁感强度B(方向见图)的实验装置.位于竖直面内且横边水平的矩形线框是一个多匝的线圈.线框挂在天平的右盘下,框的下端横边位于待测磁场中.线框没有通电时,将天平调节平衡;通电后,由于磁场对线框的作用力而破坏了天平的平衡,须在天平左盘中加砝码m 才能使天平重新平衡.若待测磁场的磁感强度增为原来的3倍,而通过线圈的电流减为原来的21,磁场和电流方向保持不变,则要使天平重新平衡,其左盘中加的砝码质量应为 (A) 6m . (B) 3m /2. (C) 2m /3. (D) m /6.(E) 9m /2. [ B ]43、如图,无限长直载流导线与正三角形载流线圈在同一平面内,若长直导线固定不动,则载流三角形线圈将 (A) 向着长直导线平移. (B) 离开长直导线平移. (C) 转动. (D) 不动. [ A ]44、四条皆垂直于纸面的载流细长直导线,每条中的电流皆为I .这四条导线被纸面截得的断面,如图所示,它们组成了边长为2a 的正方形的四个角顶,每条导线中的电流流向亦如图所示.则在图中正方形中心点O 的磁感强度的大小为(A) I aB π=02μ. (B) I a B 2π=02μ. (C) B = 0. (D) I aB π=0μ. [ C ]46、四条平行的无限长直导线,垂直通过边长为a =20 cm 的正方形顶点,每条导线中的电流都是I =20 A ,这四条导线在正方形中心O 点产生的磁感强度为 (μ0 =4π×10-7 N ·A -2)(A) B =0. (B) B = 0.4×10-4 T . (C) B = 0.8×10-4 T. (D) B =1.6×10-4 T . [ C ]i BI 1I 2I I I I 2a2a O I I I IOa47、有一半径为R 的单匝圆线圈,通以电流I ,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感强度和线圈的磁矩分别是原来的(A) 4倍和1/8. (B) 4倍和1/2.(C) 2倍和1/4. (D) 2倍和1/2. [ B ]55、一闭合正方形线圈放在均匀磁场中,绕通过其中心且与一边平行的转轴OO ′转动,转轴与磁场方向垂直,转动角速度为ω,如图所示.用下述哪一种办法可以使线圈中感应电流的幅值增加到原来的两倍(导线的电阻不能忽略)? (A) 把线圈的匝数增加到原来的两倍. (B) 把线圈的面积增加到原来的两倍,而形状不变. (C) 把线圈切割磁力线的两条边增长到原来的两倍.(D) 把线圈的角速度ω增大到原来的两倍. [ D ]56、一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是 (A) 线圈绕自身直径轴转动,轴与磁场方向平行. (B) 线圈绕自身直径轴转动,轴与磁场方向垂直. (C) 线圈平面垂直于磁场并沿垂直磁场方向平移.(D) 线圈平面平行于磁场并沿垂直磁场方向平移. [ B ]57、如图所示,一矩形金属线框,以速度v从无场空间进入一均匀磁场中,然后又从磁场中出来,到无场空间中.不计线圈的自感,下面哪一条图线正确地表示了线圈中的感应电流对时间的函数关系?(从线圈刚进入磁场时刻开始计时,I 以顺时针方向为正)[ C ]58、两根无限长平行直导线载有大小相等方向相反的电流I ,并各以d I /d t 的变化率增长,一矩形线圈位于导线平面内(如图),则:(A) 线圈中无感应电流. (B) 线圈中感应电流为顺时针方向.O ′O B ωvBI IO O tt(A)(D)IO t (C)O t (B)II I(C) 线圈中感应电流为逆时针方向.(D) 线圈中感应电流方向不确定. [ B ]59、将形状完全相同的铜环和木环静止放置,并使通过两环面的磁通量随时间的变化率相等,则不计自感时(A) 铜环中有感应电动势,木环中无感应电动势. (B) 铜环中感应电动势大,木环中感应电动势小. (C) 铜环中感应电动势小,木环中感应电动势大. (D) 两环中感应电动势相等. [ D ]60、在无限长的载流直导线附近放置一矩形闭合线圈,开始时线圈与导线在同一平面内,且线圈中两条边与导线平行,当线圈以相同的速率作如图所示的三种不同方向的平动时,线圈中的感应电流(A) 以情况Ⅰ中为最大. (B) 以情况Ⅱ中为最大.(C) 以情况Ⅲ中为最大. (D) 在情况Ⅰ和Ⅱ中相同. [ B ]61、一个圆形线环,它的一半放在一分布在方形区域的匀强磁场B中,另一半位于磁场之外,如图所示.磁场B的方向垂直指向纸内.欲使圆线环中产生逆时针方向的感应电流,应使(A) 线环向右平移. (B) 线环向上平移.(C) 线环向左平移. (D) 磁场强度减弱. [ C ]62、如图所示,一载流螺线管的旁边有一圆形线圈,欲使线圈产生图示方向的感应电流i ,下列哪一种情况可以做到?(A) 载流螺线管向线圈靠近. (B) 载流螺线管离开线圈.(C) 载流螺线管中电流增大.(D) 载流螺线管中插入铁芯. [ B ]63、如图所示,闭合电路由带铁芯的螺线管,电源,滑线变阻器组成.问在下列哪一种情况下可使线圈中产生的感应电动势与原电流I的方向相反. (A) 滑线变阻器的触点A 向左滑动.(B) 滑线变阻器的触点A 向右滑动.(C) 螺线管上接点B 向左移动(忽略长螺线管的电阻).(D) 把铁芯从螺线管中抽出. [ A ]a b c d ab c dab c d v v vⅠⅢⅡ IBiIAB I64、 一矩形线框长为a 宽为b ,置于均匀磁场中,线框绕OO ′轴,以匀角速度ω旋转(如图所示).设t =0时,线框平面处于纸面内,则任一时刻感应电动势的大小为(A) 2abB | cos ω t |. (B) ω abB(C)t abB ωωcos 21. (D) ω abB | cos ω t |.(E) ω abB | sin ω t |. [ D ]65、一无限长直导体薄板宽为l ,板面与z 轴垂直,板的长度方向沿y 轴,板的两侧与一个伏特计相接,如图.整个系统放在磁感强度为B 的均匀磁场中,B的方向沿z 轴正方向.如果伏特计与导体平板均以速度v向y 轴正方向移动,则伏特计指示的电压值为(A) 0. (B) 21v Bl .(C) v Bl . (D) 2v Bl . [ A ]66、一根长度为L 的铜棒,在均匀磁场 B中以匀角速度ω绕通过其一端O 的定轴旋转着,B 的方向垂直铜棒转动的平面,如图所示.设t =0时,铜棒与Ob 成θ 角(b 为铜棒转动的平面上的一个固定点),则在任一时刻t 这根铜棒两端之间的感应电动势是:(A) )cos(2θωω+t B L . (B) t B L ωωcos 212.(C) )cos(22θωω+t B L . (D) B L 2ω.(E)B L 221ω. [ E ]67、如图,长度为l 的直导线ab 在均匀磁场B中以速度v 移动,直导线ab 中的电动势为(A) Bl v . (B) Bl v sin α. (C) Bl v cos α. (D) 0. [ D ]68、如图所示,导体棒AB 在均匀磁场B 中 绕通过C 点的垂直于棒长且沿磁场方向的轴OO ' 转动(角速度ω与B 同方向),BC 的长度为棒长的31,则(A) A 点比B 点电势高. (B) A 点与B 点电势相等.(B) A 点比B 点电势低. (D) 有稳恒电流从A 点流向B 点.O O ′Ba bωz By lVBω L O θ blBb avαOO ′ BB A C[ A ]69、如图所示,矩形区域为均匀稳恒磁场,半圆形闭合导线回路在纸面内绕轴O 作逆时针方向匀角速转动,O 点是圆心且恰好落在磁场的边缘上,半圆形闭合导线完全在磁场外时开始计时.图(A)—(D)的--t 函数图象中哪一条属于半圆形导线回路中产生的感应电动势?[ A ]70、如图所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使ab 向右平移时,cd (A) 不动. (B) 转动. (C) 向左移动. (D) 向右移动.[ D ]72、已知一螺绕环的自感系数为L .若将该螺绕环锯成两个半环式的螺线管,则两个半环螺线管的自感系数(A) 都等于L 21. (B) 有一个大于L 21,另一个小于L 21.(C) 都大于L 21. (D) 都小于L 21. [ D ]73、面积为S 和2 S 的两圆线圈1、2如图放置,通有相同的电流I .线圈1的电流所产生的通过线圈2的磁通用Φ21表示,线圈2的电流所产生的通过线圈1的磁通用Φ12表示,则Φ21和Φ12的大小关系为: (A) Φ21 =2Φ12. (B) Φ21 >Φ12.(C) Φ21 =Φ12. (D) Φ21 =21Φ12. [ A ]76、两根很长的平行直导线,其间距离d 、与电源组成回路如图.已知导线上的电流为I ,两根导线的横截面的半径均为r 0.设用L 表示两导线回路单位长度的自感系数,则沿导线单位长度的空间内的总磁能W m 为(A) 221LI .(B) 221LI ⎰∞+π-+0d π2])(2π2[2002r r r r d I r I I μμ (C) ∞.☜ t O (A)☜t O(C)☜t O (B)☜t O(D)C DO ωBc abd N M B12S 2 SI I2(D)221LI 020ln 2r dI π+μ [ A ]77、真空中一根无限长直细导线上通电流I ,则距导线垂直距离为a 的空间某点处的磁能密度为(A) 200)2(21aI πμμ (B)200)2(21a I πμμ (C) 20)2(21I a μπ (D) 200)2(21a I μμ [ B ] 79、对位移电流,有下述四种说法,请指出哪一种说法正确.(A) 位移电流是指变化电场.(B) 位移电流是由线性变化磁场产生的. (C) 位移电流的热效应服从焦耳─楞次定律.(D) 位移电流的磁效应不服从安培环路定理. [ A ]80、在感应电场中电磁感应定律可写成t l E L K d d d Φ-=⎰⋅ ,式中K E 为感应电场电场强度.此式表明:(A) 闭合曲线L 上K E处处相等. (B) 感应电场是保守力场.(C) 感应电场的电场强度线不是闭合曲线. (D) 在感应电场中不能像对静电场那样引入电势的概念. [ D ] 二、填空题(每题4分)81、一磁场的磁感强度为k c j b i a B++= (SI),则通过一半径为R ,开口向z 轴正方向的半球壳表面的磁通量的大小为πR 2c Wb .82、真空中有一载有稳恒电流I 的细线圈,则通过包围该线圈的封闭曲面S的磁通量Φ=⎰⋅Ss d B=0.若通过S 面上某面元S d 的元磁通为d Φ,而线圈中的电流增加为2I 时,通过同一面元的元磁通为d Φ',则d Φ∶d Φ'=1:285、在真空中,将一根无限长载流导线在一平面内弯成如图所示的形状,并通以电流I ,则圆心O 点的磁感强度B 的值为μ0I/(4a ).87、在真空中,电流由长直导线1沿半径方向经a 点流入一由电阻均匀的导线构成的圆环,再由b 点沿切向从圆环流出,经长直导线2返回电源(如图).已知直导线上的电流强度为I ,圆环半径为R .a 、b 和圆心O 在同一直线上,则O 处的磁感强度B 的大小为_μ0I/(4R π)__.I IIa Oa b1 O 291、边长为2a 的等边三角形线圈,通有电流I ,则线圈中心 处的磁感强度的大小为___9μ0I /(4πa )__.92、两根长直导线通有电流I ,图示有三种环路;在每种情况下,⎰⋅l B d 等于: ________μ0I ___(对环路a ).________0____(对环路b ).___2μ0I ____(对环路c ).94、如图,在无限长直载流导线的右侧有面积为S 1和S 2的两个矩形回路.两个回路与长直载流导线在同一平面,且矩形回路的一边与长直载流导线平行.则通过面积为S 1的矩形回路的磁通量与通过面积为S 2的矩形回路的磁通量之比为__1:1__.96、如图所示的空间区域内,分布着方向垂直于纸面的匀强磁场,在纸面内有一正方形边框abcd (磁场以边框为界).而a 、b 、c 三个角顶处开有很小的缺口.今有一束具有不同速度的电子由a 缺口沿ad 方向射入磁场区域,若b 、c 两缺口处分别有电子射出,则此两处出射电子的速率之比v b /v c =_1:2_101、电子在磁感强度为B的匀强磁场中垂直于磁力线运动.若轨道的曲率半径为R ,则磁场作用于电子上力的大小F =__ R(eB)2/(m e )__. 103、质量m ,电荷q 的粒子具有动能E ,垂直磁感线方向飞入磁感强度为B 的匀强磁场中.当该粒子越出磁场时,运动方向恰与进入时的方向相反,那么沿粒子飞入的方向上磁场的最小宽度L =__)/(2qB Em _____.104、如图所示,一根通电流I 的导线,被折成长度分别为a 、b ,夹角为 120°的两段,并置于均匀磁场B中,若导线的长度为b 的一段与B平行,则a ,b 两段载流导线所受的合磁 力的大小为___2/3aIB __.O60°I a ab ⊗⊙ c I I c aS 1S 2aa2aa b c dBa b I120°B105、如图所示,在真空中有一半径为a 的3/4圆弧形的导线,其中通以稳恒电流I ,导线置于均匀外磁场B 中,且B与导线所在平面垂直.则该载流导线bc 所受的磁力大小为__aIB 2__.108、一面积为S ,载有电流I 的平面闭合线圈置于磁感强度为B的均匀磁场中,此线圈受到的最大磁力矩的大小为___ IBS__,此时通过线圈的磁通量为____0_.当此线圈受到最小的磁力矩作用时通过线圈的磁通量为__BS__.109.已知载流圆线圈1与载流正方形线圈2在其中心O 处产生的磁感强度大小之比为B 1∶B 2 =1∶2,若两线圈所围面积相等,两线圈彼此平行地放置在均匀外磁场中,则它们所受力矩之比M 1∶M 2 =23)2(-π.110、已知面积相等的载流圆线圈与载流正方形线圈的磁矩之比为2∶1,圆线圈在其中心处产生的磁感强度为B 0,那么正方形线圈(边长为a )在磁感强度为B的均匀外磁场中所受最大磁力矩为__ B 0Ba 3/(0μπ)__.111、有一长20 cm 、直径1 cm 的螺线管,它上面均匀绕有1000匝线圈,通以I = 10 A 的电流.今把它放入B = 0.2 T 的均匀磁场中,则螺线管受到的最大的作用力F =__0__螺线管受到的最大力矩值M =_0.157Nm __.112、电流元l Id 在磁场中某处沿直角坐标系的x 轴方向放置时不受力,把电流元转到y 轴正方向时受到的力沿z 轴反方向,该处磁感强度B指向___+x _方向.113、如图,有一N 匝载流为I 的平面线圈(密绕),其面积为S ,则在图示均匀磁场B的作用下,线圈所受到的磁力矩为_ NISB _.线圈法向矢量n 将转向__ y 轴正方向_.114、如图,半圆形线圈(半径为R )通有电流I .线圈处在与线圈平面平行向右的均匀磁场B中.线圈所受磁力矩的大小为 IB R 221π,方向为__在图面中向上_.把线圈绕OO '轴转过角 度ππn +2,(n=1,2,…)时,磁力矩恰为零.aa Ic bBOyxzOI O z y x B nOO ′RI B116、如图所示,在纸面上的直角坐标系中,有一根载流导线AC 置于垂直于纸面的均匀磁场B中,若I = 1 A ,B = 0.1 T ,则AC 导线所受的磁力大小为_5×10-3N __. 117、如图,一根载流导线被弯成半径为R 的1/4圆弧,放在磁感强度为B 的均匀磁场中,则载流导线ab 所受磁场的作用力的大小为BIR 2,方向沿y 轴正向 119、一无限长载流直导线,通有电流I ,弯成如图形状.设各线段皆在纸面内,则P 点磁感强度B的大小为aIB πμ830=120、一弯曲的载流导线在同一平面内,形状如图(O 点是半径为R 1和R 2的两个半圆弧的共同圆心,电流自无穷远来到无穷远去),则O 点磁感强度的大小是2020100444R IR IR IB πμμμ-+=121、已知两长直细导线A 、B 通有电流I A = 1 A ,I B = 2 A ,电流流向和放置位置如图.设I A 与I B 在P 点产生的磁感强度大小分别为B A 和B B ,则B A 与B B之比为1:1__,此时P 点处磁感强度P B与x 轴夹角为_30o __.137、一平行板空气电容器的两极板都是半径为R 的圆形导体片,在充电时,板间电场强度的变化率为d E /d t .若略去边缘效应,则两板间的位移电流为 dt dE R /20πε.140、平行板电容器的电容C 为20.0 μF ,两板上的电压变化率为d U /d t =1.50×105 V ·s -1,则该平行板电容器中的位移电流为_3A _.O A c 3 4x (cm) y (cm) × × ×× × ×× × × Ixy a b OI 45° 45° BPaI aO IR 1 R 2xPI A I B1 m2 m。
(完整版)大学物理电磁学考试试题及答案),推荐文档
L1
H 的环流与沿 环路 L2 的磁 场强 度 H 的环流两者,必有:
(A) H d l H d l .
L2
L1 L2
(B) H d l H d l .
我去人(C也) L就1 H 有dl人 L2!H d为l .UR扼腕入站内信不存在向你偶同意调剖沙
L1
L2
-1-
(D)
R1 2 0 r r 2 0 r R1
解得
2 0 rU
3分
建议收藏下载本ln 文RR12 ,以便随时学习!
于是可求得A点的电场强度为
EA
U R ln(R2
/
R1 )
= 998 V/m
方向沿径向向外
2分
A 点与外筒间的电势差:
R2
U Edr
U
R2 d r
R
ln(R2 / R1 ) R r
U
ln R2 = 12.5 V
r
m
质子动能
EK
1 mv 2 2
3.08×10-13 J
9. 1∶16 3 分
参考解:
w
1 2
B2
/
0
B 0nI
我去人也就有人!为WU1R扼B22V腕0 入022n站20I 2l内(d4信12 ) 不存在向你偶同意调剖沙
-4-
W2
1 2
0
n
2
I
2l(d
2 2
/ 4)
W1
: W2
d12
:
d
2 2
I
I
电流 I.线圈 1 的电流所产生的通过线圈 2 的磁通用21 表
示,线圈 2 的电流所产生的通过线圈 1 的磁通用12 表示, S 1 2 S 2
大学物理习题电磁学习题解答(很全)
1.6 1019 (0.529 1010)2
5.141011伏 / 米或牛顿/ 库仑
5. 两个点电荷,q1 =+8.0微库仑,q2= - 16.0微库仑(1微 库仑=10-6库仑),相距20厘米。求离它们都是20厘米处的 电场强度E。
解:依题意,作如图所示:
E1
q1
4 0r12
1.6301019 (库仑)
4. 根据经典理论,在正常状态下,氢原子绕核作圆周运动, 其轨道半径为5.29 10-11米。已知质子电荷为e=1.60 10-19库, 求电子所在处原子核(即质子)的电场强度。
解:电子所在处的原子核(即质子)的电场由:
E
q
4 0r 2
9.0 109
1.17 10 29 (m / s2 )
6. 铁原子核里两质子间相距4.0 10-15米,每个质子带电 e=1.60 10-19库,(1)求它们之间的库仑力;(2)比较 这力与每个质子所受重力的大小。
解:(1)它们之间的库仑力大小为:
F
e2
4 0r2
9.0
109
(1.61019 )2 (4.091015 )2
解:(1) 从上题中得知: α粒子受的万有引力可以忽略, 它受的库仑力为:
F
(42q)1q02rα2粒 子9.0的1加09速度(7为9 :1.6
1019 ) (2 1.6 (6.9 1015 )2
1019
)
2
7.84 102 ( N )
a
F m
7.84 10 2 6.68 10 27
解:设油滴带电量为q,有电场力格重力平衡条件:qE=mg
得:
大学物理电磁学练习题及答案
word 格式-可编辑-感谢下载支持大学物理电磁学练习题一、选择题(30分) 题号 1 2 3 答案 题号 4 5 6 答案1.一个未带电的空腔导体球壳,内半径为R 。
在腔内离球心的距离为d 处(d R <),固定一点电荷q +,如图所示。
用导线把球壳接地后,再把地线撤去。
选无穷远处为电势零点,则球心O 处的电势为[ D ](A) 0 (B) 04πqd ε(C)04πq Rε-(D)011()4πq d R ε-2. 一个平行板电容器, 充电后与电源断开, 当用绝缘手柄将电容器两极板的距离拉大, 则两极板间的电势差12U 、电场强度的大小E 、电场能量W 将发生如下变化:[ C ](A) 12U 减小,E 减小,W 减小; (B) 12U 增大,E 增大,W 增大; (C) 12U 增大,E 不变,W 增大; (D)12U 减小,E 不变,W 不变.3.如图,在一圆形电流I所在的平面内,选一个同心圆形闭合回路L(A) ⎰=⋅L l B 0d ,且环路上任意一点0B =(B) ⎰=⋅Ll B 0d ,且环路上 任意一点0B ≠(C) ⎰≠⋅L l B 0d,且环路上任意一点0B ≠(D)⎰≠⋅Ll B 0d ,且环路上任意一点B =常量.[ B ]4.一个通有电流I 的导体,厚度为D ,横截面积为S ,放置在磁感应强度为B 的匀强磁场中,磁场方向垂直于导体的侧表面,如图所示。
现测得导体上下两面电势差为V ,则此导体的霍尔系数等于[ C ](A) IBVDS(B) BVS ID (C) VDIB (D) IVSBD5.如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B 平行于ab 边,bc 的长度为l 。
当金属框架绕ab 边以匀角速度ω转动时,abc 回路中的感应电动势ε和a 、c 两点间的电势差a c U U -为 [ B ](A)20,a c U U B l εω=-=(B)20,/2a c U U B l εω=-=- (C)22,/2a c B l U U B l εωω=-=(D)22,a c B l U U B l εωω=-=6. 对位移电流,有下述四种说法,请指出哪一种说法正确 [ A ](A) 位移电流是由变化的电场产生的;(B) 位移电流是由线性变化的磁场产生的; (C) 位移电流的热效应服从焦耳——楞次定律; (D) 位移电流的磁效应不服从安培环路定理.二、填空题(20分) 1.(本题5分)若静电场的某个区域电势等于恒量,则该区域的电场强度为 处处为零 ,若电势随空间坐标作线性变化,则该区域的电场强度分布为 均匀分布 . 2.(本题5分)一个绕有500匝导线的平均周长50cm 的细螺绕环,铁芯的相对磁导率为600,载有0.3A 电流时, 铁芯中的磁感应强度B 的大小为 0.226 T ;铁芯中的磁场强度H 的大小为300A/M 。
大学物理学(下册)习题答案详解
第十二章 热力学基础一、选择题 12-1 C 12-2 C 12-3 C 12-4 B 12-5 C 12-6 A 二、填空题 12-710000100p V p V p V p V --12-8 260J ,280J - 12-912-10 )(5.21122V p V p -,))((5.01212V V p p -+,)(5.0)(312211122V p V p V p V p -+- 12-11 268J ,732J 三、计算题12-12 分析:理想气体的内能是温度T 的单值函数,内能的增量E ∆由始末状态的温度的增量T ∆决定,与经历的准静态过程无关.根据热力学第一定律可知,在等温过程中,系统从外界吸收的热量全部转变为内能的增量,在等压过程中,系统从外界吸收的热量部分用来转变为内能的增量,同时对外做功. 解:单原子理想气体的定体摩尔热容,32V m C R = (1) 等体升温过程20=A,21333()8.3150623222V V m E Q C T R T R T T J J ∆==∆=∆=-=⨯⨯= (2) 等压膨胀过程,2133()8.315062322V m E C T R T T J J ∆=∆=-=⨯⨯= 2121()()8.3150416A p V V R T T J J =-=-=⨯=1039p Q A E J =+∆=或者,,215()8.315010392p p m p m Q C T C T T J J =∆=-=⨯⨯=12-13 分析:根据热力学第一定律和理想气体物态方程求解. 解:氢气的定体摩尔热容,52V m C R =(1) 氢气先作等体升压过程,再作等温膨胀过程. 在等体过程中,内能的增量为 ,558.3160124622V V m Q E C T R T J J =∆=∆=∆=⨯⨯= 等温过程中,对外界做功为221ln8.31(27380)ln 22033T T V Q A RT J J V ===⨯+⨯= 吸收的热量为3279V T Q Q Q J =+=(2) 氢气先作等温膨胀过程,然后作等体升压过程. 在等温膨胀过程中,对外界做功为211ln8.31(27320)ln 21687T V A RT J J V ==⨯+⨯= 在等体升压过程中,内能的增量为,558.3160124622V m E C T R T J J ∆=∆=∆=⨯⨯= 吸收的热量为2933T Q A E J =+∆=3虽然氢气所经历的过程不同,但由于始末状态的温差T ∆相同,因而内能的增量E ∆相同,而Q 和A 则与过程有关.12-14 分析:卡诺循环的效率仅与高、低温热源的温度1T 和2T 有关.本题中,求出等温膨胀过程吸收热量后,利用卡诺循环效率及其定义,便可求出循环的功和在等温压缩过程中,系统向低温热源放出的热量. 解:从高温热源吸收的热量321110.005ln 8.31400ln 5.35100.001V m Q RT J J M V ==⨯⨯=⨯ 由卡诺循环的效率2113001125%400T A Q T η==-=-= 可得循环中所作的功310.255350 1.3410A Q J J η==⨯=⨯传给低温热源的热量3321(1)(10.25) 5.3510 4.0110Q Q J J η=-=-⨯⨯=⨯12-15 分析:在a b →等体过程中,系统从外界吸收的热量全部转换为内能的增量,温度升高.在b c →绝热过程中,系统减少内能,降低温度对外作功,与外界无热量交换.在c a →等压压缩过程中,系统放出热量,温度降低,对外作负功.计算得出各个过程的热量和功,根据热机循环效率的定义即可得证. 证明:在a b →等体过程中,系统从外界吸收的热量为,,1222()()V m V V m b a C mQ C T T p V p V M R=-=-在c a →等压压缩过程中,系统放出热量的大小为,,2122()()p m P p m c a C mQ C T T p V p V M R=-=- 所以,该热机的循环效率为41,212221,12222(1)()111()(1)p m P V V m V C p V p V Q V p Q C p V p V p ηγ--=-=-=---12-16 分析:根据卡诺定理,在相同的高温热源(1T ),与相同的低温热源(2T )之间工作的一切可逆热机的效率都相等,有221111Q TQ T η=-=-.非可逆热机的效率221111Q T Q T η=-<-. 解:(1) 该热机的效率为21137.4%Q Q η=-= 如果是卡诺热机,则效率应该是21150%c T T η=-= 可见它不是可逆热机.(2) “尽可能地提高效率”是指热机的循环尽可能地接近理想的可逆循环工作方式.根据热机效率的定义,可得理想热机每秒吸热1Q 时所作的功为4410.50 3.3410 1.6710c A Q J J η==⨯⨯=⨯5第十三章 气体动理论一、选择题 13-1 D 13-2 B 13-3 D 13-4 D 13-5 C 13-6 C 13-7 A 二、填空题13-8 相同,不同;相同,不同,相同. 13-9 (1)分子体积忽略不计;(2)分子间的碰撞是完全弹性的; (3)只有在碰撞时分子间才有相互作用.13-10 速率大于p v 的分子数占总分子数的百分比,分子的平均平动动能,()d 1f v v ∞=⎰,速率在∞~0内的分子数占总分子数的百分之百.13-11 氧气,氢气,1T 13-12 3,2,013-13 211042.9-⨯J ,211042.9-⨯J ,1:2 13-14 概率,概率大的状态. 三、计算题13-15 分析:根据道尔顿分压定律可知,内部无化学反应的平衡状态下的混合气体的总压强,等于混合气体中各成分理想气体的压强之和.解:设氦、氢气压强分别为1p 和2p ,则12p p p =+.由理想气体物态方程,得1He He m RTp M V =, 222H H m RT p M V=所以,总压强为62255123334.010 4.0108.31(27230)()()4.010 2.010 1.010H He He H m m RT p p p Pa M M V -----⨯⨯⨯+=+=+=+⨯⨯⨯⨯ 47.5610Pa =⨯13-16 解:(1)=可得 氢的方均根速率3/ 1.9310/s m s ===⨯ 氧的方均根速率483/m s === 水银的方均根速率/193/s m s === (2) 温度相同,三种气体的平均平动动能相同232133 1.3810300 6.211022k kT J J ε--==⨯⨯⨯=⨯13-17 分析:在某一速率区间,分布函数()f v 曲线下的面积,表示分子速率在该速率区间内的分子数占总分子数的百分比.速率区间很小时,这个百分比可近似为矩形面积()Nf v v N∆∆=,函数值()f v 为矩形面积的高,本题中可取为()p f v .利用p v 改写麦克斯韦速率分布律,可进一步简化计算.解: ()Nf v v N∆=∆ 当300T K =时,氢气的最概然速率为1579/p v m s ==== 根据麦克斯韦速率分布率,在v v v →+∆区间内的分子数占分子总数的百分比为232224()2mvkT N m e v v N kTππ-∆=∆7用p v 改写()f v v ∆有223()2222()4()e ()()2pv mv v kTpp mv v f v v v v e kTv v ππ--∆∆=∆=由题意可知,10p v v =-,(10)(10)20/p p v v v m s ∆=+--=.而10p v ,所以可取p v v ≈,代入可得1201.05%1579p N e N-∆=⨯=13-18 解:(1) 由归一化条件204()d 1FF V V dN V AdV f v v N Nπ∞===⎰⎰⎰ 可得 334F NA V π= (2) 平均动能2230143()d d 24FV FV N f v v mv v N V πωωπ∞==⨯⨯⎰⎰423031313d ()2525FV F F F mv v mv E v =⨯==⎰13-19 分析:气体分子处于平衡态时,其平均碰撞次数于分子数密度和分子的平均速率有关.温度一定时,平均碰撞次数和压强成正比.解:(1) 标准状态为50 1.01310p Pa =⨯,0273T K =,氮气的摩尔质量32810/M kg mol -=⨯由公式v =kTp n =可得224Z d nv d d π===5102231.013104(10)/1.3810273s π--⨯=⨯⨯⨯次885.4210/s =⨯次(2) 41.3310p Pa -=⨯,273T K =4102231.331044(10)/1.3810273Z ds ππ---⨯==⨯⨯⨯次0.71/s =次13-20 分析:把加热的铁棒侵入处于室温的水中后,铁棒将向水传热而降低温度,但“一大桶水”吸热后的水温并不会发生明显变化,因而可以把“一大桶水”近似为恒温热源.把铁棒和“一大桶水”一起视为与外界没有热和功作用的孤立系统,根据热力学第二定律可知,在铁棒冷却至最终与水同温度的不可逆过程中,系统的熵将增加.熵是态函数,系统的熵变仅与系统的始末状态有关而与过程无关.因此,求不可逆过程的熵变,可在始末状态之间设计任一可逆过程进行求解. 解:根据题意有 1273300573T K =+=,227327300T K =+=.设铁棒的比热容为c ,当铁棒的质量为m ,温度变化dT 时,吸收(或放出)的热量为dQ mcdT =设铁棒经历一可逆的降温过程,其温度连续地由1T 降为2T ,在这过程中铁棒的熵变为2121d d 300ln 5544ln /1760/573T T T Q mc T S mc J K J K T T T ∆====⨯⨯=-⎰⎰9第十四章 振动学基础一、选择题 14-1 C 14-2 A 14-3 B 14-4 C 14-5 B 二、填空题 14-622 14-7 5.5Hz ,114-82411s ,23π 14-9 0.1,2π14-10 2222mA T π- 三、计算题14-11 解:简谐振动的振幅2A cm =,速度最大值为3/m v cm s =则 (1) 2220.024 4.20.033m A T s s s v ππππω⨯====≈ (2) 222220.03m/s 0.045m/s 4m m m a A v v T ππωωπ===⨯=⨯≈ (3) 02πϕ=-,3rad/s 2ω= 所以 30.02cos()22x t π=- [SI]14-12 证明:(1) 物体在地球内与地心相距为r 时,它受到的引力为2MmF Gr=- 负号表示物体受力方向与它相对于地心的位移方向相反.式中M 是以地心为中心,以r 为半径的球体内的质量,其值为10343M r πρ=因此 43F G m r πρ=-物体的加速度为43F aG r m πρ==- a 与r 的大小成正比,方向相反,故物体在隧道内作简谐振动. (2) 物体由地表向地心落去时,其速度dr dr dv dr v a dt dv dt dv=== 43vdv adr G rdr πρ==-043v r R vdv G rdr πρ=-⎰⎰ 所以v =又因为dr vdt == 所以tRdt =-⎰⎰则得1126721min 4t s ===≈14-13 分析:一物体是否作简谐振动,可从动力学方法和能量分析方法作出判断.动力学的分析方法由对物体的受力分析入手,根据牛顿运动方程写出物体所满足的微分方程,与简谐振动的微分方程作出比较后得出判断.能量法求解首先需确定振动系统,确定系统的机械能是否守恒,然后需确定振动物体的平衡位置和相应的势能零点,再写出物体在任意位置时的机械能表达式,并将其对时间求一阶导数后与简谐振动的微分方程作比较,最后作出是否作简谐振动的判断. 解:(1) 能量法求解取地球、轻弹簧、滑轮和质量为m 的物体作为系统.在物体上下自由振动的过程中,系统不受外力,系统内无非保守内力作功,所以系统的机械能守恒. 取弹簧的原长处为弹性势能零点,取物体受合力为零的位置为振动的平衡位11置,也即Ox 轴的坐标原点,如图14-13(a)所示.图14-13 (a)图14-13 (b)设物体在平衡位置时,弹簧的伸长量为l ,由图14-13(b)可知,有10mg T -=,120T R T R -=,2T kl =得 mgl k=当物体m 偏离平衡位置x 时,其运动速率为v ,弹簧的伸长量为x l +,滑轮的角速度为ω.由系统的机械能守恒,可得222111()222k x l mv J mgx ω+++-=常量 式中的角速度 1v dxR R dt ω==将机械能守恒式对时间t 求一阶导数,得2222d x k x x dt m J Rω=-=-+ 上式即为简谐振动所满足的微分方程,式中ω为简谐振动的角频率2km J R ω=+另:动力学方法求解物体和滑轮的受力情况如图14-13(c)所示.12图14-13 (c)1mg T ma -= (1)12()JT T R J a Rβ-==(2) 设物体位于平衡位置时,弹簧的伸长量为l ,因为这时0a =,可得12mg T T kl ===当物体对平衡位置向下的位移为x 时,2()T k l x mg kx =+=+ (3)由(1)、(2)、(3)式解得2ka x m J R =-+物体的加速度与位移成正比,方向相反,所以它是作简谐振动. (2) 物体的振动周期为222m J R T kππω+==(3) 当0t =时,弹簧无伸长,物体的位移0x l =-;物体也无初速,00v =,物体的振幅22200()()v mgA x l l kω=+=-==00cos 1x kl A mgϕ-===- 则得 0ϕπ=13所以,物体简谐振动的表达式为2cos()mg k x t k m J Rπ=++ 14-14 分析:M 、m 一起振动的固有频率取决于k 和M m +,振动的初速度0m v 由M 和m 的完全非弹性碰撞决定,振动的初始位置则为空盘原来的平衡位置.图14-14解:设空盘静止时,弹簧伸长1l ∆(图14-14),则1Mg k l =∆ (1)物体与盘粘合后且处于平衡位置,弹簧再伸长2l ∆,则12()()m M g k l l +=∆+∆ (2)将(1)式代入得2mg k l =∆与M 碰撞前,物体m 的速度为02m v gh =与盘粘合时,服从动量守恒定律,碰撞后的速度为02m m mv v gh m M m M==++取此时作为计时零点,物体与盘粘合后的平衡位置作为坐标原点,坐标轴方向竖直向下.则0t =时,02mg x l k =-∆=-,02mv v gh m M==+14ω=由简谐振动的初始条件,0000cos , sin x A v A ϕωϕ==-可得振幅A ===初相位0ϕ满足000tan v x ϕω=-== 因为 00x <,00v >所以 032πϕπ<<0ϕπ=+所以盘子的振动表式为cos x π⎤⎫=+⎥⎪⎪⎥⎭⎦14-15 解:(1) 振子作简谐振动时,有222111222k p E E E mv kx kA +==+= 当k p E E =时,即12p E E =.所以 22111222kx kA =⨯0.200.14141x m m ==±=±(2)由条件可得振子的角频率为/2/s rad s ω=== 0t =时,0x A =,故00ϕ=.动能和势能相等时,物体的坐标15x =即cos A t ω=,cos t ω= 在一个周期内,相位变化为2π,故3574444t ππππω=, , , 时间则为1 3.140.3944 2.0t s s πω===⨯ 213330.39 1.24t t s s πω===⨯=315550.39 2.04t t s s πω===⨯=417770.39 2.74t t s s πω===⨯=14-16 解:(1) 合成振动的振幅为A =0.078m== 合成振动的初相位0ϕ可由下式求出110220*********.05sin0.06sin sin sin 44tan 113cos cos 0.05cos 0.06cos 44A A A A ππϕϕϕππϕϕ⨯+⨯+===+⨯+⨯ 084.8ϕ=(2) 当0102k ϕϕπ-=± 0,1,2,k =时,即0103224k k πϕπϕπ=±+=±+时, 13x x +的振幅最大.取0k =,则 031354πϕ== 当020(21)k ϕϕπ-=±+0,1,2,k =时,即020(21)(21)4k k πϕπϕπ=±++=±++时,13x x +的振幅最小.取0k =,则 052254πϕ==(或031354πϕ=-=-) 14-17 分析:质点同时受到x 和y 方向振动的作用,其运动轨迹在Oxy 平面内,16质点所受的作用力满足力的叠加原理.解:(1) 质点的运动轨迹可由振动表达式消去参量t 得到.对t 作变量替换,令12t t '=-,两振动表达式可改写为0.06cos()0.06sin 323x t t πππ''=+=-0.03cos3y t π'=将两式平方后相加,得质点的轨迹方程为222210.060.03x y += 所以,质点的运动轨迹为一椭圆. (2) 质点加速度的两个分量分别为22220.06()cos()3339x d x a t x dt ππππ==-+=-22220.03()cos()3369y d y a t y dt ππππ==--=-当质点的坐标为(,)x y 时,它所受的作用力为22()99x y F ma i ma j m xi yj mr ππ=+=-+=-可见它所受作用力的方向总是指向中心(坐标原点),作用力的大小为223.1499F ma π====⨯=14-18 分析:充电后的电容器和线圈构成LC 电磁振荡电路.不计电路的阻尼时,电容器极板上的电荷量随时间按简谐振动的规律变化.振荡电路的固有振动频率由L 和C 的乘积决定,振幅和初相位由系统的初始状态决定.任意时刻电路的状态都可由振荡的相位决定. 解:(1) 电容器中的最大能量212e W C ε=线圈中的最大能量17212m m W LI =在无阻尼自由振荡电路中没有能量损耗,e m W W =.因此221122m C LI ε=21.4 1.410m I A A -===⨯(2) 当电容器的能量和电感的能量相等时,电容器能量是它最大能量的一半,即22124q C C ε= 因此661.010 1.41.0101.41q C C --⨯⨯==±=±⨯ (3) LC 振荡电路中,电容器上电荷量的变化规律为00cos()q Q t ωϕ=+式中0Q C ε=,ω=.因为0t =时,0q Q =,故有00ϕ=.于是q C ε=当首次q =时有C ε==,4π=53.147.85104t s -===⨯18第十五章 波动学基础一、选择题 15-1 B 15-2 C 15-3 B 15-4 A 15-5 C 15-6 C 二、填空题15-7 波源,传播机械波的介质 15-8B C,2B π,2C π,lC ,lC - 15-9 cos IS θ 15-10 0 15-11 0.45m 三、计算题15-12 分析:平面简谐波在弹性介质中传播时,介质中各质点作位移方向、振幅、频率都相同的谐振动,振动的相位沿传播方向依次落后,以速度u 传播.把绳中横波的表达式与波动表达式相比较,可得到波的振幅、波速、频率和波长等特征量.t 时刻0x >处质点的振动相位与t 时刻前0x =处质点的振动相位相同. 解:(1) 将绳中的横波表达式0.05cos(104)y t x ππ=-与标准波动表达式0cos(22)y A t x πνπλϕ=-+比较可得0.05A m =,52v Hz ωπ==,0.5m λ=,0.55/ 2.5/ u m s m s λν==⨯=. (2) 各质点振动的最大速度为0.0510/0.5/ 1.57/m v A m s m s m s ωππ==⨯=≈各质点振动的最大加速度为192222220.05100/5/49.3/m a A m s m s m s ωππ==⨯=≈(3) 将0.2x m =,1t s =代入(104)t x ππ-的所求相位为10140.29.2ϕπππ=⨯-⨯=0.2x m =处质点的振动比原点处质点的振动在时间上落后0.20.082.5x s s u == 所以它是原点处质点在0(10.08)0.92t s s =-=时的相位. (4) 1t s =时波形曲线方程为x x y 4cos 05.0) 4110cos(05.0πππ=-⨯=1.25t s =时波形曲线方程为)5.0 4cos(05.0) 425.110cos(05.0ππππ-=-⨯=x x y1.50t s =时波形曲线方程为) 4cos(05.0) 45.110cos(05.0ππππ-=-⨯=x x y1t s =, 1.25t s =, 1.50t s =各时刻的波形见图15-12.15-13 解:(1) 由于平面波沿x 轴负方向传播,根据a 点的振动表达式,并以a 点为坐标原点时的波动表达式为0cos[()]3cos[4()]20x xy A t t u ωϕπ=++=+(2) 以a 点为坐标原点时,b 点的坐标为5x m =-,代入上式,得b 点的振动表达式为53cos[4()]3cos(4)20b y t t πππ=-=- 若以b 点为坐标原点,则波动表达式为3cos[4()]20xy t ππ=+-s1s5.12015-14 解:由波形曲线可得100.1A cm m ==,400.4cm m λ==从而0.4/0.2/2u m s m s T λ===,2/rad s Tπωπ==(1) 设振动表达式为 0cos[()]xy A t uωϕ=++由13t s =时O 点的振动状态:2Ot Ay =-,0Ot v >,利用旋转矢量图可得,该时刻O 点的振动相位为23π-,即 10032()33Ot t t ππϕωϕϕ==+=+=-所以O 点的振动初相位为 0ϕπ=-将0x =,0ϕπ=-代入波动表达式,即得O 点的振动表达式为0.1cos()O y t ππ=-(2) 根据O 点的振动表达式和波的传播方向,可得波动表达式0cos[()]0.1cos[(5))]xy A t t x uωϕππ=++=+-(3) 由13t s =时Q 点的振动状态:0Qt y =,0Qt v <,利用旋转矢量图可得,该时刻Q 点的振动相位为2π,即013[()]30.22Q Qt t x x t u πππϕωϕπ==++=+-=可得 0.233Q x m =将0.233Q x m =,0ϕπ=-代入波动表达式,即得Q 点的振动表达式为0.1cos()6Q y t ππ=+(4) Q 点离O 点的距离为0.233Q x m =15-15 分析:波的传播过程也是能量的传播过程,波的能量同样具有空间和时间的周期性.波的强度即能流密度,为垂直通过单位面积的、对时间平均的能流.注意能流、平均能流、能流密度、能量密度、平均能量密度等概念的区别和联系.解:(1) 波中的平均能量密度为32235319.010/ 3.010/2300I w A J m J m u ρω--⨯====⨯最大能量密度为 532 6.010/m w w J m -==⨯ (2) 每两个相邻的、相位差为2π的同相面间的能量为25273000.14() 3.010() 4.621023002u d W wV w S w J v λππ--====⨯⨯⨯⨯=⨯15-16 分析:根据弦线上已知质点的振动状态,推出原点处质点振动的初相位,即可写出入射波的表达式.根据入射波在反射点的振动,考虑反射时的相位突变,可写出反射波的表达式.据题意,入射波和反射波的能量相等,因此,在弦线上形成驻波的平均能流为零.解:沿弦线建立Ox 坐标系,如图15-16所示.根据所给数据可得图15-16/100/u s m s ===,2100 /rad s ωπνπ==,100250u m m v λ===, (1) 设原点处质元的初相位为0ϕ,入射波的表达式为0cos[()]xy A t uωϕ=-+据题意可知,在10.5x m =处质元的振动初相位为103πϕ=,即有110001000.51003x u ωππϕϕϕ⨯=-+=-+=得 05326πππϕ=+=所以,入射波表达式为550.04cos[100()]0.04cos[100()]61006x x y t t u ππππ=-+=-+入考虑半波损失,反射波在2x 处质元振动的初相位为2010511100()10066ππϕππ=-++=反射波表达式为220cos[()]x x y A t uωϕ-=++反 ]611)100(100cos[04.0]611)10010(100cos[04.0ππππ++=+-+=x t x t(2)入射波和反射波的传播方向相反,叠加后合成波为驻波40.08cos()cos(100)23y y y x t ππππ=+=++入反波腹处满足条件 2x k πππ+=即 1()2x k =-因为010x m ≤≤,在此区间内波腹位置为0.5, 1.5, 2.5,,9.5x m = 波节处满足条件 (21)22x k πππ+=+即 x k = 在区间010x m ≤≤,波节坐标为0,1,2,,10x m = (3) 合成为驻波,在驻波中没有能量的定向传播,因而平均能流为零. 15-17 分析:运动波源接近固定反射面而背离观察者时,观察者即接收到直接来自波源的声波,也接收到来自固定反射面反射的声波,两声波在A 点的振动合成为拍.当波源相对于观察者静止,而反射面接近波源和观察者时,观察者接收到直接来自波源的声波无多普勒效应,但反射面反射的频率和观察者接收到的反射波频率都发生多普勒效应,因此,两个不同频率的振动在A 点也将合成为拍. 解:(1) 波源远离观察者而去,观察者接收到直接来自波源声音频率为1R S Suu v νν=+观察者相对反射面静止,接收到来自反射面的声波频率2R ν就是固定反射面接收到的声波频率,这时的波源以S v 接近反射面.2R S Suu v ννν==-反 A 处的观察者听到的拍频为21222S S R R S S S S Suv u uu v u v u v νννννν∆=-=-=-+- 由此可得方程2220S S S v uv u ννν∆+-∆=0.25/S v m s ≈(2) 观察者直接接收到的波的频率就是波源振动频率1RS νν'= 对于波源来说,反射面相当于接收器,它接收到的频率为S u vuνν+'=对于观察者来说,反射面相当于另一波源,观察者接收到的来自反射面的频率为2RS S u u u v u vu v u v u u vνννν++''===--- A 处的观察者听到的拍频为212RR S S S u v vu v u vνννννν+''∆=-=-=-- 所以波源的频率为3400.24339820.4S u v Hz Hz v νν--=∆=⨯= 15-18 解:平面电磁波波动方程的标准形式为222221y y E E x u t ∂∂=∂∂, 222221z zH H x u t ∂∂=∂∂ 与平面电磁波的标准方程相比较,可知波速为82.0010/u m s ==⨯ 所以介质的折射率为1.50cn u== 15-19 解:由电磁波的性质可得00E H =而 000B H μ=, 真空中的光速c =所以0E B c==从而可得 0008703000.8/0.8/310410B E H A m A m c μμπ-====⨯⨯⨯ 磁场强度沿y 轴正方向,且磁场强度和电场强度同相位,所以0.8cos(2)3y H vt ππ=+[SI ]第十六章 几何光学一、选择题 16-1 A 16-2 B 16-3 B 16-4 C 二、填空题16-5 6.0S cm '=,12V = 16-6 80f cm '=16-7 34s cm '=-,2V =- 16-8 左,2R 三、计算题16-9 解:设空气的折射率为n ,玻璃的折射率为n ',则 1n =, 1.5n '= 因为 2r = 所以物方焦距4nrf cm n n=='- 像方焦距6n rf cm n n ''=='- 又因为 1f fs s'+='而 8s cm = 所以 12s cm '=(实像)1ns y V y n s''==-=-' 其中 0.1y cm = 所以 0.1y Vy cm '==-16-10 分析:将球面反射看作n n '=-时球面折射的特例,可由折射球面的成像规律求解。
大学物理习题册详细解析(电磁学、光学)
四川大学大学物理习题册详细解析(电磁学、光学)[主编聂娅]四川大学物理学院二〇一二年十月大学物理习题册解答答静电场1一. 选择和填空题1. B ,2. A ,3.A ,4. D ,5. B 二. 填空题1. ()40216/R S Q ε∆π 由圆心O 点指向△S2. λ=Q / a 异号3.4(V/m ) 向上 4.3028R qdεπ 指向缺口 5.E R 2π三.计算题1. 解:如图所示,由于对称分布,放在中心处的q 0无论电荷多少都能取得平衡.因四个定点上的电荷受力情况相同,因此只需考虑任一顶点上的电荷受力情况.例如考虑D 点处的电荷,顶点A 、B 、C 及中心处的电荷所激发的电场对D 处点电荷的作用力的大小分别为:()2002000122/24a qq a qq qE f εεπ=π== ()202222824aq a q qE f B εεπ=π== 20234a q qE f A επ==20244a q qE f C επ== 各1分各力方向如图所示,α=45°.D 处电荷的受力平衡条件为:∑=0x f , ∑=0y f 用0cos cos 123=-+=∑ααf f f f x 3分 将f 1,f 2,f 3式代入上式化简得:()4/2210q q +==0.957 q 2分用∑=0y f 得同样结果.2.解:在φ处取电荷元,其电荷为d q =λd l = λ0R sin φ d φ它在O 点产生的场强为R R qE 00204d sin 4d d εφφλεπ=π= 3分在x 、y 轴上的二个分量d E x =-d E cos φ 1分 d E y =-d E sin φ 1分 对各分量分别求和⎰ππ=000d cos sin 4φφφελR E x =0 2分RR E y 0002008d sin 4ελφφελ-=π=⎰π 2分∴j Rj E i E E y x008ελ-=+= 1分3.解:(1)如图示,电荷元dx dq λ=(L Q=λ)在P 点的场强为20)(4x r dxdE -=πελ 整个带电直线在P 点的场强为)4/(4)(42202/2/20L r Lx r dxdE E L L -=-==⎰⎰-πελπελ 方向沿x 轴正向(2)根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为⎰'=L r dqE 24sin πεα利用几何关系22,sin x r r r r+=''=α,统一积分变量得 2202/3222/2/0412)(41rL r Qr x L r Q d x E L L +=+=⎰-πεπε当∞→L 时,若棒单位长度所代电荷λ为常量,则P 点电场强度 rL r LQ r E L 02202/41/21limπελπε=+=∞→4.解:将半球壳分割为一组平行细圆环,任一圆环所代电荷元θθπσσd R dS dq sin 22==,在点O 激发的电场强度为i r x x d q E d2/3220)(41+=πε 由于平行细圆环在O 激发的电场强度相同,利用几何关系θcos R x =xLzθsin R r =统一积分变量,有θθθεσθθπσθπεπεd d R R R r x xdq dE cos sin 2sin 2cos 41)(4102302/3220==+=积分得 02/004c o s s i n 2εσθθθεσπ==⎰d E四.证明题1.证明:以λ表示线上线电荷密度,如图。
大学物理——电磁学习题答案
静电场1直角三角形ABC 的A 点上,有电荷C 108.191-⨯=q ,B 点上有电荷C 108.492-⨯-=q ,试求C 点的电场强度(设m 03.0m,04.0==AC BC ). 解:1q 在C 点产生的场强 20114AC q E πε= 2q 在C 点产生的场强 22204q E BC πε=C 点的合场强43.2410V E m ==⨯ 方向如图2. 带电细线弯成半径为R 的半圆形,电荷线密度为φλλsin 0=,式中0λ为一常数,φ为半径R 与x 轴所成的夹角,如图所示.试求环心O 处的电场强度. 解:R d R dl dE 00204sin 4πεϕϕλπελ==ϕcos dE dE x = 考虑到对称性 0=x E ϕsin dE dE y =RR d dE E y 0000284sin sin λϕϕλϕπ===⎰⎰ 方向沿y 轴负向3.一半径为R 的半球面,均匀地带有电荷,电荷面密度为σ,求球心O 处的电场强度. 解:把球面分割成许多球带,球带所带电荷 dl r dq σπ2=2322023220)(42)(4r x dlrx r x xdqdE +=+=πεσππεθcos R x = θs i n R r = θRd dl =20001sin2224E d i πσσθθεε==⎰ 4如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为λ=q / L ,在x 处取一电荷元d q = λd x = q d x / L ,它在P 点的场强:()204d d x d L q E -+π=ε()204d x d L L xq -+π=ε 2分L Pd EO总场强为 ⎰+π=L x d L x L q E 020)(d 4-ε()d L d q+π=043分 方向沿x 轴,即杆的延长线方向.5一个细玻璃棒被弯成半径为R 的半圆形,沿其上半部分均匀分布有电荷+Q ,沿其下半部分均匀分布有电荷-Q ,如图所示.试求圆心O 处的电场强度.解:把所有电荷都当作正电荷处理. 在θ处取微小电荷d q = λd l = 2Q d θ / π它在O 处产生场强 θεεd 24d d 20220R QR q E π=π= 按θ角变化,将d E 分解成二个分量:θθεθd sin 2sin d d 202RQ E E x π==,θθεθd cos 2cos d d 202R Q E E y π-=-=对各分量分别积分,积分时考虑到一半是负电荷⎥⎦⎤⎢⎣⎡-π=⎰⎰πππθθθθε2/2/0202d sin d sin 2R QE x =0, 2022/2/0202d cos d cos 2R QR Q E y εθθθθεππππ-=⎥⎦⎤⎢⎣⎡-π-=⎰⎰ 所以j RQ j E i E E y x202επ-=+=6边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在此区域有一静电场,场强为j i E300200+= .试求穿过各面的电通量.解:由题意知E x =200 N/C , E y =300 N/C ,E z =0平行于xOy 平面的两个面的电场强度通量 01=±==⋅S E S E z eΦ 平行于yOz 平面的两个面的电场强度通量2002±=±==⋅S E S E x eΦ b 2N ·m 2/C“+”,“-”分别对应于右侧和左侧平面的电场强度通量平行于xOz 平面的两个面的电场强度通量 3003±=±==⋅S E S E y eΦ b 2 N ·m 2/C“+”,“-”分别对应于上和下平面的电场强度通量.xz7图中所示, A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上电荷面密度σA =-17.7×10-8 C ·m -2,B 面的电荷面密度σB =35.4 ×10-8 C ·m -2.试计算两平面之间和两平面外的电场强度.(真空介电常量ε0=8.85×10-12 C 2·N -1·m -2 )解:两带电平面各自产生的场强分别为:()02/εσA A E = 方向如图示()02/εσB B E = 方向如图示由叠加原理两面间电场强度为()()02/εσσB A B A E E E +=+= =3×104 N/C 方向沿x 轴负方向两面外左侧()()02/εσσA B A B E E E -=-=' =1×104 N/C 方向沿x 轴负方向两面外右侧 E ''= 1×104 N/C 方向沿x 轴正方向8 一球体内均匀分布着电荷体密度为ρ的正电荷,若保持电荷分布不变,在该球体中挖去半径为r 的一个小球体,球心为O ',两球心间距离d O O =',如图所示. 求:(1) 在球形空腔内,球心O '处的电场强度0E .(2) 在球体内P 点处的电场强度E .设O '、O 、P 三点在同一直径上,且d OP =.解:(1)利用补偿法,以O 为圆心,过O '点作一个半径为d 的高斯面。
大学物理电磁学综合练习题(含答案)
解:选择电流元
d I = I dl = I d R
d B = 0 d I = 0 I d 2R 2R
d Bx = − d B sin
=
−
0I 2 2R
sin
d
d By = d B cos
=
0I 2 2R
cos
d
Bx
=
0 d Bx
=
− 0I 2R
I • P•
o• L2
(D) M = 。
解:线圈 1(或 2)的电流变化不会引起线圈 2(或 1)的磁
通量的变化。
二、填充题(单位制为 SI)
1.
电流回路如图所示,弧线
AD
、
BC
为同心半圆环。某时刻一电子以速度
v
沿水平向左
的方向通过圆心 o 点,则电子在该点受到的洛仑兹力大小为 Fm
=
0I 4
ev
5-5
则此导线中的感生电动势 i
=
5 2
BR 2 ;
O 点电势高。
解:添 ob 后,整个线圈的感应电动势为零,所以
oacb
=
ob
=
ob(v
B) dl
=
− obrB
d
r
=
−
0
5R
rB
d
r
=
=
−
5 2
R2B
5.如图所示,一无限长圆柱体半径为 R ,均匀通过电流 I ,则穿过图中阴影部分的磁通量
解:产生涡旋电场,据 i = E K d l 可判断。
10.两个自感应系数分别为 L1 、 L2 ,半径均为 R 的圆
L1
大学物理(学习指导详细答案)答案7-14
qa qa 2 2 32 2 0 ( y a ) 2 0 y 3
所以应该选择答案(C)。 习题 7—8 设有一“无限大”均匀带正电 荷的平面,取 X 轴垂直带电平面,坐标原 点在带电平面上,则其周围空间各点的电 场强度 E 随距离平面的位置坐标 x 的变化 的关系曲线为(规定场强方向沿 X 轴正方向
(A)
2 3qQ 4 0 a
(B)
4 3qQ 4 0 a
(C)
6 3qQ 4 0 a
(D)
8 3qQ 4 0 a
q
解:根据电势叠加原理,三角形的中心 O 处的电势为
UO q 2q 3q 6 3q 4 0 a 4 0 (2 3)a sin 60
a
因为无穷远处电势为零,所以外力的功为
第七章 静电学一章习题答案
习题 7—1 半径为 R 的均匀带电球体的静电场中各点的电场强度的大小 E 与距 球心的距离 r 的关系曲线为: [ ]
E (A) O E∝1/r R
2
E ( B) O R E∝1/r
2
E (C) O R E∝1/r
2
E (D) O
E∝1/r E∝1/r R
2
r
r
习题 7―1 图
S3
习题 7─14 如图,A 点与 B 点间距离 C 为 2l,OCD 是以 B 为中心、以 l 为半径 l 的半圆路径,A、B 两处各放有一点电荷 A B O 带,电量分别为+q 和-q,则把另一带电 D ﹢q ﹣q 量为 Q(Q<0) 的点电荷从 D 点沿路径 2l DCO 移到 O 点的过程中, 电场力所作的 习题 7―14 图 功为 。 解:放在 A、B 两处的点电荷+q 和-q 是场源电荷,设无穷远处为电势零点, 则 D 点的电势为