Study and Characterization of (KxSr1-x)CrOz, x = 0
胃癌患者血清CCL2、ANXA2含量与癌细胞浸润性生长的相关性研究
中国细胞生物学学报Chinese Journal of Cell Biology2021,43(2): 404412DOI: 10.11844/cjcb.2021.02.0016胃癌患者血清CCL2、ANXA2含量与癌细胞浸润性生长的相关性研究王薇布力布•吉力斯汉许春蕾赛福丁•柯尤木*(新疆医科大学第三临床医学院(附属肿瘤医院)消化内科,乌鲁木齐830011)摘要 该文旨在探讨胃癌患者血清C C趋化因子配体2(C C L2)、膜联蛋白A2(A N X A2)含量与 癌细胞浸润性生长的相关性,并分析其与胃癌临床病理特征的关系。
选择187例胃癌患者为研究 对象,并选择153例正常人群为对照组,使用酶联免疫吸附试验(E L I S A)法检测所有研究对象血清C C L2、A N X A2含量,分析组间临床病理特征(癌细胞分化程度、浸润程度和是否发生淋巴结转移等)及C C L2、A N X A2水平差异。
采用q R T-P C R技术检测胃癌组织及癌旁组织中癌细胞浸润性生长相失I西 Cripto-I、ZEB1、Snail'Vimentin、Piwil2、STOML2、BCL2、Smo、XL4P^$J t。
分析组间血清C C L2、A N X A2水平差异,以及不同C C L2、A N X A2水平下夕卜泌体E x o s o m e s蛋白及Z£W、S«az7、尸/w"2、S7V9M L2、5C L入5>«〇、A X4尸基因的表达差异。
使用免疫组织 化学S P染色法检测全部研究对象中C C L2、A N X A2含量,分析各组间差异。
胃癌组血清C C L2、A N X A2水平显著高于对照组(/><〇.〇5);患者的性别、年龄、胃癌分型等数据在C C L2、A N X A2水平上作对比,无显著差异(F>〇.〇5),患者的分化程度、浸润深度和淋巴结是否转移等数据在C C L2、A N X A2水平上作对比,具有显著性差异(P<〇.〇5);高水平C C L2组、高水平A N X A2组E x o s o m e s蛋白及上皮-间质转化(E M T)基因(C W p t a-/、Z£5八5>za//、油•《)、增殖基因〇P h w72、5T O M L2、如〇、J TL4/3)表达分别显著高于低水平C C L2组、低水平A N X A2组(P<0.05);胃癌组织中E M T基因八八、增殖基因(朽wi./2、5T O M Z J、S C Z J、5>«〇、尸)表达显著高于癌旁组织(P<〇.〇5)。
动物分子遗传学ppt课件.ppt
遗传学(genetics)的研究内容
❖ Genetics: the science of heredity ,is at its core the study of biological information.
❖ Geneticists examine how organisms pass biological information on to their progeny and how they use it during their lifetime.
二、Experiment designate DNA
as the genetic material
❖ Chemical characterization localizes DNA in the chromosomes
❖ Bacterial transformation implicates DNA as the substance of genes
❖ 3.7billion years ago the earliest bacterial cell incorporated it into their chromosomes .
❖ About 2 billion years ago, when the eukaryotic precursors of plants, animals, and fungi evolved from simple cell, their chromosomes also carried a DNA molecular .
DNA
----bearer of genetic information
❖ Since that time: ❖ Evolution has honed and expanded the
雌激素受体在中枢神经系统疾病中的作用
药学研究• Journal o f Pharmaceutical Research 2018V o l.37,N o.4221 -•综 述.雌激素受体在中枢神经系统疾病中的作用张雪姣,季晖,唐苏苏,欧瑜(中国药科大学生命科学与技术学院,江苏南京210009)摘要:雌激素受体包括核受体和膜受体,分别通过基因组和非基因组效应来发挥转录调控功能。
雌激素受体在大脑的皮层、海马、杏仁核和下丘脑中均有表达,发挥着与突触可塑性、学习记忆、认知和神经保护有关的作用。
本文就雌激素受体的结构,分类以及在包括阿尔兹海默病、帕金森病、精神分裂症和脑缺血在内的多种中枢神经系统疾病中的作用作一综述。
关键词:雌激素受体;信号通路;中枢神经系统中图分类号:R745文献标识码:A文章编号:2095-5375( 2018) 04-0221-006doi:10.13506/ki.jpr.2018.04.010The role of estrogen receptor in central nervous system diseasesZHANG Xuejiao,JI Hui,T A N G S u su ,0U Y u(School of Life S cie n ce and Technology,China Pharmaceutical University,Nanjing 210009,China)Abstract: Estrogen receptor, including nuclear receptor and membrane receptor, exert transcriptional regulatory functions through genomic and non-genomic effects ,respectively.Estrogen receptor are expressed in the hypothalamus,hippocampus ,amygdala and cortex o f the brain and play a role in synaptic plasticity,learning and memor^^,cognition and neuro- protection.This review summarized the structure,classification,and roles o f estrogen receptor in a variety o f central nervous system diseases,including Alzheimer's disease,Parkinson's disease,schizophrenia and cerebral ischemia.Key words:Estrogen receptor;Signal path^way;Central nervous system雌激素是一种内源的甾体类激素,它主要通过和雌激素受体结合来发挥生物学效应。
Keysight Technologies CXA X-Series 信号分析器数据册说明书
Keysight TechnologiesCXA X-Series Signal Analyzer, Multi-touch N9000B9 kHz to 3.0, 7.5, 13.6, or 26.5 GHzData SheetThe CXA is today’s leading low-cost tool for essential signal characterization. Its capabilities provide a solid foundation for cost-effective testing in general-purpose and educational applications.Definitions and Conditions .................................................................3Frequency and Time Specifications ...................................................4Amplitude Accuracy and Range Specifications .................................6Dynamic Range Specifications ...........................................................8PowerSuite Measurement Specifications ........................................12Tracking Generator Specifications ...................................................1375 Ω Input Specifications .................................................................14General Specifications ......................................................................15Inputs and Outputs ...........................................................................16I/Q Analyzer ......................................................................................18Related Literature .. (18)Table of ContentsThis data sheet is a summary of the specifications and conditions for CXA signal analyzers. For the complete specifications guide, visit /find/cxa_specificationsFor more informationThis CXA signal analyzer data sheet is a summary of the complete specifications andconditions for N9000B CXA signal analyzers, which are available in the CXA Signal Analyzer Specification Guide. The CXA Signal Analyzer Specification Guide can be obtained on the web at:(w /find/cxa_specificationsDefinitions and ConditionsSpecifications describe the performance of parameters covered by the product warranty and apply to temperature ranges 0 to 55 °C, unless otherwise noted.95th percentile values indicate the breadth of the population (approx. 2s ) of performance tolerances expected to be met in 95 percent of the cases with a 95 percent confidence, for any ambient temperature in the range of 20 to 30 °C. In addition to the statistical observations of a sample of instruments, these values include the effects of theuncertainties of external calibration references. These values are not warranted. These values are updated occasionally if a significant change in the statistically observed behavior of production instruments is observed.Typical describes additional product performance information that is not covered by the product warranty. It is performance beyond specifications that 80 percent of the units exhibit with a 95 percent confidence level over the temperature range 20 to 30 °C. Typical performance does not include measurement uncertainty.Nominal values indicate expected performance, or describe product performance that is useful in the application of the product, but are not covered by the product warranty.The analyzer will meet its specifications when:–It is within its calibration cycle–Under auto couple control, except when Auto Sweep Time Rules = Accy–The analyzer has been stored at an ambient temperature within the allowedoperating range for at least two hours before being turned on; if it had previously been stored at a temperature range inside the allowed storage range, but outside the allowed operating range–The analyzer has been turned on at least 30 minutes with Auto Align set to Normal, or, if Auto Align is set to Off or Partial, alignments must have been run recently enough to prevent an Alert message. If the Alert condition is changed from “Time and Temperature” to one of the disabled duration choices, the analyzer may fail to meet specifications without informing the user. If Auto Align is set to Light, performance is not warranted, and nominal performance will degrade to become a factor of 1.4 wider for any specification subject to alignment, such as amplitude tolerances.For ordering information, refer to the CXA Signal Analyzer Configuration Guide (5992-1275EN).Frequency and Time SpecificationsDelta counter accuracy± (delta frequency x frequency reference accuracy + 0.141 Hz) Counter resolution0.001 Hz1. Horizontal resolution is span/(sweep points – 1).Frequency and Time Specifications (continued)Remote measurement and LAN transfer rate 6 ms (167/s) nominalMarker peak search 5 ms nominalCenter frequency tune and transfer22 ms nominalMeasurement/mode switching75 ms nominal1. Analysis bandwidth is the instantaneous bandwidth available around a center frequency over which the input signal can be digitized for further analysis orprocessing in the time, frequency, or modulation domain.2. Sweep points = 101.(P03, P07) 3 to 5.25 GHz± 0.85 dB5.25 to 7.5 GHz± 1.35 dBMW (Option 513, 526) (P03, P07, P13, P26)100 kHz to 3 GHz± 0.7 dB 3 to 13.6 GHz± 1.0 dB 13.6 to 19 GHz± 1.1 dB 19 to 26.5 GHz± 2.5 dBAmplitude Accuracy and Range SpecificationsAmplitude Accuracy and Range Specifications (continued)Option P07100 kHz to 7.5 GHzOption P13100 kHz to 13.6 GHzOption P26100 kHz to 26.5 GHz Gain100 kHz to 26.5 GHz+20 dB nominalNoise figure100 kHz to 26.5 GHz DANL + 176.24 dB nominalDynamic Range SpecificationsMW (Option 513, 526) 3.75 to 13.25 GHz+54 dBmThird-order intermodulation distortion (TOI) Parentheses indicate typical performanceRF (Option 503, 507)Preamp off(Two –20 dBm tones at input mixer spaced by100 kHz, 0 dB attenuation, 20 to 30 °C)10 to 400 MHz+10 (+14) dBm 400 MHz to 3 GHz+13 (+17) dBm 3 to 7.5 GHz+13 (+15) dBmMW (Option 513/526)Preamp off(Two –20 dBm tones at input mixer spaced by100 kHz, 0 dB attenuation, 20 to 30 °C)10 to 500 MHz+11 dBm, (+15) dBm 500 MHz to 2 GHz+12 dBm, (+15) dBm2 to3 GHz+11 dBm, (+15) dBm3 to 7.5 GHz+12 dBm, (+17) dBm 7.5 to 13.6 GHz+11 dBm, (+15) dBm 13.6 to 26.5 GHz+10 dBm, (+14) dBmOption P03/P07/P13/ P26Preamp on(Two –45 dBm tones at the preamp input, spaced by100 kHz, 0 dB attenuation, 20 to 30 °C)10 MHz to 26.5 GHz–8 dBm nominalDynamic Range Specifications (continued)Phase noise Offset Specification Typical Noise sidebands (20 to 30 °C, CF = 1 GHz)1 kHz 10 kHz 100 kHz 1 MHz 10 MHz –98 dBc/Hz–106 dBc/Hz–108 dBc/Hz–130 dBc/Hz–103 dBc/Hz–110 dBc/Hz–110 dBc/Hz–130 dBc/Hz–145 dBc/Hz nominalFigure 1. Nominal phase noise at different center frequencies for CXAPowerSuite Measurement SpecificationsRelative dynamic range (30 kHz RBW) 67.4 dB(72.7 dB typical) Absolute sensitivity−93.7 dBm(−99.7 dBm typical) Relative accuracy± 0.11 dB3GPP W-CDMA (2.515 MHz offset)Relative dynamic range (30 kHz RBW)73.4 dB(80.2 dB typical) Absolute sensitivity−91.7 dBm(−97.7 dBm typical) Relative accuracy± 0.11 dBTracking Generator Specifications1. Not available on microwave CXA (Option 513 or 526).Preamp on (Option P03/P07) (0 dB attenuation)1 MHz to 1.5 GHz < 1.4:1 nominal 1. Not available on microwave CXA (Option 513 or 526).75 Ω Input SpecificationsGeneral SpecificationsConnectorOutput amplitude Frequency BNC female, 50 Ω nominal≥ 0 dBm nominal10 MHz ± (10 MHz x frequency reference accuracy)Ext Ref InConnectorInput amplitude range Input frequencyFrequency lock range BNC female, 50 Ω nominal–5 to 10 dBm nominal10 MHz ± nominal± 5 x 10–6 of specified external reference input frequencyTrigger 1 inputConnectorImpedanceTrigger level range BNC female> 10 kΩ nominal –5 to 5 VTrigger 1 outputConnector Impedance Level BNC female 50 Ω nominal 5 V TTL nominalMonitor outputConnector FormatResolution VGA compatible, 15-pin mini D-SUBXGA (60 Hz vertical sync rates, non-interlaced) Analog RGB 1024 x 768Noise source drive +28 V (pulsed)Connector BNC female SNS Series noise sourceAnalog outConnector BNC female Inputs and OutputsUSB portsHost, super speed Standard Connector Output current HostStandard Connector Output current Device Standard Connector 2 ports (stacked with each other)Compatible with USB 3.0USB Type-A female 0.9 A1 port (stacked with LAN)USB 2.0USB Type-A female 0.5 ACompatible with USB 3.0USB Type-B femaleGPIB interface Connector GPIB codes IEEE-488 bus connectorSH1, AH1, T6, SR1, RL1, PP0, DC1, C1, C2, C3, C28, DT1, L4, C0 SA mode or I/Q analyzer 322.5 MHzConversion gain –4 to +7 dB (nominal) plus RF frequency response Bandwidth Low band High bandUp to 120 MHz (nominal)Up to 40 MHz (nominal)1. Not available on microwave CXA (Option 513 or 526).Inputs and Outputs (continued)I/Q Analyzer3.0 < f ≤ 7.510 to ≤ 254.7 ° 2.2 ° 7.5 < f ≤ 26.510 to ≤ 25 3.5 ° 1.0 °Data acquisition (B25 IF path)Time record lengthIQ analyzer4,000,000 IQ sample pairsSample rate90 MSa/sADC resolution14 BitsRelated LiteratureLiterature Pub number CXA Signal Analyzer N9000B - Configuration Guide5992-1275EN X-Series Signal Analyzers - Brochure5992-1316EN For more information or literature resources please visit the web:/find/cxaWebProduct page:/find/N9000BX-Series measurement applications:/find/X-Series_AppsX-Series signal analyzers:/find/X-SeriesThis information is subject to change without notice.© Keysight Technologies, 2016Published in USA, January 26, 20165992-1274ENFrom Hewlett-Packard through Agilent to KeysightFor more than 75 years, we‘ve been helping you unlock measurement insights. Our unique combination of hardware, software and people can help you reach your next breakthrough.Unlocking measurement insights since 1939.1939 THE FUTUREFor more information on KeysightTechnologies’ products, applications or services, please contact your local Keysight office. The complete list is available at:/find/contactus Americas Canada (877) 894 4414Brazil 55 11 3351 7010Mexico001 800 254 2440United States (800) 829 4444Asia Pacific Australia 1 800 629 485China800 810 0189Hong Kong 800 938 693India 1 800 11 2626Japan 0120 (421) 345Korea 080 769 0800Malaysia 1 800 888 848Singapore 180****8100Taiwan0800 047 866Other AP Countries (65) 6375 8100Europe & Middle East Austria 0800 001122Belgium 0800 58580Finland 0800 523252France 0805 980333Germany ***********Ireland 1800 832700Israel 1 809 343051Italy800 599100Luxembourg +32 800 58580Netherlands 0800 0233200Russia 8800 5009286Spain 800 000154Sweden 0200 882255Switzerland0800 805353Opt. 1 (DE)Opt. 2 (FR)Opt. 3 (IT)United Kingdom0800 0260637For other unlisted countries:/find/contactus(BP-01-01-16)/go/quality Keysight Technologies, Inc.DEKRA Certified ISO 9001:2008 Quality Management SystemmyKeysight/find/mykeysightA personalized view into the information most relevant to you.Three-Year Warranty/find/ThreeYearWarrantyKeysight’s committed to superior product quality and lower total cost of ownership. Keysight is the only test and measurement company with athree-year warranty standard on all instruments, worldwide. And, we provide a one-year warranty on many accessories, calibration devices, systems and custom products.Keysight Assurance Plans/find/AssurancePlansUp to ten years of protection and no budgetary surprises to ensure your instruments are operating to specification, so you can rely on accurate measurements.Keysight Infoline/find/serviceKeysight’s insight to best in class information management. Free access to your Keysight equipment company reports and e-library.Keysight Channel Partners/find/channelpartnersGet the best of both worlds: Keysight’s measurement expertise and product breadth, combined with channel partner convenience.cdma2000 is a US registered certification mark of the Telecommunications Industry Association.。
新视野大学英语第三版读写教程第二册第一单元教案
大学英语(2)教案use English learning strategies consciously教学重难点Using proper language to talk about English learningHow to apply the reading skill – reading for the key idea in a sentence教学材料教学方法1. 教学材料:Text A课文、练习2. 教学方法:Under the guidance of student-centered principle, apply communicative and heuristic teaching methods, stimulate students’ interest in learning English and get students involved in class participation教学过程一、课前导入Talking about your experience of learning EnglishWatch the video clip and discuss the following question in pairs.1)According to the speaker, in what ways did Chinese students learn English?Chinese students practice their English by screaming it.2)Do you agree with what he said about Chinese students learning English? Why or why not.Yes, I just learned English exactly that way.No, we have learned English in different ways.3)How do you learn English? What do you think of your way of English learning?I learn English by:listening to the teacher carefully in classtaking notes …to go over lessons latercatching every chance to practice speakinglistening and reading a lotdoing enough exercises to practice grammar rulesI think my way of English learning is:effective, ineffective, interesting, boringchallenging but rewardingexamination-oriented二、文本学习1. Global understanding of the text1)Scan the text in three minutes and fill in the blanks.After I read the passage, I know the text talking about how _________ and __________ can be taught efficiently. The writer might be a ________ and a ________________ as well.2)What is the writing style of the text? Why?The writing style of the text is relaxed, which is proved by a lot of short sentences and paragraphs, casual verbs, daily talks and simple modifiers.3)Map the text structure and fill in the blanks.2. Detailed understanding of the textRead the text again and answer the following questions.1) Why does the son think that his father is a tedious oddity?Because he is tired of listening to his father and he is not interested in grammar rules.2) Why does the author think that students’ language deficits should be blamed on schools?Because the schools fail to set high standards of language proficiency. They only teach a little grammar and less advanced vocabulary. And the younger teachers themselves have little knowledge of the vital structures of language.3) What does the father teach the son while giving him a grammar lesson?He familiarized his son with different parts of speech in a sentence and discussed their specific grammatical functions including how to use adverbs to describe verbs.4) What are the two things that the author uses to describe grammar and vocabulary?The author uses “road map” and “car” to describe grammar and vocabulary. Here, “road map” is considered as grammar and “car” as vocabulary.5) How do you understand the interjection “whoa!” said by the father toward the end of the text?Since the subjunctive mood his son used is a fairly advanced grammar structure, the in terjection “whoa!” reflects the tremendous pride the father had toward his son; it also reflects the author’s humor in using the word because it was once used by his student, though in two different situations and with two different feelings.第二次课一、文本拓展1) Text SummaryAn Impressive English LessonTo my son, I am a _____________: a father he is __________ listen to and a man ____________ the rules of grammar. And I got ______________ this because my student was unable to describe properly her feeling on her __________ to Europe.However, it doesn’t ________________ to criticize our students. They unfairly bear the bulk of the criticism for these __________________ because there is a sense that they _________________. On one hand, they are misled by the____________. On the other hand, school fails to _________________ the essential framework of language, accurate grammar and proper vocabulary. Perhaps, language should be looked upon as a _________ and a ___________________: often study the road map (check grammar) and ________ the car engine (adjust vocabulary). Learning grammar and a good vocabulary is just like driving with a road map in a ________________ car. __________, _________, and __________ communication depends upon grammar and a good vocabulary, the two __________ assets for students, but they are ________________ in schools.2) Language Points3. Criticl thinking1)What do you think of the “impressive English lesson”? Is it effective?●Yes. Because the lesson aroused children’s interest in learning English grammar.●Yes. Because the way to learn grammar is more natural, interesting and enjoyable.●Yes, because learners become more motivated when learning something they like.●No. because it’s like a street learning without forma l instruction.2) Do you think English grammar helps you a lot in learning English? Why or why not?English grammar helps a lot:●Order sentences correctly.●Use words properly.●Talk with other English speakers confidentlyEnglish grammar is of little help:●Only give rules that are hard to remember.●It is not helpful in a real-life setting due to the limited time to think and recall the rules.●Not always applicable to the real language, especially idioms.3) How can you effectively enlarge your vocabulary?●Read more English from online sources.●Watch English TV / listen to English radio / watch English online videos.●Talk often with English speakers.●Listen carefully and extensively.●Use dictionaries to look up unfamiliar words.●Use new words as often as possible.二、写作训练 (P13)1)Structure AnalysisAs the name of our textbook implies, we read English in order to write in it. But how to write in the English way?As is known to all of us, what we write reflects what we think; and how we write mirrors how we think. In that light, our best way of writing in English is to know well how to think in English as the American or British people do. What is their way of thinking then?Different from us who think in the spiral way (螺旋式), they tend to think in the linear way (线性方式). As far as paragraph writing is concerned, deduction (演绎法) is typical of their linear way of thinking, as shown below:Starting from this book, you are moving from paragraph writing to short essay writing. In a likely manner, however, we will go through the same process for essay writing as we did for paragraph writing. In college writing, an essay normally has three main parts: introduction, body,What are minor details and what are the main ideas. (Many words in a sentence describe things about the subject of the sentence but they merely find the details to it. If we ask when, what, where, or why, we will find out these details, which further help us to see the key idea of the sentence.)4) What to keep in mind to find out the key idea of a sentence?Of course, we cannot always easily decide which details are simply descriptive and which add much to the key idea. However, the starting point for determining the key idea ina sentence is to find who or what the sentence is about and what the person or object isdoing.2. 文本学习1) Applying the reading skillWhat can the title “The Great Journey of Learning” tell us?The title “The Great Journey of Learning”, coupled with the topic “Language in Mission” of the unit, tells us the central idea—The process of learning has a profound effect on one’s life.2) Detailed understanding of the textRead Text B and choose the best answer to each of the questions (Page 24)Read the text again and think about the following questions:1. Why did Malcolm X want to learn English? (Para.2)Because he was poorly educated, he felt inadequate to teach his new beliefs to others.2. What motivated Malcolm X to launch on a quest to overcome his language deficiencies? Malcolm X’s considerable frustration at his inability to read and write launched him on a quest to overcome his deficiencies.3. How did Malcolm X move from basic literacy toward true proficiency? (Para. 5)He copied dictionary, read everything he had written aloud and logged important things that happened every day. Repetition helped move him from basic literacy toward true proficiency. 4. What did Malcolm X obtain from language learning? (Paras. 9-10) Reading had changed forever the course of Malcolm X’s life. As he acquired knowledge, his horizons expanded. He had left behind the narrow, ignorant world of his youth to join the world community of thoughts and actions ever since he started with his great journey of learning English in prison.3. 知识总结听说训练第四次课教学目的及要求Talk about learning experiencesListen for signal words for listingGive and respond to adviceTalk about learning / teaching methods教学过程1. Listening to the worldSharing1) Watch a podcast for its general idea.The podcast is mainly about the things people are learning at the moment and the most difficult thing they have ever learned.2) Watch Part 1 and fill in the blanks●new things●At the moment●quite difficult3) Watch Part 2 and check the true statements.ListeningListening skillsListening for signal words for listing●Listen for the total number of items at the beginning●Listen for words and expressions that signal the beginning, following and end of the listing⏹ e.g. the last, the final, lastly, and finally●Listing items with equal value⏹ e.g. to begin with, to start with, furthermore, moreover, in addition, besides, what’smore, the last but not the least, lastly, finally●Words and expressions indicating importance⏹expressions: above all, the most important / obvious / noteworthy⏹Adjectives: main, vital, significant, chief, central, principal, primary, major,distinctive, and the –est forms of adjectives1)Listen to a radio program and rearrange the following expressions.e-c-a-g-d-h-b-f2) Listen to the radio program again and complete the table.●speak●saying the wrong thing。
烟草重要基因篇:2.烟草钾吸收与转运相关基因
烟草重要基因篇:2.烟草钾吸收与转运相关基因王倩;刘好宝【期刊名称】《中国烟草科学》【年(卷),期】2014(000)002【总页数】4页(P139-142)【作者】王倩;刘好宝【作者单位】中国农业科学院烟草研究所,青岛 266101;中国农业科学院烟草研究所,青岛 266101【正文语种】中文烟草是典型的喜钾作物。
除了作为重要的营养元素发挥作用外,钾能明显增强烟株的抗病虫、抗逆能力,提高烟叶的燃烧性。
同时,钾还通过调节细胞中的生化反应影响细胞中的有机酸、氨基酸和糖等化学成分,改善烟叶的品质[1]。
因此,钾含量是衡量烟叶品质的重要指标之一。
长期以来,烟草钾素营养研究主要集中于钾肥种类与品质关系、钾肥施用方法及施用量、土壤 pH 对钾素吸收的影响及土壤供钾特性等方面,其分子机制研究起步较晚。
随着分子生物学的发展,烟草钾营养的遗传、吸收转运机制等研究取得了较大进展。
开展烟草钾营养基础研究,充分挖掘钾营养高效基因,培育钾营养高效烟草品种,不仅符合烟草行业降焦减害的主旨,也为研究其他喜钾作物的钾营养机制、改善作物品质、提高钾肥利用率、缓解我国钾肥贫瘠的现状提供科学借鉴,具有重大的生产应用和理论研究意义。
植物对钾的跨膜吸收机制主要有两种,即高亲和性钾吸收系统(机制Ⅰ)和低亲和性钾吸收系统(机制Ⅱ)。
高亲和性钾吸收是植物在低钾浓度(0.001~0.2 mM)下的主要吸收途径,K+多通过钾转运体介导的主动运输逆电化学势梯度进入细胞,需要消耗能量;低亲和性钾吸收主要在高钾浓度(1~10 mM)下发挥作用,K+多通过钾通道调节的被动运输进入细胞,该过程依赖细胞膜电势[2]。
更深入的研究表明植物中的钾吸收情况要复杂于上述简单的划分。
K+进入根部细胞后,由钾通道或钾转运体将其运往植物的各个组织[3]。
植物对钾的吸收转运受到一系列钾转运蛋白及调控因子的共同调节。
目前烟草钾吸收与转运相关基因的研究主要集中于钾通道、钾转运体和钾营养相关调控基因三个方面。
教育数字化背景下研究生英语教材建设探究——以《新探索研究生英语》为例
党的二十大报告指出:“推进教育数字化,建设全民终身学习的学习型社会、学习型大国。
”[1]教育数字化是教育教学活动与数字技术的融合发展,深刻引发了教育理念、教学范式、学习方式、办学模式、组织管理等全方位的变革和创新。
“大力推进教育数字化,培育教育教学新形态”[2]是今后较长时间里教育教学的重要任务,也是进一步推动教育教学改革发展的重要动力。
随着《出版业“十四五”时期发展规划》《关于推动出版深度融合发展的实施意见》等文件的实施,传统出版与数字业务相融合的新型出版业态应运而生。
《普通高等学校教材管理办法》指出:“组织建设信息技术与教育教学深度融合、多种介质综合运用、表现力丰富的新形态教材。
”[3]那么,如何在教育数字化背景下,编写出版非英语专业研究生英语新形态教材,是当前研究生教育教学实践的重中之重。
本文结合《新探索研究生英语》(iExplore English Course)系列教材,对此做一些初步探索。
一、编写理念:认知能力模型与思辨能力教材是指供学校使用的教学用书,以及作为教材内容组成部分的教学材料。
教材编写依据教材建设规划和课程教学标准,反映教学内容的内在联系、发展规律及学科专业特有的思维方式。
“加强教材建设,创新教学方式,突出创新能力培养”[4]是新时代研究生教育改革发展的任务之一。
对于非英语专业研究生英语教材建设而言,也一直期待着更多新形态教材的研发和出版。
何为新形态教材?如何建设新形态教材?如何使用新形态教材?对这些问题的理论探索和实践检验是当前教育教学的核心问题。
《新探索研究生英语》系列教材共设“基础级”和“提高级”两个级别,每个级别包括《读写教程》和《视听说教程》两个分册,由外语教学与研究出版社出版于2021年和2022年。
这套教材被称为“外研社首套研究生英语新形态数字教材”[5],那么其在编写理念上具有哪些基本特征呢?《新探索研究生英语》系列教材每个分册的编写理念与单元结构一致,共有6个单元,且主题呼应。
利用烟草的cDNA酵母表达文库筛选镉胁迫相关基因
利用烟草的cDNA酵母表达文库筛选镉胁迫相关基因李静;王晶;张美【摘要】为了鉴定烟草在重金属镉胁迫处理下的功能基因,构建烟草cDNA酵母表达文库,并利用镉敏感的突变株对文库进行初步筛选.首先将烟草幼苗进行重金属胁迫处理,然后取幼根提取总RNA并纯化mRNA,采用SMART技术反转录成双链cDNA,将cDNA与入门载体pDONR222的同源重组区连接,再转到酵母表达载体pDEST22上,构建了Gateway技术兼容的酵母cDNA表达文库.经检测,构建的cDNA酵母表达文库滴度为4.32×106 cfu/mL,库容量为0.86×107 cfu,平均插入片段长度大于1 kb,文库质量较高.通过镉敏感酵母突变株△ycf1筛选烟草重金属镉胁迫相关基因,获得酵母单克隆70个.经分析可知,其涉及到谷胱甘肽转移酶、铜分子伴侣及甲硫蛋白等24个不同蛋白基因,初步鉴定为烟草应答重金属镉胁迫的候选基因.%To facilitate the identification of functional genes in tobacco under heavy metal stress, this study constructed a cDNA expression library with Gateway technology. The tobacco seedlings were treated with different heavy metal solutions,and then the roots were harvested and the total RNAs were extracted. After mRNAs were isolated,the reverse transcription assay was performed with SMART technology. Then the ds-cDNAs were cloned into pDONR222 vector and LR reaction was performed to transfer cDNA into yeast expression vector, pDEST22, finally forming the tobacco cDNA expression library. The average titer of this libr ary was 4. 32×106 cfu/mL,and the quality of the destination cDNA library met the requirements of following experiments. The cadmium stress-related genes of tobacco were screened by using cadmium-sensitive yeast mutationstrain Aycfl ,and more than 70 clones were obtained, which involved 24 different genes such as the genes coding glutathione S-transferase, copper chaperone and metallothionein. All of these genes were considered as the candidate genes of heavy metal stress-related genes in tobacco.【期刊名称】《河南农业科学》【年(卷),期】2013(042)003【总页数】4页(P46-49)【关键词】烟草;重金属;镉胁迫;cDNA文库;功能基因【作者】李静;王晶;张美【作者单位】中国科学院华南植物园/中国科学院植物资源保护与可持续利用重点实验室,广东广州510650【正文语种】中文【中图分类】Q78随着我国经济的发展和工业“三废”的大量排放,土壤重金属污染问题日趋严重,并因此引发了对农作物的污染,严重影响了农业经济的正常发展和人类健康。
林木病理学_东北林业大学中国大学mooc课后章节答案期末考试题库2023年
林木病理学_东北林业大学中国大学mooc课后章节答案期末考试题库2023年1.According to plant pathology, which of the following is not caused by viraldiseases?答案:Bacterial gall on the stem2.Parasite is答案:an organism that grows part or all of the time on or within another organism of a different species(known as its host),and from which it derives all or part of its food.3. A pathogen is答案:an organism that causes disease.4.Biotic disease is答案:Disease caused by living organisms.5.Host is答案:An organism upon which an organism of a different species grows and from which all or most of its food is derived.6.which feature is not characteristic of mushroom structure?答案:leaf7.What is plant disease?答案:sustained physiological and structural damage to plant tissues caused by biological and non-biological agents ending sometimes in plant death.8.abiotic disease is答案:Disease resulting from nonliving agents.9.Saprophyte is答案:An organism that lives on dead organic matter.10.What is the definition of obligate parasite?答案:A parasite that is incapable of existing independently of living tissues.11.What is the definition of Facultative saprophytes?答案:are mostly parasitic, but have the faculty to live on dead organic matter, like Phytophthora spp.12.What is the definition of toxicity?答案:The inherent ability of a toxicant to damage plants and animals. 13.What is the possible diameter for mushroom spores?答案:10μm14.which of the following cells or structures are associated with sexualreproduction in fungi?答案:ascospores15.All fungi share which of the following characteristics?答案:heterotrophic16.chestnut blight is a kind of _____ disease.答案:Infectious17.Crown gall often grows on willow in Sun Island Park,Crown gall is a _____disease.答案:Bacterial18.对Forest decline正确的理解的是答案:森林衰退19.Diplodia Blight of Pines(松枯梢病)is casused by Sphaeropsis sapinea, syn.Diplodia pinea,which of the following is the correct description of thedisease.答案:A fungal infectious disease20.According to the knowledge of Plant Pathology, the correct description of thevirus is:答案:Viruses are too small to be seen even with the aid of a powerful lightmicroscope.Viruses are systemic pathogens.21.Viruses are characteristically composed of which one?答案:a protein coata nucleic acid core22.The correct description of fungi is答案:Fungi are heterotrophs that feed by absorptionFungi play key roles in nutrient cycling, ecological interactions, and human welfareFungi produce spores through sexual or asexual life cyclesFungi have radiated into a diverse set of lineages23.Which are biotic factors in the following items?答案:Bacteria Fungi。
The Study of Human-Computer Interaction
The Study of Human-Computer Interaction Human-computer interaction (HCI) is a multidisciplinary field that focuses on the design, evaluation, and implementation of interactive computing systems for human use. It involves studying how people interact with computers and designing technologies that let humans interact with computers in novel ways. HCI encompasses a wide range of topics, including user interface design, usability, accessibility, and user experience. It also draws from fields such as computer science, psychology, sociology, and design to understand and improve theinteraction between humans and computers. One of the key challenges in HCI is designing interfaces that are intuitive and easy to use. This involves understanding the cognitive and perceptual abilities of users and designing interfaces that match their mental models. For example, when designing a mobile app, HCI researchers need to consider how users will navigate through the app, how they will input information, and how they will understand the feedback provided by the app. This requires a deep understanding of human psychology and behavior, as well as the ability to translate that understanding into practical design principles. Another important aspect of HCI is accessibility. HCI researchers and practitioners strive to make computing systems accessible to people with disabilities, ensuring that everyone can use technology regardless of their physical or cognitive abilities. This involves designing interfaces that can be used with assistive technologies, such as screen readers or alternative input devices, as well as conducting user studies with people with disabilities to understand their needs and challenges. In addition to usability and accessibility, HCI also focuses on user experience (UX), which encompasses the overall experience of using a product or system. This includes not only the usability of the interface, but also the emotional and affective responses that users have when interacting with technology. For example, a well-designed website not only allows users to easily find the information they need, but also evokes positive emotions and a sense of satisfaction. HCI researchers often use qualitative research methods, such as interviews and observations, to understand the emotional and experiential aspects of user interaction. From a technological perspective, HCI involves developing new interaction techniques and technologies that enable novelways for humans to interact with computers. This can include touch and gesture-based interfaces, voice recognition systems, and virtual reality environments. These technologies have the potential to revolutionize the way we interact with computers and open up new possibilities for communication, creativity, and productivity. Overall, HCI is a dynamic and rapidly evolving field that plays a critical role in shaping the future of computing. By understanding and improving the ways in which humans and computers interact, HCI researchers and practitioners are driving innovation and creating technologies that are more intuitive, accessible, and enjoyable to use. As technology continues to advance, the importance of HCI will only grow, as it will be essential to ensure that new technologies are designed with the needs and abilities of humans in mind.。
The structure and function of ribosomes
The structure and function ofribosomesRibosomes are essential components of cells that assist in the process of protein synthesis. They are found in both prokaryotic and eukaryotic cells and play a crucial role in maintaining the proper functioning of cells. This article will discuss the structure and function of ribosomes in detail.Structure of Ribosomes:Ribosomes are composed of ribosomal RNA (rRNA) and proteins. The rRNA makes up about 60% of the ribosome's mass, while the proteins account for the remaining 40%. The size of ribosomes varies depending on the organism, but they are typically around 20-25 nm in diameter.Ribosomes are made up of two subunits – a small subunit and a large subunit. The small subunit is responsible for binding to messenger RNA (mRNA), while the larger subunit is responsible for catalyzing the formation of peptide bonds during protein synthesis.The small subunit contains a binding site for mRNA and a binding site for tRNA (transfer RNA), which is an RNA molecule that carries amino acids to the ribosome during protein synthesis. The large subunit contains three binding sites – the A site, the P site, and the E site.The A site is where the incoming tRNA molecule binds to the mRNA. The P site is where the growing chain of amino acids is held during protein synthesis. The E site is where the spent tRNA molecule exits the ribosome.Function of Ribosomes:Ribosomes are responsible for the synthesis of proteins in the cell. When a ribosome binds to an mRNA molecule, it uses the sequence of codons (three nucleotides) on the mRNA to determine the sequence of amino acids that will be used to build the protein.The ribosome then reads the codons on the mRNA molecule and matches them with specific tRNA molecules that carry the corresponding amino acids. The ribosome then links the amino acids together in the order specified by the mRNA sequence to form a protein.In addition to protein synthesis, ribosomes also play important roles in regulating gene expression and responding to stress conditions in the cell. For example, in response to environmental stress, such as nutrient deprivation or exposure to toxins, cells can alter the composition of their ribosomes, which allows them to produce stress-response proteins that are better suited to the new conditions.Conclusion:In summary, ribosomes are essential components of cells that play a crucial role in protein synthesis. They are made up of ribosomal RNA and proteins and composed of two subunits – a small subunit and a large subunit. Ribosomes read the codons on mRNA and use tRNA molecules to link amino acids together to form proteins. Ribosomes also play important roles in regulating gene expression and responding to stress conditions in the cell.。
Materials Characterization
Materials Characterization Materials characterization is a crucial aspect of scientific research and engineering, as it provides valuable insights into the properties and behavior of various materials. This process involves the use of various analytical techniques to study the structure, composition, and properties of materials at the micro and nano scales. By understanding these characteristics, researchers and engineers can develop new materials with improved performance and functionality, as well as optimize existing materials for specific applications. One of the keyperspectives in materials characterization is the structural analysis of materials. This involves studying the arrangement of atoms and molecules within a material,as well as the presence of defects, grain boundaries, and other structural features. Techniques such as X-ray diffraction, electron microscopy, and atomic force microscopy are commonly used to investigate the structure of materials atthe atomic and molecular levels. By gaining a deep understanding of the structure of materials, researchers can tailor their properties to meet specific performance requirements. Another important perspective in materials characterization is the chemical composition of materials. Analytical techniques such as spectroscopy, chromatography, and mass spectrometry are used to identify and quantify the elements and compounds present in a material. This information is critical for understanding how different elements and compounds interact within a material, as well as for ensuring the purity and consistency of materials used in various applications. For example, in the field of pharmaceuticals, the chemical composition of drug formulations must be carefully characterized to ensure their safety and efficacy. In addition to structural and chemical characterization, the mechanical properties of materials are also of great importance. Mechanicaltesting techniques, such as tensile testing, hardness testing, and impact testing, are used to assess the strength, stiffness, toughness, and other mechanical properties of materials. This information is crucial for designing materials that can withstand specific loads and environmental conditions, as well as forpredicting their behavior under different types of stress and strain. From an emotional perspective, the process of materials characterization can be both challenging and rewarding. It requires patience, attention to detail, and awillingness to overcome technical obstacles. Researchers and engineers often invest significant time and effort into characterizing materials, and the results of their work can have a profound impact on the development of new technologies and products. The satisfaction of uncovering new insights into the behavior of materials, as well as the potential to make meaningful contributions to scientific knowledge, can be highly motivating for those involved in materials characterization. Furthermore, materials characterization plays a crucial role in addressing real-world problems and advancing various industries. For example, in the field of renewable energy, the development of advanced materials with improved durability, conductivity, and light absorption properties relies heavily on materials characterization. Similarly, in the aerospace industry, the characterization of materials used in aircraft components is essential for ensuring their safety and reliability. By providing valuable data and insights, materials characterization enables researchers and engineers to overcome technical challenges and drive innovation in diverse fields. In conclusion, materials characterization is a multifaceted process that encompasses structural analysis, chemical composition, mechanical properties, and more. It is a fundamental aspect of scientific research and engineering, with far-reaching implications for the development of new materials and the optimization of existing ones. From the emotional perspective, it involves dedication, perseverance, and the potential for meaningful contributions to knowledge and technology. Ultimately, materials characterization plays a vital role in addressing real-world challenges anddriving progress in various industries, making it an indispensable aspect of scientific and technological advancement.。
不同核型特纳综合征2_例并文献复习
Advances in Clinical Medicine 临床医学进展, 2023, 13(6), 9712-9717 Published Online June 2023 in Hans. https:///journal/acm https:///10.12677/acm.2023.1361359不同核型特纳综合征2例并文献复习李玉珏,龙 敏*重庆医科大学附属第二医院内分泌代谢科,重庆收稿日期:2023年5月16日;录用日期:2023年6月13日;发布日期:2023年6月20日摘要 目的:研究不同核型特纳综合征(TS)的临床特点及诊治过程。
方法:对本院收治的2例不同核型TS 患儿的临床特征、诊疗经过进行回顾总结并结合文献进行分析。
结果:两例TS 患儿均表现为身材矮小及性腺发育不良,同时合并生长激素缺乏症(GHD)、维生素D 缺乏、桥本甲状腺炎及高尿酸血症。
例1患儿为单体型,向心性肥胖,且存在高胰岛素血症及胰岛素抵抗,鞍区MR 增强显示垂体后份囊性小结节,对该患儿性腺发育基因再分析发现2个未报道的MCM3AP 基因突变:c.4927G > A (p.G1643S)和c.2524C > G (p.Q842E)。
例2患儿为TS 嵌合型,合并原发性甲状腺功能亢进症(Graves 病)。
两例患儿经雌激素治疗后子宫及卵巢发育,例2患儿月经来潮。
结论:不同类型TS 临床表现差异很大,临床中应加强鉴别,尽早诊断并发现其存在的合并症。
关键词特纳综合征,生长激素缺乏症,桥本甲状腺炎,MCM3AP 基因,基因突变Two Cases of Different Karyotypic Turner Syndromes and Literature ReviewYujue Li, Min Long *Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Received: May 16th , 2023; accepted: Jun. 13th , 2023; published: Jun. 20th , 2023AbstractObjective: To study the clinical characteristics, diagnosis and treatment process of Turner syn-drome (TS) with different karyotypes. Methods: The clinical characteristics, diagnosis and treat-*通讯作者。
sequential cohort study 研究
sequential cohort study 研究Sequential cohort study (or longitudinal cohort study) is a type of observational study that follows a group of individuals (cohorts) over time, collecting data at multiple time points to assess the relationship between exposure to certain factors and the development of specific outcomes.In a sequential cohort study, the study population is initially identified based on a specific exposure (e.g., smoking, diet, treatment), and individuals who are exposed to the factor of interest are compared to those who are not. Participants are then followed over a period of time, with data collected at regular intervals to track changes in exposure status, as well as the occurrence of the outcome.This study design allows researchers to analyze the temporal relationship between exposure and outcome, as well as evaluate the long-term effects of the exposure on the development of the outcome. By collecting data at multiple time points, it also helps to minimize recall bias and confounding factors.Sequential cohort studies are commonly used to investigate the natural history of a disease or condition, evaluate the effectiveness of interventions or treatments, and identify risk factors or protective factors associated with specific outcomes. They can provide valuable insights into the causes and progression of diseases, and help inform public health policies and clinical decision-making.However, sequential cohort studies also have limitations. They canbe time-consuming and expensive, requiring long-term follow-up of participants. Attrition or loss to follow-up can also introduce bias into the study results. Additionally, the findings from cohort studies can establish associations but cannot prove causation, as other unmeasured factors may contribute to the observed relationship between exposure and outcome.。
基于虚拟筛选、分子对接和分子互作解析两种大球盖菇十肽的呈味特性和ACE抑制活性作用机制
李文,陈万超,马海乐,等. 基于虚拟筛选、分子对接和分子互作解析两种大球盖菇十肽的呈味特性和ACE 抑制活性作用机制[J]. 食品工业科技,2023,44(20):11−17. doi: 10.13386/j.issn1002-0306.2022120208LI Wen, CHEN Wanchao, MA Haile, et al. Exploring the Taste Characteristics and ACE-inhibitory Active Mechanism of Stropharia rugosoannulata Decapeptides Based on Virtual Screening, Molecular Docking, and Molecular Interactions[J]. Science and Technology of Food Industry, 2023, 44(20): 11−17. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022120208· 未来食品 ·基于虚拟筛选、分子对接和分子互作解析两种大球盖菇十肽的呈味特性和ACE 抑制活性作用机制李 文1,2, *,陈万超1,马海乐2,吴 迪1,张 忠1,杨 焱1,*(1.上海市农业科学院食用菌研究所,上海 201403;2.江苏大学食品与生物工程学院,江苏镇江 212013)摘 要:为探究大球盖菇十肽的呈味特性和潜在的生物活性,以两种大球盖菇十肽(RIEDNLVIIR 和SLPIKPRVPF )为研究对象,采用虚拟筛选、分子对接和分子互作技术,对两种大球盖菇十肽的呈味特性和ACE 抑制活性作用机制进行预测和验证。
结果显示,两种大球盖菇十肽均具有咸鲜呈味肽片段和ACE 抑制活性肽片段。
RIEDN-LVIIR 具有咸味呈味特性,SLPIKPRVPF 具有鲜味呈味特性。
染色质调控因子相关基因在乳癌预后评估中的价值
第59卷 第6期2023年12月青岛大学学报(医学版)J O U R N A LO FQ I N G D A O U N I V E R S I T Y (M E D I C A LS C I E N C E S)V o l .59,N o .6D e c e m b e r 2023[收稿日期]2022-11-09; [修订日期]2023-05-25[基金项目]中国博士后科学基金资助项目(2020M 672001);吴阶平医学基金会临床科研专项资助基金(320.6750.2022-03-39)[第一作者]张蔚然(1997-),女,硕士研究生㊂[通信作者]孔滨(1969-),男,硕士,主任医师,硕士生导师㊂E -m a i l :k o n gb i n 1970@126.c o m ㊂染色质调控因子相关基因在乳癌预后评估中的价值张蔚然1,2,吕志栋1,宋洪明1,夏菁3,郇喻淇1,2,孔滨1(青岛大学,山东青岛266100 1 附属医院乳腺病诊疗中心; 2 医学部; 3 附属青岛市中心医院乳腺外科)[摘要] 目的 通过构建染色质调控因子(C R s )相关基因预后模型,探讨C R s 相关基因在乳癌预后评估中的价值㊂方法 在基因表达综合(G E O )数据库中进行差异性分析,筛选出C R s 相关的差异基因㊂采用单因素C o x 回归分析和L A S S O 回归方法建立C R s 相关基因预后模型并进行验证㊂选取30对临床乳癌及癌旁组织样本,采用实时荧光定量聚合酶链反应(R T -q P C R )方法对关键C R s 相关基因的表达进行临床验证㊂结果 依据差异性分析结果建立基于4个C R s 相关基因(M O R F 4L 1㊁N C O A 4㊁T T K 和J M J D 4)的乳癌病人预后模型,并根据模型风险评分临界值将病人分为高风险组和低风险组,生存分析显示高风险组预后较差㊂R T -qP C R 结果显示,在乳癌组织中M O R F 4L 1㊁N C O A 4的表达下降,T T K ㊁J M J D 4的表达升高,与差异性分析的结果相一致㊂结论 基于上述4个C R s 相关基因的预后模型可以有效预测乳癌病人的预后㊂[关键词] 乳腺肿瘤;染色质调控因子;列线图;预后[中图分类号] R 737.9 [文献标志码] A [文章编号] 2096-5532(2023)06-0814-07d o i :10.11712/jm s .2096-5532.2023.59.179[开放科学(资源服务)标识码(O S I D )][网络出版] h t t ps ://l i n k .c n k i .n e t /u r l i d /37.1517.R.20231220.2243.003;2023-12-22 10:17:03V A L U E O F C H R O M A T I N R E G U L A T O R -R E L A T E D G E N E S I N E V A L U A T I N G T H E P R O G N O S I S O F B R E A S T C A N C E RZ HA N G W e i r a n ,L ÜZ h i d o n g ,S O N G H o n g m i n g ,X I A J i n g ,HU A N Y u qi ,K O N G B i n (D e p a r t m e n to fD i a g n o s i sa n d T r e a t m e n tC e n t r e o f B r e a s tD i s e a s e s ,T h eA f f i l i a t e dH o s p i t a l o fQ i n g d a oU n i v e r s i t y ,Q i n gd a o 266100,C h i n a )[A B S T R A C T ] O b je c t i v e T o c o n s t r u c t a p r o g n o s t i cm o d e l of c h r o m a t i n r eg u l a t o r (C R )-r e l a t e d g e n e s ,a n d t o i n v e s t i g a t e th e v a l u eo f C R -r e l a t e d g e n e si n e v a l u a t i n g t h e p r o g n o s i s o f b r e a s t c a n c e r . M e t h o d s Ad i f f e r e n c e a n a l y s i sw a s p e r f o r m e d i n t h eG e n e E x p r e s s i o nO m n i b u s d a t a b a s e t os c r e e nf o r t h ed i f f e r e n t i a l l y e x p r e s s e dC R -r e l a t e d g e n e s .U n i v a r i a t eC o xr e g r e s s i o na n a l y s i sa n d L A S S Or e g r e s s i o na n a l y s i sw e r eu s e d t o e s t a b l i s ha n d v a l i d a t e t h e p r o g n o s t i cm o d e l b a s e do nC R -r e l a t e d g e n e s .At o t a l o f 30p a i r s o f b r e a s t c a n c e r t i s s u e s a m p l e s a n da dj a c e n t t i s s u e s a m p l e sw e r e s e l e c t e d ,a n dR T -q P C R w a su s e d t ov e r i f y t h e e x p r e s s i o no fk e yC R -r e l a t e d g e n e s . R e s u l t s A c c o r d i n g t o t h e r e s u l t s o f t h e d i f f e r e n c e a n a l y s i s ,a p r o gn o s t i cm o d e l o f b r e a s t c a n c e r p a t i e n t sw a s e s t a b l i s h e db a s e do n f o u rC R -r e l a t e d g e n e s (M O R F 4L 1,N C O A 4,T T K ,a n d J M J D 4),a n d t h e p a t i e n t sw e r ed i v i d e d i n t oh i g h -a n d l o w -r i s k g r o u p s a c c o r d i n g t o t h ec u t -o f f v a l u eo f t h e r i s k m o d e l .S u r v i v a l a n a l y s i s s h o w e d t h a t t h eh i g h -r i s k g r o u p t e n d e dt o h a v e a p o o r p r o g n o s i s .T h e r e s u l t s o f R T -q P C Rs h o w e d t h a t t h e r ew e r e r e d u c t i o n s i n t h e e x pr e s s i o n o f M O R F 4L 1a n d N C O A 4a n d i n c r e a s e s i n t h e e x p r e s s i o no f T T K a n d J M J D 4i nb r e a s t c a n c e r t i s s u e ,w h i c h w a sc o n s i s t e n tw i t ht h er e s u l t so f t h ed i f f e r e n c e a n a l y s i s . C o n c l u s i o n T h e p r o g n o s t i cm o d e l b a s e do nt h ea b o v e f o u rC R -r e l a t e d g e n e sc a ne f f e c t i v e l yp r e d i c t t h e p r o gn o s i so f b r e a s t c a n c e r p a t i e n t s .[K E Y W O R D S ] b r e a s t n e o p l a s m s ;c h r o m a t i n r e g u l a t o r s ;n o m o g r a m s ;p r o gn o s i s 表观遗传学主要研究那些不是由D N A 序列变化引起的可遗传性状,表观遗传机制主要包括D N A 甲基化㊁组蛋白修饰㊁染色质重塑以及非编码R N A 调控等㊂人类基因组编码了数以百计的染色质调控因子(C R s ),以组织特异性的方式表达,并通过改变表观遗传修饰在正常生理和疾病中发挥重要作用㊂C R s 主要包括D N A 甲基化剂㊁组蛋白修饰剂和染色质重塑剂[1]㊂许多因素如突变等可以导致C R s的功能障碍,并显著影响各种癌症的发生和进展[2]㊂有研究结果表明,C R s 相关基因在膀胱癌㊁低级别胶质瘤等肿瘤预后评估中具有重要价值,并且该研究还建立了有效预后评估模型[3]㊂根据世界卫生组织的统计数据,乳癌已经成为世界上女性发病率最高的肿瘤[4]㊂然而,目前的诊疗方法对基于现有4种乳癌亚型的许多病人的预后评估仍然存在一定局限性[5-6]㊂C R s 相关基因与乳癌预后的相关性的研究报道较少㊂本研究通过构建C R s 相关基因的预后模型,探讨C R s 相关基因在乳癌预后评估中的价值㊂现将结果报告如下㊂6期张蔚然,等.染色质调控因子相关基因在乳癌预后评估中的价值8151材料与方法1.1差异基因筛选在基因综合表达(G E O)数据库(h t t p s://w w w. n c b i.n l m.n i h.g o v/g e o/)的G S E42568数据集以及G S E45255数据集中分别下载基因表达谱和临床信息进行分析㊂其中G S E42568数据集包含104例原发乳癌样本和17例正常乳腺组织样本,G S E45255数据集包含139例原发乳癌样本㊂从既往研究中获得870个C R s相关基因[7]㊂这些m R N A表达谱通过对应的R包进行归一化处理㊂以|l o g F C|>1且错误发现率(F D R)<0.05为标准,应用R软件的l i mm a包进行差异分析筛选C R s相关差异基因㊂1.2功能分析采用c l u s t e r P r o f i l e r软件包对C R s相关差异基因进行基因本体(G O)功能注释分析(包括分子功能㊁生物过程和细胞成分)以及京都基因和基因组百科全书(K E G G)通路分析㊂F D R<0.05和P<0.05时认为有显著富集㊂1.3基因预后模型构建和验证通过单因素C o x回归分析筛选出预后价值最高的12个基因,使用g l m n e tR包,通过L A S S O回归从12个最佳预后基因中筛选出4个关键基因构建预后模型㊂预后预测模块的工作流程如下:①以G S E42568数据集为训练集,将其随机分为内部训练集和内部测试集,在内部训练集中采用L A S S O 回归方法建立模型;②在内部测试集和外部测试集(G S E45255数据集)中测试模型预测预后的能力;③采用Hm i s cR包计算预后模型的一致性指数(c 指数);④循环1000次,选择预后模型的条件为内部训练集㊁内部测试集和外部测试集的c指数均大于0.7,且内部测试集和外部测试集的c指数平方和最大㊂风险评分计算公式:风险评分=(C o e f1ˑm R N A1表达)+(C o e f2ˑm R N A2表达)+ + (C o e f nˑm R N A n表达)㊂其中C o e f为对应的模型系数㊂根据模型风险评分的临界值将乳癌病人分为高风险组和低风险组,使用s u r v i v a lR软件包通过K a p l a n-M e i e r曲线评估乳癌病人的生存期,使用s u r v i v a l R O CR软件包通过时间相关受试者工作特征(R O C)曲线分析评估模型预测预后能力㊂1.4实时荧光定量聚合酶链反应(R T-q P C R)检测关键基因表达选取在青岛大学附属医院接受手术治疗乳癌病人的乳癌组织标本30例,以相应癌旁组织作为对照㊂病人纳入标准:①原发性女性乳癌病人;②临床病理资料完整㊂排除标准:①合并其他原发肿瘤或有其他原发肿瘤病史病人;②病理资料不全病人㊂本研究经青岛大学附属医院伦理委员会审批,所有病人均对研究知情同意㊂使用T R I z o l试剂(T a k a r a,K u s a t s u,J a p a n)提取组织标本总R N A,用反转录试剂盒(V a z y m e,南京,中国)合成c D N A㊂目标序列用S Y B R-G r e e n试剂(V a z y m e,南京,中国)进行扩增㊂采用2ΔΔC t方法计算各基因在乳癌及癌旁组织中的相对定量表达㊂R T-q P C R引物及其序列见表1㊂表1R T-q P C R引物及其序列引物名称位置序列(5 ң3 )M O R F4L1上游G G G T A G A G A G T A G G G G G C G G下游A C T C G C T C A C C C T C C T G G A AN C O A4上游G G C C T C C C T G C A G T T T G T G A下游G G G A T C T G A A A A T T C C C A A C G G TT T K上游A C C A C T T G A G C A A C C T G T C T下游T C C A A G G T A T T G C T G C T T G G T G TJ M J D4上游A C C A C A A C T G G G T C A A T G G C T T下游G G A C C T C A T G A T G A C C T G G C A1.5模型预后预测能力评估采用临床相关性分析,评估模型风险评分与年龄㊁雌激素受体(E R)㊁孕激素受体(P R)㊁人表皮生长因子受体2(H e r2)㊁肿瘤分级㊁T分期㊁淋巴结状态等临床因素的相关性㊂采用单因素和多因素C o x 回归分析评估年龄㊁E R㊁P R㊁H e r2㊁肿瘤分级㊁T分期㊁淋巴结状态㊁模型风险评分是否为乳癌的独立预后因素㊂1.6列线图构建及验证根据单因素和多因素C o x回归分析结果,基于乳癌独立预后因素相关指标建立列线图,用以评估乳癌病人3年和5年的生存率㊂通过c指数和校正曲线验证列线图预测预后的准确性和实用性㊂1.7统计学分析采用R软件(版本4.1.3)进行统计学分析,两组计量资料比较采用t检验,以P<0.05为差异有统计学意义㊂2结果2.1 C R s相关差异基因的筛选从既往文献中获得了870个C R s相关基因,在G S E42568和G S E45255数据集中取交集,得到707816青岛大学学报(医学版)59卷个共同基因㊂对G S E42568数据集中全部104例乳癌组织标本和17例正常乳腺组织标本进行共同基因的差异性分析,共筛选出168个C R s相关差异基因,其中上调基因136个,下调基因32个(图1)㊂图1C R s相关基因差异表达的火山图2.2功能分析采用G O和K E G G富集分析,探讨168个C R s 相关差异基因的潜在生物学功能及信号通路㊂G O 分析结果显示:在生物过程水平,差异基因在组蛋白修饰㊁肽基赖氨酸修饰㊁染色质组织㊁组蛋白甲基化和组蛋白赖氨酸甲基化方面显著富集;在分子功能水平,差异基因在转录共调节因子活性㊁组蛋白结合㊁转录共抑制因子活性㊁组蛋白甲基转移酶活性和转录共激活因子活性中显著富集;在细胞成分水平,差异基因在甲基转移酶复合体㊁组蛋白甲基转移酶复合体㊁组蛋白去乙酰化酶复合体㊁P c G蛋白复合体和异染色质中显著富集㊂这些结果表明,差异基因的功能主要富集于组蛋白修饰相关功能㊂K E G G 通路分析结果表明,差异基因主要参与赖氨酸降解㊁N o t c h信号通路㊁细胞周期㊁病毒生命周期-H I V-1㊁胰高血糖素信号通路㊁甲状腺激素信号通路㊁癌症中的转录失调以及病毒致癌相关通路(图2)㊂2.3构建C R s相关基因预后模型并验证其效力采用单因素C o x回归分析C R s相关差异基因的预后价值,以P<0.005为标准,共获得12个最佳预后基因(图3A)㊂再使用L A S S O回归分析成功构建了包含4个基因(M O R F4L1㊁N C O A4㊁T T K 和J M J D4)的预后模型㊂风险评分=(-0.5564ˑM O R F4L1表达)+(-0.0885ˑN C O A4表达)+ (0.0484ˑT T K表达)+(0.2798ˑJ M J D4表达)㊂低㊁高风险组风险评分的最佳临界值为0.156㊂生存分析显示,高风险组病人的预后明显较差(图3B㊁C),提示风险评分与预后呈负相关㊂时间依赖的R O C曲线分析显示,在G S E42568数据集中模型预测乳癌病人1㊁3㊁5年生存率的R O C曲线曲线下面积(A U C)分别为0.794㊁0.784和0.837(图3D),表明模型具有良好的预测预后能力㊂在G S E45255数据集中使用相同的方法进行验证,所得的结果与G S E42568数据集结果相一致,时间依赖性R O C曲线分析显示,模型预测病人1㊁3㊁5年生存率的A U C 分别为0.780㊁0.716和0.730,证实模型具有良好的预后预测能力㊂2.4乳癌组织中关键基因表达的验证R T-q P C R检测结果显示,与癌旁组织相比,乳癌组织中M O R F4L1和N C O A4的表达显著降低, T T K和J M J D4的表达显著增高,与差异性分析结果相一致(图4)㊂2.5风险评分和临床参数相关性分析箱线图分析结果显示,不同肿瘤分级㊁T分期㊁淋巴结状态和乳癌分子亚型病人风险评分比较差异具有统计学意义(图5),其中G3㊁T2-3以及三阴性乳癌病人的风险评分较高(P<0.05)㊂但年龄>60岁及ɤ60岁乳癌病人的风险评分差异无统计学意义(P>0.05)㊂2.6模型预后预测能力评估单因素C o x回归分析显示,风险评分㊁E R㊁P R㊁H e r2和淋巴结状态与乳癌病人的生存期相关(图A:G O富集分析显示差异基因分别在分子功能(M F)㊁生物过程(B P)和细胞成分(C C)水平显著富集的生物学功能;B:K E G G富集分析显示7条差异基因显著富集的分子通路㊂图2C R s相关差异基因G O和K E G G富集分析6期张蔚然,等.染色质调控因子相关基因在乳癌预后评估中的价值817A :单因素C o x 回归分析;B :基于最优风险评分的生存状态分布和4个C R s 相关基因在两组间分布的热图;C :两组间K a pl a n -M e i e r 生存分析;D :时间依赖的R O C 曲线分析㊂图3 基于G S E 42568数据集的C R s相关基因构建预后模型并验证图4 乳癌组织中关键基因表达的验证6A )㊂多因素C o x 回归分析显示,风险评分和淋巴结状态是乳癌病人的独立预后因素(图6B ),表明该预后模型具有良好的预后预测能力㊂2.7 列线图构建及验证根据C o x 回归分析结果,构建一个包含淋巴结状态和风险评分的列线图,以图形化的方式评估乳818青 岛 大 学 学 报 (医 学 版)59卷图5预后模型风险评分与临床参数的相关性A :单因素C o x 回归分析;B :多因素C o x 回归分析㊂图6 在G S E 45255数据集中评估模型预后预测能力癌病人3㊁5年的生存概率(图7A )㊂该列线图的c 指数为0.8265,3年和5年校正曲线表明该列线图预测结果与实际观察结果之间具有良好的一致性(图7B ㊁C )㊂3 讨 论乳癌作为女性最常见的癌症,具有较高的发病率㊁复发率与死亡率[8-9]㊂基于E R ㊁P R 以及H e r 2的乳癌分子分型对治疗指导以及预后评估具有较高的准确性,但该分型仍然存在不足[10]㊂C R s 相关基因的异常表达参与了许多乳癌相关生物学过程,但其在乳癌中的预后价值尚有待研究㊂本研究首先通过G S E 42568数据集筛选了168个在乳癌与正常乳腺组织中差异表达的基因,并对差异基因进行富集分析㊂G O 分析结果显示,差异基因的功能主要富集于组蛋白修饰㊂既往有文献报道,异常的组蛋白乙酰化修饰与乳癌的D N A 修复㊁凋亡㊁代谢㊁转移等相关基因的表达有关[11];组蛋白修饰剂被认为是有前途的治疗靶点,组蛋白修饰抑制剂西达苯胺联合酪氨酸激酶抑制剂和免疫检查点抑制剂可以重塑乳癌肿瘤免疫微环境,提高药物的抗肿瘤活性[12]㊂K E G G 富集分析结果表明,C R s 相关差异基因主要富集于与组蛋白翻译后修饰相关的信号通路,参与调节细胞周期中染色质结构以及基因转录过程[13-14]㊂本研究进一步构建了基于4个C R s 相关基因(M O R F 4L 1㊁N C O A 4㊁T T K 和J M J D 4)的预后模型,根据模型风险评分临界值将病人分为高㊁低风险组,并全面分析模型预后预测能力㊂分析预测模型与临床参数的关系结果显示,肿瘤分期高㊁存在淋巴6期张蔚然,等.染色质调控因子相关基因在乳癌预后评估中的价值819A :基于淋巴结状态和风险评分构建列线图用于评估乳癌病人3㊁5年生存率;B :列线图预测病人3年无病生存期(D F S )校正曲线;C :列线图预测病人5年D F S 校正曲线㊂图7 列线图构建及验证结转移的病人风险评分较高,L u m i n a l 亚型㊁H e r 2过表达亚型和三阴性亚型风险评分依次升高㊂既往有临床研究显示,L u m i n a l 亚型乳癌肿瘤级别低,病人生存率高,预后最佳,而三阴性乳癌具有增殖率高㊁侵袭性高㊁早期复发的特点[15-16]㊂上述结果表明,较高的风险评分提示乳癌较差的预后㊂本研究单因素㊁多因素C o x 回归分析显示,风险评分和淋巴结状态是乳癌的独立预后因素,进一步证实了该模型的临床应用价值和预后预测能力㊂本研究筛选了4个基因构建预后模型㊂差异分析显示,M O R F 4L 1和N C O A 4在乳癌组织中的表达显著降低,T T K 和J M J D 4在乳癌组织中的表达显著增高㊂进一步通过临床样本验证4个基因在乳癌组织中的表达水平,所得结果与差异分析结果相一致㊂既往研究表示,MO R F 4L 1是N u A 4组蛋白乙酰转移酶复合体的一部分,作用于D N A 双链断裂修复过程,在乳癌起始和进展中起保护作用[17-19]㊂N C O A 4在乳癌免疫唤醒中具有重要作用,其低表达提示胆管癌㊁结肠腺癌和肾透明细胞癌预后较差[20-22]㊂T T K 是一种能够磷酸化苏氨酸/丝氨酸和酪氨酸的双特异性蛋白激酶,在乳癌组织中表达水平较高,其过表达与乳癌肿瘤大小㊁T NM 分期和K i -67指数呈正相关,提示预后不良[23-25]㊂J M J D 4是一种C 4赖氨酸羟化酶,被认为在转录终止㊁胚胎干细胞维持和胚胎发育中发挥广泛的作用,其高表达是透明细胞肾细胞癌及结肠癌病人的独立预后因素[26-29]㊂上述结果表明,这4个关键基因可能成为乳癌诊断的生物学标志物㊂总之,本研究构建了一个基于4个C R s 相关基因的预后模型,经验证该模型可以有效评估乳癌病人的生存预后㊂[参考文献][1]Z HU K ,L I U X Q ,D E N G W ,e t a l .I d e n t i f i c a t i o no f a c h r o -m a t i nr e g u l a t o rs i g n a t u r ea n d p o t e n t i a lc a n d i d a t ed r u gsf o r b l a d d e r c a n c e r [J ].H e r e d i t a s ,2022,159(1):13.[2]C A C C I O T T IC ,F L E M I N G A ,R AMA S WAMY V.A d v a n c e si nt h e m o l e c u l a rc l a s s i f i c a t i o n o f p e d i a t r i c b r a i nt u m o r s :a g u i d e t ot h e g a l a x y [J ].T h eJ o u r n a l o fP a t h o l o g y ,2020,251(3):249-261.[3]Z H A N G YF ,Y U BB ,T I A N YZ ,e t a l .An o v e l r i s ks c o r em o d e l b a s e do n f o u r t e e nc h r o m a t i nr e gu l a t o r s -b a s e d g e n e s f o r p r e d i c t i n g o v e r a l l s u r v i v a l o f p a t i e n t sw i t h l o w e r -g r a d e g l i o m a s [J ].F r o n t i e r s i nG e n e t i c s ,2022,13:957059.[4]K A T S U R A C ,O G U NMWO N Y I I ,K A N K AM H K ,e ta l .B r e a s tc a n c e r :p r e s e n t a t i o n ,i n v e s t i g a t i o n a n d m a n a g e m e n t [J ].B r i t i s h J o u r n a l o fH o s pi t a lM e d i c i n e ,2022,83(2):1-7.[5]V O O RW E R KL ,S A N D E R SJ ,K E U S T E R S M S ,e t a l .I m -m u n e l a n d s c a pe of b r e a s t t u m o r sw i t h l o wa n d i n t e r m e d i a t e e s -t r og e nr e c e p t o re x p r e s s i o n [J ].N P JB r e a s tC a n c e r ,2023,9(1):39.[6]P E K A R E K L ,S ÁN C H E Z C E N D R A A ,R O B E R T S C E R -V A N T E SED ,e t a l .C l i n i c a l a n d t r a n s l a t i o n a l a p pl i c a t i o n s o f820青岛大学学报(医学版)59卷s e r o l o g i c a l a n d h i s t o p a t h o l o g i c a l b i o m a r k e r s i n m e t a s t a t i cb r e a s tc a n c e r:a c o m p r e h e n s i v e r e v i e w[J].I n t e r n a t i o n a l J o u r-n a l o fM o l e c u l a r S c i e n c e s,2023,24(9):8396.[7]L UJ P,X UJ,L I JY,e t a l.F A C E R:c o m p r e h e n s i v em o l e c u-l a r a n df u n c t i o n a l c h a r a c t e r i z a t i o no f e p i g e n e t i cc h r o m a t i nr e-g u l a t o r s[J].N u c l e i c A c i d s R e s e a r c h,2018,46(19):10019-10033.[8]C HA U D HU R I A,K UMA R D N,D E H A R ID,e ta l.E n-d o r se m e n t o fT N B Cb i o m a r k e r s i n p r e c i s i o nt h e r a p y b y n a n o-t e c h n o l o g y[J].C a n c e r s,2023,15(9):2661.[9]Z A H A R I S,S Y A F R U D D I NSE,MO H T A R M A.I m p a c t o ft h e c a n c e r c e l l s e c r e t o m e i nd r i v i n g b r e a s t c a n c e r p r o g r e s s i o n [J].C a n c e r s,2023,15(9):2653.[10]B A R Z AMA N K,K A R AM I J,Z A R E I Z,e t a l.B r e a s t c a n c e r:b i o l o g y,b i o m a r k e r s,a n d t r e a t m e n t s[J].I n t e r n a t i o n a l I mm u-n o p h a r m a c o l o g y,2020,84:106535.[11]G U OPP,C H E N W Q,L IH Y,e t a l.T h eh i s t o n e a c e t y l a-t i o nm o d i f i c a t i o n s o f b r e a s t c a n c e r a n d t h e i r t h e r a p e u t i c i m p l i-c a t i o n s[J].P a t h o l o g y O n c o l o g y R e s e a r c h,2018,24(4):807-813.[12]C H E NJ S,H S I E H YC,C H O U C H,e t a l.C h i d a m i d e p l u st y r o s i n ek i n a s e i n h i b i t o r r e m o d e l t h e t u m o r i mm u n em i c r o e n-v i r o n m e n t a n d r e d u c e t u m o r p r o g r e s s i o nw h e nc o m b i n e dw i t hi mm u n e c h e c k p o i n t i n h i b i t o r i n N aïv ea n da n t i-P D-1r e s i s t a n tC T26-b e a r i n g m i c e[J].I n t e r n a t i o n a lJ o u r n a lo f M o l e c u l a rS c i e n c e s,2022,23(18):10677.[13]A N D RÉS M,G A R CÍA-G OM I SD,P O N T EI,e t a l.H i s t o n eH1p o s t-t r a n s l a t i o n a l m o d i f i c a t i o n s:u p d a t ea n df u t u r e p e r-s p e c t i v e s[J].I n t e r n a t i o n a lJ o u r n a lo f M o l e c u l a r S c i e n c e s, 2020,21(16):5941.[14]T A Y L O RBC,Y O U N G N L.C o m b i n a t i o n so fh i s t o n e p o s t-t r a n s l a t i o n a l m o d i f i c a t i o n s[J].T h e B i o c h e m i c a l J o u r n a l, 2021,478(3):511-532.[15]Y I NL,D U A NJ J,B I A N X W,e t a l.T r i p l e-n e g a t i v eb r e a s tc a n c e rm o l e c u l a r s u b t y p i n g a nd t re a t m e n t p r o g r e s s[J].B r e a s tC a n c e rR e s e a r c h:B C R,2020,22(1):61.[16]T A N HS,F U DY.I n f l u e n c e o f a d v a n c e d a g e o n t h e p r o g n o-s i so ft r i p l e-n e g a t i v eb r e a s tc a n c e r p a t i e n t s:as u r v e i l l a n c e,e p i d e m i o l o g y,a n d e n d R e s u l t s-b a s e d s t u d y[J].J o u r n a lo fC a n c e rR e s e a r c h a n dT h e r a p e u t i c s,2023,19(S u p p l e m e n t):S0.[17]R I OF R I OT,HA A N PÄÄM,P O U C H E TC,e t a l.M u t a t i o na n a l y s i s o ft h e g e n e e n c o d i n g t h e P A L B2-b i n d i n g p r o t e i nM R G15i nB R C A1/2-n e g a t i v e b r e a s t c a n c e r f a m i l i e s[J].J o u r-n a l o fH u m a nG e n e t i c s,2010,55(12):842-843. [18]MA R T R A TG,MA XW E L LC M,T OM I N A G AE,e t a l.E x-p l o r i n g t h e l i n kb e t w e e n MO R F4L1a n dr i s ko fb r e a s t c a n c e r [J].B r e a s tC a n c e rR e s e a r c h,2011,13(2):R40. [19]S A N G Y,Z HA N G R H,S U N L H,e ta l.MO R F4L1s u p-p r e s s e s c e l l p r o l i f e r a t i o n,m i g r a t i o na n d i n v a s i o nb y i n c r e a s i n g p21a n d E-c a d h e r i ne x p r e s s i o ni n n a s o p h a r y n g e a lc a r c i n o m a [J].O n c o l o g y L e t t e r s,2019,17(1):294-302.[20]Z U O T T,F A N G TX,Z HA N GJ,e t a l.p H-s e n s i t i v em o l e-c u l a r-s w i t c h-c o n t a i n i n gp o l y m e rn a n o p a r t i c l e f o rb r e a s t c a n c e rt h e r a p y w i t h f e r r i t i n o p h a g y-c a s c a d e f e r r o p t o s i s a n d t u m o r i m-m u n e a c t i v a t i o n[J].A d v a n c e dH e a l t h c a r e M a t e r i a l s,2021,10(21):e2100683.[21]G U CZ,C H A N G WJ,WUJL,e t a l.N C O A4:a n i mm u n o-m o d u l a t i o n-r e l a t e d p r o g n o s t i cb i o m a r k e r i nc o l o na d e n o c a r c i-n o m aa n d p a n-c a n c e r[J].J o u r n a lo fO n c o l o g y,2022,2022: 5242437.[22]Z H E N GB,N I U Z H,S ISB,e t a l.C o m p r e h e n s i v ea n a l y s i so f n e w p r o g n o s t i c s i g n a t u r eb a s e do n f e r r o p t o s i s-r e l a t e d g e n e si nc l e a rc e l l r e n a lc e l lc a r c i n o m a[J].A g i n g,2021,13(15):19789-19804.[23]T A N N O U SB A,K E R AM IM,V A N D E RS T O O PP M,e ta l.E f f e c t s o f t h e s e l e c t i v eM P S1i n h ib i t o rM P S1-I N-3o n g l i o-b l a s t o m a s e n s i t i v i t y t o a n t i m i t o t icd r u g s[J].J o u r n a l o f t h eN a-t i o n a l C a n c e r I n s t i t u t e,2013,105(17):1322-1331. [24]MA A C H A N IU B,K R AM P T,H A N S O N R,e t a l.T a r g e-t i n g M P S1e n h a n c e s r a d i o s e n s i t i z a t i o no fh u m a n g l i o b l a s t o m ab y m o d u l a t i n g D N Ar e p a i r p r o t e i n s[J].M o l ec u l a rC a n c e rR e-s e a r c h,2015,13(5):852-862.[25]G A O Y H,Q U SS,C A O L Q,e ta l.T T K p r e d i c t s t r i p l ep o s i t i v eb r e a s t c a n c e r p r o g n o s i s a n d r e g u l a t e s t u m o r p r o l i f e r a-t i o na n d i n v a s i o n[J].N e o p l a s m a,2022,69(2):274-282. [26]F E N G TS,Y AMAMO T O A,W I L K I N SSE,e t a l.O p t i m a lt r a n s l a t i o n a lt e r m i n a t i o nr e q u i r e s C4l y s y lh y d r o x y l a t i o n o fe R F1[J].M o l e c u l a rC e l l,2014,53(4):645-654.[27]Y O O H,S O N D,L E EYJ,e t a l.M o u s e J M J D4i s d i s p e n s a-b l e f o re m b r y o g e n e s i s[J].M o l ec u l a rR e p r od u c t i o na n dDe v e-l o p m e n t,2016,83(7):588-593.[28]Y A N H,B A OY W,L I NZM.H i g h e x p r e s s i o n o f J M J D4i s ap o t e n t i a l d i a g n o s t i c a n d p r o g n o s t i cm a r k e r o f r e n a l c e l l c a r c i n o-m a[J].D i s e a s eM a r k e r s,2021,2021:9573540.[29]H O YJ,S H I H CP,Y E H K T,e ta l.C o r r e l a t i o nb e t w e e nh i g he x p r e s s i o nl e v e l s o f j u m o n j id o m a i n-c o n t a i n i n g4a n ds h o r t s u r v i v a l i n c a s e s o f c o l o na d e n o c a r c i n o m a[J].B i o c h e m i-c a l a n dB i o p h y s i c a lR e s e a r c hC o mm u n i c a t i o n s,2018,503(3):1442-1449.(本文编辑马伟平)作者书写文内标题须知本刊文内标题序号使用阿拉伯数字顺序编码,左顶格书写㊂标题一般可分为1~4级,即:1,2,3 ;1.1,1.2,1.3 ;1.1.1,1.1.2, 1.1.3 ;1.1.1.1,1.1.1.2,1.1.1.3 ㊂第5级标题可用(1)或①㊂1,2级标题均单独占行㊂请作者来稿时遵照执行㊂。
基于SRAP分子标记构建何首乌核心种质库
基于SRAP分子标记构建何首乌核心种质库作者:李嘉惠欧晓华邓文静罗可可张宏意何梦玲严寒静来源:《广西植物》2021年第11期摘要:为保护何首乌遗传种质多样性,该文运用SRAP分子标记方法探究了44个产地327份何首乌种质的遗传多样性和居群结构,采用3种取样策略及6种比例抽样模式构建核心种质库,经t检验比较后筛选较优的核心种质构建方法和具有代表性的核心种质。
结果表明:(1)何首乌种质遗传多样性较丰富,其观察等位基因数(Na)、有效等位基因数(Ne)、Shannon信息指数(I)和Nei’s遗传多样性指数(H)分别为1.984 3、1.454 9、0.271 7和0.417 9,另外何首乌种质居群间遗传分化程度大,基因交流较少,基因差异分化系数(Gst)为0.753 1,基因交流值(Nm)仅有0.163 9。
(2)根据样品间遗传距离,采用邻接法对样品进行聚类,聚类结果显示327份样品主要分成四大类,样品分组结果与地理分布相符,相同采集点样品可聚在同一类中。
(3)居群结构分析结果显示,当K=16时,其ΔK值最大,说明样品分成16个类群时最佳,同时大部分何首乌样品的血统组成较单一(Q>0.600),相同采集点样品血统组成相似,可大致归在同一类群中。
(4)t检验结果显示,采用居群结构分类-比例取样和10%抽样比例构建的种质库,4个遗传参数的保留率高,Na、Ne、I和H的保留值分别为99.0%、101.9%、106.4%和105.9%,样品量较少,且多样性与原种质库无明显差异(P>0.05)。
(5)核心种质库由34份样品组成,包括9份栽培样品和25份野生样品,主要来源于四川、重庆和贵州。
该研究构建的核心种质库能代表原种质库的遗传多样性,可为种质资源的收集和新品种的选育提供参考,所采用的研究方法对其他植物核心种质库的构建具有一定参考意义。
关键词:何首乌,核心种质构建, SRAP,遗传多样性,居群结构中图分类号: Q948文献标识码: A文章编号: 1000-3142(2021)11-1920-11Construction of core germplasm bank of Fallopia multiflora using SRAP molecular markersLI Jiahui1, OU Xiaohua1, DENG Wenjing1, LUO Keke1, ZHANG Hongyi1,2, HE Mengling1,2, YAN Hanjing1,2*( 1. School of Traditional Chinese Medicine Guangdong Pharmaceutical University,Guangzhou 510006, China; 2. Key Laboratory of StateAdministration of Traditional Chinese Medicine for Production & Development of Cantons Medicinal Materials, Guangzhou 510006, China)Abstract: In order to protect the genetic diversity of Fallopia multiflora, in this study, SRAP molecular marker method was used to explore the genetic diversity and population structure of 327 F. multiflora samples from 44 habitats. Three sampling strategies and six proportional sampling modeswere used to construct the core germplasm bank. After t-Test comparison, the better core germplasm construction method and the representative core germplasm samples were selected. The results were as follows:(1) The genetic diversity of F. multiflora germplasm was abundant, and number of observed alleles (Na), number of effective alleles (Ne), Shannon information index (I)and Nei’s genetic diversity index (H) were 1.984 3, 1.454 9, 0.271 7 and 0.417 9,respectively. In addition, the population of F. multiflora germplasm showed a high degree of genetic differentiation, but less gene exchange, with a gene differentiation coefficient (Gst) of 0.753 1 and a gene flow (Nm) of 0.163 9. (2)According to the genetic distance between samples, the Neighbor-Joining method was used to cluster the samples. The results showed that the 327 samples were mainly divided into four categories. The grouping results were consistent with the geographical distribution, and the samples at the same collection point could be clustered into the same category. (3)Population structure analysis showed that the biggest ΔK value was obtained when K=16,indicating that the sample should be divided into 16 groups, at the same time, the lineages composition of most F. multiflora samples were relatively simple, and the samples from the same collection point had similar lineages and could be roughly grouped in the same group. (4) The t-test showed that when population structure classification-proportional sampling and 10% sampling proportion were used to construct the germplasm bank, the retention rate of the four genetic parameters was high. The retention rate of Na, Ne, I and H values were 99.0%, 101.9%,106.4% and 105.9%, respectively, the sample size was small, and the diversity was not significantly different from the original germplasm bank (P>0.05). (5) The core germplasm bank consisted of 34 samples, including 9 cultivated samples and 25 wild samples, mainly from Sichuan, Chongqing and Guizhou provinces. The core germplasm bank constructed in this experiment can represent the genetic diversity of the original germplasm bank, and the results can provide reference for the collection of germplasm resources and breeding of new varieties. The method used in the experiment has certain reference significance for the construction of other plant core germplasm banks.Key words: Fallopia multiflora, construction of core germplasm, SRAP何首乌(Fallopia multiflora)为蓼科多年生草本植物,适应力强,在我国204个县(市)均有分布(陈亚等,2011)。
肥大细胞FcεRⅠ受体介导的信号通路分子机制及影响因素的研究进展
医学研究生学报2421年6月第34卷第6期 J Men Postara, VV74, NoG, June, 2421
-427 -
治疗都有极大的帮助。本文就FcaRI受体介导的信 号传导通路的分子机制和影响因素作一综述 。
1 FceRI受体介导的信号通路激活过程及其分子
机制
17 IgE及FcRI的结构与组织分布IgE由两条 重链两条轻链组成,轻链分为K和入链两型。重链 由Csl-2四个恒定结构域构成,其中Cs3结构域主 要参与了 IgE与FcaRI的a亚基的结合过程,而 Cs2结构域和Fad臂的相互作用对IgE与FcpRIg 亚基的结合起了诱导延伸的IgE Fa段形成空间构 象,抑制IgE与FcpRIg亚基分离,稳定复合物的 作用彳5 ] o
关。肥大细胞膜表面FcaRI受体介导的信号传导通路具有复杂交错的分子机制,是过敏反应的关键效应步骤,该信号传导通
路也成为药物治疗及免疫治疗的重要作用靶点。体液中的白细胞介素IOP、ILC3,肥大细胞胞膜上的其他因素如KIT、细胞骨
架蛋白、脂质筏,以及胞内ERK)/2、NHERF)、mT0R等能通过影响FcaRI受体介导的信号传导通路来改变肥大细胞的激活及
-442 -
综
述医学研究生学ຫໍສະໝຸດ 2321年6月第34卷第6期 J Men Postpra, VV74 , NoG , June , 232)
肥大细胞FcaR I受体介导的信号通路分子机制及影
响因素的研究进展
郑文雅综述,彭华审校
[摘要]I型变态反应的发生与免疫球蛋白E((gE)、肥大细胞上的GE高亲和力受体(FcaRI)以及变应原三者的交联有
通信作者;彭 华,E-mail:6oc/pexv2006@
病之一[)],肥大细胞FcaRI受体介导的信号传导通 路是(型变态反应终末阶段的关键步骤,变应原与 致敏肥大细胞表面的Ig E-PcaRI复合物结合后,激 活下游信号传导通路,最终引起肥大细胞脫颗粒,释 放组胺、白三烯、类胰蛋白酶等多种炎症介质,直接 导致各种过敏效应的发生[2「5] o近年来,关于FcaRI 受体介导的信号传导通路的分子机制和影响因素研 究愈加深入,这对I型变态反应的发病机制及临床
(精选)分子细胞遗传学技术
14
A. 中期染色体的DAPI 的
B. 复染图
B. 中期染色体比较基因组杂
交(CGH):红色区域表 示
丢失,绿色区域表示扩增。15
CGH的优点:
• 经一次染色体原位杂交实验即可在整条染色体或染色体 区带水平对待检基因组DNA序列拷贝数改变进行检测和 定位。
• 无需进行染色体培养,对于不易制备良好分裂相的实体 瘤尤为适用。
17
二、突变分析与分子诊断
18
(一)基因突变类型
• 点突变:只有一个或几个核苷酸的改变,是突 变中最多见的形式。
• 稳定突变:传递中不改变原有的突变。 • 动态突变:传递中不断改变自己,多见于短重
复序列的突变,在一代代传递中重复次数发生 明显变化。
19
点突变的结果:
(1)同义突变(samesense mutation):碱基替换后, 虽然密码子发生改变,但编码氨基酸没有改变(遗传密码 的兼并性),亦称静止突变。
• 所需染色体DNA可来自各种组织,如新鲜组织、福尔马 林固定的组织、石蜡包埋组织,可在很少量的基础上检 测,利于做回顾性研究。
16
CGH的局限性:
• 难以检出以下异常:平衡易位,微小突变,基 因重排,倍体水平改变。
• 结果可能受到一些因素影响:正常细胞存在, 肿瘤自身的遗传异质性,系统的波动。
• 灵敏度:限于检测较大范围的缺失(10 — 30MB)
(frameshift mutation),并可在突变点下游提前出现 Βιβλιοθήκη 止密码产生截短型蛋白缺失突变
22
基因突变形式
• 框内突变(inframe mutation):3个或是 的倍数的碱基缺失或插入导致的突变,使基因 丢失或增加1个或几个氨基酸。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Journal of Materials Science and Engineering B 8 (7-8) (2018) 150-160doi: 10.17265/2161-6221/2018.7-8.003Study and Characterization of (K x Sr1-x)CrO z, x = 0.10-0.50 SystemGustavo Antonio Jiménez-García1, 2, Elizabeth Chavira1, Jesús Arenas3, Adriana Tejeda1, Karla Eriseth Morales Reyes1, Josué Esaú Romero-Ibarra1 and Jorge Barreto31. Institute of Materials Research, National Autonomous University of Mexico, Mexico City 04510, Mexico2. Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico3. Institute of Physics, National Autonomous University of Mexico, Mexico City 04510, MexicoAbstract: Studies of thermodynamic, electric and magnetic properties were conducted on the (K x Sr1-x)CrO z, x = 0.10, 0.15 and 0.50 system; adjusted for different crystal sizes (polycrystalline, nano-crystalline and single crystals). For polycrystals, a solid-state reaction method was used (room temperature, T R, up to 665 °C). Nano-crystals, a crushing technique with a mechanical mortar were processed at T R. Single crystals were acquired, through fusion method starting from polycrystals pre-manufactured (665 °C) over 900 °C. For the methods described above, they all were worked at atmospheric pressure. Studying the thermodynamic in the crystals mixture were obtained by TGA (thermogravimetric analysis) and DSC (differential scanning calorimetry). Powder XRD (X-ray diffraction) in the manual grinding mixture a SrCO3 solid solution, at T R was detected. When increasing the temperature, a solid solution of K2Sr(CrO4)2 is formed. By HRTEM (high-resolution transmission electronic microscope), crystal sizes 4-12 nm were seen. (K0.50Sr0.50)CrO z composition presents a weak ferromagnetic and an insulating behavior.Key words: Solid-state reaction, solid solutions, TGA-DSC, XRD, HRTEM, magnetic behavior.NomenclatureT R RoomtemperatureMM MechanicalmillingMG ManualgrindingC-AFM C-typeantiferromagneticAFM AntiferromagneticXRD X-raydiffractionHRTEM High-resolution transmission electronic microscopeTGA ThermogravimetricanalysisDSC Differentialscanning calorimetry1. IntroductionPrevious studies have shown Pauli Paramagnetic behavior for SrCrO3 compound, when a perovskite primitive cubic structure is present. At room temperature, the behavior displayed is not magneticCorresponding author: Gustavo Antonio Jiménez-García, undergraduate of chemical engineering, research fields: inorganic chemistry and chemical engineering. [1]. For a tetragonal structure it manifests C-AFM properties [2-5]. Although not much literature report, it is known about the magnetic properties of SrCrO3 compound. Other studies have shown that the layered chromate from the perovskite structure type of Sr4Cr3O10 compound demonstrates an isolating material as well as AFM, when produced at high pressure [6]. With the aforementioned in mind, the purpose of this investigation is to observe the change of physico-chemical properties when potassium ion is substituted in place of strontium ion. For example, producing a new K2Sr(CrO4)2 solid solution at high temperature. Also the explanation of the formation of a SrCO3 solid solution, observed by XRD, in the manual grinding mixture at room temperature. The electric and magnetic properties due to cationic-anionic substitution and hole formation were measured resulting an insulating and weak ferromagnetic material.Study and Characterization of (K x Sr1-x)CrO z, x = 0.10-0.50 System 1512. Experimental Setup2.1 Materials and CharacterizationWith stoichiometric calculation of reagents for preparing (K x Sr1-x)CrO z, x = 0.10, 0.15 and 0.50 system, potassium dichromate KCr2O7, (ALDRICH, 99.99%) and strontium carbonate SrCO3, (CERAC, 99.5%) were weighed in an analytical balance (OHAUS, ± 0.001 g). Previously the strontium carbonate was dried in the oven (Thermo Scientific, ± 4 °C) at 100 °C to make sure no water is present within the SrCO3 compound. For polycrystals synthesis, the reagents were carried to MG (manual grinding) in an agatha mortar at P atm (585 mmHg) for 30 min. To process the nano-crystals MM (mechanical milling) and a dry technique was used, the stoichiometric mixture reagents were crushed by MM for duration of 520 min in an agatha mechanical mortar (RM 100, Retsch model) at a speed of 370 RPM. Thermal analyzer (STD Q600, TA-instruments) was used, operating a standard alumina container, with the heating rate of 10 °C/min in air, over ranges T R to 1,300 °C for TGA and DSC data. XRD was performed on a Bruker AXS D-8 advance diffractometer working with the Cu Kα wavelength (λ= 1.5406 A), 40 KV and 30 mA. File sets were collected at room temperature, in a 2θ from 20° to 60° angular range, with a 0.020° step size and time per step of 2.4 s. For the HRTEM results, the equipment used was JEOL ARM F200, operating at 200 kV EDS Oxford Aztec. To measure the magnetic properties of the reagents and the final products, a SQUID MPMS3 model for ZFC-FC curves was used; the applied field was 100 Oe, range of measured temperatures 2-300 K. For the hysteresis curve, 5 K in maximum field 7 Tesla. A manual multimeter collected the electric data.2.2 Synthesis of PolycrystalsFor polycrystals synthesis, a solid-state reaction was used. Three samples were giving with x = 0.10, 0.15 and 0.50. Each reagents mixture was crushed MG in an agatha mortar for 30 min before, to carried out to the oven at 100 °C for 18 h. The MG samples were grinded every time heat treatment temperature was modified (T R 665 °C) for a few days (1-108 d), at room pressure, with the aim of improving the contact area between the reagent’s crystals. The temperature is increased every day after utilizing the MG technique, up to 665 °C each increase during a range approximately 13 h. The criterion used for the temperatures was obtained from the thermic results, they will be explained in detail in the results and discussions Section 3.2.3 Synthesis of Nano-CrystalsThe synthesis process to obtain nano-crystals was MM, a dry technique. The reagents for each sample, x = 0.10 and 0.50 were crushed by MM for a duration of 520 min in an agatha mechanical mortar. The MM samples were increased temperature at the same way those polycrystals, but only once in the mechanical mortar were crushed. The samples reaction started, from room temperature in the milling process at 24 °C up to 665 °C, for 84 d. The next crushing, MG technique was used each temperature increasing.2.4 Single Crystal Synthesis.The reagent’s mixture forms MG and MM pre-manufacturing at 665 °C of (K x Sr1-x)CrO z, x = 0.10, 0.15 and 0.50 system, finally were reacted at 900 °C for several 50 min a semifusion product was obtained. Later were crushing manual in an agatha mortar and grow at 665 °C for 72 d, keep a solid solution with x = 0.50 by MM. Observing a mixture of compounds, presented in XRD data.3. Experimental Results3.1 Nano-Crystals Thermoanalysis StudiesTo corroborate thermodynamic changes in nano-sizes crystals a TGA was made of (K0.50Sr0.50)CrO z composition MM (Fig. 1). A small dent can be appreciated in the thermogram at200 °C,Study and Characterization of (K x Sr1-x)CrO z, x = 0.10-0.50 System 152Fig. 1 DSC-TGA reagents mixture of (K0.50Sr0.50)CrO z composition MM.with this behavior we deduce a superficial dehydration. Mass loss of 3.314% at around 394.16 °C can be attributed to the intermolecular water loss, potassium dichromate decomposition and the reaction between the reagents successes. As observed in polycrystals, thermal analyzer (STD Q600, TA-Instruments) operating a standard alumina container, with the heating rate of 10 °C/min in air, over ranges T R to 1,300 °C for TGA and DSC.At temperatures above 800 °C the K2Sr[CrO4]2 compound decomposes, due to the changes of the curves in the thermogram after the aforementioned temperature.3.2 X-Ray Diffraction StudiesWith powder XRD the purity of the reagents was observed, strontium carbonate (Fig. 2) (PDF-005-0418) and potassium dichromate (Fig. 3) (PDF-027-0380), at room conditions. With this information we can appreciated the formation of the solid solutions. Also the formation of K2Sr[CrO4]2compound (Fig. 4) (PDF-029-1047) MM. The mill sample of this analysis corresponds to a temperature of 665 °C/520 min and with x = 0.50. XRD was performed on a Bruker AXS D-8 advance diffractometer working with the Cu Kα1 wavelength (λ = 1.5406 A), 40 KV and 30 mA. Data sets were collected at room temperature, in a 2θ from 20° to 60° angular range, with a 0.020° step size and time per step of 2.4 s.Before starting a heat treatment reaction, of the reagent mixture at T R (24 °C) was made. The sample for XRD analysis after 520 min was toke (Fig. 4). MM and MG prepared the samples. In MG at T R, Fig.5 a shift can be perceived, on SrCO3 compound only in (113) and (241) planes and destructive (042) plane. See Table 1.In (K0.50Sr0.50)CrO z composition by MM at T R a reaction is witnessed where SrCO3, K2Sr[CrO4]2, KCr2O7/K2O•2CrO3 appear (PDF, 00-001-0676) and SrCr2O4 (PDF, 01-085-0370) with orthorhombic unit cell and S. G.: Pmmn (59) compounds (Fig. 6). TheFig. 2 XRDFig. 3 XRDFig. 4 XRD S SrCO 3 compo KCr 2O 7 comp (K 0.50Sr 0.50)Cr Study and Ch ound.pound.rO zcompositio haracterizatioon at 665 °C M on of (K x Sr 1-x )MM 520 min.)CrO z , x= 0.10-0.50 Systemm1533Study and Characterization of (K x Sr1-x)CrO z, x = 0.10-0.50 System154Fig. 5 XRD (K0.50Sr0.50)CrO z composition at T R MG.Table 1 XRD data of SrCO3 compound at room temperature.SrCO3 nano-cristal room temperature MM MG2 teo I 2 exp I d h k l ∆2 (exp-teo) ∆2 (exp-teo) MG V. MM 20.319 14 20.344 32 4.3617 1 1 0 0.025 0.021 -0.004 25.172 100 25.177 100 3.5343 1 1 1 0.005 0.006 0.001 25.803 70 25.770 62 3.4544 0 2 1 -0.033 0.041 0.074 29.615 22 29.614 41 3.0141 0 0 2 -0.001 0.007 0.008 31.498 20 31.483 85 2.8371 0 1 2 -0.015 0.004 0.019 34.522 12 34.036 35 2.6319 1 0 2 -0.497 0.019 0.51635.108 23 35.136 36 2.5521 2 0 0 0.028 0.051 0.02336.176 34 36.218 48 2.4783 1 1 2 0.042 0.088 0.046 36.527 40 36.520 50 2.4584 1 3 0 -0.007 0.007 0.014 41.323 16 41.337 33 2.1824 2 2 0 0.014 0.009 -0.00544.083 50 44.110 55 2.0514 2 2 1 0.027 0.014 -0.01345.643 26 45.612 39 1.9873 0 4 1 -0.031 0.039 0.0746.563 21 46.590 37 1.9478 2 0 2 0.027 0.014 -0.01347.694 35 47.695 44 1.9052 1 3 2 0.001 0.009 0.008 49.923 31 49.961 44 1.8240 1 1 3 0.038 0.021 -0.017 53.035 5 53.878 39 1.7002 0 4 2 0.843 Destructive --58.864 13 58.905 31 1.5665 2 4 1 0.041 0.014 -0.02759.824 11 59.870 32 1.5436 1 5 0 0.046 0.072 0.026weight of the pistil in MM produces the necessary energy to begin reaction without increasing the temperature where the system lowers its free energy by separating three compounds whose compositions are: KCr2O7/K2O•2CrO3, SrCr2O4, and K2Sr[CrO4]2. Comparing Fig. 5 with Fig. 6 (T R), in MG only reagents and in MM there are other compounds (KCr2O7/K2O•2CrO3, SrCr2O4, and K2Sr[CrO4]2). In both processes MG and MM, there are SrCO3 solid solution formations.3.3 Solid Solutions StudyXRD in Table 1, a shift in (021), (200), (112), (041) and (150) can be observed, show us a unit cell reduced. The (042) plane is a destructive reflection, deducing an empty hole. Adding temperature this plane appears. Table 4 shows the coordination number and ionic radium [6]; K1+ with 1.52 Å, with this information it can be possible to have an idea of substitution cations Sr2+ with 1.27 Å, and O2- anion with 1.26 Å. It is viewedFig. 6 XRDa formation then the mec T R is compl substitution in those em necessary to synchrotron above. At th MG at 66found by X solution. In and (300) h cationic-anio For MM, 0.15 and 0.K 2Sr(CrO 4)on (K 0.50Sr 0solutions; Table 5, SrC destructive p in: (112), (compound: occurs in: (right displa found in sm sites.Increasing S (K 0.50Sr 0.50)Cr n of solid so chanism in M lex [8], due t arrangement mpty sites con o perform ra to elucidat he moment we 65 °C in (K 0.5XRD just K Table 2: (11have a displa onic substitut (K x Sr 1-x )CrO .50 system, 2 crystal struc 0.50)CrO z comK 2Sr[CrO 4]2 CO 3 compoun planes and ri (241) and ((116) is de (202) right si acements, the mall sites andg the reactio Study and Ch rO z compositio olution at ro MG of SrCO to a K 1+ cati t holes and O nserved electr diation meas te the mech e will not rep 50Sr 0.50)CrO z K 2Sr[CrO 4]2 0), (113), (2acement, dedu tions. O z with the v a shift of so cture was obs mposition it and SrCO 3 nd: (012), (10ight side disp 150). Also estructive an ide and (101e cation sub in left displaon temperatu haracterizatio on at T R MM 5om temperat 3 solid solutio onic in Sr 2+O 2- anionic c roneutrality. surements wi anism descr port that work composition compound s 02), (116), (ucing holes, variable x = 0ome (hkl ) in served. MM a t had two s compounds.02) and (042)placements o for K 2Sr[Cr nd displacem 10) left side. bstitution can acements in lure in MM, w on of (K x Sr 1-x )20 min.ture,on at ions ome It is ith a ribed k. it is solid 125) and 0.10, n the at T R solid In ) are ccur rO 4]2 ments For n be large withresp solu (Ta The not crys rhom anio M the and and (11shif C in disa be com the (Fig the it is W a g tern ded)CrO z , x = 0.1pect to a T ution is form able 2) and S e strontium c a saturated s stal structure mbohedral. I ons in the SrC MM at 665 °C following is d (2010) disp d MG at the 3), (202), (1fts in the equi Comparing Fi XRD of t appearance of appreciated,mpounds rema atoms are re g. 4), it is as sites of stron s observed ch When the x va greater percen nary compounduced that the 0-0.50 SystemTGA-DSC an med in the SrCO 3 (Table carbonate pre solid solution e, it change It is a rearra CO 3 compoun C in the (K 0.5s detected: (lacement pla same temper 116), and (3ivalent sampl ig. 4 MM 66the (K 0.50Sr f KCr 2O 7/K 2O only the K ain. Due to th eorganized. T ssuming pota ntium ion in t hanges in som alue in (K x Sr ntage of the nd K 2Sr[CrOe saturation of mnalysis (Fig. K 2Sr[CrO 4]e 3) remains esence indica n. At 450 °C s from orth angement of nd. 0Sr 0.50)CrOz 113), (202), anes. Compar rature it can 300) planes les. 65 °C with Fi r 0.50)CrO z co O•2CrO 3 and K 2Sr[CrO 4]2 he increase of Then in SrCO assium ion su the solid solut me hkl . 1-x )CrO z syste e crystal stru O 4]2 is obtainf the solid sol 1551), a solid 2 compound s unchanged.ates that, it is in an SrCO horhombic to f cations and composition,(116), (300)ring this MM be observed highlight as ig. 6 MM T ompound, a d SrCr 2O 4 can and SrCO f temperature O 3 compound ubstitution in tion, because em increases,ucture of the ed. It can be lution can be 5dd . s 3 o d , ) M d s R a n 3 e, d ne , e e156Study and Characterization of (K x Sr1-x)CrO z, x = 0.10-0.50 SystemTable 2 XRD data of K2Sr(CrO4)2 compound.K2Sr(CrO4)2 nano-cristal 665 °C MM MG2 Theory I 2 exp I d h k l ∆2 (exp-theory)∆2 (exp-theory)MG v. MG27.887 100 3.1967 0 1 5 0.011 0.019 0.008 27.876 10031.475 90 31.502 88 2.8376 1 1 0 0.027 0.032 0.005 34.035 11 34.064 24 2.6298 1 1 3 0.029 0.037 0.00837.507 5 37.550 17 2.3933 2 0 2 0.043 0.062 0.01938.473 5 38.484 17 2.3373 0 0 9 0.011 0.023 0.012 40.472 6 40.487 19 2.2262 0 2 4 0.015 0.026 0.011 40.855 6 40.887 20 2.2053 1 1 6 0.032 0.033 0.001 42.570 35 42.568 43 2.1220 2 0 5 0.002 0.006 0.004 46.969 25 46.945 36 1.9339 1 0 10 0.024 0.029 0.005 53.881 20 53.906 29 1.6994 1 2 5 0.025 0.034 0.00956.059 10 56.101 21 1.6380 3 0 0 0.042 0.035 -0.00757.649 7 57.619 20 1.5980 0 2 10 0.030 0.024 -0.006 Table 3 XRD data of SrCO3 compound at 665 °C.SrCO3 nano-cristal 665 °C MM MG2 Theory I 2 exp I d h k l ∆2 (exp-theory)∆2 (exp-theory)MM v. MG 20.319 14 20.323 16 4.3661 1 1 0 0.004 0.007 0.003 25.172 10025.174 51 3.5348 1 1 1 0.002 0.004 0.002 25.803 70 25.817 32 3.4481 0 2 1 0.014 0.003 -0.011 29.615 22 29.602 19 3.0152 0 0 2 0.013 0.003 -0.01 31.498 20 31.502 88 2.8376 0 1 2 0.004 0.009 0.00534.522 12 34.467 16 2.6000 1 0 2 0.066 0.002 -0.06435.108 23 35.086 20 2.5555 2 0 0 0.022 0.023 0.00136.176 34 36.198 22 2.4795 1 1 2 0.022 0.028 0.006 36.527 40 36.575 26 2.4548 1 3 0 0.048 0.039 -0.009 41.323 16 41.360 18 2.1812 2 2 0 0.037 0.034 -0.00344.083 50 44.129 27 2.0505 2 2 1 0.046 0.028 -0.01845.643 26 45.689 19 1.9841 0 4 1 0.046 0.009 -0.03746.563 21 46.621 19 1.9466 2 0 2 0.058 0.077 0.01947.694 35 47.717 22 1.9044 1 3 2 0.023 0.012 -0.011 49.923 31 49.905 21 1.8259 1 1 3 0.018 0.004 -0.014 53.035 5 53.906 29 1.6994 0 4 2 0.871 0.005 -0.86658.864 13 58.901 15 1.5667 2 4 1 0.037 0.046 0.00959.824 11 59.947 15 1.5418 1 5 0 0.123 0.004 -0.119 Table 4 Cations and anion coordination number.COORD [4] Å [6] Å [8] Å [12] ÅELEMO2- 1.24 1.26 1.28 1.21-- -- Cr3+-- 0.755Cr4+ 0.58 0.69 -- -- Cr5+ 0.49 -- 0.71 -- Cr6+ 0.44 -- -- -- Sr2+ -- 1.27 1.39 1.54 K1+ -- 1.52 1.65 1.74Study and Characterization of (K x Sr1-x)CrO z, x = 0.10-0.50 System 157Table 5 XRD data of MM SrCO3 & K2Sr[CrO4]2 compound at T R.SrCO3 & K2Sr[CrO4]2 nano-cristal T R Displacement 2 teo I 2 exp I d h kl ∆2 (exp-teo)SrCO3K2Sr[CrO4]220.319 14 20.344 32 4.36171 1 0 0.02525.172 100 25.177 100 3.53431 1 1 0.00525.803 70 25.770 62 3.45440 2 1 -0.03327.876 100 27.880 90 3.19750 1 5 0.00429.615 22 29.614 41 3.01410 0 2 -0.00131.475 90 31.483 85 2.83931 1 0 0.00831.49820 -- -- -- 0 1 2 --34.035 11 34.036 35 2.63191 1 3 0.00134.52212 -- -- -- 1 0 2 --35.108 23 35.136 36 2.55212 0 0 0.02836.176 34 36.218 48 2.47831 12 0.04236.527 40 36.520 50 2.45841 3 0 -0.00737.507 5 37.576 35 2.39172 0 2 0.06938.473 5 38.504 29 2.33620 0 9 0.03140.472 6 40.443 32 2.22850 2 4 -0.02940.8556 -- -- -- 1 1 6 --41.323 16 41.337 33 2.18242 2 0 0.01442.570 35 42.540 43 2.12342 0 5 -0.03044.083 50 44.110 55 2.05142 2 1 0.02745.643 26 45.612 39 1.98730 4 1 -0.03146.563 21 46.590 37 1.94782 0 2 0.02746.969 25 46.893 46 1.9359 1 0 10 -0.07647.694 35 47.695 44 1.90521 32 0.00149.923 31 49.961 44 1.824 1 1 3 0.03853.0355 -- -- -- 0 4 2 --53.881 20 53.878 39 1.70020 4 2 -0.00356.059 10 56.086 33 1.63853 0 0 0.02757.649 7 57.629 33 1.5982 0 2 10 -0.02058.864 13 58.905 31 1.56652 4 1 0.04159.824 11 59.870 32 1.54361 5 0 0.046found on the other side of the system with x > 0.50, which is currently under study.For the monocrystals the fusion method was used,at 900 °C the material presents decomposition and new compounds were produced. In the (K0.50Sr0.50)CrO z composition at 900 °C for MM; SrSO4, K2SO4, SrCO3, K2Sr[CrO4]2, Cr2O3, SrCrO4 and K2Sr[SrO4]2 were found (Fig. 7).The crucibles used for the fusion method were washed with H2SO4, finding sulphur compounds in the new mixture. It remained the same rhombohedra crystal structure for K2Sr[CrO4]2 and orthorhombic crystal structure for SrCrO4 and Cr2O3. It is learned that the material must be washed for a longer time when acid is used to remove residues in the crucibles.3.4 High-Resolution Transmission Electronic Microscope StudiesFig. 8 shows a cluster of the K2Sr[CrO4]2 compound in the (K0.50Sr0.50)CrO z composition with MM during 520 min at 665 °C. Described in 2.1 synthesis section. Moreover, in Fig. 9 it is possible to see polycrystals and nano-crystals. Fig. 10 is a single nano-crystal with (015) since 2.36-3.71 A.158Fig. 7 XRDFig. 8 HRTEFig. 9 HRTES (K 0.50Sr 0.50)Cr EM (K 0.50Sr 0.50EM (K 0.50Sr0.50Study and Ch rO z compositio 0)CrO z compos0)CrO zcomposharacterizatio on at 900 °C M sition at 665 °Csition at 665 °C on of (K x Sr 1-x )MM 520 min.C MG 520 minC MM 520 min )CrO z , x = 0.1n.n. 0-0.50 SystemmFig. 10 HRTcell [7].Fig. 11 (K 0.53.5 Magneti In Fig. 1can observecompound downward t can be seen,S TEM of a singl 50Sr 0.50)CrO z c c Studies1 in the (K 0e in -2 T to is a weak trending curv, because the Study and Ch le crystal with omposition MM0.50Sr 0.50)CrO o 2 T range ferromagnet ve as a diammaterial opp haracterizatio (015) since 2.3M 665 °C hyst z compound,e hysteresis, t. From 2 magnetic behaposite a high f on of (K x Sr 1-x )36-3.71 A in (K teresis. , we this T a avior fieldis a on t 3.6In wasresi )CrO z , x = 0.1K 0.50Sr 0.50)CrO applied. The s the other side Electric Mea n the (K 0.50S s measured aistance as insu 0-0.50 System z composition a symmetry rep e (-2 T). asurements St Sr 0.50)CrO z M at T R with aulating (Fig. mat 665 °C MMpeats in the s tudiesMM compoun voltmeter re 11).159M 520 min. Unit same fashion nd at 665 °C,esulting high 9t n, hStudy and Characterization of (K x Sr1-x)CrO z, x = 0.10-0.50 System 1604. ConclusionsFor x = 0.10, 0.15 and 0.50 values in the (K x Sr1-x)CrO z system, different solid solutions depending on MM, MG and/or T R—heat treatment reaction conditions are detected. The x = 0.50 at 665 °C in MM was identified in a sample containing in a majority of the K2Sr[CrO4]2 compound. Using the XRD method, it could find in K2Sr[CrO4]2 compound their rhombohedral crystal structure. In their nano-crysatlline form with 4-12 nm range, (K0.50Sr0.50)CrO z composition is a weak ferromagnetic and isolate material.AcknowledgmentsThe authors are grateful with Daphne Meuxueiro and J. Arturo Martínez for technical support. We also thank José Alberto Vázquez Aguilar who was helpful with redaction and translation.References[1]Chamberland, B. L. 1967. “Preparation and Properties ofSrCrO3.” Solid State Communications 5 (8): 663-6.[2]Zhu, Z.-L., Gu, J.-H., Yu, J., and Hu, X. 2012. “AComparative Study of Electronic Structure and MagneticProperties of SrCrO3 and SrMoO3.” Physica. B 407:1990-4.https:///science/article/pii/S0921452612001512.[3]Olazcuaga, R., Réau, J. M., and Le Flem, G. 1972. “Surquatre nouveaux composés oxygénés du chrome et dumanganèse de degré d'oxydation +V.” Comptes Rendusdes Seances de l'Academie des Sciences, Serie C:Sciences Chimiques 275: 135-8.https:///isp/crystallographic/docs/sd_0308040.[4]Olazcuaga, R., Le Flem, G., and Hagenmuller, P. 1976.“Mise en évidence du chrome ou du manganèse au degréd'oxydation V dans quelques nouveaux composésoxygénés.” Revue de Chimie Minerale 13: 9-23.https:///isp/crystallographic/docs/sd_1704925.[5]Schwarz, H. 1966. “Doppelverbindungen vom TypMer2(MeII(XVIO4)2 mit der Struktur von Sr3(PO4)2. IIIChromate.” Zeitschrift für Anorganiche und AllgemeineChemie 345: 230-45.https:///doi/pdf/10.1002/zaac.19663450503.[6]Jeanneaua, J., Lepoittevina, C., Sulpicea, A., Kodjikiana,S., Toulemonde, P., and Núñez-Regueiroa, M. 2017.“Structural and Physical Properties of the High PressurePerovskite Layered Sr4Cr3O10 Chromate.” Journal ofSolid State Chemistry 251: 164-9.https:///science/article/pii/S0022459617301329?via%3Dihub.[7]Schwarz, H. 1966. “Chromate.” Zeitschrift fürAnorganische und Allgemeine Chemie 345: 230-45.https:///isp/crystallographic/docs/sd_1704925.[8]West, A. R. 1990. Solid State Chemistry and ItsApplications. John Wiley & Sons.。