ROBUST IMAGE REGISTRATION USING LOG-POLAR TRANSFORM

合集下载

基于二维局域波和角点匹配的多模态图像配准

基于二维局域波和角点匹配的多模态图像配准

基于二维局域波和角点匹配的多模态图像配准王小平;静大海【摘要】Multi-model image registration has received much attention at present A new multi-model image registration approach by combining remnant image re-treatment with corner point detection is proposed in the paper. Firsdy, it is found that the so-called transformation parameters in original images can be retrieved by solving those in the remnant images. This fact in turn demonstrates feasibility that bi-dimensional local wave decomposition can also be employed in the multi-model image registration. Secondly, a new high-accuracy corner point matching algorithm based on the Harris corner point detection is described in this paper, while fully making use of graphic point features, gray-level pixel and location information; in particular, a circular template is adopted for calculating similarity indices and implementing relaxation matching. Finally, experiment results show that the algorithm results in automatic matching and it is superior to most existing point matching algorithms in term of accuracy.%目前多模态图像配准研究是现代图像处理的一个热点.提出了一种基于二维局域波分解后剩余图像和角点检测的自动点匹配的多模态图像配准方法.首先通过理论分析得出通过求解剩余图像之间的变换参数即可获得原始图像之间的变换参数,从而论证了二维局域波应用于多模态图像配准的可行性,提出了一个新的基于Harris角点检测的高精度自动点匹配算法.该算法充分利用了图像的角点特征以及图像灰度和位置信息,匹配过程中采用圆形模板进行相似度计算和松弛匹配.实验表明,该算法可以精确的自动匹配,其精度优于传统的点匹配算法.【期刊名称】《电子设计工程》【年(卷),期】2013(021)004【总页数】4页(P142-145)【关键词】局域波;剩余图像;自动点匹配;图像配准;多模态图像【作者】王小平;静大海【作者单位】河海大学计算机与信息学院,江苏南京211110;河海大学计算机与信息学院,江苏南京211110【正文语种】中文【中图分类】TN911.73图像配准目前一直是图像处理和计算机视觉领域中的一个基本问题,如何度量两幅图像是否真正配准是图像配准的一个核心问题,直接决定了是否可以进行全自动配准。

图像处理和计算机视觉中的经典论文

图像处理和计算机视觉中的经典论文

前言:最近由于工作的关系,接触到了很多篇以前都没有听说过的经典文章,在感叹这些文章伟大的同时,也顿感自己视野的狭小。

想在网上找找计算机视觉界的经典文章汇总,一直没有找到。

失望之余,我决定自己总结一篇,希望对 CV领域的童鞋们有所帮助。

由于自
己的视野比较狭窄,肯定也有很多疏漏,权当抛砖引玉了
1990年之前
1990年
1991年
1992年
1993年
1994年
1995年
1996年
1997年
1998年
1998年是图像处理和计算机视觉经典文章井喷的一年。

大概从这一年开始,开始有了新的趋势。

由于竞争的加剧,一些好的算法都先发在会议上了,先占个坑,等过一两年之后再扩展到会议上。

1999年
2000年
世纪之交,各种综述都出来了
2001年
2002年
2003年
2004年
2005年
2006年
2007年
2008年
2009年
2010年
2011年
2012年。

Xerox

Xerox

Xerox ®D95A/D110/D125/D136 Copier/Printer and Xerox ®D110/D125 PrinterThe Xerox ® D Series delivers a portfolio of the industry’s most innovative features and capabilities, with the flexibility to choose your print speed, server options, and the mediafeeding and finishing capabilities that make the most sense for your business or organization.Speed and Productivity• F ast print speeds of up to 100, 110, 125 or 136 pages per minute (ppm).• P roven reliability and industry-leading support. Count on the Xerox ® D95A/D110/D125/D136 to deliver a long life of peak performance.• U nparalleled ease-of-use.• O utstanding image quality with excellent registration.• A robust set of in-line finishing options to expand your applications capabilities.• M ultiple feeding and paper-handling options to boost both your productivity and your ability to deliver results-oriented output.Image Quality• 2400 x 2400 dpi print resolution delivers consistent, high-quality reproduction of text, solids, photos and graphics, with exceptional registration for polished, professional results.• E xclusive Xerox ® EA Toner plays an integral role in the delivery of superior image-quality. You get the highest levels of detailing, with the sharpest text and halftones, and deep, solid blacks.Ease-of-use• A small footprint means you can place the Xerox ® D Series right at your point of need.• A ccepts any data stream, anytime, including Adobe ® PostScript ®, PDF, PCL, LCDS, IPDS, Xerox ® VIPP ® and PPML.• L oad-while-run, unload-while-run and change-while-run capabilities mean you can load paper, unload finished documents or change toner cartridges while the printer is running. This ensures continuous operation and high productivity.With the Xerox ® D Series Copier/Printer, you get all of the features of the Xerox ® D Series Printer, plus:• C olor scanning with 600 x 600 dpi with 8-bit gray (256 shades) scan resolution produces copy output that truly matches the original.• A fast, single-pass, color dual-head scanner—which means each original is only scanned once—scans at speeds up to 200 images per minute.• C oncurrent scan/receive, RIP and print processing provide maximum throughput.• T he 250-sheet Automatic Document Feeder ensures that even the largest, most complex jobs run with optimum speed and efficiency.• T he Build Job feature enables easy programming of different types of pages in one document, with no manual collation required regardless of the job’s complexity.• C onvert hard-copy pages to TIFF, JPEG and PDF files that you can store in folders for fast reprint or send directly to an FTP location or an email distribution list.• S tandard color scanning allows full-color communication via email or digital file distribution (JPEG, TIFF, PDF) for fast, inexpensive collaboration.• S tandard features include Print from and Save to any standard USB drive device for easy walk-up convenience.Xerox ® D95A/D110/D125/D136 Copier/Printer and Xerox ® D110/D125 Printer Data SheetTo view a product video, visit . Build and configure your own Xerox ® Series Copier/Printer or Printer at /d95A/.©2017 Xerox Corporation. All rights reserved. Xerox®, Xerox and Design®, FreeFlow®, SquareFold® and VIPP® are trademarks of Xerox Corporation in the United States and/or other countries. Updated 12/17 BR17439 XD1DS-02UHSpecifications for the Xerox ®D95A/D110/D125/D136 Copier/Printer and Xerox ® D110/D125 PrinterPrint Engines• Monochrome Xerographic Engine • Print Speeds–100/110/125/136 ppm - 8.5 x 11 in. (A4) –56/69/78/82 ppm - 8.5 x 14 in. (B4) –50/55/62/68 ppm - 11 x 17 in. (A3) –34/34/34/34 ppm - 12 x 18 in. (SRA3)• First-copy-out Time–D95A: 4.2 seconds or less–D110/D125: 3.5 seconds or less –D136: 3.7 seconds or less • Simplex or duplex printing• Up to 1200 x 1200 dpi RIP resolution and up to 2400 x 2400 dpi resolution with halftone screen 106 lpi (default) or 150 lpi (high quality mode)• Front to back registration –D95A: +/- 1.8 mm–D110/D125/D136: +/- 1.0 mm• Automatic Meter Read (AMR) capable (where available)Document Storage• D95A/D110/D125: 250 GB or larger Hard Drive with 14.6 GB for document storage• D136: 320 GB or larger Hard Drive with 14.6 GB for document storageScanner/Document Handler (Copier/Printer only)• Advanced Color Scanning• Dual Head Scanner – up to 200 ipm black and white scanning, simplex/duplex• Optical 600 x 600 dpi 8-bit Gray (256 shades) scan resolution• Scans in industry standard PDF, JPEG, TIFF or multi-page TIFF; supports LDAP• Scan to Email with Mail Delivery Notification • Scan to Network File Server• 250-sheet Duplex Automatic Document Feeder • Throughput sizes: 5 x 8 in. to 11 x 17 in. (A5 to A3)• Throughput weights: Simplex or duplex: 16 lb. bond to 110 lb. index (52 to 200 gsm)• Optional PDF Scan Kit• USB Scan / Save to and Print from USB (Copier/Printer only)Paper HandlingStock weights and capacity 1:• Tray 1: 1,100 sheets – Standard selectable sizes: Letter (8.5 x 11 in.), A4 (8.27 in. x 11.69 in.), JIS B5 (7.17 x 10.12 in.), Executive (7.25 x 10.5 in.)• Tray 2: 1,600 sheets – Standard selectable sizes: Letter (8.5 x 11 in.), A4 (8.27 in. x 11.69 in.), JIS B5 (7.17 x 10.12 in.), Executive (7.25 x 10.5 in.)• Tray 3-4: 550 sheets each – 5.5 x 7.2 in. to 13.0 x 19.2 in. (140 x 182 mm (A5) to 330 x 488 mm (SRA3))• Tray 5 Bypass Tray: 250 sheets – 3.93 x 5.82 in. to 13 x 19.2 in. (100 x 148 mm to 330 x 488 mm); 16 lb. bond to 140 lb. index (52 gsm to 253 gsm)• Optional High-Capacity Feeder: 2 trays, 2,000 sheets each – 8.5 x 11 in. (A4); 16 lb. bond to 80 lb. cover (52 to 216 gsm)• Optional 1-Tray Oversized High-Capacity Feeder (not available with Xerox ® D136): 2,000 sheets – 7.16 x 8.26 in. to 13 x 19.2 in. (182 x 210 mm to SRA3); 18 lb. bond to 110 lb. cover (64 to 253 gsm)• Optional 2-Tray Oversized High-Capacity Feeder (not available with Xerox ® D95A): 4,000 sheets – 7.16 x 7.16 in. to 13 x 19.2 in. (182 x 182 mm to SRA3); 16 lb. bond to 110 lb. cover (52 to 253 gsm)Standard Finisher• Multi-position stapling: single or dual 100-sheetvariable length• 2- and 3-hole punch (North America); 2- and 4-hole punch (Europe and South America); 4-hole Swedish punch• Stacker capacity: 3,000 sheets (20 lb. / 80 gsm); Top tray: 500 sheets (20 lb. / 80 gsm)• 200-sheet interposer for pre-printed and full-bleed sheets – 8.5 x 11 in. to 11 x 17 in. (A4 to A3); 16 lb. bond to 90 lb. cover (52 to 220 gsm)Booklet Maker FinisherIncludes features of the Standard Finisher with a 2,000-sheet stacker tray plus:• Automatically creates booklets of up to 25 sheets (100 imaged sides with saddle stitching) – 8.5 x 11 in., 8.5 x 14 in., 11 x 17 in., 12 x 18 in., 13 x 18 in. (A4, B4, A3, SRA3)Xerox ® SquareFold ® Trimmer Module• Square fold up to 25 sheets (100 pages)• Face trim between 2 to 20 mm in 0.1 mm increments • 64 to 300 gsm (uncoated); 106 to 300 gsm (coated)• Accepts paper sizes: 8.5 x 11 in. SEF to 13 x 18 in. (216 x 279 mm to 330 x 457 mm)• Available with Booklet Maker Finisher onlyOptional High-Capacity Stacker with Rollaway Cart 2• 5,000-sheet offsetting output stack tray; 7.2 x 8.3 in. to 13 x 19.2 in. (B5 LEF to SRA3)• 500-sheet top tray and includes one rollaway cart; additional carts availableOptional Folder• C-fold and Z-fold 8.5 x 11 in. (A4)• Print on inside or outside of folded paper• Folds 11 x 17 in. (A3) Z-fold for insertion into letter (A4) document sets (Engineering Z-fold)• Available with Standard Finisher, Booklet Maker Finisher and Standard Finisher PlusGBC ® AdvancedPunch™2• Paper supported: 8.5 x 11 in. (A4) Long Edge Feed (11 in. (297 mm) side only)• 20 lb. bond to 80 lb. cover (75 to 216 gsm)• Several customer replaceable Die Sets availableAdditional (DFA) Finishing Solutions Standard Finisher Plus 2• Stacker capacity of 2,000 sheets (20 lb. bond / 80 gsm)• Same features as Standard Finisher with integrated DFA architecture required to enable a variety of third-party inline finishing options including those listed below:GBC eBinder 200™2• Stack, punch and bind lay flat (8.5 x 11 in. (A4)) booklets • Self-adjusting bind elements (one-size-fits-all) available in black, navy blue, white and frost/clearXerox ® Tape Binder 2• Binds 10-125 sheets of 20 lb. (75 gsm) paper • Individual tape refill provides 425 11 in. binds• Can be combined with the Plockmatic Pro50/35™ Booklet MakerPlockmatic Pro50/35™ Booklet Maker• Saddle stitch and fold from 1 sheets to 35 sheets or to 50 sheets, producing up to a 140-page (35 sheets) or 200-page (50 sheets) (20 lb. bond / 80 gsm) booklet or simply fold a single sheet• Can be combined with the Xerox ® Tape BinderData Security• Standard Secure Print, Authentication with LDAP/Kerberos/ SMB/CAC, Password Protected PDF, FIPS 140-2 (Integrated Server only), S/MIME Encrypted Email, IPsec, 802.1X, SNMP v3.0, Email over SSL, Image Overwrite (3x or 1x, Immediate, Scheduled, On Demand) Hard Disk Data Encryption, Audit Log Optional CAC • IPv6 Ready• 256 Bit Encryption• Common Criteria Certified• Job Based Accounting (Xerox ® D136 Copier/Printer only)Electrical Requirements 3• Print Engine:–208 – 240 VAC, 60/50 Hz, 15/13 amp service–KVA Rating: Max Power Consumption: 2.8 – 3.1 KVA –Agency certifications: ENERGY STAR ®, EPEAT(Silver), CSA, Section 508, MEDITECH, Citrix, WHQL, Environmental Choice, GOST, NOM, RoHS, CE, WEEE Compliance• Optional Feeding/Finishing:–Each module requires 100 – 240 VAC, 60/50 Hz powerPrint Servers• Integrated Copy/Print Server for Xerox ® D95A/D110/D125 (Standard on Copier/Printer)• Integrated Copy/Print Server for Xerox ® D136 (Standard)• Optional Xerox ® FreeFlow ® Print Server (Standard with D110/D125 Printer, optional with D95A/D110/D125/D136 Copier/Printer)1 Capacity based on 16 lb. bond to 80 lb. cover (52 gsm to 216 gsm)2(Not available with Xerox ® D95A Copier/Printer)3Refer to the Install Planning Document for installation details。

914064-计算机科学进展-计算机科学进展复习资料整理(图形图像所)版本2.0

914064-计算机科学进展-计算机科学进展复习资料整理(图形图像所)版本2.0

计算机科学进展(复习资料)V. 2012.07.02.00编辑整理:图形图像所11. 立体视觉(李征) (3)1.1 (考试概率90%) 仿射变换相关考点! (3)1.2 (90%) 三维重建的基本步骤有哪些? (3)1.3 欧氏同射考点! (4)1.4 (80%)(考点)图像配准。

(4)1.5 (80%)(考点)角点提取。

(4)1.6 基于特征点的图像配准算法。

(5)1.7 试阐述数字图像配准的基本概念与用途,并列举一种具体的配准算法,分析其基本原理。

(2010年) (6)2.图像表示(何坤) (6)2.1 (90%) 傅立叶变换考点! (6)2.2 (90%) 传统PCA有什么缺点?Robust PCA在哪些方面改进了传统的PCA?解决了哪些问题? (6)2.3 (40%) 对于灰度图像的质量评价,采用信噪比SNR和峰值信噪比PSNR的方法,试从定义上分析二者的优缺点(5分)并提出改进措施(5分)。

(7)2.4 (40%)试从定义上分析傅里叶变换FT(不能从能量坐标上写,若写了给零分),余弦变换DCT和小波变换WT各自的优缺点。

(9)2.5 传统的图像变换域表示主要有傅立叶变换(FT)、离散余弦变换(DCT)和小波变换(WT)。

试从傅立叶变换的定义出发,分析上述三种变换各自的优缺点及其相互关系。

(13分)(2010年) (10)2.6(40%)试分析基于图像像素的图象正交变换的缺点,并提出基于内容的图像变换方法。

(10)2.7 为什么现代通信技术中很少使用KL技术? (10)2.8 KL变换基向量组的挖掘是基于什么物理模型得到的? (10)3.人机交互(林涛) (11)3.1 (90%)认知心理学回答的三个基本问题: (11)1)人是怎样注意到并获取世界中的信息? (11)2)信息在头脑中是怎样存储和加工的? (11)3)人是怎样解决问题,进行思考、产生语言的? (11)3.2 (90%)为什么说认知心理学和人机工程学是人机交互的基础?请举例说明。

Dspace系统文档

Dspace系统文档

Dspace系统文档(选译)糊涂小三一、简介Dspace是一个开软软见平台,它具有如下功能:●通过使用工作流提交模块或者一系列的规范获取接口获取和表述数字资源。

●使用搜索系统和检索,通过网络的方式发布机构所拥有的数字资产。

●长期保存数字资产。

Dspace系统文档对系统功能作了一个整体的描述。

它对Dspace系统进行了一个良好的性能描述,为非技术人员学习使用Dspace系统是一个良好的导向。

在阅读整个系统文档之前,读者应该首先阅读这一部分内容,因为该部分内容包括许多后续文档中用到的术语。

对于需要运行Dspace系统的用户来说,文档提供了安装指南,以及如何配置系统以及介绍系统目录结构的相关内容。

注意:自从Dspace1.2版本之后,系统就提供了有关用户接口管理的在线帮助手册。

最后,为了那些Dspace系统爱好者能更好的了解Dspace系统如何工作,为了使使用者能根据具体应用对Dspace系统进行修改使用,文档中提供了Dspace详细系统架构和设计部分的内容。

Dspace系统文档还提供了如下一些有用的信息。

Dspace Public API JavadocsDspace Wiki:A list of DSpace resourcesFAQ: Technical FAQProjects: A list of projects using DSpaceGuidelines: Guidelines for contributing back to DSpace二、Dspace功能介绍1.Data Model(数据模型)Dspace系统中数据组织方式能很好地反映一个组织的结构。

每个Dspace站点被分成若干个Communities,每个community对应一个实验室、研究中心、或者部门。

Communities由Collections组成,这些Collections将相关的内容(数字资产)分组。

一个Collection可能同时出现在几个不同的Communities中。

纹理物体缺陷的视觉检测算法研究--优秀毕业论文

纹理物体缺陷的视觉检测算法研究--优秀毕业论文

摘 要
在竞争激烈的工业自动化生产过程中,机器视觉对产品质量的把关起着举足 轻重的作用,机器视觉在缺陷检测技术方面的应用也逐渐普遍起来。与常规的检 测技术相比,自动化的视觉检测系统更加经济、快捷、高效与 安全。纹理物体在 工业生产中广泛存在,像用于半导体装配和封装底板和发光二极管,现代 化电子 系统中的印制电路板,以及纺织行业中的布匹和织物等都可认为是含有纹理特征 的物体。本论文主要致力于纹理物体的缺陷检测技术研究,为纹理物体的自动化 检测提供高效而可靠的检测算法。 纹理是描述图像内容的重要特征,纹理分析也已经被成功的应用与纹理分割 和纹理分类当中。本研究提出了一种基于纹理分析技术和参考比较方式的缺陷检 测算法。这种算法能容忍物体变形引起的图像配准误差,对纹理的影响也具有鲁 棒性。本算法旨在为检测出的缺陷区域提供丰富而重要的物理意义,如缺陷区域 的大小、形状、亮度对比度及空间分布等。同时,在参考图像可行的情况下,本 算法可用于同质纹理物体和非同质纹理物体的检测,对非纹理物体 的检测也可取 得不错的效果。 在整个检测过程中,我们采用了可调控金字塔的纹理分析和重构技术。与传 统的小波纹理分析技术不同,我们在小波域中加入处理物体变形和纹理影响的容 忍度控制算法,来实现容忍物体变形和对纹理影响鲁棒的目的。最后可调控金字 塔的重构保证了缺陷区域物理意义恢复的准确性。实验阶段,我们检测了一系列 具有实际应用价值的图像。实验结果表明 本文提出的纹理物体缺陷检测算法具有 高效性和易于实现性。 关键字: 缺陷检测;纹理;物体变形;可调控金字塔;重构
Keywords: defect detection, texture, object distortion, steerable pyramid, reconstruction
II

加拿大温哥华自动通关系统使用方法(由CBSA网站翻译过来)

加拿大温哥华自动通关系统使用方法(由CBSA网站翻译过来)

加拿大温哥华自动通关系统使用方法(由CBSA网站翻译过来)An alternative way to enter Canada进入加拿大的另一种选择The new Automated Border Clearance kiosks are a secure and innovative service designed to accelerate passenger screening and border processing. Canadian citizens and permanent residents of Canada who have a valid Canadian passport or permanent resident card now have the option of using an Automated Border Clearance kiosk upon returning to Canada.自动入境通关系统是一种安全且创新的服务.旨在加快客运筛选和边境处理。

加拿大居民和加拿大永久居民凭借有效的加拿大护照或永久居住卡可以选择该自动入境通关系统返加。

It is important to note that in all cases, eligible travellers who choose to use these kiosks must continue to have their travel documents verified by a border services officer.需要注意的是,通过该系统入境的旅客必须继续通过边境服务人员核实旅行文件。

The two-year pilot is now under way at Vancouver International Airport.该系统将在温哥华国际机场实验两年。

About Automated Border Clearance关于自动入境通关Automated Border Clearance self-serve kiosks are available at Vancouver International Airport (YVR).自动入境通关服务亭安置于温哥华国际机场If you are a Canadian citizen or permanent resident of Canada and have a valid Canadian passport or permanent resident card, you now have the option of using an Automated Border Clearance kiosk to clear the border upon returning to Canada.如果你是加拿大居民或者加拿大永久居民,并持有有效的加拿大护照或永久居住卡,可以选择该自动入境通关系统返加。

基于多图像特征的遥感图像配准新方法

基于多图像特征的遥感图像配准新方法
Gu Yi,ChenHaiYan (China Airborne Missile Academy, Luo yang, Henan, 471009,China) Abstract: The current methods will suffer from missing true correspondences when non-rigid geometric distortion occurs in re­ mote sensing image registration from different viewing angles. To address the problem, this paper proposes a robust remote sen­ sing image registration method based on feature distance of scale-invariant feature transform (SIFT) and geometric structure fea­ tures. In this method, scale invariant feature transformation and partial intensity invariant feature descriptor are used to extract reliable feature points. A new algorithm is proposed to estimate the exact correspondence between point sets by using multi-im­ age features of constrained geometric structure in the transformation process. This algorithm contains SIFT feature extraction, feature point sets registration based on improved SIFT algorithm via geometric structure constraint and image transformation by estimating non-rigid image transformation model. We evaluated the performances ofthe proposed method by two sets ofremote sensing images obtained from the unmanned aerial vehicle (UAV) and the Google earth, and compared with three state-of-theart methods where our algorithm solved the non-rigid registration problem of remote sensing image with different viewpoints and showed the best alignments in most cases. Results show that the proposed method is highly distinctive and robust under nonrigid geometric distortions. Keywords: remote image registration; SIFT algorithm; multiple image features; non-rigid distortion
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ROBUST IMAGE REGISTRATION USING LOG-POLAR TRANSFORMGeorge WolbergSiavash ZokaiDepartment of Computer ScienceCity College of New YorkNew York,NY10031wolberg|zokai@ABSTRACTThis paper describes a hierarchical image registration algo-rithm for affine motion recovery.The algorithm estimatesthe affine transformation parameters necessary to registerany two digital images misaligned due to rotation,scale,shear,and translation.The parameters are computed it-eratively in a coarse-to-fine hierarchical framework using avariation of the Levenberg-Marquadt nonlinear least squaresoptimization method.This approach yields a robust solu-tion that precisely registers images with subpixel accuracy.A log-polar registration module is introduced to accom-modate arbitrary rotation angles and a wide range of scalechanges.This serves to furnish a good initial estimate forthe optimization-based affine registration stage.We demon-strate the hybrid algorithm on pairs of digital images sub-jected to large affine motion.1.INTRODUCTIONImage registration refers to the geometric alignment of aset of images.The set may consist of two or more digital im-ages taken of a single scene at different times,from differentsensors,or from different viewpoints.The goal of registra-tion is to establish geometric correspondence between theimages so that they may be transformed,compared,andanalyzed in a common reference frame.This is of prac-tical importance in manyfields,including remote sensing,medical imaging,and computer vision[1].This paper describes a hierarchical image registrationsystem based on parameter estimation techniques.We modelthe mapping function as an affine transformation.The algo-rithm estimates the affine parameters necessary to registerany two digital images misaligned due to rotation,scale,shear,and translation.The parameters are selected to mini-mize the sum of squared differences between the two images.They are computed iteratively in a coarse-to-fine hierarchi-cal framework using a variation of the Levenberg-Marquadtnonlinear least squares optimization method.This approachlimited scale factors can be determined because large scale factors would alter the frequency content beyond recogni-tion.It should be noted that the maximum scale factor recovered in[6]and[7]is2.0and1.8,respectively.The work presented in this paper consists of two mod-ules:log-polar registration followed by optimization-based affine registration.The latter module is similar in spirit to the method described in[8].However,since it is based on optimization techniques,it may fail to register an image pair unless they are marginally misaligned.We have addressed this problem by introducing a log-polar module to furnish a good initial estimate,even in the presence of arbitrary rota-tion angles and a wide range of scale changes.By operating in the spatial domain under a multiresolutionframework,we have been able to recover a wider range of scale factors than those possible under the Fourier-Mellin transform.3.AFFINE PARAMETER ESTIMATIONIn this paper,we shall address the problem of registering images misaligned due to an affine transformation.The mapping function is given as123(1)456(2)The six unknown parameters relating two input images, 1and2,will be estimated by minimizing the sum of squared differences between1and the transformed2.The sum of squared differences(SSD)objective criterion estab-lishes a similarity measure between two images:2112211221122(3)where123and456, respectively.Note that is a geometric transformation applied to image2to map it from its coordinate system to the coordinate system of1.The subscript A denotes that the transformation is affine.We adopt the Levenberg-Marquadt nonlinear least squares optimization algorithm[8,9]to estimate the six unknown affine parameters.4.LOG-POLAR REGISTRATIONIn this section,we introduce a log-polar registration module that serves as a preprocess to the parameter esti-mation module.Although the parameter estimation method features sub-pixel accuracy,the two images to be registered mustfirst be fairly close in scale(within a factor of two), rotation(within45),and translation.The purpose of the newly added module is to account for large geometric trans-formations,bringing images into close alignment even in the presence of large(ten-fold)scale changes,as well as arbi-trary rotations and translations.In practice,we don’t expect scale changes beyond factors of four,however arbitrary ro-tation angles and translations must surely be addressed.We now review log-polar coordinate transformations and describe their use in registration.Consider the polar coordinate system,where denotes radial distance from the center and denotes angle.Any point can be represented in polar coordinates:(5)Applying a polar coordinate transformation to an image maps radial lines in Cartesian space to horizontal lines in the polar coordinate space.We shall denote the transformed image.If we assume that and lie along the horizontal and vertical axes,respectively,then image shown in Fig. 1(a)will be mapped to image in Fig.1(b)after a polar coordinate transformation.Note that the origin in both co-ordinate systems is taken to be in the upper left corner.The benefit of this new coordinate space is that simple scale and rotation changes may be induced by modifying the data.For instance,a circular shift along the-axis in induces a rotation of.Recall,afterall,that the data stored along the rows in-space represent radial data in.By moving the rows up or down,that radial data will map to a new(rotated)set of radial lines.Fig.1(c)shows a circular shift applied to Fig.1(b).The resulting image in Cartesian space is shown in Fig.1(d).Notice that since we shifted the 512-row image in Fig.1(b)by128rows,the image in Fig. 1(a)has been rotated by90.Similarly,resampling in the -axis can effect scale changes.Consider two images1and2and their polar counter-parts1and2.If2is a rotated version of1,then2 will be a circularly shifted version of1along the-axis. By applying cross-correlation to1and2,the offset can be found that best matches the two images.Recall that cross-correlation is commonly used forfinding translational offsets(phase shifts)between two images.It does not work well in the presence of scale or rotation.However,in the polar coordinate space,finding the translational component between1and2corresponds tofinding the rotation between1and2.There would be,for instance,no problem in computing the phase shift between Figs.1(b)and1(c).A similar result is needed to determine the scale change between1and2.Consider a four-fold magnification of image1,yielding an enlarged image2.All pointsin1now map to44in2.To determine the scale(a)input image (b)polartransformation (c)circular shift in polar space (d)result in Cartesian space Figure 1:Polar coordinate transformation.factor,we introduce the use of logarithms.In log-space,log log ,and 44log 4log 4log log 4log log 4.It now becomes apparent that in log-space,the introduction of a scale factor manifests itself as a phase shift in the log-transformed image.Therefore,instead of mapping an image into coordinate space,it becomes useful to map it into log coordinate space using a log-polar transformation.Ordinary cross-correlation in the log-polar space now determines the best log and phase shifts,which translates to scale and rotation in Cartesian space.Fig.2shows an example.Figs.2(a)and 2(b)depict two input images.The latter figure is a scaled,rotated,and cropped version of Fig.2(a).The result is consistent with sensor movement that causes a four-fold zoom and a 45rotation.Their log-polar transformations are shown in Figs.2(c)and 2(d).Clearly,they differ by a phase pare,for instance,the left half of Fig.2(c)with the right half of Fig.2(d).When ordinary cross-correlation is applied to those two images,the computed phase shift accurately reflects the four-fold scale factor and 45rotation that constitutes the transformation between the two input images.We have used the log-polar transformation to recover differences as large as ten-fold scale changes.Given this superior performance over the state-of-the-art in frequency domain solutions,we believe that this approach should be exploited.There is one difficulty,though,that remains to be solved:finding the origin of the image from which the radial distance is measured.In the examples above,wehave(a)input image (b)scale=4;rotation=45(c)log-polar transform of (a)(d)log-polar transform of (b)Figure 2:Log-polar coordinate transformation.assumed that the origin of both images lie at their geometric centers.In fact,their centers can be displaced and unless that correspondence (translation)is known,the information derived from the polar transformation is of limited value.We have implemented a new algorithm for automati-cally finding the translation between both input images in the presence of scale and rotation.The new method is based on multiresolution log-polar transformations to si-multaneously find the best scale,rotation,and translation parameters.The coarse-to-fine multiresolution framework accelerates the process by permitting estimates computed in the low resolution images to serve as initial guesses to the higher resolution images.The approach at any given level is outlined below.1.Crop central region1from1pute1,the log-polar transformation of13.For all positionsin2:Crop region2Compute2Cross-correlate1and2If maximum correlation,saveand4.Scale5.Rotation6.Translation5.RESULTSFig.3shows an example of the use of log-polar registra-tion as a preprocess for the sub-pixel perspective registration module.Figs.3(a)and 3(b)show two images of a building taken with different rotation and focal length parameters.Their log-polar transformations are shown in Figs.3(c)and 3(d).Cross correlation in the log-polar domain produces a phase shift that corresponds to a scale factor of 0.469and a rotation of 201.The translation is (-11,-51).Fig.3(e)shows the overlay results of log-polar registration after Fig.3(b)was scaled,rotated,and translated to best match Fig.3(a).This result is used as an initial estimate for the subsequent affine parameter estimation module.The affine transformation derived after log-polar registration is given below.100800061669(6)000310450203(7)Note that log-polar registration was able to bring the two images into sufficient alignment that the subsequent affine transformation is nearly an identity mapping.The resulting overlay is presented in Fig.3(f).Notice the improved reg-istration results as evident by the reduced double exposure effect in the overlaidimages.(a)input image 1(b)input image2(c)log-polar transform of (a)(d)log-polar transform of(b)(e)log-polar registration (f)log-polar/affine registration Figure 3:Polar coordinate transformation.6.CONCLUSIONSThis paper has presented a hierarchical image registra-tion algorithm to register any two digital images misaligned due to rotation,scale,shear,and translation.The algo-rithm couples the log-polar transform with a nonlinear least squares algorithm to estimate the affine transformation pa-rameters.Although the Fourier-Mellin transform also uses the log-polar transformation to recover rotation and scale,it is limited in use to two-fold scale rger scale changes induce too much distortion to the Fourier coeffi-cients to be useful for affine recovery.Instead,this work operates directly in the spatial domain and recovers the best rotation,scale,and translation by performing correlation on tiles that have been transformed into log-polar space.The purpose of the log-polar registration module is to bring two images into alignment using only rotation,scale,and translation.This serves as a fine estimate for the sub-sequent affine registration module based on nonlinear least squares optimization.That module,based on the work in [8],offers subpixel precision.Coupling the two modules in this manner facilitates the registration of images in the presence of large-scale affine transformations.Future work will investigate extensions of this approach for the recovery of perspective parameters.7.REFERENCES[1]Lisa G.Brown.A survey of image registration techniques.ACM Computing Surveys ,24(4):325–376,December 1992.[2] C.D.Kuglin and D.C.Hines.The phase correlation imagealigment method.Proc.Int.Conf.on Cybernetics and Society ,pages 163–165,1975.[3] E.De Castro and C.Morandi.Registration of translated androtated images using finite fourier transforms.IEEE Trans.Pat-tern Analysis and Machine Intelligence ,(3):700–703,Septem-ber 1987.[4] D.Casasent and D.Psaltis.Position,rotation,and scale-invariant optical correlation.Applied Optics ,15:1793–1799,1976.[5]W.K.Pratt.Digital Image Processing .John Wiley &Sons,New York,1978.[6]Q.Chen,M.Defrise,and F.Deconinck.Symmetric phase-only matched filtering of fourier-mellin transforms for image registration and recognition.IEEE Trans.Pattern Analysis and Machine Intelligence ,16(12):1156–1168,December 1994.[7] B.S.Reddy and B.N.Chatterji.An fft-based techniquefor translation,rotation,and scale-invariant image registra-tion.IEEE Trans.Pattern Analysis and Machine Intelligence ,5(8):1266–1270,August 1996.[8]Philippe Th´e venaz,Urs E.Ruttimann,and Michael Unser.Apyramid approach to subpixel registration based on intensity.IEEE Trans.Image Processing ,7(1):27–41,January 1998.[9]William H.Press,Saul A.Teukolsky,William T.Vetterling,and Brian P.Flannery.Numerical Recipes in C .Cambridge University Press,Cambridge,2nd edition,1993.。

相关文档
最新文档