2007-PCR-mediated recombination of the amplification products of the Hibiscus tiliaceus cytosolic gl

合集下载

《南京林业大学学报(自然科学版)》2021 年论文题录(作者)索引

《南京林业大学学报(自然科学版)》2021 年论文题录(作者)索引

第45卷㊀第6期2021年11月南京林业大学学报(自然科学版)JournalofNanjingForestryUniversity(NaturalScienceEdition)Vol.45,No.6Nov.,2021‘南京林业大学学报(自然科学版)“2021年论文题录(作者)索引AUTHORANDSUBJECTINDEXES2021著录格式:作者.文题(外文文题).刊名,出版年,卷(期):起止页码.(作者以姓氏汉语拼音为序)白文玉,冯茂松,铁烈华,汪亚琳,高嘉翔,赖㊀娟,戴晓康.不同无性系四川桤木嫁接苗生物量及其分配特征(Biomassanditsallocationcharacteristicsofone⁃year⁃oldgraftedseedlingsofdifferentclonesofAlnusledgeriana).南京林业大学学报(自然科学版),2021,45(2):87-95.蔡龙涛,邢㊀涛,邢艳秋,丁建华,黄佳鹏,崔㊀阳,秦㊀磊.基于ICESat⁃GLAS数据和模糊模式识别算法识别森林类型(IdentificationofforesttypesbasedonICESat⁃GLASdataandfuzzypatternrecognitionalgorithm).南京林业大学学报(自然科学版),2021,45(4):33-41.曹桥荣,董京京,钟文峰,彭智奇,董㊀鹏,陈㊀洁,伊贤贵.樱花新品种 胭脂绯 (Cerasusdielsiana Yanzhifei :anewcultivaroforientalcher⁃ry).南京林业大学学报(自然科学版),2021,45(1):242-244.陈㊀佳,缑晶毅,赵㊀祺,韩庆庆,李慧萍,姚㊀丹,张金林.梭梭根际根瘤菌对紫花苜蓿生长及耐盐性的影响(InducedgrowthandsalttoleranceofalfalfabyrhizobiumstrainsfromtherhizosphereofHaloxylonammodendron).南京林业大学学报(自然科学版),2021,45(6):99-110.陈㊀黎,刘成功,钱莹莹,唐晓蝶,王生树,李志东,李㊀燕,崔㊀珺.南方红豆杉人工林针叶C㊁N㊁P化学计量特征(StoichiometriccharacteristicsofC,N,PofTaxuschinensisvar.maireiplantationneedles).南京林业大学学报(自然科学版),2021,45(5):53-61.陈㊀林,潘婷婷,吕笑冬,汪章沛,程㊀林.江西省种子植物分布新资料(NewrecordsofseedplantsfromJiangxiProvince).南京林业大学学报(自然科学版),2021,45(5):232-234.陈宏健,郝德君,田㊀敏,周㊀杨,夏小洪,赵欣怡,乔㊀恒,谈家金.室内饲养松墨天牛幼虫不同肠段细菌的群落结构及功能分析(Thecom⁃munitystructureandfunctionalanalysisofintestinalbacteriainMonochamusalternatuslarvaerearedindoors).南京林业大学学报(自然科学版),2021,45(3):143-151.陈隆升,梅㊀莉,陈永忠,赵泽尧,许彦明,张㊀震,胡亚军,刘彩霞,苏以荣.油茶林生草栽培对地表径流及氮磷流失特征的影响(EffectsofinterplantingherbageonsurfacerunoffassociatedwithnitrogenandphosphoruslossesinCamelliaoleiferaplantations).南京林业大学学报(自然科学版),2021,45(6):127-134.陈兴彬,徐海宁,肖复明,孙世武,娄永峰,邹元熹,徐小强.陈山红心杉1.5代种子园遗传多样性和子代父本分析(Geneticdiversityandpaternityanalysesina1.5thgenerationseedorchardofChenshanred⁃heartChinesefir).南京林业大学学报(自然科学版),2021,45(3):87-92.陈秀波,段文标,陈立新,朱德全,赵晨晨,刘东旭.小兴安岭3种原始红松混交林土壤nirK型反硝化微生物群落特征(CommunitystructureanddiversityofsoilnirK⁃typedenitrifyingmicroorganismsinthreeforesttypesofprimitivePinuskoraiensismixedforestinLiangshuiNationalNatureReserve,LesserKhinganMountains).南京林业大学学报(自然科学版),2021,45(2):77-86.陈玉华,姚㊀丹,吴海楠,陶申童,吴吉妍,杨文国,童春发.美洲黑杨与小叶杨杂交F1代扦插无性系苗生长性状动态分析(AnalysesofdynamicgrowthtraitsofthestecklingsfromtheF1hybridprogenyofPopulusdeltoidesˑP.simonii).南京林业大学学报(自然科学版),2021,45(1):45-52.程㊀娟,丁访军,谭正洪,廖立国,周㊀汀,崔迎春.贵州茂兰喀斯特森林两树种叶片气孔形态特征及其对蒸腾的影响(Leafstomatalmorpho⁃logicalcharacteristicsandtheireffectsontranspirationfortwotreespeciesinMaolanKarstarea,GuizhouProvince).南京林业大学学报(自然科学版),2021,45(5):125-132.崔㊀阳,狄海廷,邢艳秋,常晓晴,单㊀炜.基于MODIS数据的2001 2018年黑龙江省林火时空分布(SpatialandtemporaldistributionsofforestfiresinHeilongjiangProvincefrom2001to2018basedonMODISdata).南京林业大学学报(自然科学版),2021,45(1):205-211.崔令军,刘瑜霞,林㊀健,石开明.丛枝菌根真菌对盐胁迫下桢楠光合生理的影响(EffectsofAMFonphotosyntheticcharacteristicsofPhoebezhennanundersaltstress).南京林业大学学报(自然科学版),2021,45(1):101-106.邓㊀平,赵㊀英,王㊀霞,陈秋佑,吴㊀敏.水杨酸对NaHCO3胁迫下桂西北喀斯特地区青冈栎种子萌发的影响(Effectsofsalicylicacidonger⁃minationofCyclobalanopsisglaucaseedsunderNaHCO3stressinKarstareaofnorthwestGuangxi).南京林业大学学报(自然科学版),2021,45. All Rights Reserved.南京林业大学学报(自然科学版)第45卷(4):114-122.邓㊀睿,张梅丽,周㊀明,郑宝江.中国茶藨子属1新记录种(AnewlyrecordedplantofthegenusRibesfromChina).南京林业大学学报(自然科学版),2021,45(2):231-233.丁㊀胜,李㊀颂,梁钰坤,赵庆建,曹福亮,吕㊀柳.经济林产业上市公司融资影响因素分析(Factorsinfluencingthefinancingoflistedcompaniesinnon⁃timberforestindustry).南京林业大学学报(自然科学版),2021,45(3):224-232.董灵波,刘兆刚.森林健康评价及其多尺度转换方法(Foresthealthassessmentsandmulti⁃scaleconversionmethods).南京林业大学学报(自然科学版),2021,45(3):206-216.杜晋城,李欣欣,邓小兵,慕长龙.9个油橄榄品种叶片功能性状特征比较(Comparisonsofleaffunctionalcharacteristicsofnineolivevarieties).南京林业大学学报(自然科学版),2021,45(2):159-164.段一凡,李㊀岚,杨欣欣,王贤荣,张㊀敏,张㊀成,柴子涵.桂花及其近缘种倍性和基因组大小分析(StudyonploidyandgenomesizesofOs⁃manthusfragransanditsrelatedspecies).南京林业大学学报(自然科学版),2021,45(5):47-52.范佳辉,张亚丽,李明诗.基于空间光谱信息协同的城市不透水层提取方法比较研究(Comparingfourmethodsforextractingimpervioussurfacesusingspectralinformationinsynergywithspatialheterogeneityofremotelysensedimagery).南京林业大学学报(自然科学版),2021,45(1):212-218.费宜玲,侯森林,唐松泽.近三年江苏省非法被猎两栖爬行动物分析(AnalysisofillegalhuntingcasesofamphibiansandreptilesinJiangsuProvinceoverthepastthreeyears).南京林业大学学报(自然科学版),2021,45(2):225-230.冯园园,李清莹,黄均华,胡绍庆.25个彩叶桂无性系(品种)的数量分类研究(Numericalclassificationof25color⁃leafedOsmanthusfragransclones(cultivars)).南京林业大学学报(自然科学版),2021,45(1):107-115.高㊀芳,陈士刚,秦彩云,才巨锋,王聪慧,董环宇,陶㊀晶.红皮云杉体胚发生体系优化和超低温保存技术研究(OptimizationofsomaticembryogenesissystemandcryopreservationofPiceakoraiensis).南京林业大学学报(自然科学版),2021,45(3):100-108.高㊀燕,莫建彬,付艳茹,奉树成.铁线莲 朱卡 组织培养技术及再生体系的建立(TissuecultureandplantregenerationofClematis Julka ).南京林业大学学报(自然科学版),2021,45(3):109-114.高景斌,徐六一,叶建仁.马尾松松材线虫病抗性无性系的筛选和遗传多样性分析(GrowthandgeneticdiversityanalysisofclonesscreenedbyphenotypicalresistanttopinewiltdiseaseinPinusmassoniana).南京林业大学学报(自然科学版),2021,45(5):109-118.高沁怡,潘春霞,刘㊀强,顾光同,祝雅璐,吴伟光.基于贝叶斯网络的林业碳汇项目风险评价(RiskassessmentsofforestrycarbonsequestrationprojectsbasedonBayesiannetwork).南京林业大学学报(自然科学版),2021,45(4):210-218.葛宝柱,徐㊀强,陈赢男.山新杨蔗糖合酶基因PCR介导的重组现象研究(ThephenomenonofPCR⁃mediatedrecombinationbyusingSUSgenesofPopulusdavidianaˑP.bolleana).南京林业大学学报(自然科学版),2021,45(3):79-86.郭㊀亮,丁九敏,徐㊀侠.树干甲烷的研究进展(Advancesinresearchonmethanefromtreestems).南京林业大学学报(自然科学版),2021,45(5):235-241.郭㊀雯,漆良华,雷㊀刚,胡㊀璇,张㊀建,舒㊀琪,商泽安.毛竹及其变种叶片化学计量与养分重吸收效率(Leafstoichiometryandnutrientre⁃absorptionefficiencyofPhyllostachysedulisanditsvarieties).南京林业大学学报(自然科学版),2021,45(1):79-85.郭佳惠,教忠意,何旭东,诸葛强,周㊀洁.基于层次分析法对柳树观赏性及适应性的综合评价(Acomprehensiveevaluationofornamentalcharacteristicsandadaptabilityofwillowsbasedonanalytichierarchyprocesses).南京林业大学学报(自然科学版),2021,45(6):169-176.郭天威,陆春锋,王君櫹,刘瑞程,周生路.基于三生空间耦合的生态安全格局构建与优化 以扬州市为例(Constructionandoptimizationofecologicalsecuritypatternbasedonthecouplingofecological⁃production⁃livingspaces:takingYangzhouCityasanexample).南京林业大学学报(自然科学版),2021,45(5):133-142.何旭东,郑纪伟,孙㊀冲,何开跃,王保松.33个杨柳品种指纹图谱构建(Constructionoffingerprintsfor33varietiesinSalicaceae).南京林业大学学报(自然科学版),2021,45(2):35-42.贺梦莹,董利虎,李凤日.长白落叶松-水曲柳混交林不同混交方式单木冠长预测模型(TreecrownlengthpredictionmodelsforLarixolgensisandFraxinusmandshuricainmixedplantationswithdifferentmixingmethods).南京林业大学学报(自然科学版),2021,45(4):13-22.洪㊀震,刘术新,洪琮浩,雷小华.5种造林树种对干旱胁迫的抗性应答(Resistanceresponseoffiveafforestationtreespeciesunderdroughtstress).南京林业大学学报(自然科学版),2021,45(2):111-119.侯㊀静,毛金燕,翟㊀惠,王㊀洁,尹佟明.CRISPR/Cas技术在木本植物改良中的应用(ApplicationofCRISPR/Castechniqueinwoodyplantimprovement).南京林业大学学报(自然科学版),2021,45(6):24-30.胡丁猛,许景伟,王立辉,囤兴建,朱升祥,杨㊀健. 蕊沁 等7个海棠新品种(Sevennewcrabapplecultivarssuchas RuiQin ).南京林业大学学报(自然科学版),2021,45(4):238-242.胡海波,贾西川.我国平原农区林带胁地效应及其控制措施研究进展(Reviewonnegativeeffectsanditscontrolmeasuresofforestbeltinplain242. All Rights Reserved.㊀第6期‘南京林业大学学报(自然科学版)“2021年论文题录(作者)索引agriculturalareasofChina).南京林业大学学报(自然科学版),2021,45(2):234-240.花伟成,田佳榕,孙心雨,徐雁南.基于TLS数据的杨树削度方程建立及材积估算(Assessingthestemtaperfunctionandvolumeestimationofpoplar(Populus)byterrestriallaserscanning).南京林业大学学报(自然科学版),2021,45(4):41-48.惠㊀昊,关庆伟,王亚茹,林鑫宇,陈㊀斌,王㊀刚,胡㊀月,胡敬东.不同森林经营模式对土壤氮含量及酶活性的影响(Effectsofdifferentforestmanagementmodesonsoilnitrogencontentandenzymeactivity).南京林业大学学报(自然科学版),2021,45(4):151-158.火㊀艳,张慧会,祝遵凌.欧洲鹅耳枥水培营养液适用效果比较研究(ComparativestudyontheeffectsofnutrientsolutiontreatmentinhydroponiccultivationofCarpinusbetulus).南京林业大学学报(自然科学版),2021,45(2):17-24.嵇保中,张㊀磊,刘曙雯,姜宏健,金明霞.白蚁品级分化研究进展(Researchprogressoftermitecastedifferentiation).南京林业大学学报(自然科学版),2021,45(5):1-9.季㊀淮,韩建刚,李萍萍,朱咏莉,郭俨辉,郝达平,崔㊀皓.洪泽湖湿地植被类型对土壤有机碳粒径分布及微生物群落结构特征的影响(EffectsofdifferentvegetationtypesonsoilorganiccarbonparticlesizedistributionandmicrobialcommunitystructureinHongzeLakeWetland).南京林业大学学报(自然科学版),2021,45(1):141-150.季艳红,汤文华,窦全琴,谢寅峰.施肥对薄壳山核桃容器苗生长及养分积累的影响(EffectsoffertilizerapplicationonseedlinggrowthandnutrientaccumulationinCaryaillinoinensiscontainerseedlings).南京林业大学学报(自然科学版),2021,45(6):47-56.贾㊀婷,宋武云,关新贤,魏智文,陈㊀涵,易㊀敏,熊启慧,张㊀露.湿地松针叶功能性状及其对磷添加的响应(ResponsesofneedlefunctionaltraitsofPinuselliottiitophosphorusaddition).南京林业大学学报(自然科学版),2021,45(6):65-71.江杏香,陈玉凯,吴石松,陈㊀庆.海南濒危植物蕉木种群结构与动态特征(PopulationstructureanddynamicsoftheendangeredplantChienio⁃dendronhainanenseinHainan).南京林业大学学报(自然科学版),2021,45(1):116-122.蒋㊀瑶,魏海林,高昌虎,王大故,冯楠可,李㊀睿,刘榕榕,吕芳德.湖南低山丘陵区薄壳山核桃的开花物候期观测及品种配置(ObservationonfloweringphenologyandvarietycombinationofCaryaillinoinensisinlowmountainsandhillsofHunanProvince).南京林业大学学报(自然科学版),2021,45(1):53-62.荆㊀烁,孙慧珍.东北东部山区主要树种枝条及其组分水力特征(ThehydrauliccharacteristicsofthewholebranchanditscomponentsofthemajortreespeciesintheeasternregionofnortheastChina).南京林业大学学报(自然科学版),2021,45(4):159-166.赖国桢,汪雁楠,黄宝祥,周㊀光,莫晓勇,刘丽婷.林分空间结构优化栅格间伐模型(Agridthinningmodelbasedonforestspatialstructureopti⁃mization).南京林业大学学报(自然科学版),2021,45(3):199-205.黎梦娟,朱礼明,霍俊男,张景波,施季森,成铁龙.唐古特白刺NtCBL1㊁NtCBL2基因克隆及表达分析(CloningandexpressionanalysesofNtCBL1,NtCBL2geneofNitrariatangutorum).南京林业大学学报(自然科学版),2021,45(3):93-99.李㊀磊,蒋㊀敬,陈云霞.DNA宏条形码技术在动植物法医鉴定中的应用进展(RecentadvancesintheapplicationofDNAmetabarcodingtech⁃nologyinforensicidentificationofanimalsandplants).南京林业大学学报(自然科学版),2021,45(1):235-241.李㊀蒙,董京京,丁明贵,王贤荣,伊贤贵.樱花新品种 名贵红 (Cerasusserrulatavar.lannesiana MingguiHong :anewcultivarofcherry).南京林业大学学报(自然科学版),2021,45(6):239-240.李㊀娜,朱培林,丰㊀采,温敏学,方升佐,尚旭岚.青钱柳嫁接愈合过程中砧穗生理特性及其与亲和性的关系(Variationsinphysiologicalcharacteristicsofrootstock⁃scionanditsrelationshiptograftcompatibilityduringthegraftingunionprocessofCyclocaryapaliurus).南京林业大学学报(自然科学版),2021,45(1):13-20.李㊀陶,李明阳,钱春花.结合冠层密度的森林净初级生产力遥感估测(Combiningcrowndensitytoestimateforestnetprimaryproductivitybyusingremotesensingdata).南京林业大学学报(自然科学版),2021,45(5):153-160.李㊀鑫,翁卫松,李明诗.太平洋西北部地区天然林景观动态及破碎化驱动力分析(AssessingnaturalforestfragmentationprocessdynamicsanditsdriversinthePacificnorthwestregion,USA).南京林业大学学报(自然科学版),2021,45(3):174-182.李佳琦,薛晓明,高捍东.桢楠种子脱水过程中的生理响应(PhysiologicalresponsesofPhoebezhennanseedsduringdehydration).南京林业大学学报(自然科学版),2021,45(3):130-136.李江荣,郭其强,郑维列.西藏东南部急尖长苞冷杉蒸腾耗水及其驱动因子分析(AnalysesoftranspirationwaterconsumptionofAbiesgeorgeivar.smithiianditsdrivingfactorsinsoutheasternTibet).南京林业大学学报(自然科学版),2021,45(6):151-158.李沁宇,刘㊀鑫,张金池.长三角区域酸雨类型转变趋势研究(ChangingtrendsofacidraintypesintheYangtzeRiverDeltaregion).南京林业大学学报(自然科学版),2021,45(1):168-174.李清顺,金万洲,王得军,孙景梅,李宏韬.利用多树种立地形指数对林地质量进行综合评价(Acomprehensiveevaluationofforestlandqualityusingmultitreesiteformindex).南京林业大学学报(自然科学版),2021,45(6):81-89.李庆杨,王树凤,吴书天,王若辉,施㊀翔,莫润宏,刘毅华.弗吉尼亚栎种子化学成分特征及其对立地土壤条件的响应(ChemicalcompositionsofQuercusvirginianaseedsandtheirresponsestosoilproperty).南京林业大学学报(自然科学版),2021,45(6):111-118.廖逸宁,郭素娟,王芳芳,马雅莉,刘亚斌.有机-无机肥配施对板栗园土壤肥力及根系功能性状的影响(Effectsofcombinedapplicationoforganicandinorganicfertilizersonsoilfertilityandrootfunctionaltraitsinchestnutorchards).南京林业大学学报(自然科学版),2021,45(5):84-92.林远锋,鲁长虎,许㊀鹏,崔㊀鹏,张文文.1976年以来丹顶鹤在我国的分布变迁及就地保护状况(Distributionchangesandinsituconservationofred⁃crownedcranes(Grusjaponensis)inChinasince1976).南京林业大学学报(自然科学版),2021,45(6):200-208.刘㊀浩,刘㊀璨,刘俊昌.中国退耕还林工程对农户收入和消费不平等的影响测度(Effectsoftheslopinglandconversionprogramimpactonthe342. All Rights Reserved.南京林业大学学报(自然科学版)第45卷ruralhouseholds incomeandconsumptioninequalitiesinChina).南京林业大学学报(自然科学版),2021,45(1):227-234.刘㊀楠,冯富娟,张秀月.原始红松林皆伐后穿透雨对凋落物淋溶过程的影响(Effectsofthelitterleachingprocessbythroughfallafterclearcut⁃tingofprimaryPinuskoraiensisforest).南京林业大学学报(自然科学版),2021,45(1):159-167.刘桂丰,张姝慧,李慧玉,姜㊀静,陈㊀肃,黄海娇,李长海.彩叶桦 紫霞1号 新品种(Betulapendula Zixia1 :anewbirchcultivar).南京林业大学学报(自然科学版),2021,45(5):245-246.刘俊涛,仲㊀静,刘济铭,罗水晶,王冕之,范嘉霖,贾黎明.无患子初果期人工林土壤和叶片C㊁N㊁P化学计量特征(StoichiometriccharacteristicsofsoilandleavesinSapindusmukorossiplantationatanearlyfruitingstage).南京林业大学学报(自然科学版),2021,45(4):67-75.刘亚静,周㊀来,张㊀博,陈丽萍,潘㊀磊,孙玉军.不同林龄杉木径向变化及其对气象因子的响应(RadialvariationofCunninghamialanceolataindifferentagedforestsanditsresponsetometeorologicalfactors).南京林业大学学报(自然科学版),2021,45(2):135-144.卢㊀军,刘宪钊,孟维亮,李红军.基于地面激光点云数据的单木三维重建方法(Methodologyofindividualtree3Dreconstructionbasedonterres⁃triallaserscanningpointclouddata).南京林业大学学报(自然科学版),2021,45(6):193-199.陆元昌,雷相东,王㊀宏,刘宪钊,孟京辉,谢阳生,国㊀红,姜㊀俊,高文强.森林作业法的历史发展与面向我国森林经营规划的三级作业法体系(Silviculturalsystem:thehistoricalreviewandnewdevelopmentofaHierarchicallyStructuredSystemformanagementplanninginChina).南京林业大学学报(自然科学版),2021,45(3):1-7.路买林,陈梦娇,张嘉嘉,赵建霞,朱景乐,杜红岩. 红叶 杜仲叶色转变过程中叶片生理指标变化(LeafphysiologicalindicatorchangesinthetransformationofleavescolorofEucommiaulmoides Hongye ).南京林业大学学报(自然科学版),2021,45(1):86-92.罗凤敏,高君亮,辛智鸣,郝玉光,李新乐,段瑞兵.乌兰布和沙漠绿洲防护林体系小气候效应研究(StudyonthemicroclimateeffectsofoasisshelterforestintheUlanBuhDesert).南京林业大学学报(自然科学版),2021,45(5):143-152.马丹丹,库伟鹏,夏国华,毛洁莹,薛建辉.珍稀濒危植物堇叶紫金牛种群结构及动态分析(StructureanddynamicsofrareandendangeredplantArdisiaviolaceanaturalpopulation).南京林业大学学报(自然科学版),2021,45(3):159-164.马秋月,李倩中,李淑顺,朱㊀璐,颜坤元,李淑娴,张㊀斌,闻㊀婧.元宝枫组织培养及快速繁殖技术研究(StudyontissuecultureandrapidpropagationofAcertruncatumBunge).南京林业大学学报(自然科学版),2021,45(2):220-224.马晓乾,葛㊀君,王㊀琪,赵红盈,孙㊀妍,高㊀宇,申国涛,于文喜.光肩星天牛对糖槭挥发物的EAG及嗅觉行为反应(EAGandolfactorybe⁃havioralresponsesofAnoplophoraglabripennis(Coleoptera:Cerambycidae)tovolatilesofAcersaccharum).南京林业大学学报(自然科学版),2021,45(1):123-130.马颖忆,刘志峰.江苏省景观生态风险评估及其与城镇化的动态响应(Assessmentoflandscapeecologicalriskanditsdynamicresponsewithur⁃banizationdevelopmentofJiangsuProvince).南京林业大学学报(自然科学版),2021,45(5):185-194.马永春,佘诚棋,方升佐.不同修枝方法对杨树人工林生长㊁光合叶面积和主干饱满度的影响(Effectsofpruningmethodsongrowth,photosyn⁃theticleafareaandplumpnessoftrunksegmentinpoplarplantations).南京林业大学学报(自然科学版),2021,45(4):137-142.蒙海勤,叶建仁,王旻嘉,曹伊扬.木腐真菌对松材线虫病疫木处理初探(Usingwoodrotfungitotreatplaguewoodcausedbypinewiltdisease).南京林业大学学报(自然科学版),2021,45(4):183-189.缪㊀菁,王㊀勇,王㊀璐,许晓岗.基于MaxEnt模型的苦槠潜在地理分布格局变迁预测(PredictionofpotentialgeographicaldistributionpatternchangeforCastanopsissclerophyllaonMaxEnt).南京林业大学学报(自然科学版),2021,45(3):193-198.倪㊀铭,高振洲,吴㊀文,张于卉,喻方圆.不同氮素施肥方法对纳塔栎容器苗生长及非结构性碳水化合物积累的影响(Effectsofdifferentni⁃trogenfertilizationmethodsongrowthandnon⁃structurecarbohydrateaccumulationofQuercusnuttalliiseedlings).南京林业大学学报(自然科学版),2021,45(4):107-113.彭智奇,董㊀鹏,朱㊀弘,朱淑霞,董京京,钟育谦,翟飞飞,郑爱春,王贤荣,伊贤贵.江苏云台山山樱花种群结构及点格局分析(AnalysesofCerasusserrulatapopulationstructureandpointpatternsinYuntaiMountain,Jiangsu).南京林业大学学报(自然科学版),2021,45(4):167-176.任世奇,朱原立,梁燕芳,陈健波,卢翠香,伍㊀琪,韦振道.基于PM模型的广西南宁尾巨桉中龄林蒸散特征(Evapotranspirationcharacteristicsofmiddle⁃agedEucalyptusurophyllaˑE.grandisplantationbasedonPenman⁃MonteithmodelinNanning,Guangxi).南京林业大学学报(自然科学版),2021,45(2):127-134.尚军烨,徐炜超,孟庆繁,赵红蕊,刘生冬,李㊀燕.栎丽虎天牛成虫触角感器的扫描电镜观察(AntennalsensillaofadultPlagionotuspulcher(Coleoptera:Cerambycidae)observedwithscanningelectronmicroscope).南京林业大学学报(自然科学版),2021,45(5):195-200.佘建炜,张㊀康,郑㊀旭,赵小军,程㊀方,唐罗忠.海水处理对沼泽小叶桦苗木生长和生理的影响(EffectsofseawaterongrowthandphysiologyofBetulamicrophyllavar.paludosacuttingseedlings).南京林业大学学报(自然科学版),2021,45(5):102-108.圣倩倩,戴安琪,宋㊀敏,唐㊀睿,祝遵凌.NO2胁迫下两种鹅耳枥的光合生理特性变化(PhotosyntheticphysiologicalcharacteristicsoftwokindsofhornbeamunderNO2stress).南京林业大学学报(自然科学版),2021,45(2):10-16.盛后财,姚月锋,蔡体久,郭㊀娜,琚存勇.物候变化对落叶松人工林降雨分配过程中钾和钠离子迁移的影响(Effectsofphenoseasonontransferofpotassiumandsodiumionsintheprocessofrainfallredistributioninlarch(Larixgmelinii)plantations).南京林业大学学报(自然科学版),2021,45(6):143-150.施季森.CRISPR:从 盲盒 基因编辑到 精准靶向 基因组编辑的未竟之旅(CIRSPR:aunfulfilledjourneyfromgeneeditingin Blindbox to Precisiontargeting genomeediting).南京林业大学学报(自然科学版),2021,45(6):12-14.石文广,李㊀靖,张玉红,雷静品,罗志斌.7种杨树铅抗性和积累能力的比较研究(Acomparativestudyonleadtoleranceandaccumulationof442. All Rights Reserved.㊀第6期‘南京林业大学学报(自然科学版)“2021年论文题录(作者)索引sevenpoplarspecies).南京林业大学学报(自然科学版),2021,45(3):61-70.石小庆,刘晓莉,李方文,朱章顺,马㊀娇,杨苑钊,曾心美.木芙蓉新品种 百日华彩 ( Bairihuacai :anewHibiscusmutabiliscultivar).南京林业大学学报(自然科学版),2021,45(5):242-244.石欣隆,杨月琴,薛㊀娴,刘㊀伟,宋程威,郭丽丽,侯小改.壳寡糖对干旱胁迫下 凤丹 幼苗生长及生理特性的影响(EffectsofchitooligosaccharideonthegrowthphysiologyofPaeoniaostii FengDan seedlingsunderdroughtstress).南京林业大学学报(自然科学版),2021,45(2):120-126.时㊀珍,邢露华,郑琳琳,穆㊀博,田国行.城市公园绿地游憩供需协同度评价及优化策略(Evaluationsandoptimizationstrategiesofsynergyde⁃greeofparkgreenspacebasedonbalanceofsupplyanddemandforrecreation).南京林业大学学报(自然科学版),2021,45(2):197-204.宋㊀爽,许大为,石梦溪,胡珊珊.挠力河流域景观生态健康时空演变(SpatialandtemporalevolutionoflandscapeecologicalhealthinNaoliheBasin).南京林业大学学报(自然科学版),2021,45(2):177-186.宋烨,彭红军,孙铭君.碳限额与交易下木质林产品供应链内部融资机制(Internalfinancingmechanismsofwoodforestproductsupplychainunderthecap⁃and⁃tradescheme).南京林业大学学报(自然科学版),2021,45(6):232-238.苏胜荣,王继山,刘腾腾,王恩翠,桑旦次仁,张小鹏,李昕宇,张天星.一种西藏藏川杨潜叶新害虫 柳潜细蛾(Areportonanewleaf⁃miningpestofPopulusszechuanicavar.tibeticainTibet:Phyllonoryoleypastorella).南京林业大学学报(自然科学版),2021,45(4):243-246.孙㊀开,江建平,丁雨龙,RAMAKRISHNAUMuthusamy,魏㊀强.毛竹竹秆秆柄形态与解剖学研究(MorphologicalandanatomicalanalysesofMosobambooculmnecks).南京林业大学学报(自然科学版),2021,45(6):40-46.孙㊀龙,窦㊀旭,胡同欣.林火对森林生态系统碳氮磷生态化学计量特征影响研究进展(ResearchprogressontheeffectsofforestfireonforestecosystemC⁃N⁃Pecologicalstoichiometrycharacteristics).南京林业大学学报(自然科学版),2021,45(2):1-9.孙海燕,李㊀强,朱铭玮,李永荣,李淑娴.油用牡丹 凤丹 种子层积过程中营养物质的代谢变化研究(DynamicchangesofnutrientsofPaeoniaostii FengDan seedduringitsdormancybreaking).南京林业大学学报(自然科学版),2021,45(1):70-78.孙佳彤,国艳娇,李㊀爽,周晨光,姜立泉,李㊀伟.基于CRISPR/Cas9的毛果杨bHLH106转录因子的功能研究(AfunctionalstudyofbHLH106transcriptionfactorbasedonCRISPR/Cas9inPopulustrichocarpa).南京林业大学学报(自然科学版),2021,45(6):15-23.田㊀力,徐骋炜,尚旭岚,洑香香.青钱柳药用优良单株评价与选择(EvaluationandselectiononsuperiorindividualsformedicinaluseofCyclo⁃caryapaliurus).南京林业大学学报(自然科学版),2021,45(1):21-28.田呈明,王笑连,余㊀璐,韩㊀珠.林木与病原菌分子互作机制研究进展(Areviewonthestudiesofmolecularinteractionbetweenforesttreesandphytopathogens).南京林业大学学报(自然科学版),2021,45(1):1-12.童㊀龙,李红艳,刘小明,李㊀彬,陈丽洁,陈桂兰,曾小英,耿养会.不同栽培基料对竹荪农艺性状和主要营养成分的影响(EffectsofdifferentcultivatedformulasontheagronomiccharacteristicsandnutritionalvalueofDictyophoraindusiata).南京林业大学学报(自然科学版),2021,45(3):30-36.万雅雯,傅华君,时培建,林树燕.变温对毛竹种子萌发及幼苗生长的影响(EffectsofvariabletemperaturesonseedgerminationandseedlinggrowthofPhyllostachysedulis).南京林业大学学报(自然科学版),2021,45(4):97-106.王㊀冰,张鹏杰,张秋良.不同林型兴安落叶松林土壤团聚体及其有机碳特征(Characteristicsofthesoilaggregateanditsorganiccarbonindif⁃ferentLarixgmeliniiforesttypes).南京林业大学学报(自然科学版),2021,45(3):15-24.王㊀瑞,王国兵,徐㊀瑾,徐㊀晓.凋落物与蚯蚓对杨树人工林土壤团聚体分布及其碳氮含量的影响(Effectsoflitterfallsandearthwormsondistributionofsoilaggregatesandcarbonandnitrogencontentinpoplarplantations).南京林业大学学报(自然科学版),2021,45(3):25-29.王㊀玄,崔㊀鹏,丁晶晶,常㊀青.江苏南部沿海越冬水鸟群落结构及多样性分析(CommunitystructureanddiversityofoverwinteringwaterfowlsinsouthcoastofJiangsuProvince).南京林业大学学报(自然科学版),2021,45(5):178-184.王㊀圳,高亚军,闫凡峰,王晓伟,李华清,姜㊀雷.海滨城市道路绿化树种综合评价体系构建(Constructionofacomprehensiveassessmentsystemforroadgreeningtreespeciesincoastalcities).南京林业大学学报(自然科学版),2021,45(2):187-196.王福根,卫星杓,赵国春,贾黎明.无患子细根形态及垂直分布特征对配方施肥措施的响应(ResponsesofmorphologyandverticaldistributionoffinerootsinSapindusmukorossitoformulafertilization).南京林业大学学报(自然科学版),2021,45(4):58-66.王国兵,徐㊀瑾,徐㊀晓,阮宏华,曹国华.蚯蚓与凋落物对杨树人工林土壤酶活性的影响(Effectsofearthwormsandlitterfallsonthesoilenzymeactivitiesofpoplarplantations).南京林业大学学报(自然科学版),2021,45(3):8-14.王君杰,姜立春.基于线性分位数组合的兴安落叶松冠幅预测(PredictingcrownwidthforLarixgmeliniibasedonlinearquantilesgroups).南京林业大学学报(自然科学版),2021,45(5):161-170.王立超,陈凤毛,仇才楼,唐进根,丁学农,任吉星.坡面方胸材小蠹鉴定与风险分析(IdentificationandriskanalysesofEuwallaceainterjectus).南京林业大学学报(自然科学版),2021,45(5):201-208.王路君,蔡春菊,唐晓鹿,范少辉.硬头黄竹地上生物量分配特征及模型构建(AbovegroundbiomassallocationpatternsandmodelconstructionofBambusarigida).南京林业大学学报(自然科学版),2021,45(1):189-196.王明哲,崔晓阳,李斯雯,张伟波,赵华晨.大兴安岭北端地形因子对针叶林土壤黑碳储量的影响(EffectsoftopographicfactorsonsoilblackcarbonstorageinconiferousforestsatthenorthendofGreaterKhinganMountains).南京林业大学学报(自然科学版),2021,45(1):151-158.王培龙,杨㊀妮,张傲然,唐努尔㊃塞力克,李㊀爽,高彩球.刚毛柽柳ThPCS1基因克隆与镉胁迫应答分析(CloningThPCS1geneofTamarixhispidatoimprovecadmiumtolerance).南京林业大学学报(自然科学版),2021,45(3):71-78.542. All Rights Reserved.南京林业大学学报(自然科学版)第45卷王润松,孙㊀源,徐涵湄,曹国华,沈彩芹,阮宏华.施用沼液对杨树人工林细根生物量的影响(Effectsofbiogasslurryapplicationonfinerootbiomassofpoplarplantations).南京林业大学学报(自然科学版),2021,45(4):123-129.王润松,徐涵湄,曹国华,沈彩芹,阮宏华.施用沼液对杨树人工林细根形态特征的影响(Effectsofapplyingbiogasslurryonthemorphologicalcharacteristicsoffinerootsofpoplarplantations).南京林业大学学报(自然科学版),2021,45(5):119-124.王树梅,王㊀波,范少辉,肖㊀箫,夏㊀雯,官凤英.带状采伐对毛竹林土壤细菌群落结构及多样性的影响(Influenceofstripcuttingmanage⁃mentonsoilbacterialcommunitystructureanddiversityinPhyllostachysedulisstands).南京林业大学学报(自然科学版),2021,45(2):60-68.王树梅,范少辉,肖㊀箫,郑亚雄,周㊀阳,官凤英.带状采伐对毛竹地上生物量分配及异速生长的影响(Effectsofstripcuttingonabovegroundbiomassaccumulationandallocation,andallometricgrowthofPhyllostachysedulis).南京林业大学学报(自然科学版),2021,45(5):19-24.王卫卫,张应良.退耕还林农户技术禀赋对经果林换种的影响(Theimpactoffarmers technicalendowmentontheadoptingnewvarietiesoffruitforest).南京林业大学学报(自然科学版),2021,45(5):215-222.王羽尘,马健霄,刘宇航,白莹佳.基于烟气扩散特征的林区隧道火灾人群疏散模型(Theevacuationmodelofforesttunnelfirebasedonthecharacteristicsofsmokediffusion).南京林业大学学报(自然科学版),2021,45(6):177-184.王志鹏,王㊀薇,邢思懿.城市公园绿地特征和使用方式与人群健康关系研究(Astudyontherelationshipbetweenthecharacteristicsandusageofurbanparkgreenspaceandpopulationhealth).南京林业大学学报(自然科学版),2021,45(5):223-231.王竹雯,国艳娇,李㊀爽,周晨光,姜立泉,李㊀伟.基于CRISPR/Cas9的毛果杨PtrHBI1基因功能解析(FunctionalanalysesofPtrHBI1geneinPopulustrichocarpabasedonCRISPR/Cas9).南京林业大学学报(自然科学版),2021,45(6):31-39.王子芝,李㊀玥,华世明,周俊宏,刘文斗,廖声熙.基于生态保护加权的普达措国家公园功能分区研究(FunctionalzoningofPotatsoNationalParkbyecologicalprotectionweighting).南京林业大学学报(自然科学版),2021,45(6):225-231.韦庆钰,黄海龙,吴纯泽,苏嘉熙,卫㊀星.3种倍性青杨扦插苗对覆膜滴肥的生长响应(ResponseofPopuluscathayanacuttingseedlingsofthreeploidytypestofertilizerunderfilmmulchinganddripirrigation).南京林业大学学报(自然科学版),2021,45(5):93-101.魏㊀宁,李国雷,蔡梦雪,史文辉,刘㊀文,薛㊀柳,李进宇.缓释肥施氮量对4种国外栎苗木质量及移栽成活率的影响(Effectsofslow⁃releasefertilizationratesonseedlingqualityandfieldsurvivalratesoffourexoticoaks).南京林业大学学报(自然科学版),2021,45(3):53-60.魏龙鑫,章异平,李艺杰,张玉茹.栓皮栎叶片和枝条非结构性碳水化合物调配关系研究(Allocationofnon⁃structuralcarbohydrates(NSC)con⁃tentsinleavesandbranchesofQuercusvariabilisduringitsgrowthprocess).南京林业大学学报(自然科学版),2021,45(2):96-102.吴㊀红,燕丽萍,李成忠,夏㊀群,周㊀霞,赵宝元.槭树属常见树种翅果性状多样性与风传播特征分析(MorphologicalcharacteristicsandwinddispersalcharacteristicsofsamaraofcommonAcerspecies).南京林业大学学报(自然科学版),2021,45(2):103-110.吴丽君,游云飞,陈㊀达,陈文荣,李文芳. 黄樽 薄叶金花茶组培苗生根与移栽技术研究(Optimizationoftherootingandtransplantationte⁃chinquesoftissue⁃culturedshootsofCamelliachrysanthoides Huangzun ).南京林业大学学报(自然科学版),2021,45(3):117-122.吴其超,马㊀燕,李呈呈,许建军,么燕君,臧德奎.桂花新品种 冬荣 (Osmanthusfragrans Dongrong :anewcultivarofosmanthus).南京林业大学学报(自然科学版),2021,45(3):245-246.吴文清,许克福.合肥环城公园开放空间与游憩行为关系研究(RecreationalpreferencesamongdifferentopenspacesinaringcityparkofHefei).南京林业大学学报(自然科学版),2021,45(6):217-224.夏雯雯,李㊀想,王钰祺,徐㊀驰,刘茂松.互花米草与盐地碱蓬群落交错带土壤因子的梯度变化特征(DistributionofsoilfactorsacrossthehabitatgradientofSpartinaalternifloraandSuaedasalsacommunities).南京林业大学学报(自然科学版),2021,45(3):37-44.辛士冬,何㊀培,姜立春.不同矫正位置对落叶松分位数削度方程预测精度的影响(EffectsofdifferentcalibrationpositionsonpredictionprecisionofquantiletaperfunctionforLarixgmelinii).南京林业大学学报(自然科学版),2021,45(1):182-188.熊㊀瑶,严㊀妍.基于人体热舒适度的江南历史街区空间格局研究 以南京高淳老街为例(EffectsofspatialdesignandmicroclimateonhumanthermalcomfortintheregionsouthoftheYangtzeRiver:acasestudyofoldstreetinGaochun,Nanjing).南京林业大学学报(自然科学版),2021,45(1):219-226.熊光康,厉月桥,熊有强,段爱国,曹德春,孙建军,聂林芽,盛炜彤.低密度造林对杉木生长㊁形质和材种结构的影响(Effectsoflowstanddensityafforestationonthegrowth,stem⁃formandtimberassortmentstructureofCunninghamialanceolataplantations).南京林业大学学报(自然科学版),2021,45(3):165-173.徐晶园,圣倩倩,王伟希,刘聪哲,祝遵凌.南京典型城市道路植物多样性与土壤因子的耦合关系(Modelingthedegreeofcouplingandinterac⁃tionbetweenplantcommunitydiversityandsoilpropertiesontypicalurbanroadsinNanjing).南京林业大学学报(自然科学版),2021,45(6):119-126.徐圆圆,周思维,陈㊀仲,赵国春,刘济铭,王立宪,王㊀昕,贾黎明,张端光.无患子不同器官中的总皂苷和总黄酮含量(ContentsofthetotalsaponinsandtotalflavonoidsindifferentorgansofSapindusmukorossi).南京林业大学学报(自然科学版),2021,45(4):83-89.许嘉麟,谈家金,郝德君.蜡样芽孢杆菌NJSZ-13菌株对松材线虫产卵和繁殖的影响(EffectofBacilluscereusNJSZ⁃13strainonovipositionandreproductionofBursaphelenchusxylophilus).南京林业大学学报(自然科学版),2021,45(5):209-214.许中秋,隋德宗,谢寅峰,王俊毅.两个乌桕新品种苗木光合特性比较(ComparisonofphotosyntheticcharacteristicsoftwonewTriadicasebiferavarieties).南京林业大学学报(自然科学版),2021,45(1):93-100.薛蓓蓓,田国双.基于碳汇木材复合经营目标的综合效益及影响因素分析(Analysisofcomprehensivebenefitsandinfluencingfactorsbasedonthecombinedeconomicvalueofcarbonsequestrationandtimberbenefits).南京林业大学学报(自然科学版),2021,45(2):205-212.642. All Rights Reserved.㊀第6期‘南京林业大学学报(自然科学版)“2021年论文题录(作者)索引闫想想,王秋华,缪秀丽,韩永涛,龙腾腾.昆明西山林场5种可燃物的火行为研究(FirebehavioroffivekindsoffuelsinXishanForestFarm,KunmingCity).南京林业大学学报(自然科学版),2021,45(1):197-204.杨㊀南,崔允姬,王㊀茜,王曙光.木竹的花器官形态与解剖结构研究(AstudyonthemorphologyandanatomicalstructureofBambusarutilaspiklets).南京林业大学学报(自然科学版),2021,45(4):90-96.杨㊀意,刘㊀波,叶建仁,苏禄晖.水杉赤枯病综合营林生态控制技术研究(AstudyontheecologicalcontrolofredblightofMetasequoiaglyp⁃tostroboidesbyintegratedforestmanagement).南京林业大学学报(自然科学版),2021,45(6):90-98.杨红强,余智涵.全球木质林产品碳科学研究动态及未来的重点问题(Researchtrendsandfuturekeyissuesofglobalharvestedwoodproductscarbonscience).南京林业大学学报(自然科学版),2021,45(4):219-228.杨清平,陈双林,郭子武,郑㊀进.摘花和打顶措施对毛竹林下多花黄精块茎生物量积累特征的影响(ResponsesoftuberbiomassaccumulationanditsallometrytotoppingandflowerpluckingmeasuresofPolygonatumcyrtonemagrownunderPhyllostachysedulisforests).南京林业大学学报(自然科学版),2021,45(2):165-170.杨瑞珍,张焕朝,胡立煌,范之馨.接种AMF及施氮对滨海盐土氮矿化的影响(EffectsofAMFinoculationandnitrogenapplicationonnitrogenmineralizationofcoastalsalinesoil).南京林业大学学报(自然科学版),2021,45(2):145-152.姚晶晶,冯象千,肖㊀贺,郑㊀豫,张成梁.不同固废及其处理产物对黄骅港盐碱土的改良效果(Improvementeffectsofdifferentsolidwasteandtheirdisposalbyproductsonsaline⁃alkalisoilinHuanghuaPort).南京林业大学学报(自然科学版),2021,45(3):45-52.姚正明,田旭琴,蒙慧理,邓云飞.爵床科凹苞马蓝在贵州的分布新记录及其补充描述(ThenewdistributionofStrobilanthesretusa(Acanthaceae)inGuizhouwithsupplementarydescription).南京林业大学学报(自然科学版),2021,45(4):177-182.伊贤贵,董㊀鹏,谢春平,彭智奇,杨国栋,董京京,钟育谦,翟飞飞,王贤荣.江苏宜兴龙池山自然保护区固定样地物种组成分析(AnanalysisonspeciescompositionofapermanentplotontheLongchiMountain,YixingCity,JiangsuProvince).南京林业大学学报(自然科学版),2021,45(6):159-168.尹艳楠,谈家金,李梦伟,许嘉麟,郝德君.蜡样芽孢杆菌NJSZ-13菌株防治松材线虫病研究(AstudyonthebiocontrolofpinewiltdiseasebyBacilluscereusNJSZ⁃13).南京林业大学学报(自然科学版),2021,45(3):152-158.于松平,刘泽彬,郭建斌,王彦辉,于澎涛,王㊀蕾.六盘山华北落叶松林分蒸腾特征及其影响因素(StandtranspirationcharacteristicsofLarixprincipis⁃rupprechtiiplantationandtheirinfluencingfactorsinLiupanMountain).南京林业大学学报(自然科学版),2021,45(1):131-140.原雅楠,李正才,王㊀斌,张雨洁,黄盛怡.不同林龄榧树根㊁枝㊁叶的C㊁N㊁P化学计量及内稳性特征(Ecologicalstoichiometryinleaves,branchesandrootsofTorreyagrandiswithdifferentforestagesanditsstoichiometrichomoeostasis).南京林业大学学报(自然科学版),2021,45(6):135-142.袁金玲,马婧瑕,钟远标,岳晋军.基于SSR标记的丛生竹杂种鉴定㊁遗传分析和指纹图谱构建(SSR⁃basedhybrididentification,geneticanalysesandfingerprintdevelopmentofhybridizationprogeniesfromsympodialbamboo(Bambusoideae,Poaceae)).南京林业大学学报(自然科学版),2021,45(5):10-18.袁婷婷,路远峰,谢寅峰,马迎莉,吴㊀桐,倪㊀震.硼钼铜微肥配施对太子参光合特性的影响(Effectsofcombinedapplicationofboron⁃molybdenum⁃coppermicrofertilizersonphotosyntheticcharacteristicsofPseudostellariaheterophylla).南京林业大学学报(自然科学版),2021,45(4):130-136.苑兆和,陈立德,张心慧,赵玉洁.果树分子育种研究进展(Advancesinmolecularbreedingoffruittrees).南京林业大学学报(自然科学版),2021,45(4):1-12.岳晋军,朱燕琳,袁金玲.绿竹笋用林长周期母竹留养模式研究(StudyonmanagementmodeloflongperiodstockingbambooconservationinDendrocalamopsisoldhami).南京林业大学学报(自然科学版),2021,45(5):31-37.臧明月,李㊀璇,方炎明.基于SSR标记的白栎天然居群遗传多样性分析(GeneticdiversityanalysisamongnaturalpopulationsofQuercusfabribasedonSSRmarkers).南京林业大学学报(自然科学版),2021,45(1):63-69.张㊀恒,崔孟然,单延龙,王㊀飞.中蒙边境典型草原草本可燃物燃烧性研究(StudyonflammabilityofherbaceousfuelintypicalgrasslandofChina⁃Mongoliaborder).南京林业大学学报(自然科学版),2021,45(5):171-177.张㊀磊,童㊀龙,谢锦忠,李俞佳,张㊀玮.不同灌水时间下毛竹伐桩根系化学计量及生理特性变化(Changesinchemicalmetrologyandphysio⁃logicalcharacteristicsofPhyllostachysedulisstumprootsunderdifferentirrigationtimes).南京林业大学学报(自然科学版),2021,45(5):25-30.张㊀琳,程亚男,张㊀欣,杨伟婷,孔庆涛,谢东锋.两种植物生长调节剂对木槿插穗生根的影响(EffectsoftwoplantgrowthregulatorsonrootingofHibiscussyriacuscuttings).南京林业大学学报(自然科学版),2021,45(3):123-129.张㊀濛,续高山,滕志远,刘关君,张秀丽.模拟酸雨对小黑杨幼苗生长和光合特性的影响(Effectsofsimulatedacidrainongrowthandphotosyn⁃theticphysiologicalcharacteristicsofPopulussimoniiˑP.nigra).南京林业大学学报(自然科学版),2021,45(6):57-64.张㊀琪,钱㊀滕,王㊀欢,朱铭玮,李淑娴.加拿大紫荆种子硬实性解除及其吸水特性研究(HardnessbreakingandmechanismsofwaterabsorptioninCerciscanadensisseeds).南京林业大学学报(自然科学版),2021,45(3):137-142.张㊀群,及晓宇,贺子航,王智博,田增智,王㊀超.白桦BpGRAS1基因的克隆及耐盐功能分析(CloningandsalttoleranceanalysisofBpGRAS1geneinBetulaplatyphylla).南京林业大学学报(自然科学版),2021,45(5):38-46.张㊀馨,马苗苗,吕婉秋,LEEJoobin,杨静莉.大青杨PuZFP103基因的序列特征及逆境胁迫的表达分析(Sequencecharacteristicsandexpres⁃sionpatternanalysesofPuZFP103geneunderabioticstressinPopulusussuriensis).南京林业大学学报(自然科学版),2021,45(1):36-44.742. All Rights Reserved.。

GatewayTM系统快速构建番木瓜环斑病毒CP和CI基因的反向重复序列表达载体1

GatewayTM系统快速构建番木瓜环斑病毒CP和CI基因的反向重复序列表达载体1

min, 然后 94 ℃ 变性 30 s, 55 ℃ 退火 30 s, 72 ℃ 延伸
1 min,30 个循环,以鉴定 基因是否真正重组到
pDONRTM221 中,代替了
基因的位置。
1.2.5 利用 LR 重组反应创建表达克隆 利用 LR
克隆酶 LR ClonaseTM 域催化入门克隆与目的载体之
间的重组反应。将入门克隆 pDONRTM221­ 、目的
当表达载体的质粒 DNA 经 玉酶切消化时,琼
脂糖凝胶电泳可观察到长度约为 1 700 bp 的片段产
生(图 4,b)。1 700 bp 是 LR 重组反应发生后,两个反
向重复的 基因长度加上两个内含子长度及
长度之和。PCR 扩增产物经过琼脂糖凝胶电泳分
析,表明:在引物对(P35S 和 PT1)和(Pocs 和 PT1)的作用 下,可分别扩增获得 582 和 773 bp 的 DNA 片段(图
进行 PCR 扩增,获得侧翼含有 位点的 基因
扩增产物(图 2)。
图 2. ­ 基因的 PCR 产物的凝 胶电泳分析
Fig.2. Gel electrophoresis analysis ­PCR products of gene
M, DL2000 marker;1 和 2, 917 bp 的 基 因片段。
上清,用 20 滋L TE 缓冲液溶解残留物。该纯化过程
可以去除 300 bp 以下的片段,包括含 的引物及
其 引物二聚体。
1.2.4 利用 BP 重组反应创建入门克隆 用侧翼含
有 B 位点的 PCR 产物与受体载体 pDONRTM221
进行重组反应,预先,将受体载体 pDONRTM221 转
化 DB3.1 感受态细胞,并提取质粒 DNA。根据试剂

遗传多态性知识汇总

遗传多态性知识汇总

遗传多态性知识一、SNP, LD, Haplotype and Tagger SNP1. 遗传/基因多态性(genetic/gene polymorphism)在一随机婚配的群体中,染色体同一基因座位点上有两种或两种以上的基因型,且各个等位基因在群体中的出现频率皆高于1%。

它是决定人体对疾病易感性、临床表现多样性及药物治疗反应差异性的重要因素。

而种群中频率等于或小于1 %的碱基变异称为突变。

染色体同一DNA位置上的每个碱基类型叫做一个等位位点。

如某些人的染色体上某一位置的碱基是A,而另一些人的染色体上相同位置上的碱基是G,除性染色体外,每个人体内的染色体都有两份,所以,一个人所拥有的一对等位位点的类型被称作基因型(genotype),如GA、GG、AA;检定一个人的基因型,被称作基因分型(genotyping)。

由不同基因型与环境共同作用所产生的生物体(人类)可观测的物理或生理性状称为表现型(phenotype)。

限制性片段长度多态性(restriction fragment length polymorphism. RFLP)是第一代的遗传标记;可变数目的串联重复(variable number of tandem repeat. VNTR)是第二代遗传标记;其中重复单位为2-6个核苷酸称为微卫星或短串联重复;6-12个核苷酸称为小卫星。

Polymorphisms are defined as frequent (occurring in greater than 1% of the population) variations in the human DNA sequence. Most involve a single base pair substitution, known as single nucleotide polymorphisms(1), although more complex variations are also recognised. SNPs are single base pair positions in genomic DNA at which different sequence alternatives (alleles) exist in normal individuals in some population(s), wherein the least frequent allele has an abundance of 1% or greater. In principle, SNPs could be bi-, tri-, or tetra-alletic polymorphisms. Howere, in humans, tri-alletic and tetra-alletic SNPs are rare almost to the point of non-existence, and so SNPs are sometimes simply referred to as bi-allelic markers.单核苷酸多态性(single nucleotide polymorphism.SNP):最早由美国麻省理工学院的人类基因组研究中心Lander于1996年提出,是不同个体基因组DNA序列内特定核苷酸位置上单个碱基的不同.是第三代遗传标记,任一SNP在群体中出现的频率应不小于1%,原则上SNP 可以是双、三、四等位基因多态,在人类三、四等位基因的SNP很少甚至几乎不存在,因此SNP简单指双等位标记,双等位基因的SNP替换包括1个转换C\T(G\A)和3个颠换C\A(G\T)、C\G(G\C)、T\A(A \T),由于核苷酸的5-甲基胞嘧啶脱氢基反应相对比较频繁,使得四种SNPs在基因组中出现的频率不同,在生物体内约2/3是C/T(G/A)转换,并且多存在于非转录序列中。

巨大芽孢杆菌葡萄糖脱氢酶基因的重组和表达研究

巨大芽孢杆菌葡萄糖脱氢酶基因的重组和表达研究

巨大芽孢杆菌葡萄糖脱氢酶基因的重组和表达研究第17卷第2期2o07年1月中国现代医学杂志ChinaJournalofModemMedicineV0l_17No.2Jan.2o07文章编号:1005-8982(2007)02-0172-03巨大芽孢杆菌葡萄糖脱氢酶基因的重组和表达研究水论着?周丽萍,徐军(1江苏大学医学技术学院,江苏镇江212001;2江苏大学附属人民医院,江苏镇江212002)摘要:目的运用聚合酶链反应技术从巨大芽孢杆菌中获得葡萄糖脱氢酶基因,并表达该基因.方法根据巨大芽孢杆菌葡萄糖脱氢酶基因两端序列设计引物,通过PCR获得该基因,与表达载体pET22b连接后转化至大肠杆菌IM109(DE3)进行诱导表达.结果重组基因表达产物经SDS—PAGE 电泳鉴定显示特异性奈带,并且酶活力达15u/mL,比活力为10u/mg.结论运用基因工程手段获得了葡萄糖脱氢酶基因,经诱导获得了较高产量的葡萄糖脱氢酶.关键词:巨大芽孢杆菌;葡萄糖脱氢酶;基因;重组;表达中图分类号:R37文献标识码:ARecombinationandexpressionofglucose一''fromBacillus~gateriudehydro~enaseIromacillusmegaterium币ZHOULi-ping,XU-jun.SchoolofMedicalTechnology,jiangsuUniversity,Zhenjiang,Jiangsu212001,P.R.China," 2TheAffiliatedPeoplesHospitalofJiangsuUniversity,Zhenjiang,Jiangsu212002,P.R.China) Abstract:【Objective】Toobtainageneencodingglucosedehydrogenase(GDH)fromBacillusmegateriumand expressit.【Methods】Designedprimersbasedonthegenesequenceandobtainedthegeneusingpolymerasecy—clingreactionq'CR),thepET22bvectorcombinedwiththeGDHgenewastransf0册edintoJM109(DE3)toexpressbyinducing'【Results】SDS~PAGEshowstwospecificsubunitslineandthefluidalsohasspecificactivity.【Con- cluslon】BasedonPCRtechniques,ageneencodingglucosedehydrogenasewasgainedfromBacillus megatefium.TherecombinantE.coligavehighlevelexpressionofGDHbyinducing.Keywords:Bacillusmegaterium;glucosedehydmgenase;gene;recombination;expression 葡萄糖脱氢酶(Glucosedehydrogenase,GDH)可应用于临床血糖的测定,它以其高灵敏度,低干扰而成为血糖测定的参考方法【",因此葡萄糖脱氢酶具有较广阔的应用前景.GDH来源广泛,如巨大芽孢杆菌(Bacillusmegaterium),枯草芽孢杆菌(Bacil—lussubtilis),短小芽孢杆菌(BaciUuspumilus),醋酸钙不动杆菌(Acinetobactercalcoaceticus),嗜盐古细菌(haloplilicarchaeonHaloferaxmediterranei)和嗜热酸古细菌(thermoacidophilisarchaebacteri—um)等均可产生闼,枯草芽孢杆菌,巨大芽孢杆菌来源的GDH以其产酶量高,纯化方便而被人们广泛的接受和应用IS一.本文通过基因工程手段从巨大芽孢杆菌获得目的基因,并经诱导获得具有较高活力的葡萄糖脱氢酶.1材料和方法1.1菌株和质粒T载体,大肠杆菌表达载体pET22b购自TaKaRa公司,巨大芽孢杆菌DB104,大肠杆菌表达收稿日期:2006—07—19$基金项目:镇江市科技计划(社会发展)资助项目,项目编号No.SH2005.028 172?第2期周丽萍,等:巨大芽孢杆菌葡萄糖脱氢酶基因的重组和表达研究宿主菌JM1o9(DE3)为本实验室保存.1.2培养基LB培养基(1%蛋白胨,0.5%酵母膏,1%NaC1)用于细菌培养.培养基氨苄青霉索终浓度为80g/mL.1.3酶和化学试剂限制性核酸内切酶,TaDNA连接酶,DNA分子量Marker,X—gal,IPTG(异丙基硫代一B—D一半乳糖苷),dNTP,ExTaq均为TaKaRa公司产品,胶回收试剂盒购自Promega,其他常规试剂均为国产或进口分装.1.4基因重组1.4.1基因组DNA的获取收集DB104平板菌落于100L双蒸水中重悬,于100~C煮10min裂解细菌,加入等体积的酚/氯仿震荡混匀,离心后上清为基因组DNA.1.4.2PCR反应根据文献提供的巨大芽孢杆菌(B.megaterium)GDH基因的DNA序列(登录号:A07355)设计并合成引物,为方便后续的克隆,在5'端引物中引入了NdeI酶切位点3'端引物中引入3Hind亚酶切位点.5'端引物hl:5'CATA TG TATACAGAATTAAAAAGA TAAAAG3'NdeI,3端引物gdh2:5'CTAGCCTCTrCCTGCTr~GAAAG3'.以基因组DNA为模板,gdh1+gdh2扩增,PCR扩增条件:25L反应体系中,10Xbuffer(含Mg2+)2.5L,dNrP(25mM)0.2L,弓l物1.2(20pmol/L)各1.0L,基因组DNA0.2ng,ExTaq0.5u,在94~C预变性3min后按如下参数循环28次:94~C 变性30s,56oC退火30s,72~C延伸60s,最后一个循环72延伸300So获得约750bp片段.PCR扩增产物用胶回收纯化后用于连接.1.4.3基因的重组和转化PCR扩增产物1.2%琼脂糖凝胶回收,与T载体16~C连接,转化TG1,涂布在预先涂有氨苄青霉素,IPTG和x一的LB平板上进行蓝白斑筛选,在平板上挑选白斑并经PCR和NdeI,HindlII双酶切鉴定为重组体后,与同样双酶切处理的表达载体pET22b连接,转化大肠杆菌JM109(DE3),酶切,PCR鉴定.1.5GDH活力的测定接种pETGDH/JM109(DE3)单菌落于3mLLB培养基中250r/min,37~C振荡培养过夜,1%转接50mLLB中继续培养2.5h,加入终浓度为0.5mmol/LIPTG诱导,继续培养3h,4~C,5000r/min,10min离心收集菌体,pH7.4PBS洗涤,超声破碎细胞,离心,上清即为初提酶液.根据p—D一葡鼙糖+NADGD旦D一葡萄糖酸内酯+ NADH在倍肯公司eppendorfECOM—F6124全自动生化分析仪检测(速率法).酶活力单位定义为:37~C条件下,每分钟催化生成1mol的NADH的酶量定义为一个单位(U)1.6蛋白质含量的测定Lowry法测定蛋白质含量.2结果2.1重组表达质粒的构建以提取的Bacillusmegaterium基因组为模板,用合成的引物进行PCR扩增,得750bp目的片段, 见图1,产物克隆至T载体得重组质粒T—GDH.重组质粒T—GDH用Ndei,HindlII双酶切,将小片段与同样双酶切处理的pET22b连接,得重组表达质粒pETGDH,图2为重组表达质粒pETGDH及NdeI,HindlII双酶切鉴定结果.由图可知,重组表达质粒切为目的基因和载体两个片段,可见重组体构建成功.2】1-DL20002-PCR产物图1PCR产物1_2%琼脂糖凝胶电泳图谱43211-DL20002,3-待鉴定质粒4—3号质粒双酶切产物图2重组质粒pE'I'GDHNdel,Hindlll双酶切鉴定2.2大肠杆菌表达GDH2.2.1GDH活力测定按照姜旭淦等[5报道的方法分别测定宿主菌,空载体转化菌,目的基因重组体转化菌裂解液的葡萄糖脱氢酶粗提酶活力,结果前两173?_吕I_吕I_吕_∞∞∞∞217521中国现代医学杂志第17卷者几乎为零,而后者为15u/mL,比活力为10u/mg.2.2.2GDH表达产物SDS—PAGE电泳按1.5处理后的粗提酶液经12%SDS—PAGE电泳,考马氏亮蓝染色观察,结果如图3.结果显示,在大约6OkD和30kD处出现了新的蛋白条带,结合裂解液活力的测定差异,确定该条带应该为GDH表达蛋白.123497.4kD66.2kD43kD31kD2O.1kD14.4kD1一宿主菌JM109表达蛋白;2一空载体转化菌pET22b(JM109)表达蛋白;3一重组菌pETGDH(JM109)表达蛋白;4一低分子量蛋白质Marker 图3GDH粗提液SDS—PAGE电泳3讨论目前临床上用于血糖测定的主要方法是酶法.血清葡萄糖的测定在葡萄糖脱氢酶制剂问世之前一直沿用的是葡萄糖氧化酶(glucoseoxidase,GOD)法和己糖激酶(hexokinase,HK)法.葡萄糖氧化酶法以其经济,实用而作为血糖测定的常规方法,己糖激酶法以其高准确度和高精密度而作为血糖测定的参考方法.以上两种测定血糖的方法均需两种酶的参与,自从Merck公司制备了纯度较高的葡萄糖脱氢酶,就建立起了具有高度特异的测定葡萄糖的GDH法.GDH除了可以作为临床血糖测定的诊断用酶,还广泛地应用于食品工业及其他医药工业领域目.如用葡萄糖脱氢酶法生产的D一核糖的产量与GDH活力成相关,D一核糖即D一呋喃核糖,它是生物体内核糖核酸以及许多辅酶的核苷酸衍生物的构成成分,具有十分重要的生理作用,在生物合成途径中,GDI-I是其限速酶;作为一种氧化还原酶,GDH可制成生物传感器【9].笔者克隆到巨大芽孢杆菌葡萄糖脱氢酶基因,并初步表达有活力,为自主开发葡萄糖脱氢酶奠定了基础.关于该酶的诱导高表达研究以及分离纯化方面的工作正在进行中,有望获得高产量的葡萄糖脱氢酶,为临床以及其他需要的领域服务.参考文献:[I】BANAUCHD,BRUMMERW,EBELINGW.Aglucosedehydro—genasefOrthedeterminationofglucoseconcentrationsinbodyfluids(author'strans1)Ⅲ.ZI(1inChemKlinBiochem,1975,13 (3):101-107.f2J周丽萍,朱晓丽.葡萄糖脱氢酶的研究进展[JJ.江苏大学(医学版1,2004,14:174—176.[2】ZHOULP,ZHUXL.ResearchprogressofGlucosedehydroge- nase叩.JournalofJiangsuUniversity(MedicineEdition),2004,14:174—176.Chinese[3】周丽萍,赵燕,王卉放,等.枯草芽孢杆菌葡萄糖脱氧酶的克隆和表达帅.江苏大学(医学版).2004.14(1):7—10.[3】ZHOULP.ZHAOY,WANGI'IF,eta1.Cloningandexpression ofglucosedehydrogenasefromBacillussubtilisⅢ.Journalof JiangsuUniversity(MedicineEdition),2004,l4(1):7-10.Chinese[4】周丽萍,姜旭淦,徐顺高.等.重组葡萄糖脱氢酶基因的表达研究[J]. 江苏大学(医学版),2005,15(4):291—293.[4】ZHOULP,JIANGXG,XUSG,eto1.StudyOntheexpression ofreeombinatedglucosedehydmgenasegone[J].JournalofJiangsu University(MedicineEdition),2005,15(4):291-293.Chinese[5】姜旭淦,周丽萍,徐顺高,等.葡萄糖脱氢酶连续监测法的研究们江苏大学(医学版),2004,14(6):.68—70.【5】JIANGXG,ZHOULP,XUSG,et01.SmdyOI1thecontinuous monitoringassayofglucosedehydrogenase田.JournalofJiangsu University(MedicineEdition),2004,14(6):68-70.Chinese[6]张俊丽.任爱华,梁秀利.脑卒中后血糖升高机制探讨叨.中国现代医学杂志,2004,14(18):45—47.[6】ZHANG儿,RENAH,LINGXL.Researchonthemechanismof bloodsugargoingupaftercerebralapoplexyfJJ.ChinaJournalof ModernMedeicine.2004.14(18):45—47.Chinese【7】卢平宣.肝源性糖尿病患者OGTI"和胰岛索释放试验的结果分析fJJ,中国现代医学杂志,2005,17:34—36.[7】LUPX.Oralglucosetolerancetest(OGTT)andinsulinreleaseingtest【JJ.ChinaJournalofModemMedicine,2005.17:34—36.Chinese【8】张锦芳,籍小涛,杜连祥.D一葡萄糖脱氢酶活力测定方法的研究一短小芽孢杆菌在D一核糖生产中的应用叨.天津轻工业学院,2001,3:37--4O.【8】ZHANGJF,JIXT,DULX.Studyonthemethodofdetermina-tiononD-glucosedehydmgenase--~heuseofbaciacillasspumilusinproducingD2-ribose[JJ.JournalIndustry,2001,3:37-40.Chinese0fTianjinUniversityofLight[9】9习玲玲,施清照葡萄糖脱氢酶微型生分析化学,1998,26(9):1093—1096.特感器的研制及应用[J】[9JxILLSHIQZ.PreparationofGlucosedehydmgen~emi- cro—eleetIodewithmMiator叨.ChineseJournalofAnalytical Chemistry,1998,26(9):1093-1096.Chinese(顾靓编辑)174?。

犬白细胞介素2在毕赤酵母中的诱导表达及生物活性的测定

犬白细胞介素2在毕赤酵母中的诱导表达及生物活性的测定

农业生物技术学报 Journal of Agricultural Biotechnology2007,15(4):574~578*基金项目: 公安部 C类项目(No.20049729501)资助。

**通讯作者。

Author for correspondence.研究员,主要从事犬病和行为学研究。

Email:<xhk@>.收稿日期: 2006­11­28接受日期: 2007­02­02·研究论文·犬白细胞介素 2在毕赤酵母中的诱导表达及生物活性的测定*朱 骞 1, 张汇东 1, 葛菲菲 2, 缪 勤 1, 曹瑞兵 2, 陈溥言 2, 徐汉坤 1 **(1.公安部南京警犬研究所, 南京 210012; 2.农业部动物疫病诊断与免疫重点开放实验室,南京农业大学动物医学院, 南京 210095)摘要:以 ConA刺激的犬外周血淋巴细胞总 RNA为模板, 通过 RT­PCR方法扩增出犬 成熟蛋白基因, 将目的片段连 接到pMD18­T载体, 测序结果显示, 扩增片段与 GenBank上的序列一致。

然后将目的片段连接到酵母表达载体 pPICZa­A上, 得到重组酵母犬 表达载体 pPICZaA­, 经 玉酶切线性化后电转化导入毕赤酵母菌株( )X­33。

PCR 方法筛选重组酵母菌, 甲醇诱导表达, SDS­PAGE结果显示, 表达上清中有大小约 20kD的目的条带, 比实际分子量略大, 推测 蛋白可能发生糖基化。

MTT法测定生物学活性结果表明, 重组犬 能够极显著地促进犬外周血淋巴细胞增殖。

证明酵母表 达的犬重组 具有良好的生物学活性。

关键词:犬; 基因; 毕赤酵母; 诱导表达; 生物学活性中图分类号: S188 文献标识码:A 文章编号:1006­1304(2007)04­0574­05Expression of Recombinant Canine Interleukin­2in Pichia pastorisand Identification of Its BioactivityZHU Qian 1, ZHANG Hui­dong 1, GE Fei­fei 2, MIAO Qin 1, CAO Rui­bing 2, CHEN Pu­yan 2, XU Han­kun 1 **To obtain recombinant canine interleukin­2protein with natural bioactivity in the yeast eukaryotic ex­ pression system,the cDNA of canine was synthesized by reverse transcription polymerase chain reaction(RT­PCR)from the total mRNA of the lymphocyte from canine blood,which stimulated with ConA for20h.The amplified fragment was cloned into pMD18­T vector and confirmed that the sequence was identical to that published in GenBank.Then the fragment was inserted into expression vector pPICZα ­A.After linearized by玉,the recombinant vector was transfered into the yeast strain X­33.The recombi­ nant strain was isolated and identified by PCR.After being induced by methanol,the recombinant protein was examined by SDS­PAGE.The result of SDS­PAGE analysis in the concentrated fermentation supernant showed that the molecular weight of the re­ combinant protein was approximately20kD.The result of MTT assay proves that the recombinant protein can induce canine T lym­phocytes proliferation.dog; interleukin­2gene; ; expression; bioactivity白细胞介素 ­2(IL­2), 可以活化 T细胞、 NK细 胞和巨噬细胞, 促进 B细胞分泌抗体, 诱导 T细胞 分泌细胞因子,能全面提高机体的细胞免疫和体液 免疫功能(Villinger,2003;Hilton ,2002), 是重要 的免疫调节因子。

酶的定向进化方法和应用_鲁静

酶的定向进化方法和应用_鲁静

的天门 冬 氨 酸 酶 突 变 体(Lys327Asn) [20]。Chen 等 用两轮 DNA 重组增加了有机磷水解酶对商用杀 虫剂 chlorpyrifos (Dursban)的反应活性[21]。人类的 碳酸酐酶 II 通 过三轮 突 变 、选 择 和 重 组 , 对 酯 类 底物 2- 萘基醋酸盐的活性增加了 40 倍[22]。通过 定向进化改变底物特转换糖苷酶为异性的实验 还有: 大肠杆菌肽链内 切酶 OmpT 改变其 底物为 另 一 个 不 同 的 多 肽 ; [23] 使 甲 苯 对 单 氧 合 酶 ( para- monooxygenase) 区域特异性地氧化甲苯和萘[24]; 用 DNA 重组方法进 化一 个 甲 苯 和 二 甲 苯 的 一 氧 化 物酶, 得到了增加了芳香族降解能力的突变体和 具有合成新型苯酚和甲苯衍生物能力的突变体 ; [25~27] 转 化 一 个 β- 糖 苷 酶 为 β- 转 糖 苷 酶 ; [28] 改 进 2,4- 二硝基甲苯二氧酶, 加强其降解硝基和芳香 族 化 合 物 的 能 力 [29]。 2.2 反应活性
1期
鲁 静等: 酶的定向进化方法和应用
81
热稳定性[39]; 增 加果糖的双 磷酸盐醛缩 酶[40] 和 细 胞 色 素 P450 BM- 3 的 一 氧 化 物 酶[41]在 有 机 溶 剂 中的稳定性。 2.4 可溶解性和异源表达
为了提高可溶性蛋白能在异源宿主中表达, 需 要 更 多 的 基 础 研 究 和 生 物 技 术 方 法 。来 自 缺 陷 假 单 胞 菌 的 磷 酸 三 酯 酶 通 过 易 错 PCR 和 DNA 重组突变了 7 个残基, 其溶解性增加了 20 倍[42]。 定向进化也成功地增加了来自于产气肠杆菌的 磷酸三酯酶的可溶表达量。还有两个实验, 分别 提高了细菌的丙氨酸消旋酶表达量和一个白蚁 纤维素酶基因的异源过量表达量。 3 酶的定向进化的展望

人类博卡病毒的研究进展

人类博卡病毒的研究进展

人类博卡病毒的研究进展全瑶;张素红(综述);黄婷(审校)【摘要】人类博卡病毒( HBoV)属于细小病毒科细小病毒亚科的博卡病毒属,是迄今发现的继细小病毒B19之后能感染人的第二类细小病毒。

现已发现的HBoV 可分为 HBoV-1、HBoV-2、HBoV-3和HBoV-4四型。

研究显示,HBoV在不同类型的标本中均有检出,检出率差异较大,且较多合并其他病原体的检出。

现有的研究结果表明,HBoV不仅可能是呼吸道疾病的致病原,也有可能是胃肠道疾病的致病原。

%Human Bocavirus(HBoV) is another parvovirus known to infect and cause illness in human besides Parvovirus B19.HBoV is classified as genus bocavirus in the family of Parvoviridae .So far,four dif-ferent subtypes of HBoV(HBoV1-4) have been found.HBoV has been detected in different kinds of sam-ples.The detection rate of HBoV infection varies widely,and is often co-detected with other pathogens.The existing results show that HBoV may not only be the pathogen of respiratory tract disease ,but also the patho-gen of gastrointestinal disease.【期刊名称】《医学综述》【年(卷),期】2015(000)021【总页数】3页(P3864-3866)【关键词】人类博卡病毒;生物学性状;致病性;检测方法【作者】全瑶;张素红(综述);黄婷(审校)【作者单位】南京市高淳人民医院儿科,南京211300;南京市高淳人民医院儿科,南京 211300;南京市高淳人民医院儿科,南京 211300【正文语种】中文【中图分类】R725.72005年8月,瑞典科学家Allander等[1]对儿童急性上呼吸道感染样本进行大规模筛查时,发现一种与已知的细小病毒类似的新病毒,因其与牛和犬博卡病毒同源性很高,故将其命名为人类博卡病毒(human Bocavirus,HBoV)。

4 PCR

4 PCR
09/05/22 07级医学7年制
四 模板制备
取材:
病原体标本:病毒、细菌、真菌等。 病理生理标本:组织、细胞、血液、尿液等。 法医学标本:血痕、精斑、毛发等。
模板制备方法:
DNA模板制备 RNA模板制备
09/05/22
07级医学7年制
五 PCR的特点 的特点
省时 高效 定性
09/05/22
07级医学7年制
09/05/22
07级医学7年制
7反应温度和循环次数
① 变性温度90 ~97℃,时间30 ~45s ② 退火温度为引物的Tm-5,约45~55℃,时间30~60s ③ 延伸温度72℃,时间1~4min ④ 循环次数25~30
09/05/22
07级医学7年制
六、注意事项
防止污染:
隔离不同操作区 分装试剂 严格实验操作
09/05/22
07级医学7年制
大量的 扩增产物
理论上 个循环模板DNA可扩增 可扩增100万倍 经20个循环模板 个循环模板 可扩增 万倍 30个循环模板 个循环模板DNA可扩增 亿倍 可扩增10亿倍 个循环模板 可扩增 实际上 扩增效率比理论值低,约为理论值的60扩增效率比理论值低,约为理论值的 70%
09/05/22
07级医学7年制
09/05/22
07级医学7年制

PCR的基本原理和过程 PCR的基本原理和过程
PCR是在试管中进行的 是在试管中进行的DNA合成反应, 合成反应, 是在试管中进行的 合成反应 其原理类似于体内DNA的复制机制 的复制机制. 其原理类似于体内 的复制机制 体内DNA的复制过程 复习 的复制过程(复习 体内 的复制过程 复习)
09/05/22 07级医学7年制

英语作文基因改造过程

英语作文基因改造过程

英语作文基因改造过程Genetic Modification Process。

Genetic modification is the process of altering the genetic makeup of an organism by introducing foreign DNAinto its genome. The process involves several steps, including isolation of the desired gene, cloning of the gene, and insertion of the gene into the target organism.The first step in genetic modification is the identification and isolation of the desired gene. This is done using a variety of techniques, including PCR (polymerase chain reaction), which amplifies the gene of interest, and restriction enzymes, which cut the gene outof the DNA sequence. Once the gene has been isolated, it is cloned using a vector, such as a plasmid or a virus.The next step is to insert the cloned gene into the target organism. This is done using a variety of techniques, including electroporation, which uses an electric field tocreate temporary pores in the cell membrane, allowing the foreign DNA to enter the cell. Another technique is microinjection, which involves injecting the foreign DNA directly into the nucleus of the target cell.Once the foreign DNA has been inserted into the target organism, it must be integrated into the genome. This is done through a process called homologous recombination, which involves the replacement of a segment of the target DNA with the foreign DNA. This process is facilitated by the use of selectable markers, which allow scientists to identify cells that have successfully integrated the foreign DNA.After the foreign DNA has been integrated into the genome, the modified organism must be screened to ensure that the desired trait has been expressed. This is done using a variety of techniques, including PCR, which can be used to detect the presence of the foreign DNA, and phenotypic analysis, which involves the observation of physical traits.In conclusion, genetic modification is a complexprocess that involves several steps, including isolation of the desired gene, cloning of the gene, insertion of thegene into the target organism, integration of the foreign DNA into the genome, and screening for the desired trait. Despite the controversy surrounding genetic modification,it has the potential to revolutionize medicine, agriculture, and industry.。

猫杯状病毒反向遗传系统的建立及弱毒株的构建

猫杯状病毒反向遗传系统的建立及弱毒株的构建

于雯,孙慧敏,方晨捷,等.猫杯状病毒反向遗传系统的建立及弱毒株的构建[J].畜牧与兽医,2024,56(5):107-112.YUW,SUNHM,FANGCJ,etal.Constructionandapplicationofreversegeneticsystemforfelinecalicivirus[J].AnimalHusbandry&VeterinaryMedi⁃cine,2024,56(5):107-112.猫杯状病毒反向遗传系统的建立及弱毒株的构建于雯1,孙慧敏2,方晨捷2,宋家升2∗,鲍恩东1∗(1.南京农业大学动物医学院,江苏南京㊀210095;2.浙江迪福润丝生物科技有限公司,浙江杭州㊀310000)摘要:为了构建猫杯状病毒(FCV)弱毒疫苗候选株,从杭州流行的FCV毒株FCV-HZ-DF-19中提取基因组RNA,利用RT-PCR技术分3段扩增获得FCV全基因组,通过同源重组的方法将全长基因组克隆至已插入榔头状核酶(HamRz)和丁型肝炎核酶(HdvRz)的PCI载体,获得中间质粒pPCI-FCV;以pPCI-FCV为模板扩增获得含HamRz㊁HdvRz和FCV全基因组的产物FCV-H,并将其连接到BAC载体中获得含有FCV全基因组的克隆pBAC-FCV㊂将pBAC-FCV转染猫肾细胞F81连续传代后收获病毒㊂针对FCV毒力相关的LC基因进行缺失,获得感染性克隆pBAC-FCV-ΔLC,通过转染表达FCV-VP1蛋白的猫肾细胞系进行病毒拯救㊂结果显示,拯救毒株rBAC-FCV和LC基因缺失毒株rBAC-FCV-ΔLC均可产生细胞病变;测序结果表明,拯救毒株的基因序列与亲本毒株FCV-HZ-DF-19一致,且生长曲线与亲本毒相似,而基因缺失毒株的生长则慢于亲本毒株,产生的噬斑大小也明显小于亲本毒株,表明缺失LC基因后病毒毒力下降㊂结论:本研究成功构建了FCV的反向遗传系统及基因缺失弱毒株,为后续弱毒疫苗研发和FCV生物学特性研究奠定了基础㊂关键词:猫杯状病毒;反向遗传学技术;同源重组;基因缺失中图分类号:S852 65㊀㊀㊀文献标志码:A㊀㊀㊀文章编号:0529-5130(2024)05-0107-06ConstructionandapplicationofreversegeneticsystemforfelinecalicivirusYUWen1,SUNHuimin2,FANGChenjie2,SONGJiasheng2∗,BAOEndong1∗(1.CollegeofVeterinaryMedicine,NanjingAgriculturalUniversity,Nanjing210095,China;2.ZhejiangDifferenceBiotechnologyCo.,Ltd.,Hangzhou310000,China)Abstract:Inordertoconstructacandidatestrainforattenuatedfelinecalicivirus(FCV)vaccine,genomicRNAwasextractedfromtheprevalentFCVstrainFCV-HZ-DF-19inHangzhou.TheentireFCVgenomewasamplifiedinthreesegmentsusingRT-PCRtechnology.Thefull-lengthgenomewasclonedintoaPCIvectorcontaininghammerheadribozyme(HamRz)andhepatitisDribozyme(HdvRz)throughhomologousrecombination,andtheintermediateplasmidpPCI-FCVwasobtained.UsingpPCI-FCVasatemplate,theproductFCV-Hcon⁃tainingtheentiregenomeofHamRz,HdvRz,andFCVwasamplified,andconnectedtoaBACvectortoobtainaclonedpBAC-FCVcontai⁃ningtheentiregenomeofFCV.Then,pBAC-FCVwastransfectedintocatkidneycellF81forcontinuouspassageinordertoharvestthevi⁃rus.DeletionofLCgenesrelatedtoFCVvirulence,acquisitionofinfectiousclonepBAC-FCV-ΔLC,andvirusrescuewereperformedbytransfectingcatkidneycelllinesexpressingtheFCV-VP1protein.TheresultsshowedthattherescuedstrainrBAC-FCVandtheLCgenedeficientstrainrBAC-FCV-ΔLCcouldbothcausecellularlesions.ThesequencingresultsshowedthatthegenesequenceoftherescuedstrainwasindeedconsistentwiththeparentstrainFCV-HZ-DF-19,anditsgrowthcurvewassimilartothatoftheparentstrain.However,thegrowthofthegenedeficientstrainwasslowerthanthatoftheparentstrain,andthesizeofthegeneratedplaquewassignificantlysmallerthanthatoftheparentstrain,whichindicatedadecreaseinvirusvirulenceaftertheLCgenewasdeleted.TheaboveresultssuggestedthatthereversegeneticsystemofFCVwassuccessfullyconstructedinthisstudy,andagenedeficientattenuatedstrainwasconstructed;whichlaidthefoundationforthedevelopmentofattenuatedvaccinesandthestudyofthebiologicalcharacteristicsofFCVinthefuture.Keywords:FCV;reversegeneticstechnology;homologousrecombination;genedeletion㊀收稿日期:2023-09-11;修回日期:2024-03-18基金项目:江苏省农业科技自主创新资金项目[CX(22)2016];南京农业大学校企合作项目(技术服务类)第一作者:于雯,女,硕士研究生∗通信作者:鲍恩东,教授,博导,研究方向为免疫病理及新兽药研发,E-mail:b_endong@njau.edu.cn㊂㊀㊀猫杯状病毒(felinecalicivirus,FCV)属于杯状病毒科㊁水疱疹病毒属的成员[1],几乎可感染所有的猫科动物,感染后所表现的临床症状主要为口腔溃疡㊁结膜炎和肺炎等[2-3]㊂FCV感染后的发病率很高,但死亡率较低㊂不过,最近报道出现了可引起全身性症状的强毒株[3],感染FCV强毒株后可导致出现全身性炎症反应㊁高热㊁弥散性血管内凝血和高死亡率[4-5]㊂FCV为单股正链RNA病毒,基因组全长约为7 7kb,5ᶄ端与病毒组连接蛋白(VPg)相连,3ᶄ端多聚腺苷酸化[6-7]㊂基因组有3个开放阅读框(ORF),分别为ORF1㊁ORF2和ORF3,其中ORF1编码主要的结构蛋白[8];ORF2编码衣壳蛋白,经过水解后形成成熟的衣壳蛋白(VP1)和衣壳蛋白前体(LC),LC与病毒毒力相关[9–11];ORF3编码FCV所特有的VP2蛋白,VP2蛋白与病毒的包装和成熟相关[12]㊂目前FCV感染的预防主要依靠疫苗接种,由于FCV作为RNA病毒,其遗传进化速率较高,仅靠单一的疫苗株很难对FCV产生全面而有效的保护,此外感染FCV并康复后的动物也会持续带毒㊁排毒[13],这也给FCV感染的防控增加了难度,因此有必要探索更为有效的疫苗产品以保护猫科动物的健康[14]㊂本研究利用反向遗传技术,将FCV全基因组序列同源重组至PCI和BAC载体中,构建pPCI-FCV和pBAC-FCV质粒,转染F81细胞后拯救出病毒rPCI-FCV和rBAC-FCV,之后在pBAC-FCV的基础上对部分LC基因进行缺失,并在F81-VP1细胞上获得LC基因缺失毒rBAC-FCV-ΔLC,观察分析该毒株的体外生长特性,为进一步研究FCV的组织特异性㊁致病机制㊁基因组功能以及新型疫苗的研发奠定基础㊂1㊀材料与方法1 1㊀试验用细胞及试剂FCV杭州流行株(FCV-HZ-DF-19),猫肾细胞(F81㊁F81-VP1细胞),载体质粒PCI和细菌人工染色体(BAC),均由浙江迪福润丝生物科技有限公司提供;UnicloneOneStepSeamlessCloningKit重组酶㊁EfficomStbl3ChemicallyCompetentCell感受态细胞,购自金沙生物;PrimeSTARHS高保真PCR酶㊁2ˑRapidTaqMasterMix㊁DL2000DNAMarker㊁DL5000DNAMarker㊁HiScriptIIOneStepRT-PCRKit,均购自诺唯赞生物科技有限公司;2ˑT8High-FidelityMasterMix购自擎科生物科技股份有限公司;普通琼脂糖凝胶DNA回收试剂盒购自天根生化科技有限公司;PlassmidMaxiKit试剂盒购自Qiagen;转染试剂Lipofectamine2000购自Invitrogen;核酸提取试剂盒E Z N AViralRNAKit购自广州飞扬生物工程有限公司;草酸铵结晶紫染色液购自上海麦克林生化科技有限公司;4%多聚甲醛固定液购自PhygeneScientific㊂㊀1 2㊀引物设计与合成参考GenBank中登录的FCV基因序列设计引物,引物由擎科生物科技股份有限公司进行合成,引物信息如表1所示㊂表1㊀引物序列引物名称引物序列(5ᶄң3ᶄ)FCV-HZ-DF-19-F1GTAAAAGAAATTGGAGACAATGFCV-PD1-1-RCGGCTCCACGCTTTGCAAGGCAGFCV-PD1-2-FCAAAGCGTGGAGCCGAGTGTTGFCV-PD1-2-RGTGGTGTACGCCTTTGGTTTCCACFCV-PD2-FAAAGGCGTACACCACAACATCTGFCV-PD2-RCCCTGGGGTTAGGCGCTAAAAGCGPD-Ham-HDV-FTGTTAAGCGTCTGATGAGTCCGTGPD-Ham-HDV-RTCATGTCTGCTCGCCAAAAAACCCCTCAAGZT-PCI-GZ-FGGCGAGCAGACATGATAAGATACATTGATGAG⁃TTTGZT-PCI-GZ-RATCAGACGCTTAACACCTATAGTGAGTCGTATT⁃AATTTCGZT-YJ-FCGCCTAACCCCAGGGGGTCGGCATGGCATCTCCZT-YJ-RTCCAATTTCTTTTACGACTATAGGAATTCCTTTC⁃CTATAGZT-BAC-FGGCCGGCATGGTCCCAGCCTCCTCGZT-BAC-RCCCTATAGTGAGTCGTATTAATGZT-ΔLC-FCGAAGTTTGAGCATGGCTGATGATGGCTCCATC⁃ACCACZT-ΔLC-RCATGCTCAAACTTCGAACACATCACAGFCV-F1-RTCAGCCATAACCAGCAAACTTGFCV-F2-FGTCTACTCAGTCTCACCCTGFCV-F2-RCACCGGCTTCTATGACAAATTGFCV-F2-RTCATAGAAGCCGGTGATAATTGFCV-F3-FCACCGGCTTCTATGACAAATTGFCV-F3-RCAGGGGGTCCTGTTAGGATGFCV-F4-FCCTGATGTCTACACTGGATGFCV-F4-RCGGCTCCACGCTTTGCAAGGCAGYZ-LC-FATGCAAGTCAACATGGTGTGYZ-LC-RATGCTCAAGGTAGGGGTTGAG1 3㊀FCV全基因组感染性克隆的构建提取毒株FCV-HZ-DF-19的RNA,用引物FCV-HZ-DF-F19-F1/FCV-PD1-1-R㊁FCV-PD1-2-F/FCV-PD1-2-R和FCV-PD2-F/FCV-PD2-R进行RT-PCR扩增,获得产物PD1-1㊁PD1-2和PD2㊂用引物PD-Ham-HDV-F/PD-Ham-HDV-R扩增含有HamRz和HdvRz片段的合成基因获得产物PD3,利用引物ZT-PCI-GZ-F/ZT-PCI-GZ-R扩增PCI载体,将产物PD3同源重组至载体PCI载体中,获得改造后的载体并将其命名为PCIᶄ㊂用引物ZT-YJ-F/ZT-YJ-R扩增载体PCIᶄ,将产物PD1-1㊁PD1-2和PD2同源重组至PCIᶄ载体中,3个产物插入的位置在片段HamRz和HdvRz中间,获得中间质粒pPCIᶄ-FCV㊂以pPCIᶄ-FCV为模板,引物BAC-FCV-F/BAC-FCV-R进行PCR扩增获得产物FCV-H,FCV-H片段包含FCV全长基因组㊁HamRz和HdvRz片段,用引物ZT-BAC-FCV-F/ZT-BAC-FCV-R,扩增BAC载体使其线性化,用同源重组的方法将FCV-H和BAC载体进行连接,获得含有FCV全基因组感染性克隆质粒pBAC-FCV,引物序列详见表1㊂1 4㊀FCV毒力基因的敲除选择与病毒毒力相关的LC基因进行缺失,以pBAC-FCV为模板,用引物ZT-ΔLC-F/ZT-ΔLC-R进行线性化扩增,上下游引物分别在缺失基因的两端,获得产物FCV-ΔLC,将线性化的FCV-ΔLC进行连接,得到LC基因缺失质粒pBAC-FCV-ΔLC㊂1 5㊀病毒拯救按照InvitrogenLipofectamine2000转染试剂说明,将4μgpBAC-FCV转染到生长密度约为80%的F81细胞上,pBAC-FCV-ΔLC质粒则分别转染到F81和F81-VP1细胞中,置于37ħ㊁5%CO2环境中培养,之后进行细胞传代(每2d传代1次),传代培养过程中随时利用显微镜观察有无细胞病变(CPE),当出现CPE时收获病毒㊂1 6㊀拯救病毒的鉴定提取收获的病毒RNA,用表1中的引物FCV-HZ-DF-19-F1/FCV-F1-R㊁FCV-F2-F/FCV-F2-R㊁FCV-F3-F/FCV-F3-R和FCV-F4-F/FCV-F4-R对F81细胞上拯救出的rBAC-FCV进行RT-PCR扩增,验证是否拯救出含有FCV全基因组的病毒,引物YZ-LC-F/YZ-LC-R对基因缺失毒pBAC-FCV-ΔLC进行RT-PCR扩增以此验证病毒的LC段基因是否缺失,将RT-PCR产物送金唯智生物科技有限公司进行测序㊂1 7㊀FCV重组毒的生物学特性分析1 7 1㊀缺失毒与亲本毒生长动力学比较将亲本毒和拯救病毒按照感染复数(MOI)为0 01感染生长密度约为80%的F81细胞,置于37ħ㊁5%CO2环境中培养,分别在感染后24㊁48㊁72和96h收获病毒,每个时间点重复测定3次,以病毒的感染时间为横坐标㊁病毒不同时间点组织半数感染量(TCID50)的数值为纵坐标,用GraphPadPrism软件绘制病毒生长曲线㊂1 7 2㊀缺失毒的传代稳定性验证将缺失毒接种到生长良好的F81细胞上,48h后观察细胞病变,当细胞出现完全病变后收获病毒并接种到新的F81细胞上㊂连续传代5次之后提取病毒RNA并用引物YZ-LC-F/YZ-LC-R进行RT-PCR验证㊂1 7 3㊀缺失毒的噬斑染色试验在铺有F81细胞的6孔细胞培养板中按照500TCID50/mL的剂量分别接种亲本毒FCV-HZ-DF-19㊁拯救病毒rBAC-FCV和基因缺失病毒rBAC-FCV-ΔLC㊂5h后弃去培养液并加入1 5mL1%低熔点琼脂糖,待琼脂糖冷却凝固后置于5%CO2环境中培养㊂之后每24h在显微镜下观察噬斑大小,待其噬斑大小不再变化后,向接种病毒的孔中加入1mL多聚甲醛进行固定,静置30min后吸出,再加入1mL草酸铵结晶紫染色液,静置20min后小心去掉琼脂糖凝胶块,用水清洗至噬斑清晰后比较两种病毒噬斑的大小㊂2㊀结果2 1㊀FCV全基因组感染性克隆的构建以pBAC-FCV质粒为模板,使用引物FCV-HZ-DF-19-F1/FCV-PD1-1-R㊁FCV-PD1-2-F/FCV-PD1-2-R和FCV-PD3-F/FCV-PD3-R进行PCR验证,分别获得1925㊁1630和4162bp大小条带,与预期结果相符㊂测序结果也显示与亲本毒株的基因序列一致,成功构建出包含有FCV全基因组的感染性单克隆pBAC-FCV(图1)㊂M.DL5000DNAMarker;1.引物对FCV-HZ-DF-19-F1/FCV-PD1-1-R的PCR产物;2.引物对FCV-PD1-2-F/FCV-PD1-2-R的PCR产物;3.引物对FCV-PD3-F/FCV-PD3-R的PCR产物㊂图1㊀质粒pBAC-FCV的PCR验证2 2㊀FCV毒力基因的敲除以pBAC-FCV-ΔLC质粒为模板,用引物对YZ-LC-F/YZ-LC-R进行PCR验证,获得与预期451bp大小一致的条带,测序结果也显示LC部分基因已经缺失,成功构建出FCV的LC基因缺失的感染性克隆pBAC-FCV-ΔLC(图2)㊂2 3㊀病毒的拯救将构建的质粒pBAC-FCV转染F81细胞,经传代后产生明显的CPE,主要表现为细胞脱落,细胞变圆核固缩,聚集成葡萄串状;基因缺失的质粒pBAC-FCV-ΔLC同时转染F81和F81-VP1细胞系后,连续传代,转染至F81-VP1细胞系的细胞可观察到CPE,转染至F81连续传代7次后仍未观察到CPE,对照组均未产生CPE(图3)㊂M.DL2000DNAMarker;1.引物对YZ-LC-F/YZ-LC-R的PCR产物㊂图2㊀质粒pBAC-FCV-ΔLC的PCR验证A.pBAC-FCV转染细胞;B.正常F81细胞;C.pBAC-FCV-ΔLC转染细胞;D.正常F81-VP1细胞㊂图3㊀拯救病毒的细胞病变2 4㊀拯救病毒的验证提取rBAC-FCV的RNA进行RT-PCR验证,rBAC-FCV扩增后获得435㊁581㊁547和549bp的条带,与预期大小一致,且RT-PCR产物的测序结果与亲本毒株序列一致,成功拯救出含有FCV全基因组的病毒rBAC-FCV㊂2 5㊀病毒的生物学特性分析2 5 1㊀生长动力学比较亲本毒FCV-HZ-DF-19㊁拯救毒rBAC-FCV和基因缺失毒rBAC-FCV-ΔLC在F81细胞中增殖特性如图5所示㊂不同时间点的病毒滴度生长曲线显示,拯救出含有FCV全基因组的病毒rBAC-FCV的生长趋势与亲本毒株基本一致,但病毒滴度比亲本病毒略低㊂基因缺失毒株BAC-FCV-ΔLC在培养的前48h其生长较为缓慢,亲本毒株㊁拯救毒和基因缺失毒的病毒滴度在培养至72h之后趋于稳定㊂M.DL2000DNAMarker;1.引物对FCV-HZ-DF-19-F1/FCV-F1-R的PCR产物;2.引物对FCV-F2-F/FCV-F2-R的PCR产物;3.引物对FCV-F3-F/FCV-F3-R;4.引物对FCV-F4-F/FCV-F4-R的PCR产物㊂图4㊀rBAC-FCV的RT-PCR验证图5㊀FCV亲本毒株与拯救毒株生长动力学比较2 5 2㊀缺失毒的传代稳定性验证rBAC-FCV-ΔLC缺失毒经连续传代,提取每代病毒的RNA进行RT-PCR验证,电泳结果显示获得与目标大小相符合的条带(451bp)(图6),测序结果也与预期一致,说明本试验拯救出了相对稳定的LC基因缺失病毒㊂M.DL2000DNAMarker;1.第1代;2.第2代;3.第3代;4.第4代;5.第5代㊂图6㊀rBAC-FCV-ΔLC各代的RT-PCR验证2 5 3㊀病毒的噬斑染色将亲本毒株FCV-HZ-DF-19㊁拯救毒rBAC-FCV和基因缺失毒rBAC-FCV-ΔLC进行噬斑染色,结果显示FCV-DF019和rBAC-FCV产生的斑块大小基本相当,但是基因缺失毒rBAC-FCV-ΔLC产生的噬斑大小明显小于亲本毒株和拯救毒株(图7),表明LC基因的缺失影响了病毒的复制和侵袭㊂A.FCV-HZ-DF-19;B.rBAC-FCV;C.rBAC-FCV-ΔL㊂图7㊀亲本毒株与拯救毒株噬斑染色3㊀讨论目前,疫苗接种仍是宠物猫主要传染性疾病防控的核心策略,疫苗多为灭活疫苗和减毒活疫苗,多以联苗和多价苗的形式存在[15],这些疫苗毒株往往是通过大量筛选,旨在得到具有更广泛交叉保护性的毒株[16]㊂然而,FCV基因组序列具有高度的遗传变异性,这就使得市场上的疫苗产品难以及时应对该病毒的变异㊂应用反向遗传学技术可以特定地对FCV的基因组进行突变㊁缺失或插入操作,为开发具有更强免疫效果和安全性更高的新型FCV疫苗提供了可能㊂本研究在拯救基因缺失毒rBAC-FCV-ΔLC的过程中,在F81细胞上连续传代7次仍未观察到CPE,而在转染F81-VP1细胞上可以观察到CPE,FCV-VP1细胞系可以表达整个ORF2的基因序列,证明在拯救LC基因缺失的病毒过程中,通过细胞系反式补充可以协助拯救病毒,拯救出的基因缺失毒rBAC-FCV-ΔLC感染F81细胞可观察到CPE的产生,只是产生CPE的时间和程度均不及含有FCV全基因组的拯救毒和亲本毒,说明即便形成具有侵袭力的病毒粒子,LC的缺失也很大程度上影响了病毒的侵袭力和复制能力,与报道的LC与产生细胞病变有关[17]相符合㊂FCV作为无囊膜病毒需要借助细胞表面受体分子来完成病毒吸附和穿入,病毒与受体发生相互作用的差异性会影响后续细胞信号的传导㊁内吞摄入和膜穿透等下游事件的发生㊂已有研究表明,连接黏附分子A(fJAM-A)是FCV感染细胞所必备的,而VP1表面的残基变化会影响病毒的组装和与fJAM-A的相互识别[18],推测LC序列的存在可能影响VP1残基的形态,导致病毒侵袭力的变化㊂此外,LC过度表达会对细胞产生毒性作用,因此构建的细胞系表达整个ORF2序列,可减轻对细胞的影响㊂即便如此F81-VP1细胞系在镜下观察也比普通F81细胞更为细长,也更易产生死细胞㊂更有研究发现,LC有利于同属杯状病毒科的诺如病毒在细胞中高效复制[19]㊂保留LC部分构建的嵌合兔出血热病毒可以在体外拯救[9]㊂进一步研究使用互补细胞系提供病毒复制和组装所需要的基因,或利用LC协助其他杯状病毒科病毒在体外培养,值得进一步探索㊂参考文献:[1]㊀OKAT,TAKAGIH,TOHYAY.Developmentofanovelsinglestepreversegeneticssystemforfelinecalicivirus[J].JVirolMeth⁃ods,2014,207:178-181.[2]㊀SPIRIAM.Anupdateonfelinecalicivirus[J].SchweizArchTier⁃heilkd,2022,164(3):225-241.[3]㊀URBANC,LUTTERMANNC.MajorcapsidproteinsynthesisfromthegenomicRNAoffelinecalicivirus[J].JVirol,2020,94(15):e00280-20.[4]㊀HOWARDMJ,COELENRJ,MACKENZIEJS.Detectionofim⁃mobilisedmurrayvalleyencephalitisvirusRNAusingoligonucleotideprobeswithvaryingdegreesofmismatch[J].JVirolMethods,1991,34(3):333-341.[5]㊀RADFORDAD,DAWSONS,RYVARR,etal.Highgeneticdi⁃versityoftheimmunodominantregionofthefelinecaliciviruscapsidgeneinendemicallyinfectedcatcolonies[J].VirusGenes,2003,27(2):145-155.[6]㊀RADFORDAD,COYNEKP,DAWSONS,etal.Felinecalici⁃virus[J].VetRes,2007,38(2):319-335.[7]㊀RONGS,LOWERYD,FLOYD-HAWKINSK,etal.Character⁃izationofanavirulentFCVstrainwithabroadserumcross-neutral⁃izationprofileandprotectionagainstchallengeofahighlyvirulentvsfelinecalicivirus[J].VirusRes,2014,188:60-67.[8]㊀MAOJ,YES,DENGJ,etal.FelinecalicivirusP39inhibitsin⁃nateimmuneresponsesbyautophagicdegradationofretinoicacidin⁃duciblegeneI[J].IntJMolSci,2023,24(6):5254.[9]㊀CHENGJ,TANGA,CHENJ,etal.PseudoRHDVconstructedwithfelinecalicivirusgenomeasvectorhasthecharacteristicsofwellproliferationinvitro[J].JVirolMethods,2022,307:114572.[10]ABENTEEJ,SOSNOVTSEVSV,SANDOVAL-JAIMEC,etal.Thefelinecalicivirusleaderofthecapsidproteinisassociatedwithcytopathiceffect[J].JVirol,2013,87(6):3003-3017.[11]PEÑAFLOR-TÉLLEZY,CHÁVEZ-MUNGUÍAB,LAGUNES-GUILLÉNA,etal.Thefelinecalicivirusleaderofthecapsidproteinhasthefunctionalcharacteristicsofaviroporin[J].Viruses,2022,14(3):635.[12]SOSNOVTSEVSV,BELLIOTG,CHANGKO,etal.Felinecali⁃civirusVP2isessentialfortheproductionofinfectiousvirions[J].JVirol,2005,79(7):4012-4024.[13]祖少坡,田进,吴红霞,等.猫杯状病毒2280株反向遗传系统的构建[J].中国预防兽医学报,2017,39(1):20-23.[14]刘光清,郭建宏,刘在新,等.反向疫苗学及其应用前景[J].中国生物制品学杂志,2005(2):168-170.[15]王一鸣.5株猫杯状病毒致病性及免疫原性的比较研究[D].长春:吉林农业大学,2017.[16]YANGY,LIUZ,CHENM,etal.ClassificationofgenotypesbasedontheVP1geneoffelinecalicivirusandstudyofcross-pro⁃tectionbetweendifferentgenotypes[J].FrontMicrobiol,2023,14:1226877.[17]ABENTEEJ,SOSNOVTSEVSV,SANDOVAL-JAIMEC,etal.Thefelinecalicivirusleaderofthecapsidproteinisassociatedwithcytopathiceffect[J].JVirol,2013,87(6):3003-3017.[18]LUZ,LEDGERWOODED,HINCHMANMM,etal.Conservedsurfaceresiduesonthefelinecaliciviruscapsidareessentialforin⁃teractionwithitsreceptorfelinejunctionaladhesionmoleculeA(fJAM-A)[J].JVirol,2018,92(8):e00035-18.[19]CHANGKO,GEORGEDW,PATTONJB,etal.Leaderofthecapsidproteininfelinecaliciviruspromotesreplicationofnorwalkvi⁃rusincellculture[J].JVirol,2008,82(19):9306-9317.。

stiky ends名词解释

stiky ends名词解释

stiky ends名词解释sticky ends是一种在DNA分子的末端产生的粘性突出部分。

具体的英文解释是“the protruding ends of a DNA molecule that result from the action of restriction enzymes, often with a single-stranded overhang”。

sticky ends在DNA重组、连接和应用于基因工程方面起着重要的作用。

1. Restriction enzymes cleave DNA molecules, leaving sticky ends that can be used for DNA recombination.2. The sticky ends of the DNA fragments were ligated together using DNA ligase.3. The sticky ends of two complementary DNA molecules can be annealed together to form a double-stranded DNA molecule.4. The restriction enzyme EcoRI creates sticky ends witha single-stranded overhang of nucleotides.5. Sticky ends allow for precise and efficient DNA manipulation in genetic engineering.6. The sticky ends of DNA fragments can be labeled with fluorescent tags for visualization.7. The sticky ends of DNA can be used to insert aspecific gene sequence into a plasmid vector.8. The sticky ends of the cut DNA fragments can anneal to each other, forming recombinant DNA.9. The sticky ends of the DNA molecules facilitate the annealing process during PCR amplification.10. The sticky ends of a DNA molecule can be ligated to an adaptor sequence for next-generation sequencing applications.11. By using different restriction enzymes, sticky ends with different overhang sequences can be generated.12. The sticky ends of DNA fragments allow for the directional cloning of genes into expression vectors.13. The sticky ends of DNA molecules can be used to create chimeric proteins through gene fusion.14. The sticky ends of DNA are recognized by complementary base pairing with another DNA molecule.15. Sticky ends can be modified with specific functional groups for targeted DNA manipulation.16. The sticky ends of DNA can be blunted using a DNA polymerase to prevent self-ligation.17. The sticky ends of DNA fragments can be purified using gel electrophoresis.18. The sticky ends of DNA fragments provide a site for hybridization with complementary nucleic acid probes.19. The sticky ends of DNA fragments allow for the directional insertion of genes into expression vectors.20. The sticky ends of DNA can be annealed together in a hybridization reaction to form a DNA concatamer.。

间充质干细胞条件培养液对正常成纤维细胞及瘢痕成纤维细胞转化生长因子β产生和信号通路的影响

间充质干细胞条件培养液对正常成纤维细胞及瘢痕成纤维细胞转化生长因子β产生和信号通路的影响

间充质干细胞条件培养液对正常成纤维细胞及瘢痕成纤维细胞转化生长因子β产生和信号通路的影响武艳;袁晓环;杨岚;赵孝金;李厚忠;王莹;金红【摘要】BACKGROUND:Numerous studies have shown that mesenchymal stem cel s (MSCs) can effectively attenuate the fibrosis of damaged heart, lung and kidney by secreting various bioactive factors. OBJECTIVE:To evaluate the anti-fibrotic therapeutic potential of bone marrow MSCs conditioned media in vitro. METHODS:Normal fibroblasts and hypertrophic scar fibroblasts were treated with bone marrow MSCs conditioned media, then transforming growth factor-βand col agen production were analyzed by ELISA, and mRNA expression level of Smad7 and hydroxyproline content were detected by RT-PCR and colorimetry, respectively. RESULTS AND CONCLUSION:Bone marrow MSCs conditioned media significantly inhibited the production of both transforming growth factor-βand col agen in hypertrophic scar fibroblasts (P<0. 01), and up-regulated the mRNA expression level of Smad7 (P<0. 01), a major inhibitory regulator in the SMAD family. However, the normal fibroblasts were scarcely influenced by bone marrow MSCs conditioned media. These findings indicate that bone marrow MSCs conditioned media is considered a promising candidate for the treatment of hypertrophic scars, which may provide new theoretical supports to reduce cutaneous scarring.%背景:已有文献报道,间充质干细胞可通过分泌大量生物活性因子有效减轻损伤的心脏、肺脏、肾脏等器官纤维化的发生。

非洲猪瘟病毒p72蛋白的原核表达和多克隆抗体制备

非洲猪瘟病毒p72蛋白的原核表达和多克隆抗体制备

2021,43(1)DOI :10.13836/j.jjau.2021017江西农业大学学报Acta Agriculturae Universitatis Jiangxiensishttp :// 非洲猪瘟病毒p72蛋白的原核表达和多克隆抗体制备陈金凤,乐伟,何永,吴丽琴,贾宝玉,邓小淇,胡睿铭,黄冬艳,宋德平,邬向东,吴琼,唐玉新,丁珍*(江西农业大学动物科学技术学院,江西南昌330045)摘要:【目的】非洲猪瘟(african swine fever ,ASF )是一种以猪急性发病、高死亡率为典型特征的病毒病,其病原非洲猪瘟病毒(ASF virus ,ASFV )在中国的暴发给中国养猪业造成重大损失。

p72蛋白是ASFV 的主要衣壳蛋白,能够有效诱导机体产生特异性抗体,常被利用于检测试剂盒的备成。

【方法】构建了p72全长(pET-28a-ASFV-p72)及1-171aa 截短突变体(pET-28a-ASFV-p72-(1-171))原核表达质粒,通过E.coli 原核表达系统表达并纯化了p72全长及1-171aa 融合蛋白。

该2种蛋白经过4次免疫日本大耳白Balb/C 兔后,获得效价皆为大于1∶819200的多抗血清。

【结果】通过间接免疫荧光实验和Western blot 检测2种多抗均能与真核表达的p72蛋白发生特异性反应。

【结论】制备的针对p72多克隆抗体为后续诊断试剂盒的研发提供依据。

关键词:非洲猪瘟病毒;p72;原核表达;多克隆抗体中图分类号:S852.65+1文献标志码:A 文章编号:1000-2286(2021)01-0153-08Prokaryotic Expression of African Swine Fever Virusp72Proteinand Preparation of Polyclonal AntibodiesCHEN Jinfeng ,LE Wei ,HE Yong ,WU Liqin ,JIA Baoyu ,DENG Xiaoqi ,HU Ruiming ,HUANG Dongyan ,SONG Deping ,WU Xiangdong ,WU Qiong ,TANG Yuxin ,DING Zhen *(College of Animal Science &Technology ,Jiangxi Agriculturual University ,Nanchang 330045,China )Abstract :[Objective ]African swine fever (ASF )is a swine viral disease characterized with hemorrhagic fever and high mortality.The outbreak of African swine fever virus (ASFV )in China ,has caused huge damage to the swine industry.p72is the capsid protein of ASFV ,which can effectively induce specific antibodies ,and is always used in detect kit development.[Method ]In this study ,the p72full-length (pET-28a-ASFV-p72)收稿日期:2020‑09‑16修回日期:2020‑11‑02基金项目:江西省重点研发计划重点项目(20201BBF61004)和江西省自然科学基金面上项目(20202BAB205004)Project supported by the Key Research and Development Program of Jiangxi Province (20201BBF61004)and the Natural Science Foundation of Jiangxi Province (20202BAB205004)作者简介:陈金凤,/0000-0001-6862-677X ,*****************;*通信作者:丁珍,讲师,博士,主要从事冠状病毒研究,/0000-0002-5002,********************.cn 。

6株K亚群禽白血病病毒分离株的全基因组测序及遗传进化分析

6株K亚群禽白血病病毒分离株的全基因组测序及遗传进化分析

·研究论文·摘 要:为研究目前中国临床流行的ALV 毒株特征,我们采集临床上ALV P27阳性的鸡的血浆,接种DF-1细胞进行病毒分离,分离出6株外源性ALV 毒株,并进一步对分离毒株进行前病毒全基因组测序。

结果表明,6个ALV 分离株的基因组结构均为典型的复制完整型C 型逆转录病毒,缺乏病毒致癌基因,分离株DT190901基因组全长为7473 bp ;DT190902和DT190905为7467 bp ;DT190903和DT190906为7481 bp ;DT190904为7493 bp ,分离株间基因组序列同源性较高(98.6%~99.9%)。

对6个ALV 分离株与其他ALV 毒株进行序列比较和遗传进化分析,结果表明,分离株的LTR 、gag 、pol 及gp37基因与内源性ALV 相比具有较高同源性(>93.8%),gp85基因与ALV-K 一致性较高(>95.4%),属于新型ALV 亚群(K 亚群)遗传分支。

分离株的LTR 序列与内源性ALV 相似,比其他外源性ALV 亚群缺少一个CAAT Box 、PRE Box 、Y Box 及CArG Box 等转录调控元件。

结果表明这6个分离株属于ALV-K 亚群,为ALV-K 与内源性ALV 的重组毒株,其LTR 序列与内源性ALV 接近可能导致其复制能力及致病性降低。

遗传进化分析表明,ALV-K 已经在我国局部流行,并出现基因重组和突变毒株,应该引起重视并改进净化防控措施控制ALV-K 流行。

关键词:禽白血病病毒;K 亚群;重组毒株;全基因组测序;遗传进化分析中图分类号:S852.65 文献标志码:A 文章编号:1674-6422(2023)06-0116-11Genome Sequencing and Phylogenetic Analysis of Six Avian Leukosis VirusSubgroup K IsolatesYOU Guangju, ARAY·Hayrat, LI Wei, LI Xiaoqi, GAO Li, CAO Hong, WANG Yongqiang,ZHENG Shijun(National Key Laboratory of Public Health and Safety, College of V eterinary Medicine, China Agricultural University, Beijing 100193, China)6株K 亚群禽白血病病毒分离株的全基因组测序及遗传进化分析游广炬,阿热阿依·海依拉提,李 炜,李晓齐,高 丽,曹 红,王永强,郑世军(中国农业大学动物医学院 公共卫生安全全国重点实验室,北京100193)Abstract: To study the characteristics of the currently prevalent ALV strains in China, we collected plasma samples from ALV P27 antigen-positive chickens for inoculation into DF-1 cells and isolated 6 exogenous ALV strains. Further sequencing of the proviral genome of the isolated strains showed that the genome structures of these 6 ALV isolates were all typical replication-competent type C retroviruses lacking viral oncogene. The complete proviral genome sequences of these ALV isolates were 7482 bp for DT190901 7467 bp for DT190902 and DT190905, 7481 bp for DT190903 and DT190906, and 7493 bp for DT190904. The genome sequences of these isolates were highly identical, ranging from 98.6% to 99.9%. Homology analysis indicated that their LTR , gag , pol and gp37 genes were highly conserved to endogenous ALV (>93.8%), whereas the gp85 gene had high identity to ALV-K (>95.4%). The LTR sequence of收稿日期:2021-11-26基金项目:行业专项及国家蛋鸡产业技术体系项目(CARS-40)作者简介:游广炬,男,博士研究生,预防兽医学专业通信作者:王永强,E-mail:**************.cn;郑世军,E-mail:***************.cnChinese Journal of Animal Infectious Diseases中国动物传染病学报2023,31(6):116-126· 117 ·游广炬等:6株K 亚群禽白血病病毒分离株的全基因组测序及遗传进化分析第31卷第6期禽白血病是由禽白血病病毒(Avian l eukosis virus, ALV)引起的禽类多种肿瘤性疾病,并能引起禽的免疫抑制,给世界养禽业带来巨大的经济损失[1]。

性别鉴定中amelogenin基因座变异的研究进展

性别鉴定中amelogenin基因座变异的研究进展

性别鉴定中amelogenin基因座变异的研究进展黄江平;杨帆;刘亚楠;邹凯南;曹禹;吴丹;陈荣华;平原;周怀谷【摘要】There are two kinds ofamelogeningene mutation, including mutation in primer-binding re-gion ofamelogeningene and micro deletion of Y chromosome encompassingamelogeningene, and the latter is more common. The mechanisms of mutation in primer-binding region ofamelogeningene is nu-cleotide point mutation and the mechanism of micro deletion of Y chromosome encompassingamelo-geningene maybe non-allelic homologous recombination or non-homologous end-joining. Among the population worldwide, there is a notably higher frequency ofamelogeningene mutations in Indian popu-lation, Sri Lanka population and Nepalese population which reside within the Indian subcontinent. Thoughamelogeningene mutations have little impact on fertility and phenotype, they might cause incor-rect result in gender identification. Using composite-amplification kit which including autosomal STR lo-cus,amelogeningene locus and multiple Y-STR locus, could avoid wrong gender identification caused byamelogeningene mutation.%Amelogenin 基因座变异,分为amelogenin引物结合区突变和包含amelogenin基因座的Y 染色体微缺失两种类型,以后者最为常见。

大蕉枯萎病菌二重PCR分子快速检测技术的建立

大蕉枯萎病菌二重PCR分子快速检测技术的建立

54卷收稿日期:2023-06-12基金项目:广东省基础与应用基础研究基金项目(2022A1515140114);广东省现代农业产业技术体系创新团队项目(2022KJ109);东莞市2021年度省乡村振兴战略专项(20211800400052);东莞市科技特派员项目(20221800500062)通讯作者:赖永超(1970-),https:///0009-0009-4245-9278,正高级农艺师,主要从事园艺作物育种及栽培技术研究工作,E-mail :135****************第一作者:曾莉莎(1985-),https:///0000-0003-4187-1104,研究员,主要从事果树病害防控技术研究工作,E-mail :****************大蕉枯萎病菌二重PCR 分子快速检测技术的建立曾莉莎1,王芳1,周海琪1,伍泽星2,赖永超1*,傅长根2,吕顺1,梁少丽1,刘丽琴1(1东莞市农业科学研究中心,广东东莞523000;2东莞讯禾园艺科技有限公司,广东东莞523000)摘要:【目的】基于大蕉枯萎病菌2个不同分化谱系特有的基因序列,建立大蕉枯萎病菌的二重PCR 分子快速检测技术,为该病害预测及有效防控提供理论依据。

【方法】基于大蕉枯萎病菌特有的rDNA 基因间隔区(IGS )序列设计得到多对PCR 引物,分别以广东3个粉蕉枯萎病菌株和8个大蕉枯萎病菌株、2个广西和海南的粉蕉枯萎病菌株、5个其他尖孢镰孢菌菌株和5个外围菌株的基因组DNA 为模板进行PCR 扩增,基于扩增结果从中筛选出大蕉枯萎病菌特异性引物,对其特异性和灵敏度进行检测,并确定二重PCR 检测体系的含菌量检测下限。

【结果】基于大蕉枯萎病菌特有的基因序列设计得到多对PCR 引物,经筛选验证获得2对可用于检测大蕉枯萎病菌2个不同谱系(Lineage Ⅰ和Ⅱ)的特异性引物,可直接应用于大蕉种植土壤和植株中的大蕉枯萎病菌检测,扩增片段分别为755和590bp 。

peg介导转化法的基本流程

peg介导转化法的基本流程

peg介导转化法的基本流程Peg-mediated transformation is a widely used method in molecular biology for the introduction of foreign genes into a wide range of organisms. Peg介导转化法是分子生物学中广泛使用的一种方法,用于将外源基因导入各种生物体中。

This method involves the use of PEG (polyethylene glycol) to facilitate the uptake of foreign DNA by cells, and has been particularly useful for the genetic manipulation of plants and fungi. 这种方法涉及使用PEG(聚乙二醇)促进细胞对外源DNA的摄取,并且特别适用于植物和真菌的遗传操作。

One of the key steps in the peg-mediated transformation process is the preparation of competent cells, which are treated with PEG to increase their permeability to foreign DNA. Peg介导转化过程中的关键步骤之一是制备能够与PEG处理以增加对外源DNA的渗透性的细胞。

This involves growing the cells to a specific phase of growth, making them more receptive to the uptake of DNA. 这涉及将细胞培养到特定生长阶段,使其更容易摄取DNA。

Another important aspect of peg-mediated transformation is the preparation of the DNA to be introduced into the cells. Peg介导转化的另一个重要方面是准备要引入细胞的DNA。

基于小RNA_深度测序的烟草脉坏死病病原分子鉴定及其全基因组序列分析

基于小RNA_深度测序的烟草脉坏死病病原分子鉴定及其全基因组序列分析

·1387·基于小RNA 深度测序的烟草脉坏死病病原分子鉴定及其全基因组序列分析莫翠萍1,陈锦清1,韦学平2,崔丽贤1,罗婉笛1,3,李金哲1,3,谢慧婷1,秦碧霞1,蔡健和1*,李战彪1*(1广西农业科学院植物保护研究所/农业农村部华南果蔬绿色防控重点实验室/广西作物病虫害生物学重点实验室,广西南宁530007;2广西烟草公司百色市公司,广西百色533000;3长江大学农学院,湖北荆州434000)摘要:【目的】明确引起广西河池市南丹县烟草呈现斑驳花叶、叶脉坏死等症状的病毒病原,为烟草病毒病的综合防治提供理论依据。

【方法】2022年5月,从河池市南丹县采集5份表现叶脉坏死、花叶等症状的烟草叶片样品,采用小RNA 深度测序技术、反转录PCR (RT-PCR )、摩擦接种、分段克隆、系统进化及重组分析等方法对样品进行鉴定及遗传进化分析。

【结果】小RNA 深度测序获得与GenBank 数据库中马铃薯Y 病毒(Potato virus Y ,PVY )不同分离物具有较高核苷酸相似性(99.00%~100.00%)的5条序列,将5条序列拼接后获得1条全长为9708nt 的全基因组序列;通过鉴别寄主苋色藜(Chenopodium amaranticolor )单斑分离的方法获得单一病毒,利用该分离纯化后的病毒单斑接种普通烟K326和本氏烟,其中K326的新叶产生坏死症状,而本氏烟的新叶呈不规则深绿色病斑症状;分别提取K326和本氏烟的叶片样品总RNA ,通过RT-PCR 检测、分段克隆的方法获得病毒分离物的全基因组序列,结果显示2个烟草品种中的病毒序列与小RNA 深度测序获得的序列相似性达99.90%;将序列在GenBank 中进行BLAST 分析发现,研究获得的序列与已登录GenBank 的PVY 各分离物具有较高的核苷酸相似性,其中与我国黑龙江省马铃薯分离物PVY HLJ26(MF134425)的核苷酸相似性最高,为99.01%,表明研究获得的病毒序列为PVY 分离物,命名为PVY-GXnd1(OP131591)。

表达质粒重组和转化的主要技术流程

表达质粒重组和转化的主要技术流程

表达质粒重组和转化的主要技术流程1.首先,需准备目的质粒和DNA的供体质粒,用于质粒重组实验。

First, the recipient plasmid and the donor plasmid needto be prepared for plasmid recombination experiment.2.将供体质粒进行酶切,以释放目的基因片段。

The donor plasmid is digested with enzymes to release the target gene fragment.3.将目的基因片段和目的质粒进行连接,形成重组质粒。

The target gene fragment is ligated with the recipient plasmid to form a recombinant plasmid.4.将重组质粒转化至宿主细胞中,使宿主细胞具有目的基因。

The recombinant plasmid is transformed into host cells to introduce the target gene into the host cells.5.转化宿主细胞的方法包括热冲击法、电穿孔法、化学法等。

Methods for transforming host cells include heat shock, electroporation, and chemical methods.6.通常使用大肠杆菌作为转化的宿主细胞。

E. coli is commonly used as the host cell for transformation.7.转化宿主细胞后,将细胞在含有选择性抗生素的培养基中培养。

After transforming the host cells, the cells are cultured in a selective antibiotic-containing medium.8.选择性抗生素可杀死未转化的细胞,只留下携带质粒的转化细胞生长。

黄酮类的毒性研究

黄酮类的毒性研究

Bioflavonoids as Poisons of Human Topoisomerase II R and II †Omari J.Bandele‡and Neil Osheroff*,‡,§Departments of Biochemistry and Medicine(Hematology/Oncology),Vanderbilt Uni V ersity School of Medicine,Nash V ille,Tennessee37232-0146Recei V ed January12,2007;Re V ised Manuscript Recei V ed March6,2007ABSTRACT:Bioflavonoids are human dietary components that have been linked to the prevention of cancer in adults and the generation of specific types of leukemia in infants.While these compounds have a broad range of cellular activities,many of their genotoxic effects have been attributed to their actions as topoisomerase II poisons.However,the activities of bioflavonoids against the individual isoforms of human topoisomerase II have not been analyzed.Therefore,we characterized the activity and mechanism of action of three major classes of bioflavonoids,flavones,flavonols,and isoflavones,against human topoisomerase II R and II .Genistein was the most active bioflavonoid tested and stimulated enzyme-mediated DNA cleavage∼10-fold.Generally,compounds were more active against topoisomerase II . DNA cleavage with both enzyme isoforms required a5-OH and a4′-OH and was enhanced by the presence of additional hydroxyl groups on the pendant petition DNA cleavage and topoisomerase II binding studies indicate that the5-OH group plays an important role in mediating genistein binding, while the4′-OH moiety contributes primarily to bioflavonoid function.Bioflavonoids do not require redox cycling for activity and function primarily by inhibiting enzyme-mediated DNA ligation.Mutagenesis studies suggest that the TOPRIM region of topoisomerase II plays a role in genistein binding.Finally, flavones,flavonols,and isoflavones with activity against purified topoisomerase II R and II enhanced DNA cleavage by both isoforms in human CEM leukemia cells.These data support the hypothesis that bioflavonoids function as topoisomerase II poisons in humans and provide a framework for further analysis of these important dietary components.Bioflavonoids(i.e.,phytoestrogens)are a diverse group of polyphenolic compounds that are constituents of many fruits,vegetables,legumes,and plant leaves(1-6).They are an integral component of the human diet and represent the most abundant natural source of antioxidants(1-4,6-8). It is believed that the dietary intake of bioflavonoids provides a number of health benefits to adults(1-6,9-12). Epidemiological studies suggest that these compounds help to protect against cancer,cardiovascular disease,osteoporo-sis,age-related diseases,and inflammation(1-6,9-12). Despite the beneficial effects of bioflavonoids,they also display cytotoxic and genotoxic properties.To this point, the ingestion of these compounds by pregnant women has been linked to the development of specific types of infant leukemia(13-17).The majority of these leukemias feature aberrations involving the mixed lineage leukemia gene(MLL) at chromosomal band11q23(13,14,16,17).The mechanistic basis for the physiological actions of bioflavonoids is not known,as they have a variety of effects on human cells.Beyond their antioxidant properties,many of these polyphenols are potent inhibitors of tyrosine kinases (5,18-23),act as either agonists or antagonists of estrogen receptors,or alter sex hormone production and metabolism (1,11,24-27).Furthermore,bioflavonoids display antipro-liferative and proapoptotic effects,decrease the expression or function of several proteins that are involved in cell-cycle progression,and inhibit both the NF-kB and Akt signaling pathways(5,6,11,28-30).Finally,a number of these compounds are potent topoisomerase II poisons(16,31,32). It has been suggested that at least some of the cellular effects of polyphenols,including their clastogenic properties,are mediated through actions on topoisomerase II(13,15,16). To this point,the sensitivity of cells to the isoflavone genistein has been correlated to the activity of the type II enzyme(33).Type II topoisomerases are ubiquitous enzymes that remove knots and tangles from the genetic material and are required for a number of critical nuclear processes(34-40). Humans encode two isoforms of topoisomerase II,R and (34-42).While these two isoforms display similar enzy-mological properties,they differ significantly in their physi-ology and cellular functions.Topoisomerase II R is essential to the survival of all proliferating cells(36,37,43-47). Levels of the protein increase dramatically during periods of growth and are regulated over the cell cycle,peaking at G2/M(36,37,43-47).The R isoform plays important roles in DNA processes related to proliferation and is required for DNA replication and chromosome segregation(36,37, 43-47).In contrast,the physiological roles of topoisomerase†This work was supported by National Institutes of Health Research Grant GM33944.O.J.B.was a trainee under Grant5T32CA09582 from the National Institutes of Health and was supported in part by Ruth L.Kirschstein National Research Service Award Predoctoral Fellowship F31GM78744from the National Institutes of Health.*To whom correspondence should be addressed.Tel:615-322-4338. Fax:615-343-1166.E-mail:neil.osheroff@.‡Department of Biochemistry.§Department of Medicine(Hematology/Oncology).6097Biochemistry2007,46,6097-610810.1021/bi7000664CCC:$37.00©2007American Chemical SocietyPublished on Web04/26/2007II are poorly understood.Expression of this isoform is independent of proliferative status or the cell cycle,and the protein appears to be present in all tissue types(35,36,45, 48).Despite its wide tissue distribution,topoisomerase II is not essential at the cellular level,and cells that lack the protein show no known phenotype(49-51).However,mice that are genetically deficient in this isoform suffer severe neurological abnormalities during embryogenesis(51). Type II topoisomerases modulate the topological state of DNA by generating transient double-stranded breaks in the backbone of the genetic material(36-40,52,53).To maintain genomic integrity during this cleavage event,the enzyme forms covalent bonds between active site tyrosyl residues and the5′-DNA termini created by scission of the double helix(54-56).These covalent topoisomerase II-cleaved DNA intermediates are known as clea V age com-plexes.Under normal conditions,they are present at low equilibrium levels and are tolerated by the cell.However, conditions that significantly increase the concentration of cleavage complexes generate permanent DNA strand breaks that trigger illegitimate recombination,chromosomal aber-rations,sister chromatid exchange,and cell death pathways (37,40,57-63).Agents that increase the concentration of topoisomerase II-DNA cleavage complexes are called topoisomerase II poisons(37,63-66).A variety of important anticancer drugs, such as etoposide and doxorubicin,kill cells by acting as topoisomerase II poisons(37,63-67).Despite the impor-tance of these compounds in cancer chemotherapy,∼2-3%of patients that are treated with regimens that include topoisomerase II-targeted agents eventually develop second-ary leukemias(58,61,66,68-71).Like the infant leukemias, these drug-related malignancies are characterized by rear-rangements in the MLL gene(58,61,68-71).Agents such as etoposide display potent activity against both topoi-somerase II R and topoisomerase II in vitro and in human cells(72-74),but the relative contributions of the two enzyme isoforms to either the therapeutic or leukemogenic properties of these drugs are not known.Although bioflavonoids impact human health by a variety of processes,many of their chemopreventative,cytotoxic, and genotoxic properties are consistent with their activity as topoisomerase II poisons.Therefore,the present study more fully defined the activity and mechanism of action of three major classes of bioflavonoids,flavones,flavonols,and isoflavones,against human topoisomerase II R and II . Results provide novel insight into the mechanistic basis for the actions of these compounds.EXPERIMENTAL PROCEDURESEnzymes and Materials.Recombinant wild-type human topoisomerase II R,II ,and htop2R G474A were expressed in Saccharomyces cere V isiae and purified as described previously(75-77).Negatively supercoiled pBR322DNA was prepared from Escherichia coli using a Plasmid Mega Kit(Qiagen)as described by the manufacturer.Genistein was purchased from ICN.Chrysin,fisetin,galangin,and etoposide were purchased from Sigma.Luteolin,apigenin, diosmetin,myricetin,quercetin,kaempferol,isorhamnetin, daidzein,and biochanin A were obtained from LKT Labo-ratories.[γ-32P]ATP(∼6000Ci/mmol)and[14C]genistein (∼16mCi/mmol)were purchased from ICN and Moravek Biochemicals,respectively.All bioflavonoids and drugs were prepared as20mM stocks in100%DMSO.Bioflavonoid stocks were stored at-20°C,and etoposide was stored at 4°C.Generation of the G474A Mutant of Human Topoi-somerase II R.The G474A mutant of human topoisomerase II R(htop2R G474A)was generated by cloning a Sal I-Kpn I fragment of YEpWob6(78)that encoded the N-terminus of the human enzyme into pUC18.Site-directed mutagenesis was performed using the QuikChange II PCR site-directed mutagenesis kit(Stratagene).The sequences of the forward and reverse primers used to generate the G474A mutation were GGCTGTTTCAGGCCTTGCAGTGGTTGGGAGAGA-CAAATATGGGG and CCCATATTTGTCTCTCCCAAC-CACTGCAAGGCCTGAAACAGC,respectively.The mu-tagenized sequence is underlined.Mutations were verified by sequencing,and the Sal I-Kpn I fragment was cloned back into YEpWob6.htop2R G474A was purified as described above.Clea V age of Plasmid DNA.DNA cleavage reactions were carried out using the procedure of Fortune and Osheroff(79). Assay mixtures contained220nM topoisomerase II R or II , 10nM negatively supercoiled pBR322DNA,and0-200µM bioflavonoid or etoposide in20µL of DNA cleavage buffer[10mM Tris-HCl,pH7.9,5mM MgCl2,100mM KCl,0.1mM EDTA,and 2.5%(v/v)glycerol].DNA cleavage mixtures were incubated for6min at37°C,and enzyme-DNA cleavage intermediates were trapped by adding2µL of5%SDS and1µL of375mM EDTA,pH 8.0.Proteinase K was added(2µL of a0.8mg/mL solution), and reaction mixtures were incubated for30min at45°C to digest topoisomerase II.Samples were mixed with2µL of60%sucrose in10mM Tris-HCl,pH7.9,0.5%bro-mophenol blue,and0.5%xylene cyanol FF,heated for2 min at45°C,and subjected to electrophoresis in1%agarose gels in40mM Tris-acetate,pH8.3,and2mM EDTA containing0.5µg/mL ethidium bromide.DNA cleavage was monitored by the conversion of negatively supercoiled plasmid DNA to linear molecules.DNA bands were visual-ized by ultraviolet light and quantified using an Alpha Innotech digital imaging system.In reactions that determined whether DNA cleavage by human topoisomerase II R or II was reversible,EDTA(final concentration of18mM)was added prior to treatment with SDS.To determine whether cleaved DNA was protein-linked,proteinase K treatment was omitted.To examine the effects of a reducing agent on the actions of genistein against topoisomerase II R and II ,0.5mM DTT was incubated with 50µM genistein for∼5min prior to initiation of the cleavage reaction.To assess the effects of genistein on human topoisomerase II R and II in the absence of DNA,50µM genistein was incubated with the enzyme for∼5min at37°C in15µL of DNA cleavage buffer.Cleavage was initiated by adding10 nM negatively supercoiled pBR322DNA to the reaction mixture.The final concentrations of topoisomerase II and plasmid molecules were220and10nM,respectively.To determine the ability of daidzein,biochanin A,and chrysin to compete with genistein,DNA cleavage reactions with human topoisomerase II R or II were performed in the presence of50µM genistein and0-500µM competing6098Biochemistry,Vol.46,No.20,2007Bandele and Osheroffpetition was quantified by the loss of genistein-induced linear DNA molecules.DNA Clea V age Site Utilization.DNA cleavage sites were mapped using a modification of the procedure of O’Reilly and Kreuzer(80).A linear4330bp fragment(Hin dIII-Eco RI)of pBR322plasmid DNA singly labeled with32P on the5′-terminus of the Hin dIII site was used as the cleavage substrate.The pBR322DNA substrate was linearized by treatment with Hin dIII.Terminal5′-phosphates were re-moved by treatment with calf intestinal alkaline phosphatase and replaced with[32P]phosphate using T4polynucleotide kinase and[γ-32P]ATP.The DNA was treated with Eco RI, and the4330bp singly end labeled fragment was purified from the small Eco RI-Hin dIII fragment by passage through a CHROMA SPIN+TE-100column(Clontech).Reaction mixtures contained0.7nM labeled pBR322DNA substrate and90nM human topoisomerase II R or II in50µL of DNA cleavage buffer.Assays were carried out in the absence of compound or in the presence of25µM etoposide or50µM bioflavonoid.Reactions were initiated by the addition of the enzyme and were incubated for6min(topoisomerase II R)or0.5min(topoisomerase II )at37°C.Cleavage intermediates were trapped by adding5µL of5%SDS followed by3.75µL of250mM EDTA,pH8.0.Topoi-somerase II was digested with proteinase K(5µL of a0.8 mg/mL solution)for30min at45°C.DNA products were precipitated twice in100%ethanol,washed in70%ethanol, dried,and resuspended in6µL of40%formamide,10mM NaOH,0.02%xylene cyanol FF,and0.02%bromophenol blue.Samples were subjected to electrophoresis in a denatur-ing6%polyacrylamide sequencing gel,100mM Tris-borate,pH8.3,and2mM EDTA.The gel was fixed in a 10%methanol/10%acetic acid mixture for2min and dried. DNA cleavage products were analyzed on a Bio-Rad Molecular Imager FX.Ligation of Clea V ed Plasmid DNA by Human Topoi-somerase II.DNA ligation mediated by human topoi-somerase II R or II was monitored according to the procedure of Byl et al.(81).DNA cleavage-ligation equilibria were established for6min at37°C as described above in the presence of50µM bioflavonoid or50µM etoposide.Ligation was initiated by shifting samples from 37to0°C.Reactions were stopped at time points up to20 s by the addition of2µL of5%SDS followed by1µL of 375mM EDTA,pH8.0.Samples were processed and analyzed as above.Ligation was monitored by the loss of linear DNA.Nitrocellulose Filter Binding.Topoisomerase II-biofla-vonoid competition binding studies were performed using the procedure of Kingma and Osheroff(82).Nitrocellulose membranes(0.45µm HA;Millipore)were soaked in binding buffer[10mM Tris-HCl,pH7.9,0.1mM EDTA,and2.5% (v/v)glycerol]for10min.Reaction mixtures contained25µM[14C]genistein,1.6µM enzyme,and0-250µM daidzein, biochanin A,or chrysin in a total of60µL of binding buffer. Samples were incubated for6min at37°C and applied to the nitrocellulose membranes in vacuo.Filters were im-mediately washed three times with1mL of ice-cold binding buffer,dried,and submerged in8mL of scintillation fluid (Econo-Safe;Research Products International).Radioactivity remaining on the membranes was quantified using a Beck-man LS5000TD scintillation counter.The amount of radioactive genistein remaining on the filter in the absence of enzyme was subtracted prior to binding calculations. Formation of Topoisomerase II-DNA Clea V age Com-plexes in Cultured Human Cells.Human CEM leukemia cells were cultured under5%CO2at37°C in RPMI1640medium (Cellgro by Mediatch,Inc.),containing10%heat-inactivated fetal calf serum(Hyclone)and2mM glutamine(Cellgro by Mediatech,Inc.).The in vivo complex of enzyme(ICE) bioassay(as modified on the TopoGen,Inc.,website)(83, 84)was utilized to determine the ability of selected biofla-vonoids to increase levels of topoisomerase II-DNA cleav-age complexes in treated cells.Exponentially growing cultures were treated with50µM bioflavonoid or etoposide for1h.Cells(∼5×106)were harvested by centrifugation and lysed by the immediate addition of3mL of1%Sarkosyl. Following gentle homogenization in a Dounce homogenizer, cell lysates were layered onto a2mL cushion of CsCl(1.5 g/mL)and centrifuged at45000rpm for15h at20°C.DNA pellets were isolated,resuspended in5mM Tris-HCl,pH 8.0,and0.5mM EDTA,normalized for the amount of DNA present,and blotted onto nitrocellulose membranes using a Schleicher and Schuell slot blot apparatus.Covalent com-plexes formed between human topoisomerase II R or II and DNA were detected using a polyclonal antibody directed against either human topoisomerase II R or human topoi-somerase II (Abcam),respectively,at a1:2000dilution. ICE bioassays were used to assess the effects of biochanin A and daizein on the ability of genistein to increase levels of topoisomerase II-DNA cleavage complexes in human CEM cells.Cultures were treated with25or50µM genistein in the presence of250or500µM biochanin A or daidzein, petition was quantified by the reduction of genistein-induced topoisomerase II-DNA cleavage com-plexes.RESULTS AND DISCUSSIONBiofla V onoids Enhance DNA Clea V age Mediated by Hu-man Topoisomerase II R and II .Bioflavonoids increase levels of DNA cleavage mediated by purified calf thymus and Drosophila topoisomerase II and by human nuclear extracts supplemented with human topoisomerase II(16,32, 85-87).[The calf thymus and human topoisomerase II used for these studies were not isoform specific.These enzymes were isolated from natural sources,presumably as a mixture of the R and isoforms.Drosophila encodes only a single type II topoisomerase(40).]Furthermore,treatment of cultured human cells with flavones,flavonols,or isoflavones has been shown to generate DNA strand breaks and induce cleavage within the breakpoint cluster region of the MLL gene(16,88,89).It should be noted that the sensitivity of topoisomerase II to bioflavonoids is species specific.Although genistein is the most active bioflavonoid against the type II enzymes listed above,yeast topoisomerase II is refractory to the compound.Despite the impact of bioflavonoids on human health,the effects of these compounds on the individual isoforms of human topoisomerase II and the mechanistic basis for their actions have not been characterized.As a first step toward this end,the ability of several flavones,flavonols,and isoflavones to enhance DNA cleavage mediated by humanBioflavonoids as Poisons of Topoisomerase II R/II Biochemistry,Vol.46,No.20,20076099topoisomerase II R and II was assessed.The bioflavonoids utilized for these studies are shown in Figure 1.As seen in Figure 2,genistein enhanced DNA cleavage mediated by human topoisomerase II R and II .Scission was reversed when EDTA was added to reaction mixtures before cleavage complexes were trapped by SDS.This reversibility is inconsistent with a nonenzymatic reaction.In addition,the electrophoretic mobility of the cleaved DNA (i.e.,the linear band)was dramatically reduced in the absence of proteinase K treatment,indicating that all of the cleaved plasmid molecules were covalently attached to either topoi-somerase II R or topoisomerase II .Taken together,these findings provide strong evidence that bioflavonoids increase DNA cleavage through an enzyme-mediated reaction.Several of the bioflavonoids tested enhanced DNA scission mediated by both human topoisomerase II isoforms (Figure 3).None of the bioflavonoids cleaved DNA in the absenceof enzyme (not shown).The compounds utilized generated a wide range of topoisomerase II-mediated DNA plete titrations were carried out with each compound (see inset for a titration with genistein).A summary of data obtained with 50µM bioflavonoid is shown.This concentra-tion represented the maximum level of cleavage for most of the compounds tested.The only major exception was genistein,which plateaued at ∼100-200µM.Whereas some compounds such as galangin had virtually no effect on DNA scission,others such as luteolin,kaemp-ferol,quercetin,myricetin,and genistein enhanced cleavage severalfold.Three conclusions can be drawn from the data shown in Figure 3.First,bioflavonoids in all three classes that enhanced DNA cleavage generally had a substantially larger effect on topoisomerase II than they did on topoi-somerase II R .In these cases,enhancement of cleavage was ∼1.5-2-fold higher with the isoform.Second,as proposed previously with mixed populations of mammalian type II topoisomerases (16,32,87),the presence of a hydroxyl moiety at the 5-or 4′-position greatly contributes to the enhancement of enzyme-mediated DNA cleavage.For ex-ample,substitution of the 5-OH with a hydrogen (daidzen)or the 4′-OH with a methoxy group (biochanin A)abrogates the activity of genistein.It is notable,however,that the requirement for these hydroxyl groups is not absolute.Fisetin (which lacks the 5-OH)and diosmetin (which lacks the 5-OH and contains a methoxy group in the 4′-position)both induce moderate levels of DNA cleavage.Third,the presence of additional hydroxyl moieties on the pendant ring (B-ring)at the 3′-and/or 5′-positions enhances bioflavonoid activity,especially against topoisomerase II .The ability of selected bioflavonoids to enhance topoi-somerase II-mediated DNA scission also was examined using end-labeled linear plasmid molecules (Figure 4).This allows sites of DNA cleavage to be monitored.High levels of DNA cleavage were observed for those bioflavonoids that dis-played activity with negatively supercoiled plasmid (compare with Figure 3).In contrast,no appreciable cleavage was seen with daidzein,which displayed little activity with negatively supercoiled molecules.Equivalent cleavage maps were observed for the flavones and flavonols with both topoi-somerase II R and topoisomerase II ,suggesting that these compounds interact in a similar fashion within the ternary enzyme -DNA -bioflavonoid complex.Sites of DNA cleavage observed in the presence of flavones and flavonols differed significantly from those seen for etoposide and were predominantly those generated by the enzyme isoforms in the absence of drugs.1This further suggests that these bioflavonoids do not significantly alter the specificity of either topoisomerase II R or topoisomerase II .Slightly different results were seen with genistein,whose DNA cleavage pattern included several strong sites of action in addition to those observed with the flavones and flavonols.1Products of DNA cleavage reactions shown in Figure 4were analyzed on denaturing polyacrylamide gels.Therefore,both single-and double-stranded breaks were monitored by this assay.Etoposide generates high levels of single-stranded DNA breaks in addition to double-stranded breaks (90).As a result,the total level of cleavage products generated in the presence of etoposide is greater than that seen in reactions that contained genistein,despite the fact that both agents induce similar levels of double-stranded DNA breaks (see Figure3).F IGURE 1:Structures of selected bioflavonoids.Flavones,flavonols,and isoflavones areshown.F IGURE 2:Genistein-induced DNA cleavage is mediated by human topoisomerase II R (hTII R )and II (hTII ).Ethidium bromide-stained agarose gels are shown.The reversibility of genistein-induced DNA cleavage complexes was determined by adding EDTA to reaction mixtures before these complexes were trapped by SDS (+EDTA;lanes 4and 9).To determine whether DNA cleavage induced by genistein was protein-linked,proteinase K treatment was omitted (-ProK;lanes 5and 10).Control reactions contained DNA alone (DNA;lanes 1and 6),DNA and enzyme in the absence of genistein (none;lanes 2and 7),or reaction mixtures treated with SDS prior to EDTA (genistein;lanes 3and 8).The mobility of negatively supercoiled DNA (form I,FI),nicked circular plasmid (form II,FII),and linear molecules (form III,FIII)is indicated.Data are representative of at five least independent experiments.6100Biochemistry,Vol.46,No.20,2007Bandele and OsheroffThis finding implies that there may be subtle but important differences in the spatial geometry of isoflavones within theternary complex as compared to the other classes of bioflavonoids.Role of the 5-OH and 4′-OH Groups in Mediating Isofla V one Acti V ity.As discussed above,earlier studies (as well as Figure 3)point to the importance of the 5-OH and 4′-OH groups (16,32,87).However,their roles in mediating the activity of bioflavonoids have not been determined.Since genistein displayed the greatest activity against human topoisomerase II,competition studies were carried out to determine whether these groups contribute primarily to genistein binding or function.In a first set of experiments,the ability of daidzein (which lacks the 5-OH)and biochanin A (which contains a 4′-methoxyl in place of the hydroxyl)to inhibit DNA cleavage induced by 50µM genistein was assessed.Similar results were found for both human topoisomerase II isoforms (Figure 5).Even at a concentration of 500µM,daidzein showed no significant ability to inhibit the actions of genistein.This finding indicates that the 5-OH moiety plays an important role in isoflavone binding within the ternary complex.The ability of biochanin A to compete with genistein was somewhat improved as compared to daidzein.Substitution of a methoxyl group for the 4′-OH was not as debilitating as the absence of the 5-OH.Unfortunately,it was not possible to use an isoflavone lacking the 4′-OH for this study,as none was available.However,to explore the role of the 4′-OH more fully,a parallel competition study was performed using chrysin.This compound is the flavone equivalent of genistein but lacks the 4′-OH moiety.Chrysin inhibited genistein-induced DNA cleavage slightly better than did either isoflavone (Figure 5).The fact that alterations at the 4′-OH decreased bioflavonoid-induced DNA cleavage to a similar extent as the loss of the 5-OH (see Figure 3)but allowed greater competition with genistein suggests that the 4′-OH plays a role in mediating biofla-vonoid function beyond enzyme binding.To further define the contributions of the 5-OH and 4′-OH moieties to isoflavone binding and function,the ability of daidzein,biochanin A,and chrysin to compete for [14C]-genistein binding to human topoisomerase II R was deter-mined (Figure 6).Consistent with the DNA cleavage competition studies,chrysin competed the best followed by biochanin A and then daidzein.These findings indicate that the 5-OH plays a more important role than the 4′-OH in mediating genistein binding to topoisomerase II and implies that the 4′-OH plays a significant functional role beyond any contribution to genistein -enzyme binding.It is notable that two other potent topoisomerase II poisons,etoposide and the quinolone CP-115,953,both contain pendant rings that feature 4′-OH moieties.Furthermore,in both cases,the 4′-OH groups are essential for drug action (91,92).Thus,this group may play equivalent roles across a spectrum of topoisomerase II poisons.Mechanistic Basis for Biofla V onoid-Induced Enhancement of DNA Clea V age Mediated by Topoisomerase II.Topoi-somerase II poisons act by two nonmutually exclusive mechanisms.Agents such as etoposide act primarily by inhibiting the ability of the enzyme to ligate cleaved nucleic acids (37,63,66,93).Conversely,topoisomerase II poisons such as quinolones and abasic sites have little or no effect on rates of ligation.Thus,they are presumed to actprimarilyF IGURE 3:Effects of bioflavonoids on double-stranded DNA breaks generated by human topoisomerase II R and II .Data for topoi-somerase II R -(hTII R ;open bars)and II -(hTII ;closed bars)mediated DNA cleavage in the presence of 50µM flavones,flavonols,isoflavones,or etoposide are shown in the bar graph.The inset shows a titration for DNA cleavage mediated by topoisomerase II R (open circles)and II (closed circles)in the presence of 0-200µM genistein.Error bars represent standard deviations for three independentexperiments.F IGURE 4:Effects of bioflavonoids on DNA cleavage site utilization by human topoisomerase II R (hTII R )and II (hTII ).Autoradio-grams of polyacrylamide gels are shown.DNA cleavage reactions contained no compound (none),25µM etoposide,or 50µM bioflavonoid.A DNA control is shown in the far left lane of each autoradiogram (DNA).Data are representative of two independent experiments.Bioflavonoids as Poisons of Topoisomerase II R /II Biochemistry,Vol.46,No.20,20076101。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Journal of Biochemistry and Molecular Biology ,Vol. 40, No. 2, March 2007, pp. 172-179PCR-mediated Recombination of the Amplification Products of the Hibiscus tiliaceus Cytosolic Glyceraldehyde-3-phosphate Dehydrogenase GeneLinghui Wu, Tian Tang, Renchao Zhou and Suhua Shi*State Key Laboratory of Biocontrol and Key Laboratory of Gene Engineering of the Ministry of Education,School of Life Sciences, Sun Yat-Sen University, 510275 Guangzhou, ChinaReceived 25 February 2006, Accepted 25 September 2006PCR-mediated recombination describes the process of in vitro chimera formation from related template sequences present in a single PCR amplification. The high levels of genetic redundancy in eukaryotic genomes should make recombination artifacts occur readily. However, few evolutionary biologists adequately consider this phenomenon when studying gene lineages. The cytosolic glyceraldehyde-3-phosphate dehydrogenase gene (GapC ), which encodes a NADP-dependent nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase in the cytosol, is a classical low-copy nuclear gene marker and is commonly used in molecular evolutionary studies. Here, we report on the occurrence of PCR-mediated recombination in the GapC gene family of Hibiscus tiliaceus . The study suggests that recombinant areas appear to be correlated with DNA template secondary structures. Our observations highlight that recombination artifacts should be considered when studying specific and allelic phylogenies. The authors suggest that nested PCR be used to suppress PCR-mediated recombination.Keywords: Cytosolic glyceraldehyde-3-phosphate dehydrogenase gene (GapC ), Evolutionary study, Hibiscus tiliaceus , Nuclear gene, PCR-mediated recombination, Secondary structureIntroductionPCR-mediated recombination describes the process of in vitro chimera formation from related DNA template sequences present in a single PCR amplification. It arises primarily due to the presence of incompletely extended PCR products, or via polymerase template switching in the absence of temperaturecycling (Shammas et al ., 2001). This phenomenon was initially identified in multi-gene family (Scharf et al ., 1988),and has since been demonstrated for nature templates from heterozygous Adh loci (Bradley et al ., 1997) and polyploid cotton (Cronn et al., 2002). PCR-mediated recombination has greatly promoted the development of in vitro evolution (Crameri et al., 1998) and provides a useful means of constructing recombinant molecules (Fang et al., 1999), but unrecognized artifactually produced recombinant products may bias results or alter interpretations in phylogeny and evolutionary studies (Cronn et al., 2002).There is an increasing need to use nuclear genes in evolutionary studies to test sophisticated historical models.However, as nuclear genes are often present as gene families, the potential exist to amplify paralogs related by gene duplications and to generate recombinant amplification products mediated by PCR. While the challenge presented by paralogs has been widely recognized, many evolutionary biologists are inadequately aware of the problem of PCR-mediated recombination.There are three distinct isoforms of glyceraldehydes 3-phosphate dehydrogenases (GAPDH) in higher plants, and one of these, cytosolic glyceraldehyde-3-phosphate dehydrogenase,is a NADP-dependent nonphosphorylating GAPDH which catalyzes the oxidation of glyceraldehyde 3-phosphate to 3-phosphoglycerate in the cytosol (Cerff, 1982). The cytosolic glyceraldehyde-3-phosphate dehydrogenase gene (GapC ) has been successfully used as a classical low-copy nuclear gene maker in molecular evolutionary studies (Olsen and Schaal,1999; Pérusse and Schoen, 2004). Moreover, it often appears as gene family in many plant species, such as, Zea mays (Russell and Sache, 1989; Manjunath and Sache, 1997),Amsinckia spectabilis (Pérusse and Schoen, 2004), and Arabidopsis thaliana (Marri et al ., 2005). However, no study has addressed PCR-mediated recombination of the GapC gene or the potential risks of using such artifactual recombinants in evolutionary studies.Here, the authors demonstrate the occurrence of PCR-mediated recombination in the GapC gene family of Hibiscus*To whom correspondence should be addressed.Tel: 86-20-84113677; Fax: 86-20-34022356E-mail: lssssh@PCR-mediated Recombination in GapC Gene173tiliaceus, and report that recombinant areas appear to be correlated with DNA template secondary structures. Nested PCR is advocated as a means of suppressing PCR-mediated recombination.Materials and MethodsPlant materials. Leaves of one cultivated Hibiscus tiliaceus individual from Guangzhou, China (denoted hereafter as CG) and of one wild H. tiliaceus individual from Ryukyu, Japan (denoted hereafter as JR) were sampled, and stored with silica gel in zip-lock plastic bags until required.DNA isolation, PCR amplification, cloning and sequencing. Total DNA was extracted using the Doyle and Doyle method (Doyle and Doyle, 1987). Exon-primed intron-crossing (EPIC) amplifications of GapC were performed using the universal primer set (GPDX7F and GPDX9R) designed by Strand et al.(1997) (Table 1), using the PCR system of Olsen and Schaal (Olsen and Schaal, 1999) in the presence of a negative control. Amplification products were visually examined after 1% agarose gel electrophoresis. Three bands of amplification products were observed for each individual and each of these bands were spliced from agarose gel and purified using a QIAquick PCR purification kit (QIAGEN). The purified PCR products so obtained were ligated to pGEM-T Easy V ectors (Promega). Subcloning, microbial cultures and plasmid isolation were conducted according to Molecular Cloning (Sambrook et al., 2001). Sixteen clones from CG and fifteen clones from JR were randomly selected and the corresponding bands were purified, i.e., in total 48 clones for CG and 45 clones for JR were analyzed, respectively. All purified products were sequenced on an ABI PRISM TM 3730 sequencer using BigDye Terminator V3.0 Cycle Sequencing kits. Sequences have been deposited in GenBank under accession no. DQ299458-299487.Sequence analyses. Sequences were assembled and edited using SeqMan5.05 (DNASTAR Inc.), and proofread by eye. The identities of the DNA sequences were obtained using blastn in GenBank (Altschul et al., 1997). The boundaries of exons/introns in the obtained sequences were determined using FSPLICE (Softberry Inc.) combined with BLAST (blastn, tblastx and bl2seq) (Altschul et al., 1997; Tatusova and Madden, 1999). Coding sequences were translated to amino acid sequences using the ExPASy Translate tool (ExPASy Proteomics Server). GapC identities of obtained DNA sequences were confirmed using blastp (Altschul et al., 1997) and their reduced amino acids sequences. DNA sequences were aligned using Clustal_X (Thompson et al., 1997). Mfold version 3.1 (mfold web server) (Zuker, 2003) was used to predict nucleic acid folding and the hybridization of involved sequences.Amplifications of recombinant products. To verify recombination artifacts, we also designed four sets of inner primers specific for each suspicious recombinant product using Primer Premier 5.00 (PREMIER Biosoft International) and Oligo 6.31 (Molecular Biology Insights. Inc.) (Table 1). Nested PCR was performed to validate PCR-mediated recombination using the universal primer set combined with each specific inner primer set. Nested PCR was conducted using Olsen and Schaal’s system (Olsen and Schaal, 1999) with modified cycling conditions, i.e., 95o C (2min); then 20 cycles of 95o C (1min), 46-62o C (1min), 72o C (2min); and a final extension at 72o C (10min). Primary PCR reactions were performed using genomic DNA as templates, and GPDX7F and GPDX9R as primers; and secondary PCR was carried out using diluted primary PCR products (1/20-1/200) as templates, and inner primer sets as primers. Real (biological) recombinant products were expected to be amplified by corresponding inner primer pairs, whereas potential parental sequences can only be amplified by single primers (sense primer or anti-sense primer).Results and DiscussionExon-primed intron-crossing (EPIC) amplifications of GapC in H. tiliaceus using the universal primer set produced three distinct bands of length ca. 790-bp, 870-bp and 950-bp (Fig. 1). Extensive BLAST analyses then revealed that the sequences of clones from all amplification products were homologs of GapC with DNA similarities of from 58% to 86%. When examining the aligned sequences of GapC in H. tiliaceus in detail, we found four sequences, 3 of the 48 clones from Chinese CG and 1 of the 45 clones from Japanese JR, which appeared to be recombinant products (Fig. 2). The probabilities of recombinant artifacts were 6.25% (3/48) in CG and 2.22% (1/45) in JR, respectively. Suspicious recombination occurredTable 1. Primer sets used in this studyPrimer set*Senseprimer Sense primer sequence Anti-senseprimer Anti-sense primer sequence1GPDX7F5' GATAGATTTGGAATTGTTGAGG 3'GPDX9R5' AAGCAATTCCAGCCTTGG 3'2SW1375' GGACTGGAGAGGTGGTAGAG 3'AW7965' CCTGTATTGACATCCGATTT 3'3C2_02S5' TATTTCGCAATGATTGTGGTT 3'C2_02A5' GCAATGGTGTCCCAAATTACTAC 3' 4C3_07S5' TATTTCGCAATGATTGTGGTT 3'C3_07A5' TATTGATAAGAGGAAGACTG 3'5C3_10S5' ATTTCCCCCCTTTTCACTCT 3'C3_10A5' GTATTGACATCCGATTTCGGT 3'6J2_04S5' TTTTGCAACCGTATGTGTATCG 3'J2_04A5' GGCAAATAAGATATCATAGGACG 3' *: 1, universal primer; 2, primer set used to amplify a parental sequence CG_2_01(positive control); 3-6, primer sets used to amplify suspicious recombinant artifacts CG_2_02, CG_3_07, CG_3_10, and JR_2_04, respectively.174Linghui Wu et al.between the 790- and 870-bp bands in CG (Fig. 2A-C), andbetween the 870- and 950-bp bands in JR (Fig. 2D). Two of the four suspicious recombinants were chimera formations from CG_3_01 and CG_2_01 (Fig. 2A, B), while the other two were chimera formations from CG_3_03 and CG_2_01,and JR_2_11 and JR_1_01, respectively (Fig. 2C, D). The aligned sequences of the potential parents and recombinants involved in Fig. 2 are provided in Fig. 3.To test whether the observed recombinants arise via biological recombination or PCR-mediated recombination, we performed nested PCR using the universal primer set combined with a correspondingspecific inner primer set for eachrecombinant (See Fig. 3 for the positions of specific inner primers). None of the nested PCRs succeeded in amplifying suspicious recombinants while the positive control amplified expected band for a potential parent sequence (Fig. S1 in Supplementary materials). These results indicated that recombinant products were derived via PCR-mediated recombination rather than biological recombination.W e further predicted the nucleic acid folding and hybridization of potential parental sequences at the PCR extension temperature (72o C) to examine the correlation between structural features of templates and PCR-induced in vitro chimera formation.Significant stem-loop structures were detected in all potential parent sequences and we compared positions of secondary structures in templates with recombination points for respective recombination events (Table 2). The secondary structure of template sequences CG_2_01, CG_3_03 and their reverse-complement counterparts appeared to be involved in the chimera formations of recombinant CG_2_02 (Fig. 4). That is, they showed overlapping positions of hairpins and recombination points (Table 2). For example, the CG_3_03 hairpin at 579-596bp overlapped the recombination point at 591-636bp (Fig. 2C and Fig. 4B). As for the recombinants CG_3_07from templates CG_3_01 and CG_2_01 (Fig. 2A), the hairpins of templates were sometimes found to be close located to recombination points (see Table 2). For example, loop2 of CG_3_01 at 383-397bp was found to be close to the recombination point at 411-430bp, whereas loop2 of CG_2_01at 458-472bp was close to the recombination point at 486-505bp. However, the association between the secondary structural features of templates and PCR-induced recombination was not obvious for the recombination of JR_2_04 with JR_2_11 or JR_1_01 as templates (Fig. 2D and Table 2). We also examined the secondary structures of templates for the PCR-induced recombination of the homologous genes Myb3and Myb5 from Gossypium allotetraploids (Cronn et al.,2002); Myb3 had one type of recombinant (R1), whereasFig. 1. Exon-primed intron-crossing (EPIC) amplifications of GapC in H. tiliaceus using the universal primer set GPDX7F and GPDX9R. Lane 0: PCR product showing three distinct bands;Lane N: negative control; Lanes 1-3: purified PCR products of each band of lengths of about 950-bp, 870-bp and 790-bp,respectively; Lane M: 100bp DNA ladder.Fig. 2. Schematic representation of PCR-mediated recombination of the GapC gene family in H. tiliaceus. (A) recombinant CG_3_07from CG_3_01 and CG_2_01; (B) recombinant CG_3_10 from CG_3_01 and CG_2_01; (C) recombinant CG_2_02 from CG_3_03and CG_2_01; and (D) recombinant JR_2_04 from CG_2_11 and CG_1_01. For each case of PCR-mediated recombination,recombinant products are indicated in bold, and both parental sequences are indicated by the different types of bold lines. The code of each sequence is given following the criteria “individual_# band_# clone” and length (in bp) is indicated in parenthesis. Frames drawn with dashed lines indicate recombination points where sequence fragments were identical in all three clones. Aligned sequences of potential parents and recombinants for each PCR-mediated recombination are given in Fig. 3.PCR-mediated Recombination in GapC Gene 175Myb5had seven types (R1-7). However, only a hairpin at 466-475bp appeared to be associated with PCR-mediated recombination type R2 in Myb5 (see Supplementary materials).The secondary structure features of templates therefore may contribute, but do not wholly determine PCR-induced in vitro chimera formation.A variety of factors conceivably influence the degree of in vitro chimera formation during PCR amplification, including target sequence length, the number of partially homologous templates resident in the genome, cycling parameters (such as extension time and number of cycles), possibly nucleotide composition, the degree of divergence among potentially interacting loci (Cronn et al., 2002), and the structure-specific exo/endonuclease activities of DNA polymerases (Tombline et al ., 1996). To suppress PCR-mediated recombination, we used long elongation times and reduced cycling to the mid-point of amplification. Although decreased numbers of PCR cycles reduce the output of target sequences, this defect can be resolved by nested PCR. We successful amplified target fragments at desirable intensities, free from artifactually produced recombinant products by nested PCR with a 2min extension time over 20 cycles of primary and of secondary PCR (Fig. S1in Supplementary materials). In comparison with previously suggested approaches, nested PCR is more target specific than simple adjustments of PCR parameters and is more practicable than amplifying target loci from genomic libraries for most species. Moreover, predictions of the structural features of templates may be helpful in terms of primer design in future studies and would allow the risk of PCR-mediated recombination to be minimized.Fig. 3. Alignment of sequences involved in PCR-mediated recombinations as shown in Fig. 2. (A) recombinant CG_3_07 from CG_3_01 and CG_2_01; (B) recombinant CG_3_10 from CG_3_01 and CG_2_01; (C) recombinant CG_2_02 from CG_3_03 and CG_2_01; and (D) recombinant JR_2_04 from CG_2_11 and CG_1_01. The rectangular frames indicate recombinant sequences that are the same as template sequences. Sequences in bold letters are recombination points where sequence fragments were identical in all three clones. Positions for the primer pair GPDX7F and GPDX9R are also shown. The positions of specific internal primers are indicated by underlined bold italic.176Linghui Wu et al.Table 2.Relationship between secondary structure and PCR-mediated recombination. The positions of predicted loop structures for all template sequences are given in bp from 5' to 3'. We also show the locations of recombination points for each recombination event in respective parental sequences (see also Fig. 3 for sequences of recombination points). Overlapping positions for secondary structures and recombination points are indicated in redSecondary structure (5' to 3')Recombination point (5' to 3')aLoop1Loop2Loop3A1B1C1C2D1D2 CG_3_01218-233383-397411-430593-608CG_2_01203-218458-472486-505676-691462-472667-712CG_3_03579-596385-395591-636JR_2_11207-222324-345631-644252-279599-603 JR_1_01566-583256-283616-620 CG_3_01*391-407555-572646-665358-377180-195CG_2_01*398-414422-432652-669365-384179-194398-408158-203CG_3_03*389-396579-596399-409158-203JR_2_11*51-58523-536584-611260-264 JR_1_01*75-85231-247656-683332-336 a Recombination points are numbered according to their order of appearance in Fig. 2. For example “C1” indicates the first recombina-tion points from 5' to 3' in Fig. 2C.*Reverse-complement counterpartFig. 4.Predicted secondary structures of CG_2_01, CG_3_03and their reverse-complement counterparts (A) CG_2_01, (B) CG_3_03, (C) CG_2_01*, and (D) CG_3_03*.The enlarged regions of loop are given for respective sequence. Secondary structures of the remaining template sequences are given in Supplementary Materials.PCR-mediated Recombination in GapC Gene 177In summary, we show that PCR-mediated recombination can occur in a classical low-copy nuclear gene marker, which emphasizes that great caution should be taken when using gene lineages in population and evolutionary studies. We also demonstrate that PCR extension pauses are sometimes associated with template secondary structures, although these may not be the decisive cause of PCR-mediated recombination. Information on secondary structure would be useful to minimize the risk of PCR-recombination in advance. To suppress PCR-mediated recombination, nested PCR is a useful approach as it offers the advantages of target specificity and practicability.Acknowledgments We thank Dr. Hasegawa Masami and Mr. Cairong Zhong for sample collection, Kenian Chen and Yang Shen for help with Mfold, and Dr. Y uguo Wang and Dr.Yelin Huang for technical assistance and helpful advice. This study was supported by the Chang Hungta Science Foundation and the Start-up Research Funds for Young Teachers from Sun Yat-Sen University, National Natural Science Foundation of China (30500049, 30470119, 30300033, and 30230030),the Open Foundation of State key Laboratory of Biocontrol,and the International Foundation for Science (IFS - D/3836).Fig. S1. Amplification of PCR-mediated recombination products using nested PCR. Lane (M): 100bp DNA ladder; Lane (P):positive control, amplification of template CG_2_01 using SW137and AW796 as inner primer set; Lanes (02), (07), and (10):amplification of recombination products CG_2_02, CG_3_07,and CG_3_10 using the respective inner primer sets C2_02S/C2_02A, C3_07S/C3_07A, and C3_10S/C3_10A; Lanes (NP),(N02), (N07), and (N10) are negative controls of lanes (P), (02),(07), and (10), respectively. The amplification of recombinant JR_2_04 using J2_04S/J2_04A as an inner primer set showed the same pattern. The sequences and positions of each innerprimer set are given in Table 1 and Fig. 3.File S1. Secondary structures of template sequences for PCR-induced recombination in GapC from Hibiscus tiliaceus . Page1 CG_3_01,Page2 JR_2_11, Page3 JR_1_01, Page4 CG_3_01*, Page5 CG_3_03*, Page6 JR_2_11*, Page8 JR_1_01*.178Linghui Wu et al.ReferencesAltschul, S. F., Madden, T. L., Schäffer, A. A., Zhang J., Zhang Z., Miller W. and Lipman D. J. (1997) Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res . 25, 3389-3402.Bradley, R. D. and Hillis, D. M. (1997) Recombinant DNA sequences generated by PCR amplification. Mol. Biol. Evol . 14,592-593.Cerff, R. (1982) Evolutionary divergence of chloroplast and cytosolic glyceraldehyde-3-phosphate dehydrogenases from angiosperms. Eur . J. Biochem . 126, 513-515.Crameri, A., Raillard, S. A., Bermudez, E. and Stemmer, W. P .(1998) DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 391, 288-291.Cronn, R., Cedroni, M., Haselkorn, T. and Grover C. (2002) PCR-mediated recombination in amplification products derived from polyploid cotton. Theor . Appl. Genet . 104, 482-489.Doyle, J. J. and Doyle, J. L. (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem.Bull . 19, 11-15.Fang, G ., Weiser, B., Visosky, A., Moran T. and Burger H. (1999)PCR-mediated recombination: A general method applied to construct chimeric infectious molecular clones of plasma-derived HIV-1 RNA. Nat. Med . 5, 239-242.Manjunath, S. and Sache, M. M. (1997) Molecular characterization and promoter analysis of the maize cytosolic glyceraldehyde-3-phosphate dehydrogenase gene family and its expression during anoxia. Plant Mol. Biol. 33, 97-112.Marri, L., Sparla, F., Pupillo, P . and Trost, P . (2005) Co-ordinated gene expression of photosynthetic glyceraldehyde-3-phosphate dehydrogenase, phosphoribulokinase, and CP12 in Arabidopsis thaliana . J. Exp. Bot. 56, 73-80.Olsen, K. M. and Schaal, B. A. (1999) Evidence on the origin of cassava: Phylogeography of Manihot esculenta . Proc. Natl.Acad. Sci. USA 96, 5586-5591.Pérusse, J. R. and Schoen, D. J. (2004) Molecular evolution of the GapC gene family in Amsinckia spectabilis populations that differ in outcrossing rate. J. Mol. Evol. 59, 427-436.Russell, D. A. and Sachs, M. M. (1989) Differential expression and sequence analysis of the maize glyceraldehyde-3-phosphate dehydrogenase gene family. Plant Cell. 1, 793-803.Sambrook, J., Fritsch, E. F. and Maniatis, T. (2001) Molecular cloning: A Laboratory Manual , 3rd ed., Cold Spring Harbor Laboratory Press, New York, USA.Scharf, S. J., Friedmann, A., Brautbar, C. Szafer E., Steinman L.,Horn G ., Gyllensten U. and Erlich H. A. (1988) HLA class II allelic variation and susceptibility to Pemphigus vulgaris . Proc.Natl. Acad. Sci. USA 85, 3504-3508.Shammas, F. V ., Heikkila, R. and Osland, A. (2001) Fluorescence-based method for measuring and determining the mechanisms of recombination in quantitative PCR. Clinica ChimicaActaFile S2. Secondary structures of template sequences for PCR-induced recombination in homologous Myb3 and Myb5 genes from Gossypium hirsutum A-genome and D-genome. Page1 AF377307, Gossypium hirsutum D-genome myb-like transcription factor Myb3gene; Page2 AF377308, Gossypium hirsutum A-genome myb-like transcription factor Myb3 gene; Page4 AF3773016, Gossypium hirsutum D-genome myb-like transcription factor Myb5 gene; Page5 AF377317, Gossypium hirsutum A-genome myb-like transcription factor Myb5 gene; Page6-8 reverse complement reverse-complement counterparts to AF377307, AF377308, AF377316, and AF377317,respectively.PCR-mediated Recombination in GapC Gene179304, 19-28.Strand, A. E., Leebens-Mack, J. and Milligan, B. G. (1997) Nuclear DNA-based markers for plant evolutionary biology. Mol. Ecol. 6, 113-118.Thompson, J. D., Gibson, T. J., Plewniak, F. Jeanmougin F. and Higgins D. G. (1997) The Clustal_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876-4882.Tombline, G., Bellizzi, D. and Sgaramella, V (1996) Heterogeneity of primer extension products in asymmetric PCR is due both to cleavage by a structure-specific exo/endonuclease activity of DNA polymerases and to premature stops. Proc. Natl. Acad. Sci. USA93, 2724-2728.Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406-3415.。

相关文档
最新文档