基于matlab的人脸识别系统设计与仿真(含matlab源程序)毕业论文
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人脸识别系统设计与仿真基于matlab的(含matlab源程序)
目录
第一章绪论 (1)
1.1 研究背景 (5)
1.2 人脸图像识别的应用前景 (6)
1.3 本文研究的问题 (7)
1.4 识别系统构成 (8)
1.5 论文的内容及组织 (10)
第二章图像处理的Matlab实现 (11)
2.1 Matlab简介 (11)
2.2 数字图像处理及过程 (11)
2.2.1图像处理的基本操作 (11)
2.2.2图像类型的转换 (12)
2.2.3图像增强 (12)
2.2.4边缘检测 (13)
2.3图像处理功能的Matlab实现实例 (14)
2.4 本章小结 (18)
第三章人脸图像识别计算机系统 (19)
3.1 引言 (19)
3.2系统基本机构 (20)
3.3 人脸检测定位算法 (21)
3.4 人脸图像的预处理 (28)
3.4.1 仿真系统中实现的人脸图像预处理方法 (29)
第四章基于直方图的人脸识别实现 (32)
4.1识别理论 (32)
4.2 人脸识别的matlab实现 (32)
4.3 本章小结 (33)
第五章总结 (34)
致谢 (35)
参考文献 (36)
附录 (38)
毕业设计(论文)原创性声明和使用授权说明
原创性声明
本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。
作者签名:日期:
指导教师签名:日期:
使用授权说明
本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。
作者签名:日期:
学位论文原创性声明
本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。
作者签名:日期:年月日
学位论文版权使用授权书
本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
涉密论文按学校规定处理。
作者签名:日期:年月日
导师签名:日期:年月日
第一章绪论
本章提出了本文的研究背景及应用前景。首先阐述了人脸图像识别意义;然后介绍了人脸图像识别研究中存在的问题;接着介绍了自动人脸识别系统的一般框架构成;最后简要地介绍了本文的主要工作和章节结构。
1.1 研究背景
自70年代以来.随着人工智能技术的兴起.以及人类视觉研究的进展.人们逐渐对人脸图像的机器识别投入很大的热情,并形成了一个人脸图像识别研究领域,.这一领域除了它的重大理论价值外,也极具实用价值。
在进行人工智能的研究中,人们一直想做的事情就是让机器具有像人类一样的思考能力,以及识别事物、处理事物的能力,因此从解剖学、心理学、行为感知学等各个角度来探求人类的思维机制、以及感知事物、处理事物的机制,并努力将这些机制用于实践,如各种智能机器人的研制。人脸图像的机器识别研究就是在这种背景下兴起的,因为人们发现许多对于人类而言可以轻易做到的事情,而让机器来实现却很难,如人脸图像的识别,语音识别,自然语言理解等。如果能够开发出具有像人类一样的机器识别机制,就能够逐步地了解人类是如何存储信息,并进行处理的,从而最终了解人类的思维机制。
同时,进行人脸图像识别研究也具有很大的使用价依。如同人的指纹一样,人脸也具有唯一性,也可用来鉴别一个人的身份。现在己
有实用的计算机自动指纹识别系统面世,并在安检等部门得到应用,但还没有通用成熟的人脸自动识别系统出现。人脸图像的自动识别系统较之指纹识别系统、DNA鉴定等更具方便性,因为它取样方便,可以不接触目标就进行识别,从而开发研究的实际意义更大。并且与指纹图像不同的是,人脸图像受很多因素的干扰:人脸表情的多样性;以及外在的成像过程中的光照,图像尺寸,旋转,姿势变化等。使得同一个人,在不同的环境下拍摄所得到的人脸图像不同,有时更会有很大的差别,给识别带来很大难度。因此在各种干扰条件下实现人脸图像的识别,也就更具有挑战性。
国外对于人脸图像识别的研究较早,现己有实用系统面世,只是对于成像条件要求较苛刻,应用范围也就较窄,国内也有许多科研机构从事这方而的研究,并己取得许多成果。
1.2 人脸图像识别的应用前景
人脸图像识别除了具有重大的理论价值以及极富挑战性外,还其有许多潜在的应用前景,利用人脸图像来进行身份验证,可以不与目标相接触就取得样本图像,而其它的身份验证手段,如指纹、眼睛虹膜等必须通过与目标接触或相当接近来取得样木,在某些场合,这些识别手段就会有不便之处。
就从目前和将来来看,可以预测到人脸图像识别将具有广阔的应用前景,如表1-1中所列举就是其中已经实现或逐步完善的应用。
表1-1 人脸识别的应用