大学物理电磁学综合复习试题
大学物理电磁学复习题含答案

.题8-12图8-12 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ解: 如题8-12图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ,两面间, n E)(21210σσε-=1σ面外, n E)(21210σσε+-= 2σ面外, n E)(21210σσε+=n:垂直于两平面由1σ面指为2σ面.8-13 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题8-13图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的. 解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题8-13图(a).(1) ρ+球在O 点产生电场010=E,ρ- 球在O 点产生电场dπ4π3430320r Eερ= ∴ O 点电场d33030r E ερ= ; (2) ρ+在O '产生电场'dπ4d 3430301Eερπ='ρ-球在O '产生电场002='E∴ O ' 点电场 003ερ='E '题8-13图(a) 题8-13图(b).(3)设空腔任一点P 相对O '的位矢为r ',相对O 点位矢为r(如题8-13(b)图)则 03ερrEPO=, 03ερr E O P '-=' ,∴ 0003'3)(3ερερερd r r E E E OP PO P=='-=+='∴腔内场强是均匀的.8-14 一电偶极子由q =1.0×10-6C d=0.2cm ,把这电偶极子放在1.0×105N ·C -1解: ∵ 电偶极子p在外场E 中受力矩E p M⨯=∴ qlE pE M ==max 代入数字4536max 100.2100.1102100.1---⨯=⨯⨯⨯⨯⨯=M m N ⋅8-15 两点电荷1q =1.5×10-8C ,2q =3.0×10-8C ,相距1r =42cm ,要把它们之间的距离变为2r =25cm ,需作多少功?解: ⎰⎰==⋅=2221021021π4π4d d r r r r q q r r q q r F A )11(21r r - 61055.6-⨯-=J外力需作的功 61055.6-⨯-=-='A A J题8-16图8-16 如题8-16图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C解: 如题8-16图示0π41ε=O U 0)(=-R q Rq0π41ε=O U )3(R q R q -Rq0π6ε-=∴ Rqq U U qA o C O 00π6)(ε=-=8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点Ed 如图,由于对称性,O 点场强沿y 轴负方向题8-17图θεθλππcos π4d d 2220⎰⎰-==R R E E yR0π4ελ=[)2sin(π-2sin π-]R0π2ελ-=(2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===AB200012ln π4π4d π4d RRx x xxU ελελελ 同理CD 产生 2ln π402ελ=U 半圆环产生 0034π4πελελ==R R U∴ 0032142ln π2ελελ+=++=U U U UO8-18 一电子绕一带均匀电荷的长直导线以2×104m ·s -1的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =9.1×10-31kg ,电子电量e =1.60×10-19C) 解: 设均匀带电直线电荷密度为λ,在电子轨道处场强 rE 0π2ελ=电子受力大小 re eE F e0π2λ==∴ rv mr e 20π2=ελ得 1320105.12π2-⨯==em v ελ1m C -⋅8-19 空气可以承受的场强的最大值为E =30kV ·cm -1,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为d =0.5cm解: 平行板电容器内部近似为均匀电场 ∴ 4105.1d ⨯==E U V8-20 根据场强E 与电势U 的关系U E -∇=,求下列电场的场强:(1)点电荷q 的电场;(2)总电量为q ,半径为R 的均匀带电圆环轴上一点;*(3)偶极子ql p =的l r >>处(见题8-20图)解: (1)点电荷 rqU 0π4ε=题 8-20 图∴ 0200π4r r q r r U E ε=∂∂-= 0r 为r 方向单位矢量.(2)总电量q ,半径为R 的均匀带电圆环轴上一点电势220π4x R qU +=ε∴ ()ix R qxi xU E 2/3220π4+=∂∂-=ε(3)偶极子l q p=在l r >>处的一点电势200π4cos ])cos 21(1)cos 2(1[π4r ql llr qU εθθθε=+--=∴ 30π2cos r p r U Erεθ=∂∂-= 30π4sin 1r p U r E εθθθ=∂∂-=8-21 证明:对于两个无限大的平行平面带电导体板(题8-21图)来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)证: 如题8-21图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ题8-21图(1)则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有0)(d 32=∆+=⋅⎰S S E sσσ∴ +2σ03=σ说明相向两面上电荷面密度大小相等、符号相反;(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即222204321=---σσσσ 又∵ +2σ3=σ∴ 1σ4σ=说明相背两面上电荷面密度总是大小相等,符号相同.8-22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0 mm .B ,C 都接地,如题8-22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少?解: 如题8-22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题8-22图(1)∵ AB AC U U =,即 ∴ AB AB AC AC E E d d = ∴ 2d d21===ACAB AB AC E E σσ 且 1σ+2σSq A =得 ,32Sq A =σ Sq A 321=σ而 7110232-⨯-=-=-=A Cq S qσCC10172-⨯-=-=S q B σ (2)301103.2d d ⨯===AC AC AC A E U εσV 8-23 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q(1)(2)*(3)解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势题8-23图⎰⎰∞∞==⋅=22020π4π4d d R R R qrr q r E U εε(2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q+与内表面q -产生:0π4π42020=-=R q R q U εε(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且π4'π4'π4'202010=+-+-=R q q R q R q U A εεε 得 q R R q 21=' 外球壳上电势()22021202020π4π4'π4'π4'R q R R R q q R q R q U B εεεε-=+-+-=8-24 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题8-24图所示,设金属球感应电荷为q ',则球接地时电势0=O U8-24图由电势叠加原理有:=O U 03π4π4'00=+Rq R q εε 得 -='q 3q 8-25 有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F .试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力; (2)小球3依次交替接触小球1,2很多次后移去,小球1,2解: 由题意知 202π4r q F =(1)小球3接触小球1后,小球3和小球1均带电2q q =',小球3再与小球2接触后,小球2与小球3均带电q q 43=''∴ 此时小球1与小球2间相互作用力00220183π483π4"'2F rqr q q F =-=εε (2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为32q . ∴ 小球1、2间的作用力00294π432322F r qq F==ε *8-26 如题8-26图所示,一平行板电容器两极板面积都是S ,相距为d ,分别维持电势A U =U ,B U =0不变.现把一块带有电量q 的导体薄片平行地放在两极板正中间,片的面积也是S ,片的厚度略去不计.求导体薄片的电势.解: 依次设A ,C ,B 从上到下的6个表面的面电荷密度分别为1σ,2σ,3σ,4σ,5σ,6σ如图所示.由静电平衡条件,电荷守恒定律及维持U U AB =可得以下6个方程题8-26图⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧++++==+=+-==+=+===+65432154326543002101σσσσσσσσσσεσσσσεσσd U S qSq d U U C S S q B A解得 Sq 261==σσSq dU2032-=-=εσσ Sq dU2054+=-=εσσ所以CB 间电场 S qd U E00422εεσ+==)2d(212d 02Sq U E U U CB C ε+=== 注意:因为C 片带电,所以2U U C ≠,若C 片不带电,显然2U U C =8-27 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,rd r d⋅+⋅=⎰⎰∞∞rrE E U 外内金属球带电Q .试求: (1)电介质内、外的场强; (2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D Sd(1)介质内)(21R r R <<场强303π4,π4r rQ E r r Q D r εε ==内;介质外)(2R r <场强303π4,π4r rQ E r Qr D ε==外(2)介质外)(2R r >电势rQ E U 0rπ4r d ε=⋅=⎰∞外介质内)(21R r R <<电势2020π4)11(π4R Q R r q rεεε+-=)11(π420R r Q r r -+=ε (3)金属球的电势r d r d 221⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=222020π44πdr R R Rr r Qdr rQ εεε)11(π4210R R Q r r -+=εεε8-28 如题8-28图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题8-28图所示,充满电介质部分场强为2E ,真空部分场强为1E,自由电荷面密度分别为2σ与1σ由∑⎰=⋅0d q S D得11σ=D ,22σ=D而 101E D ε=,202E D r εε=d21U E E == ∴r D D εσσ==1212题8-28图 题8-29图8-29 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求:(1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量;(2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S 则rlDSD S π2d )(=⋅⎰当)(21R r R <<时,Q q =∑ ∴ rlQ D π2= (1)电场能量密度 22222π82l r Q D w εε==薄壳中 rlrQ rl r l r Q w Wυπ4d d π2π8d d 22===(2)电介质中总电场能量⎰⎰===211222ln π4π4d d R R VR R l Q rl r Q W W εε(3)电容:∵ CQ W 22=∴ )/ln(π22122R R lW Q C ε==*8-30 金属球壳A 和B 的中心相距为r ,A 和B 原来都不带电.现在A 的中心放一点电荷1q ,在B 的中心放一点电荷2q ,如题8-30图所示.试求: (1) 1q 对2q 作用的库仑力,2q 有无加速度;(2)去掉金属壳B ,求1q 作用在2q 上的库仑力,此时2q 有无加速度. 解: (1)1q 作用在2q 的库仑力仍满足库仑定律,即2210π41rq q F ε=但2q 处于金属球壳中心,它受合力..为零,没有加速度. (2)去掉金属壳B ,1q 作用在2q 上的库仑力仍是2210π41rq q F ε=,但此时2q 受合力不为零,有加速度.题8-30图 题8-31图8-31 如题8-31图所示,1C =0.25μF ,2C =0.15μF ,3C =0.20μF .1C 上电压为50V .求:AB U . 解: 电容1C 上电量111U C Q =电容2C 与3C 并联3223C C C += 其上电荷123Q Q = ∴ 355025231123232⨯===C U C C Q U86)35251(5021=+=+=U U U AB V8-32 1C 和2C 两电容器分别标明“200 pF 、500 V”和“300 pF、900 V”,把它们串联起来后等值电容是多少?如果两端加上1000 V ?解: (1) 1C 与2C 串联后电容1203002003002002121=+⨯=+='C C C C C pF(2)串联后电压比231221==C C U U ,而100021=+U U∴ 6001=U V ,4002=U V 即电容1C 电压超过耐压值会击穿,然后2C 也击穿.8-33 将两个电容器1C 和2C 充电到相等的电压U 以后切断电源,再将每一电容器的正极板与另一电容器的负极板相联.试求:(1)每个电容器的最终电荷;(2)电场能量的损失.解: 如题8-33图所示,设联接后两电容器带电分别为1q ,2q题8-33图 则⎪⎪⎩⎪⎪⎨⎧==-=-=+2122112121201021U U U C U C q q U C U C q q q q解得 (1) =1q U C C C C C q U C C C C C 21212221211)(,)(+-=+-(2)电场能量损失W W W -=∆0)22()2121(2221212221C q C q U C U C +-+= 221212U C C C C +=8-34 半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm 和3R =5.0cm ,当内球带电荷Q =3.0×10-8C(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量;(3)此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q题8-34图(1)在1R r <和32R r R <<区域0=E在21R r R <<时 301π4r r Q E ε = 3R r >时 302π4r r Q E ε = ∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r r Q W εε⎰-==21)11(π8π8d 2102202R R R R Q r r Q εε 在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r r Q W εεε∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε 41082.1-⨯=J(2)导体壳接地时,只有21R r R <<时30π4r r Q E ε =,02=W ∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J (3)电容器电容 )11/(π422102R R Q W C -==ε 121049.4-⨯=F。
大学物理电磁学综合复习试题2

2.用力F 把电容器中的电介质拉出,在图(a )和图(b )两种情况下,电容
器中储存的静电能量将:
A .均减少;
B .均增加;
C .(a )中减少,(b )中增加;
D .(a )中增加,(b )中减少。
3.在静电场中,高斯定理告诉我们:
A .高斯面内不包围电荷,则面上各点E 的大小处处为零;
B .高斯面上各点的E 只与面内电荷有关,与面外电荷无关;
C .穿过高斯面的E 通量,仅与面内电荷有关,但与面内电荷如何分布
无关;
D .穿过高斯面的
E 通量为零,则面上各点的E 必为零。
4.下列说法中,正确的是:
A .初速度为零的点电荷置于静电场中,将一定沿一条电场线运动;
(a)
(b)
F
充电后仍与 电源连接
充电后与 电源断开
第2题图。
目前最全大学物理电磁学题库包含答案(共43页,千道题)

大学物理电磁学试题(1)一、选择题:(每题3分,共30分)1. 关于高斯定理的理解有下面几种说法,其中正确的是:(A)如果高斯面上E处处为零,则该面内必无电荷。
(B)如果高斯面内无电荷,则高斯面上E处处为零。
(C)如果高斯面上E处处不为零,则该面内必有电荷。
(D)如果高斯面内有净电荷,则通过高斯面的电通量必不为零(E )高斯定理仅适用于具有高度对称性的电场。
[ ]2. 在已知静电场分布的条件下,任意两点1P 和2P 之间的电势差决定于:(A)1P 和2P 两点的位置。
(B)1P 和2P 两点处的电场强度的大小和方向。
(C)试验电荷所带电荷的正负。
(D)试验电荷的电荷量。
[ ] 3. 图中实线为某电场中的电力线,虚线表示等势面,由图可看出:(A)C B A E E E >>,C B A U U U >> (B)C B A E E E <<,C B A U U U << (C)C B A E E E >>,C B A U U U <<(D)C B A E E E <<,C B A U U U >> [ ]4. 如图,平行板电容器带电,左、右分别充满相对介电常数为ε1与ε2的介质,则两种介质内:(A)场强不等,电位移相等。
(B)场强相等,电位移相等。
(C)场强相等,电位移不等。
(D)场强、电位移均不等。
[ ] 5. 图中,Ua-Ub 为:(A)IR -ε (B)ε+IR(C)IR +-ε (D)ε--IR [ ]6. 边长为a 的正三角形线圈通电流为I ,放在均匀磁场B 中,其平面与磁场平行,它所受磁力矩L 等于:(A)BI a 221 (B)BI a 2341 (C)BI a2 (D)0 [ ]7. 如图,两个线圈P 和Q 并联地接到一电动势恒定的电源上,线圈P 的自感和电阻分别是线圈Q 的两倍,线圈P 和Q 之间的互感可忽略不计,当达到稳定状态后,线圈P 的磁场能量与Q 的磁场能量的比值是:(A)4; (B)2; (C)1; (D)1/2 [ ] 8. 在如图所示的电路中,自感线圈的电阻为Ω10,自感系数为H 4.0,电阻R 为Ω90,电源电动势为V 40,电源内阻可忽略。
大学物理复习题

大学物理复习题(电磁学部分)一、选择题1.三个一样大小的绝缘金属小球A 、B 、C ,A 、B 两小球带有等量同号电荷,它们之间的距离远大于小球本身的直径,相互作用力为F ,若将不带电的小球C 引入,先和A 小球接触,然后和B 小球接触后移去,这时A 小球与B 小球间的相互作用力将变为: A .F/2 B. F/4 C. F/8 D. 3F/8 2、电场中高斯面上各点的电场强度是由:A 、分布在高斯面内的电荷决定的;B 、分布在高斯面外的电荷决定的;C 、空间所有的电荷决定的;D 、高斯面内电荷代数和决定的。
3、以下说法正确的是:A 、场强为零的地方,电势一定为零;电势为零的地方,均强也一定为零。
B 、场强大小相等的地方,电势也相等,等势面上各点场强大小相等。
C 、带正电的物体,电势一定是正的,不带电的物体,电势一定等于零。
D 、沿着均场强的方向,电势一定降低。
4.关于导体有以下几种说法: A .接地的导体都不带电。
B .接地的导体可带正电,也可带负电。
C .一导体的电势零,则该导体不带电。
D .任何导体,只要它所带的电量不变,则其电势也是不变的。
5.在半径为R 的均匀带电球面上,任取面积元S ∆,则此面积元上的电荷所受的电场力应是: A 0 ; B2S σε⋅∆(σ是电荷面密度); C22Sσε⋅∆ ; D 以上说法都不对。
6.平行板电容器在接入电源后,把两板间距拉大,则电容器的:A 电容增大;B 电场强度增大;C 所带电量增大;D 电容、电量及两板内场强都减小。
7.一个电阻,一个电感线圈和一个电容器与交流电源组成串联电路,通过电容器的电流应与下列哪一个的电压同位相A 电阻;B 电感线圈;C 电容器;D 全电路。
8.以下关于磁场的能量密度正确的是: A 、22B Bw μ=B 、012B w E B ε=⨯C 、012B w B μ=D 、22B w B μ=9.如图,长载流导线ab 和cd 相互垂直,它们相距l ,ab 固定不动,cd 能绕中点O 转动,并能靠近或离开ab .当电流方向如图所示时,导线cd 将A .顺时针转动同时离开ab ;B .顺时针转动同时靠近ab ;C .逆时针转动同时离开ab ;D .逆时针转动同时靠近ab 。
大学物理电磁复习题

大学物理电磁复习题一、选择题1. 根据库仑定律,两个点电荷之间的力的大小与它们的电荷量的乘积成正比,与它们之间的距离的平方成反比。
如果两个点电荷的电荷量分别为 \( q_1 \) 和 \( q_2 \),它们之间的距离为 \( r \),则它们之间的力 \( F \) 为:A. \( F = k \frac{q_1 q_2}{r^2} \)B. \( F = k \frac{q_1^2}{r^2} \)C. \( F = k \frac{q_2^2}{r^2} \)D. \( F = k \frac{q_1 + q_2}{r^2} \)2. 电场强度的定义式是:A. \( E = \frac{F}{q} \)B. \( E = \frac{q}{F} \)C. \( E = \frac{F}{r^2} \)D. \( E = \frac{q}{r} \)3. 电容器的电容定义式是:A. \( C = \frac{Q}{V} \)B. \( C = \frac{V}{Q} \)C. \( C = \frac{Q}{I} \)D. \( C = \frac{I}{V} \)二、填空题4. 电流强度的单位是________。
5. 欧姆定律的数学表达式为 \( V = IR \),其中 \( V \) 表示电压,\( I \) 表示电流,\( R \) 表示________。
6. 根据法拉第电磁感应定律,当线圈中的磁通量发生变化时,线圈中会产生感应电动势,其大小与磁通量的变化率成正比,表达式为\( \varepsilon = \frac{d\Phi_B}{dt} \),其中 \( \varepsilon \) 表示________,\( \Phi_B \) 表示________。
三、简答题7. 简述安培环路定理的主要内容。
8. 什么是楞次定律?它在电磁学中有什么应用?四、计算题9. 一个平行板电容器,其电容为 \( 100 \mu F \),两板间距为\( 1 \) 厘米,求两板间的电场强度。
大学物理电磁试题及答案

大学物理电磁试题及答案一、选择题(每题5分,共20分)1. 根据库仑定律,两个点电荷之间的静电力与它们电量的乘积成正比,与它们之间的距离的平方成反比。
下列关于库仑定律的描述中,正确的是:A. 静电力与电荷量成正比B. 静电力与电荷量成反比C. 静电力与距离的平方成正比D. 静电力与距离的平方成反比答案:D2. 电容器的电容与电容器的几何尺寸和介质有关。
下列关于电容器的描述中,正确的是:A. 电容器的电容与电容器的面积成正比B. 电容器的电容与电容器的面积成反比C. 电容器的电容与电容器的介质无关D. 电容器的电容与电容器的介质成正比答案:A3. 法拉第电磁感应定律指出,当磁场变化时,会在导体中产生感应电动势。
下列关于法拉第电磁感应定律的描述中,正确的是:A. 感应电动势与磁场变化率成正比B. 感应电动势与磁场变化率成反比C. 感应电动势与磁场变化率无关D. 感应电动势与磁场变化率成平方关系答案:A4. 麦克斯韦方程组是描述电磁场的基本方程。
下列关于麦克斯韦方程组的描述中,正确的是:A. 麦克斯韦方程组只描述了电场B. 麦克斯韦方程组只描述了磁场C. 麦克斯韦方程组描述了电场和磁场的关系D. 麦克斯韦方程组与电磁波无关答案:C二、填空题(每题5分,共20分)1. 根据高斯定律,通过任意闭合曲面的电通量等于_________。
答案:曲面内包围的净电荷量除以真空中的介电常数2. 两个相同电荷量的点电荷,相距为r,它们之间的库仑力为F,当它们相距变为2r时,它们之间的库仑力变为原来的_________。
答案:1/43. 一个电容器的电容为C,当它两端的电压为V时,它所储存的电荷量为_________。
答案:CV4. 根据洛伦兹力公式,一个带电粒子在磁场中运动时,受到的力的大小为qvB,其中q是电荷量,v是速度,B是磁场强度。
当带电粒子的速度方向与磁场方向垂直时,洛伦兹力的大小为_________。
答案:qvB三、计算题(共60分)1. 一个半径为R的均匀带电球体,其总电荷量为Q,求球外距离球心r处的电场强度。
大学物理电磁学综合复习试题

大学物理电磁学综合复习试题1(共6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--1电学一、选择题:1.图中所示曲线表示某种球对称性静电场的场强大小E 随径向距离r 变化的关系,请指出该电场是由下列哪一种带电体产生的: A .半径为R 的均匀带电球面; B .半径为R 的均匀带电球体; C .点电荷;D .外半径为R ,内半径为R /2的均匀带电球壳体。
( ) 2.如图所示,在坐标( a ,0 )处放置一点电荷+q ,在坐标(a ,0)处放置另一点电荷-q 。
P 点是x 轴上的一点,坐标为(x ,0)。
当a x >>时,该点场强的大小为: A .xq 04πε ; B .30xqaπε ; C .302x qa πε ; D .204xqπε 。
( ) 3.在静电场中,下列说法中哪一种是正确的?A .带正电的导体,其电势一定是正值;B .等势面上各点的场强一定相等;C .场强为零处,电势也一定为零;D .场强相等处,电势梯度矢量一定相等。
( )Eo -a +ax -Q+q Px24.如图所示为一沿轴放置的无限长分段均匀带电直线,电荷线密度分别为()0<+x λ和()0>-x λ,则o — xy 坐标平面上PA .0;B .ai 02πελ ;C .a i04πελ ; D .aj i 02)(πελ +。
( )5.如图,两无限大平行平板,其电荷面密度均为+σ,则图中三处的电场强度的大小分别为: A .0εσ,0,0εσ; B .0,0εσ,0; C .02εσ,0εσ,02εσ; D . 0,02εσ,0。
( ) 6.如图示,直线MN 长为l 2,弧OCD 是以N 点为中心,l 为半径的半圆弧,N点有点电荷+q ,M 点有点电荷-q 。
今将一实验电荷+q 出发沿路径OCDP 移到无穷远处,设无穷远处的电势为零, 则电场力作功:A .A <0,且为有限常量;B .A >0,且为有限常量;C .A =∞;D .A =0。
大学电磁学试题及答案

大学电磁学试题及答案一、选择题1. 下列哪个不是电磁场的性质?A. 磁场比电场强B. 磁场可以存储能量C. 磁场的形状与电流的形状无关D. 磁场可以做功2. 下列哪个不是电场的性质?A. 电场是矢量场B. 电场可以存储能量C. 电场的形状与电荷的分布有关D. 电场可以做功3. 以下哪个定理描述了电场的闭合性?A. 麦克斯韦方程组B. 电场强度叠加定理C. 安培环路定理D. 电场能量密度定理4. 以下哪个定理描述了磁场的无源性?A. 麦克斯韦方程组B. 磁场强度叠加定理C. 安培环路定理D. 磁场能量密度定理5. 在匀强电场中沿着电场方向移动电荷,电荷所受的力是:A. 垂直于电场方向的力B. 与电场方向相反的力C. 与电场方向相同的力D. 没有受力6. 以下哪个定理描述了磁场的涡旋性?A. 麦克斯韦方程组B. 磁场强度叠加定理C. 安培环路定理D. 磁场能量密度定理7. 当通过匀强磁场的导线以垂直于磁场方向的速度运动时,导线中将感应出电动势。
这个现象被称为:A. 法拉第现象B. 洛伦兹力C. 磁通量D. 磁感应强度8. 以下哪个定理描述了电磁感应现象?A. 麦克斯韦方程组B. 磁场强度叠加定理C. 安培环路定理D. 法拉第定律9. 高频交流电的传输会存在什么现象?A. 电流大于电压B. 电流和电压同相C. 电流小于电压D. 电流和电压反相10. 在电磁波中,电场和磁场之间的关系是:A. 电场和磁场互相作用B. 电场和磁场无关联C. 电场和磁场相互垂直D. 电场和磁场相互平行二、解答题1. 描述安培环路定理的表达式以及其含义。
安培环路定理的表达式是:$\oint \mathbf{B}\cdot d\mathbf{l} =\mu_0I_{\text{enc}}$。
该定理表示通过某一闭合回路的磁感应强度的环路积分等于该回路所围绕的电流的总和与真空中的磁导率的乘积。
即磁场的闭合性质。
2. 描述麦克斯韦方程组中法拉第电磁感应定律的表达式以及其含义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电学
一、选择题:
1.图中所示曲线表示某种球对称性静电场的场强大小E 随径向距离r 变化的关系,请指出该电场是由下列哪一种带电体产生的: A .半径为R 的均匀带电球面; B .半径为R 的均匀带电球体; C .点电荷;
D .外半径为R ,内半径为R /2的均匀带电球壳体。
( ) 2.如图所示,在坐标( a ,0 )处放置一点电荷+q ,在坐标(a ,0)处放置另一点电荷-q 。
P 点是x 轴上的一点,坐标为(x ,0)。
当a x >>时,该点场强的大小为: A .
x q 04πε ; B .
3
0x qa
πε ;
C .
3
02x
qa πε ; D .2
04x
q πε 。
( )
3.在静电场中,下列说法中哪一种是正确的? A .带正电的导体,其电势一定是正值; B .等势面上各点的场强一定相等; C .场强为零处,电势也一定为零;
D .场强相等处,电势梯度矢量一定相等。
( ) 4.如图所示为一沿轴放置的无限长分段均匀带电直线,电荷线密度分别为()0<+x λ和
()0>-x λ,则o — xy 坐标平面上P 点(o ,a )
A .0;
B .a
i
02πελϖ;
C .a i 04πελϖ;
D .a
j i 02)
(πελϖϖ+。
( )
-a
x -Q +q P
5.如图,两无限大平行平板,其电荷面密度均为+σ,则图中三处的电场强度的大小分别为: A .
0εσ,0,0εσ; B .0,0
εσ,0; C .
02εσ,0εσ,02εσ; D . 0,0
2εσ
,0。
( ) 6.如图示,直线MN 长为l 2,弧OCD 是以N 点为中心,l 为半径的半圆弧,N 点有点电荷+q ,M 点有点电荷-q 。
今将一实验电荷+q ,从O 点 出发沿路径OCDP 移到无穷远处,设无穷远处的电势为零, 则电场力作功:
A .A <0,且为有限常量;
B .A >0,且为有限常量;
C .A =∞;
D .A =0。
( ) 7.关于静电场中某点电势值的正负,下列说法中正确的是: A .电势值的正负取决于置于该点的实验电荷的正负; B .电势值的正负取决于电场力对实验电荷作功的正负; C .电势值的正负取决于电势零点的选取;
D .电势值的正负取决于产生电场的电荷的正负。
( ) 8.一个未带电的空腔导体球壳,内半径为R ,在腔内离球心的距离为d 处(d <R ),固定一电量为+q 的点电荷,用导线把球壳接地后,再把地线撤去。
选无穷远处为电势零点,则球心o 处的电势为:
A .0;
B .
d q 04πε
C .
R
q 04πε D .
)11(40
R d q -πε。
( )
9.平行板电容器两极板(看作很大的平板)间的相互作用力F 与两极板间的电压U 的关系是:
A .U F ∝;
B .U F 1∝
; C .21U
F ∝; D .2
U F ∝。
a
c
+σ
+σ
10.一“无限大”平行板电容器,极板面积为S ,若插入一厚度与极板间距相等而面积为
2
S
、相对介电常数为εr 的各向同性均匀电介质板,如图所示,则插入介质后的电容值与原来的电容值之比
C C
为: A .εr ; B .
r
1
ε;
C .
2
1
r +ε; D .
1
2
r +ε。
( ) 11.用力F 把电容器中的电介质拉出,在图a 和图b 两种情况下,电容器中储存的静电能量将
A .均增加;
B .均减少;
C .a 中增加,b 中减少;
D .a 中减少,b 中增加。
( ) 12.如图所示,两同心金属球壳,它们离地球很远,内球壳用细导线 穿过外球壳上的绝缘小孔与地连接,外球壳上带有正电荷,则内球壳: A .不带电荷; B .带正电荷; C .带负电荷;
D .内球壳外表面带负电荷,内表面带等量正电荷。
( ) 二、填空题:
1.已知某静电场的电势函数为a
x A U +-=,式中A 和a 均为常数,则电场中任意点的电
场强度=E ϖ。
2.如图所示,把一块原来不带电的金属板B ,移近一块已带有正电荷Q 的金属板A ,平行放置,设两板面积都是S ,板间距离为d ,且S >>d 2,A 、B 间为真空, 则两板间电势差U AB = ;
S/2
(a)
(b) 充电后仍与
电源连接
充电后与 电源断开
S S
当B 板接地时,='AB
U 。
三、计算题:
2.有一半径为R ,带电+Q 的导体球,在静电平衡时,求球内、 球外任一点的电势U 内、U 外。
3.均匀带电的细线ab 弯成半圆弧形状,圆弧半径为R ,电荷
线密度为λ;若选无穷处为电势零点,试求圆心o 处的电势。
4.一平行板电容器,其极板面积为S ,两板间距离为d ( S d <<
),中间充满相对介电
常数为εr 的各向同性均匀电介质。
设两极板上带电量分别为+Q 和-Q ,求: (1) 电容器的电容;(2) 电容器储存的能量。
5.半径为R 的导体带电Q ,球外套一个内半径为R 1,外半 径为R 2的同心介质球壳(相对介电常数为εr ),求:(1) 电场强 度的分布:(2) P 点的电势U P ;(3) 介质球壳中储存的能量。
电学答案
一、选择题:
1.A 2.B 3..D 4.B 5.A 6.D 7.C 8.D 9.D 10.C 11.D 12.C 二、填空题: 1.i a x A ϖ2
)
(+-
; 2.s Qd 02ε,s Qd 0ε; 3.0; 三、计算题:
2.解:0=内E , 2
041
r Q E πε=
外 ;
R
Q
r E r E U R
R
r
41d d πε=
⋅+
⋅=
⎰
⎰
∞
ρρρ
ρ外内内 r
Q r E U r
41d πε=
⋅=⎰
∞
ρρ外外
r
b
3.解: 取圆弧上一微小弧段,其所对应的圆心角为d θ, 则:θd d R s = ,θλλd d d R s q ==, 0
004d 4d 4d d πεθ
λπεθλπε==
=
R R R
q u
∴ 0
4d ελ
π
=
=
⎰
u u 4.解:(1)已知两极板分别带电量+Q 和-Q ,两板间电位移大小为:S
Q D = 场强大小为:S
Q D
E r 0r 0εεεε=
=
两极板间电势差:S
Qd
Ed U r 0εε==
电容:d
S U Q C r 0εε==
(2)电场能量:S
d
Q C Q W r 02222εε== 5.解:1) 由于电场分布具有球对称性,根据高斯定理
⎰
∑=
⋅S
S Q s D 内)
(i
d ρρ
R r <时,∵导体内电场强度处处为零 ∴ E 1=0;
R r R >>1时, ,42
Q r
D =π ,42r Q D π= ;4ˆ2
02r
r Q E περρ=
12R r R >>时, ,42
Q r D =π ,42
r Q D π= ;4ˆ2r 03r
r Q E επερρ=
2R r >时, ,42
Q r
D =π ,42r Q D π= .4ˆ2
04r r
Q E περρ=
2) ∵ ⎰
∞
⋅=P
l E U ρ
ρd P
∴ ⎰⎰⎰⎰
∞
+++=
2
1
2
1
P
d d d d 4321P R R R
R R R
r r E r E r E r E U )1
1111(42
2r 1r 10R R R R R Q +-+-=
εεπε 3) 静电场的能量: ,d e e ⎰⎰⎰
=
V
w W v 2r 0e 2
1
E w εε=
在介质球壳中,取半径从r 到r +⊿r 之间球壳的体积为体积元, 则 r r V d 4d 2π= )11(
8d 4)4(
2
2
1r
022
22
r 0r
0e 2
1
R R Q r r r
Q W R R -==⎰
επεπεπεεε。