水吸收_低浓度二氧化硫_填料吸收塔_设计

合集下载

水吸收so2填料吸收塔设计答辩

水吸收so2填料吸收塔设计答辩

水吸收so2填料吸收塔设计答辩
在工业生产过程中,废气排放是一个不可避免的问题,而二氧化硫(SO2)则是其中一种常见的污染物。

为了减少SO2的排放量,吸收塔是一种常见的处理设备,而以水吸收SO2的填料吸收塔设计则是其中一种有效的处理方法。

填料吸收塔是一种通过将废气与吸收液(通常为水)接触,使废气中的污染物被吸收到液体中的设备。

在填料吸收塔中,填料的选择对于吸收效果起到至关重要的作用。

以水吸收SO2的填料吸收塔设计中,常用的填料有塔板填料、环形填料、波纹填料等。

这些填料都具有较大的表面积,能够提高废气与吸收液的接触效率,从而增加SO2的吸收效果。

在设计填料吸收塔时,需要考虑的因素有很多。

首先是填料的选择,不同的填料适用于不同的工艺条件,需要根据具体情况进行选择。

其次是填料的布置方式,填料的布置应该合理,以确保废气与吸收液的充分接触。

此外,还需要考虑填料层的厚度、吸收液的流量、废气的温度和压力等因素,以保证填料吸收塔的正常运行。

除了填料的选择和布置,填料吸收塔的设计还需要考虑到废气的处理效果和设备的运行成本。

通过合理设计填料吸收塔,可以有效降低废气中SO2的含量,减少对环境的污染。

同时,设计合理的填料吸收塔还可以降低设备的能耗和维护成本,提高设备的运行效率和稳定性。

总的来说,以水吸收SO2的填料吸收塔设计是一种有效的废气处理方法,通过合理选择填料、设计合理的填料吸收塔,可以有效减少废气中SO2的含量,保护环境,降低能耗和运行成本。

在今后的工业生产中,应该重视填料吸收塔的设计和运行,以实现清洁生产,保护环境的目标。

水吸收二氧化硫填料吸收塔_课程设计完整版

水吸收二氧化硫填料吸收塔_课程设计完整版

吉林化工学院化工原理课程设计题目处理量为2500m3/h水吸收二氧化硫过程填料吸收塔的设计教学院化工与材料工程学院专业班级化学工程与工艺0804班学生姓名学生学号 08110430指导教师徐洪军2010 年 12 月 15 日化工原理课程设计任务书专业化学工程与工艺班级化工0804 设计人郑大朋一.设计题目处理量为2500m3/h水吸收二氧化硫过程填料吸收塔的设计二.原始数据及条件生产能力:年处理空气—二氧化硫混合气2.3万吨(开工率300天/年)。

原料:二氧化硫含量为5%(摩尔分率,下同)的常温气体。

分离要求:塔顶二氧化硫含量不高于0.26% 。

塔底二氧化硫含量不低于0.1% 。

建厂地址:河南省永城市。

三.设计要求(一)编制一份设计说明书,主要内容包括:1. 摘要;2. 流程的确定和说明(附流程简图);3. 生产条件的确定和说明;4. 吸收塔的设计计算;5. 附属设备的选型和计算;6. 设计结果列表;7. 设计结果的讨论和说明;8. 主要符号说明;9. 注明参考和使用过的文献资料;10. 结束语(二) 绘制一个带控制点的工艺流程图。

(三)绘制吸收塔的工艺条件图]1[。

四.设计日期: 2010 年 11 月 22 日至 2010 年 12 月 15 日目录摘要 (IV)第一章绪论 (1)1.1 吸收技术概况 (1)1.2 吸收设备发展 (1)1.3 吸收在工业生产中的应用 (3)第二章吸收塔的设计方案 (4)2.1 吸收剂的选择 (4)2.2 吸收流程选择 (5)2.2.1 吸收工艺流程的确定 (5)2.2.2 吸收工艺流程图及工艺过程说明 (6)2.3 吸收塔设备及填料的选择 (7)2.3.1 吸收塔设备的选择 (7)2.3.2 填料的选择 (8)2.4 吸收剂再生方法的选择 (10)2.5 操作参数的选择 (11)2.5.1 操作温度的确定 (11)2.5.2 操作压强的确定 (11)第三章吸收塔工艺条件的计算 (12)3.1 基础物性数据 (12)3.1.1 液相物性数据 (12)3.1.2 气相物性数据 (12)3.1.3 气液两相平衡时的数据 (12)3.2 物料衡算 (12)3.3 填料塔的工艺尺寸计算 (13)3.3.1 塔径的计算 (13)3.3.2 泛点率校核和填料规格 (14)3.3.3 液体喷淋密度校核 (15)3.4 填料层高度计算 (15)3.4.1 传质单元数的计算 (15)3.4.2 传质单元高度的计算 (16)3.4.3 填料层高度的计算 (17)3.5 填料塔附属高度的计算 (18)3.6 液体分布器的简要设计 (18)3.6.1 液体分布器的选型 (18)3.6.2 分布点密度及布液孔数的计算 (19)3.6.3 塔底液体保持管高度的计算 (20)3.7 其他附属塔内件的选择 (21)3.7.1 填料支撑板 (21)3.7.2 填料压紧装置与床层限制板 (21)3.7.3 气体进出口装置与排液装置 (21)3.8 流体力学参数计算 (22)3.8.1 填料层压力降的计算 (22)3.8.2 泛点率 (23)3.8.3 气体动能因子 (23)3.9 附属设备的计算与选择 (23)3.9.1 吸收塔主要接管的尺寸计算 (23)3.9.2 离心泵的计算与选择 (24)工艺设计计算结果汇总与主要符号说明 (26)设计方案讨论 (31)附录(计算程序及有关图表) (32)参考文献 (34)结束语 (35)带控制点的工艺流程图 (36)设备条件图 (37)化工原理课程设计教师评分表 (38)摘要吸收是利用混合气体中各组分在液体中的溶解度的差异来分离气态均相混合物的一种单元操作。

水吸收二氧化硫填料吸收塔设计说明书

水吸收二氧化硫填料吸收塔设计说明书

化工原理课程设计题目处理量为1200m3/h水吸收二氧化硫过程填料吸收塔的设计专业化学工程与工艺班级化工2102姓名柯来烽学号 3102109230指导教师胡章文化工原理设计任务书专业:化学工程与工艺班级:化工2102 设计人:柯来烽一.设计题目处理量为1200m3/h水吸收二氧化硫过程填料吸收塔的设计二.原始数据及条件进塔二氧化硫含量为8%(摩尔分率,下同),温度25℃。

塔顶易挥发组分回收率94% 。

进塔吸收剂温度20℃,由于气液比比较大,温度基本不变,吸收温度可近似取清水温度。

二氧化硫回收率为操作压强为常压三.设计要求1. 标题页;2. 设计任务书;3. 目录;4. 确定设计方案;5. 填料塔吸收的塔径,填料层高度,塔高和填料层压降的计算;6. 塔及主要附属构件结构尺寸设计;7. 设计一览表;8. 对本设计的评述;9. 绘制填料塔装备图;10. 参考文献。

四.设计日期: 2013 年 6 月 10 日至 2013 年 6月 20 日目录摘要 (1)1绪论 (2)1.1吸收技术概况 (2)1.2吸收设备发展 (2)1.3吸收在工业生产中的应用 (3)2设计方案 (4)2.1吸收方法及吸收剂的选择 (4)2.1.1吸收方法 (4)2.1.2吸收剂的选择: (4)2.2吸收工艺的流程 (5)2.2.1吸收工艺流程的确定 (5)2.2.2吸收工艺流程图及工艺过程说明 (6)2.3操作参数选择 (7)2.3.1操作温度的选择 (7)2.3.2操作压力的选择 (7)2.3.3吸收因子的选择 (7)2.4吸收塔设备及填料的选 (8)2.4.1吸收塔设备的选择 (8)2.4.2填料的选择 (8)3吸收塔工艺的算 (10)3.1基础性物性数据 (10)3.1.1液相物性数据 (10)3.1.2气相物性数据 (10)3.1.3气液平衡数据 (10)3.2物料衡算 (11)3.3塔径的计算及校核 (11)3.3.1塔径的计算 (11)3.3.2泛点率的计算 (13)3.3.3气体能动因子 (13)3.3.4填料规格校核 (13)3.3.5液体喷淋密度校核 (13)3.4填料层高度计算 (14)3.4.1传质单元数计算 (14)3.4.2传质单元高度计算 (14)3.4.3填料层高度的计算 (15)3.5 填料塔附属高度的计算.............................................................. (16)3.6 液体分布器的简要设计 (16)3.6.1 分布点密度及布液孔数的计算 (16)3.6.2布液计算 (17)3.6.3 塔底液体保持管高度的计算..................................................................... (17)3.7 其他附属塔内件的选择 (18)3.7.1液体再分布器 (18)3.7.2填料支撑板 (18)3.7.3 填料压紧装置与床层限制板 (18)3.7.4 气体进出口装置与排液装置 (18)3.8 吸收塔主要接管尺寸算 (19)3.9 填料层压力降的计算 (19)工艺设计计算结果汇总与主要符号说明 (21)结束语 (24)主要符号说明 (25)参考文献 (27)摘要在化工生产中,气体吸收过程是利用气体混合物中,各组分在液体中溶解度或化学反应活性的差异,在气液两相接触是发生传质,实现气液混合物的分离。

水吸收二氧化硫填料吸收塔课程设计完整版

水吸收二氧化硫填料吸收塔课程设计完整版

水吸收二氧化硫填料吸收塔--课程设计完整版水吸收二氧化硫填料吸收塔课程设计一、设计背景随着工业化的快速发展,大量的二氧化硫排放进入大气中,严重污染了环境。

为了降低二氧化硫的排放,采用填料吸收塔进行二氧化硫吸收是一种经济有效的技术。

本次课程设计旨在设计一座水吸收二氧化硫填料吸收塔,以控制工业二氧化硫排放。

二、设计要求1.设计一座水吸收二氧化硫填料吸收塔,要求能够有效地吸收工业排放的二氧化硫。

2.考虑填料吸收塔的经济性、可靠性和环保性。

3.确定最佳的操作条件,包括吸收液的流量、喷淋密度、填料高度等。

4.对填料吸收塔的设计进行优化,以提高吸收效率。

三、设计原理填料吸收塔是利用填料作为两相接触的表面,使二氧化硫气体能够与水充分接触。

在填料塔内,气相和液相逆流接触,二氧化硫气体通过填料表面的液膜扩散进入水中,从而降低气相中的二氧化硫浓度。

四、设计方案1.填料选择考虑到二氧化硫吸收的效率和经济的因素,选择聚丙烯鲍尔环作为填料。

聚丙烯鲍尔环具有高的比表面积和通量,可以增加气液接触面积,提高二氧化硫吸收效率。

2.结构设计填料吸收塔的结构包括塔体、进气管、出水管、填料支撑板和聚丙烯鲍尔环填料。

塔体采用圆形结构,直径为1.2m,高度为12m;进气管安装在塔顶部,用于引入二氧化硫气体;出水管位于塔底部,用于排出吸收后的废水;填料支撑板位于塔体中部,用于支撑聚丙烯鲍尔环填料。

3.操作条件在填料吸收塔的操作过程中,需要控制以下条件:(1)吸收液的流量:通过调整水泵的流量来控制吸收液的流量,使其保持在一个最佳值,以提高吸收效率。

(2)喷淋密度:通过调整喷嘴的数量和喷射角度来控制喷淋密度,使水能够均匀地分布在填料上,增加气液接触机会。

(3)填料高度:选择合适的填料高度,以确保气液充分接触,提高吸收效率。

五、设计优化1.增加填料层数:通过增加填料的层数,可以增加气液接触的机会,提高吸收效率。

但是填料层数过多会增加压降和塔的能耗,因此需要综合考虑。

【课程设计】水吸收二氧化硫填料吸收塔的设计

【课程设计】水吸收二氧化硫填料吸收塔的设计

【课程设计】水吸收二氧化硫填料吸收塔的设计【综述】水吸收二氧化硫(SO2)填料吸收塔是一种重要的排放控制设备,它能够将工业废气中的SO2转换为亚硫酸盐,有效地净化空气污染。

水吸收二氧化硫填料吸收塔包括三部分:溶液填料,水池和水壶。

溶液填料一般由碳酸钙或膨润土组成,其中的小孔可以增加二氧化硫在填料表面的吸附。

水池前面的水壶可以源源不断地向填料供水,从而对工业废气中的SO2进行吸附和吸收。

【填料的选择】传统的水吸收二氧化硫填料吸收塔一般选用碳酸钙或膨润土作为溶液填料。

碳酸钙具有较强的吸附SO2的性能,但它容易受到H2SO4(硫酸)的影响,使得机器变得不稳定。

膨润土则有着较低的吸附性能,但具有更高的耐硫酸性,因此在高浓度的硫酸环境中,可以得到更优的效果。

【塔体的选择】水吸收二氧化硫填料吸收塔一般采用圆塔、矩形塔或多面塔这三种不同形式的塔体。

圆塔具有完整的弧形外观,适合一些低浓度的环境条件;矩形塔具有狭长的视窗,适合那些对空间和安装有较高要求的地方使用;多面塔具有多种多样的表面处理,能够满足不同空间要求。

【控制系统的设计】为了确保填料处于正常的吸收状态,在水吸收二氧化硫填料吸收塔中还要安装有一套控制系统。

比如安装湿度传感器、温度传感器、液位传感器等,用来实时监测水壶中的水位和湿度,从而保证吸收效果。

此外,还可以安装一个消防报警系统和一个紧急报警系统,以便及时处理应急事件。

【结论】水吸收二氧化硫填料吸收塔是重要的污染控制设备,它可以有效地将工业废气中的二氧化硫转换为亚硫酸盐,从而净化空气。

在设计水吸收二氧化硫填料吸收塔时,要按照工艺要求合理选择填料、塔体和控制系统,以确保吸收塔的良好性能和可靠运行。

二氧化硫填料吸收塔设计

二氧化硫填料吸收塔设计

二氧化硫填料吸收塔设计1. 引言二氧化硫(SO2)是一种常见的空气污染物,对环境和人体健康有害。

为了减少二氧化硫的排放和净化废气中的二氧化硫,设计二氧化硫填料吸收塔是一种有效的方法。

本文将详细介绍二氧化硫填料吸收塔的设计原理、材料选择、结构设计和操作参数的考虑。

2. 填料选择2.1 填料的作用填料是二氧化硫填料吸收塔的关键组成部分,其作用是增大塔内液相与气相的接触面积,提高反应效率。

常用的填料材料有陶瓷球、聚苯乙烯球等。

2.2 填料的选择原则选择填料时,需要考虑以下因素:•填料的比表面积:填料的比表面积越大,液相与气相接触的表面积越大,吸收效果越好;•填料的孔隙率:填料的孔隙率越大,液相流过填料的阻力越小,液相的分布均匀性越好;•填料的耐腐蚀性:填料需要具有良好的耐腐蚀性,以防止填料被废气中的酸性物质腐蚀导致破损。

3. 结构设计二氧化硫填料吸收塔的结构设计需要考虑以下几个方面:3.1 塔体材料由于填料吸收塔需要处理酸性废气,塔体材料需要具有较好的耐腐蚀性。

常用的材料有不锈钢、玻璃钢等。

3.2 塔底设计塔底需要设计排污口和集液装置,以便进行废液的排放和收集。

3.3 液相分布器设计液相分布器的设计需要保证液相均匀地分布到整个填料层,以确保液相与气相充分接触。

3.4 气相进出口设计塔体需要设计进出口口径和位置,以满足废气的进出要求,并尽量减小压力损失。

4. 操作参数考虑在二氧化硫填料吸收塔的设计中,需要考虑以下操作参数:•塔体所处的压力: 塔体所需承受的压力取决于废气的压力;•废气的流量:废气的流量将影响填料层的高度和填料的选择;•溶液的流量:溶液的流量需要根据废气中二氧化硫的浓度来确定,以达到较高的吸收效率。

5. 总结本文详细介绍了二氧化硫填料吸收塔的设计原理、填料选择、结构设计和操作参数的考虑。

通过合理的设计和优化,二氧化硫填料吸收塔可以有效地净化废气中的二氧化硫,降低空气污染。

在实际应用中,还需要考虑到经济性和可操作性等因素,以实现更好的效果。

课程设计二氧化硫吸收塔

课程设计二氧化硫吸收塔

一、课程设计任务书1.1、设计题目:设计一座填料吸收塔,用于脱除混合气体中的SO2,其余为惰性组分,采用清水进行吸收。

1.2、工艺操作条件:(1)操作压力常压(2)操作温度:25℃表一工艺操作条件1.3、设计任务:(1)吸收方案和工艺流程的说明(2)填料吸收塔的工艺计算;(3)填料吸收塔设备设计;(4)制备工艺流程图、设备图;(5)编写设计说明书。

二、设计方案的确定2.1、吸收剂的选择吸收塔或再生塔内气液相可以逆流操作也可以并流操作,由于逆流操作具有传质推动力大,分离效率高(具有多个理论级的分离能力)的显著优点而广泛应用。

用水吸收SO2属中等溶解度的吸收过程,选用逆流吸收流程。

因用水作为吸收剂,且SO2不作为产品,故采用纯溶剂。

2.2 填料的选择填料的选择包括确定填料的种类,规格及材料。

填料的种类主要从传质效率,通量,填料层的压降来考虑,填料规格的选择常要符合填料的塔径与填料公称直径比值D/d。

填料的材质分为陶瓷、金属和塑料三大类。

对于水吸收S02的过程、操作、温度及操作压力较低,工业上通常选用所了散装填料。

本设计中采用散装填料,工业常用的主要有选用DN16、DN25、DN38、D N50、DN76等几种规格。

同类填料,尺寸越小,分离效率越高,但阻力增加,通量减小,填料费用也增加很多。

塑料填料具有质轻、价廉、耐冲击、不易破碎等优点,多用于吸收、解吸、萃取等装置。

但其缺点是表面润湿性能差,在某些特殊场合,需要对其表面进行处理,以提高表面润湿性能。

综合各点因素,在所了散装填料中,塑料阶梯环填料的综合性能较好,故此选用塑料阶梯环填料。

表2 填料尺寸与塔径的对应关系2.3设计步骤本课程设计从以下几个方面的内容来进行设计(一)吸收塔的物料衡算;(二)填料塔的工艺尺寸计算;主要包括:塔径,填料层高度,填料层压降;(三)设计液体分布器及辅助设备的选型;(四)绘制有关吸收操作图纸。

三、装置的工艺计算:3.1基础物性数据3.1.1 液相物性数据对低浓度吸收过程,溶液的物性数据可近似取纯水的物性数据。

水吸收二氧化硫填料塔的设计

水吸收二氧化硫填料塔的设计

化工原理课程设计题目水吸收二氧化硫填料塔的设计教学院化工与材料工程学院专业班级材化0901学生姓名学生学号指导教师2011年 7月5 日课程设计任务书1、设计题目:处理量为2750m3/h水吸收二氧化硫过程填料吸收塔的设计;矿石焙烧炉送出的气体冷却到20℃后送入填料塔中,用20℃清水洗涤洗涤除去其中的SO2。

入塔的炉气流量为2750m3/h,其中进塔SO2的摩尔分率为0.05,要求SO2的吸收率为95%。

吸收塔为常压操作,因该过程液气比很大,吸收温度基本不变,可近似取为清水的温度。

吸收剂的用量为最小用量的1.5倍。

2、工艺操作条件:(1)操作平均压力常压(2)操作温度t=20℃(3)选用填料类型及规格自选。

3、设计任务:完成干燥器的工艺设计与计算,有关附属设备的设计和选型,绘制吸收系统的工艺流程图和吸收塔的工艺条件图,编写设计说明书。

化工原理教研室 2011年5月目录第1章绪论 (1)1.1吸收技术概况 (1)1.2吸收设备的发展 (1)1.3吸收在工业生产中的应用 (2)第2章设计方案 (2)2.1吸收剂的选择 (4)2.2吸收流程的选择 (4)2.2.1吸收工艺流程的确定 (4)2.3吸收塔设备及填料的选择 (4)2.3.1吸收塔的设备选择 (4)2.3.2填料的选择 (5)2.4吸收剂再生方法的选择 (6)2.5操作参数的选择 (7)第3章吸收塔的工艺计算 (9)3.1基础物性数据 (9)3.1.1液相物性数据 (9)3.1.2气相物性数据 (9)3.1.3气液相平衡数据 (9)3.2物料衡算 (10)3.3填料塔的工艺尺寸的计算 (11)3.3.1塔径的计算 (11)3.3.2泛点率校核 (11)3.3.3填料规格校核: (11)3.3.4液体喷淋密度校核 (11)3.4填料塔填料高度计算 (12)3.4.1传质单元高度计算 (12)3.4.2传质单元数的计算 (14)3.5填料塔附属高度计算 (14)3.6液体分布器计算 (15)3.6.1液体分布器 (15)3.6.2布液孔数 (17)3.6.3 液体保持管高度 (17)3.7其他附属塔内件的选择 (17)3.7.1填料支承板 (17)3.7.2除沫器(除雾器) (17)3.7.3管口结构 (18)3.8吸收塔的流体力学参数的计算 (19)3.8.1吸收塔的压力降 (19)3.8.2吸收塔的泛点率 (20)3.8.3气体动能因子 (20)3.9附属设备的计算与选择 (20)3.9.1离心泵的选择与计算 (20)3.9.2吸收塔的主要接管尺寸的计算 (21)工艺设计主要符号说明 (22)评述与讨论 (24)结束语 (25)参考文献 (26)第1章绪论1.1吸收技术概况在化学工业中,经常需将气体混合物中的个各组分加以分离。

课程设计二氧化硫吸收塔

课程设计二氧化硫吸收塔

一、课程设计任务书、设计题目:设计一座填料吸收塔,用于脱除混合气体中的SO2,其余为惰性组分,采用清水进行吸收。

、工艺操作条件:(1)操作压力常压(2)操作温度:25℃表一工艺操作条件、设计Array任务:(1)吸收方案和工艺流程的说明(2)填料吸收塔的工艺计算;(3)填料吸收塔设备设计;(4)制备工艺流程图、设备图;(5)编写设计说明书。

二、设计方案的确定、吸收剂的选择吸收塔或再生塔内气液相可以逆流操作也可以并流操作,由于逆流操作具有传质推动力大,分离效率高(具有多个理论级的分离能力)的显着优点而广泛应用。

用水吸收SO2属中等溶解度的吸收过程,选用逆流吸收流程。

因用水作为吸收剂,且SO2不作为产品,故采用纯溶剂。

填料的选择填料的选择包括确定填料的种类,规格及材料。

填料的种类主要从传质效率,通量,填料层的压降来考虑,填料规格的选择常要符合填料的塔径与填料公称直径比值D/d。

填料的材质分为陶瓷、金属和塑料三大类。

对于水吸收S02的过程、操作、温度及操作压力较低,工业上通常选用所了散装填料。

本设计中采用散装填料,工业常用的主要有选用DN16、DN25、D N38、D N50 、DN76等几种规格。

同类填料,尺寸越小,分离效率越高,但阻力增加,通量减小,填料费用也增加很多。

塑料填料具有质轻、价廉、耐冲击、不易破碎等优点,多用于吸收、解吸、萃取等装置。

但其缺点是表面润湿性能差,在某些特殊场合,需要对其表面进行处理,以提高表面润湿性能。

综合各点因素,在所了散装填料中,塑料阶梯环填料的综合性能较好,故此选用塑料阶梯环填料。

表2 填料尺寸与塔径的对应关系设计步骤本课程设计从以下几个方面的内容来进行设计(一)吸收塔的物料衡算;(二)填料塔的工艺尺寸计算;主要包括:塔径,填料层高度,填料层压降;(三)设计液体分布器及辅助设备的选型;(四)绘制有关吸收操作图纸。

三、装置的工艺计算:基础物性数据液相物性数据对低浓度吸收过程,溶液的物性数据可近似取纯水的物性数据。

水吸收二氧化硫填料吸收塔的设计

水吸收二氧化硫填料吸收塔的设计

吉林化工大学化工原理课程设计题目水吸收二氧化硫填料吸收塔的设计教学院化学与制药工程学院专业班级应化0701学生姓名学生学号 07220101指导教师2009年12月 8 日化工原理课程设计任务书设计题目:水吸收二氧化硫填料吸收塔的设计1、设计题目:水吸收二氧化硫过程填料吸收塔的设计;矿石焙烧炉送出的气体冷却到20℃后送入填料塔中,用20℃清水洗涤除去其中的SO2。

入塔的炉气流量为1000m3/h,其中进塔SO2的摩尔分率为0.03,要求SO2的吸收率为99.99%。

吸收塔为常压操作,因该过程液气比很大,吸收温度基本不变,可近似取为清水的温度。

吸收剂的用量为最小用量的1.3倍。

2、工艺操作条件:(1)操作平均压力:常压(2)操作温度: t=20℃(3)每年生产时间: 7200h3、设计任务:1.完成干燥器的工艺设计与计算(包括塔径与塔高的计算,填料的选取)。

2.绘制吸收系统的工艺流程图,吸收塔的设备条件图。

3.编写该吸收塔的设计说明书。

目录摘要 ................................................................................................................................................ 错误!未定义书签。

1绪论............................................................................................................................................ 错误!未定义书签。

1.1气体吸收的概述 ....................................................................................................................... 错误!未定义书签。

课程设计(清水吸收二氧化硫)

课程设计(清水吸收二氧化硫)

填料吸收塔课程设计说明书专 业化 学 制 药 班 级 制药111 姓 名 永朋 班 级 学 号 1132104138 指 导 老 师 郁 日 期 2013-04-10成 绩Xuzhou College of Industrial Technology化工单元操作课程设计任务书班级:制药111 :永朋学号:1132104138常压下,在填料吸收塔中用清水吸收炉气中的二氧化硫一、设计条件1.操作方式:连续操作;2.生产能力:处理炉气量:2500+学号3/m h;3.操作温度:25℃;4.操作压力:常压101.3kPa;5.进塔混合气含量;二氧化硫的体积分数为(5.0+学号×0.01)%;其余为空气;6.进塔吸收剂:清水;7.二氧化硫回收率:95%;二、设计要求1.流程布置与说明;2.工艺过程计算;3.填料的选择;4.填料塔工艺尺寸的确定;5.输送机械功率的选型;三、设计成果1.设计任务书一份(A4打印);2.设计图纸:填料工艺条件图(CAD:A3幅面)四、设计时间(化学制药111班)2013年3月25日-------2013年4月5日化学制药教研室2013年3月目录摘要:................................................................................................................................................................ - 1 - 1、前言.............................................................................................................................................................. - 2 -1、1填料塔的简介................................................................................................................................... - 2 -1、2吸收技术概括................................................................................................................................... - 2 -1、3吸收操作在化学生产中的主要用途为: ....................................................................................... - 3 -1、4 填料的选择...................................................................................................................................... - 3 -1、4、1 对填料的要求 ................................................................................................................. - 3 -1、4、2 填料的种类和特性............................................................................................................ - 4 -1、4、3 填料尺寸............................................................................................................................ - 4 -1、4、4填料材质的选择................................................................................................................. - 4 -2、水吸收二氧化硫填料塔设计...................................................................................................................... - 5 -2、1 任务及操作条件.............................................................................................................................. - 5 -2、2 吸收工艺流程图的确定.................................................................................................................. - 5 -3、吸收工艺计算.............................................................................................................................................. - 6 -3、1 基础物性计算.................................................................................................................................. - 6 -3、1、1 液相物性计算.................................................................................................................... - 6 -3、1、2 气相物性计算.................................................................................................................... - 6 -3、1、3 气液相平衡数据................................................................................................................ - 7 -3、2 物料衡算.......................................................................................................................................... - 7 -3、2、1 操作线方程........................................................................................................................ - 8 -3、3 填料塔的工艺尺寸的计算.............................................................................................................. - 9 -3、3、1 塔径的计算........................................................................................................................ - 9 -3、3、2 液体喷淋密度的求法: .................................................................................................. - 12 -3、3、3 传质单元高度的计算 ...................................................................................................... - 14 -3、3、4 传质单元数计算:.......................................................................................................... - 17 -3、3、5 填料层的高度.................................................................................................................. - 18 -3、4 填料层压降的计算........................................................................................................................ - 18 -3、5 液体分布器计算............................................................................................................................ - 20 -3、5、1 液体分布器:.................................................................................................................. - 20 -3、5、2 液体分布器简要设计 ...................................................................................................... - 21 -3、6 塔附属空间高度............................................................................................................................ - 23 -3、7 其他附属塔件的选择.................................................................................................................... - 24 -3、7、1 填料支撑装置.................................................................................................................. - 24 -3、7、2 填料限定装置.................................................................................................................. - 24 -3、7、3 气体和液体的进出口装置 .............................................................................................. - 24 -3、7、4 除沫器.............................................................................................................................. - 25 -3、8 设计结果汇总................................................................................................................................ - 26 -3、9 主要符号说明................................................................................................................................ - 27 - 课程设计总结:.............................................................................................................................................. - 30 - 参考文献:...................................................................................................................................................... - 31 -摘要:气体吸收过程是化工生产中常用的气体混合物的分离操作,其基本原理是利用气体混合物中的各组分在特定的液体吸收剂中的溶解度不同,实现各组分分离的单元操作。

水吸收so2填料吸收塔设计答辩

水吸收so2填料吸收塔设计答辩

水吸收so2填料吸收塔设计答辩摘要:一、引言二、水吸收SO2 填料吸收塔设计原理1.SO2 的性质2.水吸收SO2 的过程3.填料吸收塔的结构和工作原理三、设计过程1.确定吸收流程2.物料衡算3.设计塔顶和塔底的气液流量4.设计塔内装填料5.确定操作条件四、设计结果1.塔顶和塔底的SO2 含量2.吸收效率3.吸收塔的尺寸和材质五、总结与展望正文:一、引言近年来,随着我国经济的快速发展,工业生产带来的环境问题日益严重。

其中,二氧化硫(SO2)排放是导致酸雨的主要原因之一。

为了减少SO2 的排放,研究有效的SO2 吸收方法具有重要意义。

本文主要介绍了一种水吸收SO2 填料吸收塔的设计方法。

二、水吸收SO2 填料吸收塔设计原理1.SO2 的性质二氧化硫是一种无色、有刺激性气味的气体,易溶于水,与水反应生成亚硫酸(H2SO3)。

2.水吸收SO2 的过程水吸收SO2 的过程主要分为以下两个步骤:(1)气液反应:SO2 与水反应生成亚硫酸(H2SO3);(2)亚硫酸的解离:亚硫酸在溶液中解离为H+和HSO3-。

3.填料吸收塔的结构和工作原理填料吸收塔是一种常用的气液反应设备,主要由塔体、填料、喷嘴和进出口组成。

塔内填料用于增加气液接触面积,提高吸收效率。

在工作过程中,SO2 气体从塔底进入,通过填料层,与从塔顶喷淋下来的吸收液进行气液反应,实现SO2 的吸收。

三、设计过程1.确定吸收流程根据水吸收SO2 的过程,确定采用逆流操作,使气体在塔内自下而上流动,吸收液自上而下喷淋。

2.物料衡算根据吸收过程的化学反应方程式,进行物料衡算,确定塔顶和塔底的气液流量。

3.设计塔顶和塔底的气液流量根据物料衡算结果,设计塔顶和塔底的气液流量,以保证吸收塔内的气液充分接触。

4.设计塔内装填料选择适当的填料,以增加气液接触面积,提高吸收效率。

5.确定操作条件根据实验数据和设计要求,确定吸收塔的操作条件,如喷淋密度、气速等。

四、设计结果1.塔顶和塔底的SO2 含量根据设计要求,塔顶SO2 含量不高于0.26%,塔底SO2 含量不低于0.1%。

水吸收_低浓度二氧化硫_填料吸收塔_设计

水吸收_低浓度二氧化硫_填料吸收塔_设计

水吸收低浓度SO2填料吸收塔设计第一部分设计任务、依据和要求一、设计任务及操作条件1、混合气体(空气中含SO2气体的混合气体)处理量为90 kmol/h2、混合气体组成:SO2含量为7.6%(摩尔百分比),空气为:92.4%(mol/%)3、要求出塔净化气含SO2为:0.145%(mol/%),H2O为:1.172 kmol/h4、吸收剂为水,不含SO25、常压,气体入塔温度为25°C,水入塔温度为20°C。

二、设计内容1、设计方案的确定2、填料吸收塔的塔径、填料层高度及填料层压强的计算。

3、填料塔附属结构的选型与设计。

4、填料塔工艺条件图。

三、H2O- SO2 在常压20 °C下的平衡数据x y x y0.00281 0.0776 0.000423 0.007630.001965 0.0513 0.000281 0.00420.001405 0.0342 0.0001405 0.001580.000845 0.0185 0.0000564 0.000660.000564 0.0112四、 气体与液体的物理性质数据气体的物理性质:气体粘度()0.0652/G u kg m h =⋅气体扩散系数20.0393/G D m s =气体密度31.383/G kg m ρ=液体的物理性质:液体粘度 3.6/()L u kg m h =⋅液体扩散系数625.310/L D m s -=⨯液体密度 3998.2/L kg m ρ=液体表面张力 4273/92.7110/L dyn cm kg h σ==⨯五、 设计要求1、设计计算说明书一份2、填料塔图(2号图)一张第二部分 SO2净化技术和设备一、SO2的来源、性质及其危害:1、二氧化硫的来源二氧化硫的来源很广泛,几乎所有企业都要产生二氧化硫,最主要途径是含硫化石燃料的燃烧。

大约一吨煤中含有5-50kg硫,一吨石油中含有5-30kg硫。

板式吸收塔的设计

板式吸收塔的设计

板式吸收塔设计任务书一设计题目水吸收二氧化硫板式吸收塔设计二设计任务及操作条件1 设计任务混合气体的处理为20000m3/h ,其中废气进入塔的浓度为0.3%(体积比),其余组分为惰性气体(空气)。

要求采用清水进行吸收,吸收效率为98%。

2 操作条件:塔顶表压力0.3atm ,操作温度30℃3 塔板类型: 泡罩式塔板4 设备型式:塔板三设计内容1 设计方案的选择及流程说明2 吸收塔的基础物性数据3 吸收塔的物料衡算4 吸收塔的工艺尺寸的计算5 溢流装置的计算6 塔板的流体力学验算7 塔板负荷性能图;8 板式塔的结构与附属设备的计算9 设计结果汇总表10 设计心得11 主要参数说明12 绘制生产工艺流程图13 绘制主要设备结构总装图板式吸收塔设计说明书目录第一章设计方案的简介 (4)1.1 概述 (4)1.1.1 塔设备的类型 (4)1.1.2 板式塔与填料塔的比较及选型 (4)1.2 板式塔的设计 (5)1.2.1 设计方案——装置流程的确定 (6)1.2.2 塔板的类型与选择 (6)第二章板式塔工艺尺寸计算 (9)2.1 基础物性数据 (9)2.1.1 液相物性数据 (9)2.1.2 气相物性数据 (9)2.1.3 气液相平衡数据 (9)2.2 物料衡算 (9)2.3 板式吸收塔的工艺尺寸的计算 (10)2.3.1 塔径计算 (10)2.3.2 塔截面积 (10)2.3.2 塔截面积 (10)2.4 溢流装置的计算 (10)2.4.1 溢流堰长 (10)2.4.2 出口堰高 (10)2.4.3 降液管的宽度和降液管的面积 (10)2.4.4 降液管底隙高度 (11)2.4.5 塔板布置 (11)2.5 塔板的流体力学验算 (11)2.6 塔板负荷性能图 (13)2.6.1 漏液线 (13)2.6.2 雾沫夹带线 (13)2.6.3 液相负荷下限线 (14)2.6.4 液相负荷上限线 (15)2.6.5 液泛线 (15)第三章板式塔的结构与附属设备 (18)3.1 塔体结构 (18)3.2 塔板结构 (18)第四章设计结果总汇 (20)4.1 板式塔设计汇总表 (20)4.2 结束语 (21)附录1 主要符号说明附录2 参考文献附图一板式吸收塔工艺流程简图附图二板式塔的装配图第一章设计方案的简介1.1 概述1.1.1 塔设备的类型塔设备是化工,石油化工,生物化工,制药等生产过程中广泛应用的气液传质设备。

水吸收二氧化硫填料塔设计

水吸收二氧化硫填料塔设计

课程设计课程名称:化工原理课程设计设计题目:水吸收二氧化硫烟气的填料塔设计学院:环境科学与工程学院专业:再生资源科学与技术年级: XXX级学生姓名: XXX 指导教师: XXX 日期: 2013.6.24-2013.7.5课程设计任务书一、设计任务及操作条件烟气的填料塔设计设计题目:水吸收SO2操作条件:(1)混合烟气处理量为1000m3/h(30℃,100KN/m2);,其余可视为空气;(2)进塔气体组成:9%(体积比)SO2(3)回收其中所含SO的95%;2(4)吸收塔操作温度为30℃,压力位100KN/m2;(5)液气比为最小液气比的1.2倍;(6)空塔气速取泛点气速的0.65倍;(7)填料:自选;二、设计内容1.设计方案的选择及流程的确定;2.塔的物料衡算和热量衡算;3.塔的主要工艺尺寸确定:(1)塔高的确定;(2)塔径的确定;(3)全塔压降的验算;4.辅助设备的选型与计算;5.绘制工艺流程图;6.绘制填料塔设备图;7.编写设计说明书。

摘要:吸收是分离气体混合物的单元操作,其分离原理是利用气体混合物中各组分在液体溶剂中溶解度的差异来实现不同气体的分离。

一个完整的吸收过程应包括吸收和解吸两部分。

气体吸收过程是利用气体混合物中,各组分在液体中溶解度或化学反应活性的差异,在气液两相接触时发生传质,实现气液混合物的分离。

在化工生产过程中,原料气的净化,气体产品的精制,治理有害气体,保护环境等方面都广泛应用到气体吸收过程。

本次化工原理课程设计的目的是根据设计要求采用填料吸收塔的方法处理含有二氧化硫的混合物,使其达到排放标准,采用填料吸收塔吸收操作是因为填料可以提供巨大的气液传质面积而且填料表面具有良好的湍流状况,关键词:吸收单元操作解析目录第1章绪论 (1)1.1吸收技术概况 (1)1.2吸收在工业生产中的应用 (2)1.3 吸收设备的发展 (2)第2章设计方案 (4)2.1吸收剂的选择 (4)2.2 吸收流程的选择 (5)2.2.1 气体吸收过程分类 (5)2.2.2 吸收装置的流程 (5)2.3吸收塔设备及填料的选择 (6)2.3.1 吸收塔设备 (6)2.3.2 填料的选择 (7)2.4吸收剂再生方法的选择 (7)2.5操作参数的选择 (8)2.5.1操作温度的确定 (8)2.5.2操作压力的确定 (8)第3章吸收塔工艺条件的计算 (10)3.1基础物性数据 (10)3.1.1液相物性数据 (10)3.1.2气相物性数据 (10)3.1.3气液两相平衡时的数据 (10)3.2物料衡算 (11)3.3填料塔的工艺尺寸计算 (11)3.3.1塔径的计算 (11)3.3.2泛点率校核和填料规格 (12)3.3.3液体喷淋密度校核 (13)3.4填料层高度计算 (13)3.4.1传质单元数的计算 (13)3.4.2传质单元高度的计算 (13)3.4.3填料层高度的计算 (14)3.5填料塔附属高度的计算 (14)3.6液体分布器的简要设计 (15)3.6.1液体分布器的选型 (15)3.6.2分布点密度及布液孔数的计算 (16)3.6.3塔底液体保持管高度的计算 (17)3.7其它附属塔内件的选择 (17)3.7.1 填料支撑板 (17)3.7.2 填料压紧装置与床层限制板 (17)3.7.3气体进出口装置与排液装置 (18)3.8流体力学参数计算 (18)3.8.1填料层压力降的计算 (18)3.8.2吸收塔主要接管的尺寸计算 (19)3.8.3离心泵的计算与选择 (20)第4章工艺设计计算结果汇总与主要符号说明 (23)4.1填料塔工艺尺寸计算结果表 (23)4.2流体力学参数计算结果汇总 (24)4.3附属设备计算结果汇总 (24)D聚丙烯塑料阶梯环填料主要性能参数汇总 (25)4.4所用38N4.5主要符号说明 (25)第5章设计方案讨论 (27)第6章心得体会 (28)附录 (29)参考文献 (32)第1章绪论1.1吸收技术概况利用混合气体中各组分在同一种溶剂(吸收剂)中溶解度的不同分离气体混合物的单元操作称为吸收。

化工原理课程设计报告——30℃时水吸收二氧化硫填料塔的设计

化工原理课程设计报告——30℃时水吸收二氧化硫填料塔的设计

.《化工原理》课程设计报告题目:处理量为1000m3/h清水吸收二氧化硫填料吸收塔设计系别:环境科学与工程学院专业班级:环境工程11(2)班姓名:陈新林学号:3111007481指导教师:郑育英(课程设计时间:2013年12月30日——2014年1月5日)广东工业大学目录1.课程设计目的 (1)2.课程设计题目描述和要求 (1)3.课程设计报告内容 (4)3.1基础物性数据 (4)3.1.1液相物性数据 (4)3.1.2气相物性数据 (5)3.1.3气液相平衡数据 (6)3.2物料衡算 (6)3.3塔径计算 (7)3.3.1塔径的计算 (8)3.3.2泛点率校核: (8)3.3.3填料规格校核: (9)3.3.4液体喷淋密度得校核: (9)3.4填料层高度的计算 (9)3.4.1传质单元数的计算 (9)3.4.2传质单元高度的计算 (10)3.4.3填料层高度的计算 (11)3.5填料塔附属高度的计算 (11)3.6液体分布器计算 (12)3.6.1液体分布器的选型 (12)3.6.2布液计算 (13)3.7其他附属塔内件的选择 (13)3.7.1填料支承装置的选择 (13)3.7.2填料压紧装置 (16)3.7.3塔顶除雾器 (17)3.8吸收塔的流体力学参数计算 (17)3.8.1吸收塔的压力降 (17)3.8.2吸收塔的泛点率 (18)3.8.3气体动能因子 (18)3.9附属设备的计算与选择 (18)3.9.1离心泵的选择与计算 (18)3.9.2吸收塔主要接管尺寸选择与计算 (24)工艺设计计算结果汇总与主要符号说明 (24)4.总结 (26)参考文献 (27)1. 课程设计目的化工原理课程设计是学生学过相关基础课程及化工原理理论与实验后,进一步学习化工设计的基础知识,培养工程设计能力的重要教学环节。

通过该环节的实践,可使学生初步掌握单元操作设计的基本程序与方法,得到工程设计能力的基本锻炼。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水吸收低浓度SO2填料吸收塔设计第一部分设计任务、依据和要求一、设计任务及操作条件1、混合气体(空气中含SO2气体的混合气体)处理量为90 kmol/h2、混合气体组成:SO2含量为7.6%(摩尔百分比),空气为:92.4%(mol/%)3、要求出塔净化气含SO2为:0.145%(mol/%),H2O为:1.172 kmol/h4、吸收剂为水,不含SO25、常压,气体入塔温度为25°C,水入塔温度为20°C。

二、设计内容1、设计方案的确定2、填料吸收塔的塔径、填料层高度及填料层压强的计算。

3、填料塔附属结构的选型与设计。

4、填料塔工艺条件图。

三、H2O- SO2 在常压20 °C下的平衡数据四、 气体与液体的物理性质数据气体的物理性质:气体粘度()0.0652/G u kg m h =⋅ 气体扩散系数20.0393/G D m s = 气体密度31.383/G kg m ρ=液体的物理性质:液体粘度 3.6/()L u kg m h =⋅ 液体扩散系数625.310/L D m s -=⨯ 液体密度 3998.2/L kg m ρ=液体表面张力 4273/92.7110/L dyn cm kg h σ==⨯五、 设计要求1、设计计算说明书一份2、填料塔图(2号图)一张第二部分 SO2净化技术和设备一、SO2的来源、性质及其危害:1、二氧化硫的来源二氧化硫的来源很广泛,几乎所有企业都要产生二氧化硫,最主要途径是含硫化石燃料的燃烧。

大约一吨煤中含有5-50kg硫,一吨石油中含有5-30kg硫。

这些燃料经燃烧都产生并排放出二氧化硫,占所有排放总量的96%.二氧化硫的来源包括微生物活动,火山活动,森林火灾以及海水飞沫。

主要有自然来源和人为来源两大类:自然来源主要是火山活动,喷出的火山气体中含有大量的二氧化硫气体,地质深处的天然硫元素在火山喷发过程中燃烧氧化为二氧化硫,随火山灰一起喷射到大气中。

地球上57%的二氧化硫来自自然界,沼泽、洼地、大陆架等处所排放的硫化氢,进入大气,被空气中的氧氧化为二氧化硫。

自然排放大约占大气中全部二氧化硫的一半,通过自然循环过程,自然排放的硫基本上是平衡的。

人为来源则指在人类进行生产、生活活动中,使用含硫及其化合物的矿石进行燃烧,以及硫矿石的冶炼和硫酸、磷肥纸浆的生产等产生的工业废气,从而使其中一部分或全部的硫以二氧化硫的形式排放到大气中,形成二氧化硫污染。

这部分二氧化硫占地球上二氧化硫来源的43%。

随着化石燃料消费量的不断增加,全世界认为排放的二氧化硫在不断在增加,其中北半球排放的二氧化硫占人为排放总量的90%。

我国的能源主要依靠煤炭和石油,而我国的煤炭、石油一般含硫量较高,因此,火力发电厂、钢铁厂、冶炼厂、化工厂和炼油厂排放出的大量二氧化硫和二氧化碳是造成我国大气污染的主要原因。

由于我国部分地区燃用高硫煤,燃煤设备未能采取脱硫措施,致使二氧化硫排放量不断增加,造成严重的环境污染。

2、二氧化硫的性质(1)物理性质:二氧化硫又名亚硫酸酐,英文名称: sulfur dioxide 。

无色气体,有强烈刺激性气味。

分子量64.07 密度为1.4337kg/m3 (标准状况下),密度比空气大。

溶解度:9.4g/mL(25℃)熔点-76.1℃(200.75K)沸点-10℃ (263K)蒸汽压338.32kPa(2538mmHg,21.11℃)易溶于水,在338.32kPa水中溶解度为8.5%(25℃);易容于甲醇和乙醇;容于硫酸、乙酸、氯仿和乙醚等。

易液化(mp:-10℃)。

(2)化学性质:二氧化硫是一种酸性氧化物,它极易溶于水,其水溶液呈酸性,为亚硫酸水溶液。

实际上,二氧化硫水溶液中成分为SO2·7H2O,仅含有微量的亚硫酸,但是亚硫酸盐含有亚硫酸根离子。

所谓的亚硫酸水溶液能被空气逐渐氧化成硫酸,其浓度越低氧化越快,而且一经加热就会有自行氧化。

二氧化硫在完全燃烧干燥时几乎不与氧气发生反应,当在有初生态氧的燃烧环境下,或者对二氧化硫与氧气的混合物进行放电,则有氧化反应发生。

氧化性:SO2+2H2S=3S+2H2O ;还原性:能被Cl2、Br2、I2、Fe3+、KMnO4、HNO3等强氧化剂氧化成高价态硫元素。

SO2+X2+2H2O=H2SO4+2HX3 、二氧化硫的危害二氧化硫对人体及动物健康的危害:主要是对眼角膜和上呼吸道粘膜的强烈刺激作用。

其浓度与反应关系如下:0.4毫克/立方米时无不良反应;0.7毫克/立方米时,普遍感到上呼吸道及眼睛的刺激;2.6毫克/立方米时,短时间作用即可反射性的引起器官、支气管平滑肌收缩,使呼吸道阻力增加。

一般认为空气中二氧化硫浓度达1.5毫克/立方米,对人体健康即为有危害,长期接触主要引起鼻、咽、支气管,嗅觉障碍和尿中硫酸盐增加。

吸入高浓度二氧化硫,可引起支气管炎、肺炎,严重时可发生肺水肿及呼吸中枢麻痹。

二氧化硫进入呼吸道后,因其易溶于水,故大部分被阻滞在上呼吸道,在湿润的粘膜上生成具有腐蚀性的亚硫酸、硫酸和硫酸盐,使刺激作用增强。

上呼吸道的平滑肌因有末梢神经感受器,遇刺激就会产生窄缩反应,使气管和支气管的管腔缩小,气道阻力增加。

上呼吸道对二氧化硫的这种阻留作用,在一定程度上可减轻二氧化硫对肺部的刺激。

但进入血液的二氧化硫仍可通过血液循环抵达肺部产生刺激作用。

二氧化硫进入血液可引起全身性毒作用,破坏酶的活性,影响糖及蛋白质的代谢;对肝脏有一定损害。

液态二氧化硫可使角膜蛋白质变性引起视力障碍。

二氧化硫与烟尘同时污染大气时,两者有协同作用。

因烟尘中含有多种重金属及其氧化物,能催化二氧化硫形成毒性更强的硫酸雾。

因加剧其毒性作用。

动物试验证明,二氧化硫慢性中毒后,机体的免疫受到明显抑制。

大量吸入可引起肺水肿、喉水肿、声带痉挛而致窒息。

急性中毒:轻度中毒时,发生流泪、畏光、咳嗽,咽、喉灼痛等;严重中毒可在数小时内发生肺水肿;极高浓度吸入可引起反射性声门痉挛而致窒息。

皮肤或眼接触发生炎症或灼伤。

慢性影响:长期低浓度接触,可有头痛、头昏、乏力等全身症状以及慢性鼻炎、咽喉炎、支气管炎、嗅觉及味觉减退等。

少数工人有牙齿酸蚀症。

二氧化硫浓度为10~15ppm时,呼吸道纤毛运动和粘膜的分泌功能均能受到抑制。

浓度达20ppm时,引起咳嗽并刺激眼睛。

若每天吸入浓度为100ppm 8小时,支气管和肺部出现明显的刺激症状,使肺组织受损。

浓度达400ppm时可使人产生呼吸困难。

二氧化硫与飘尘一起被吸入,飘尘气溶胶微粒可把二氧化硫带到肺部使毒性增加3~4倍。

若飘尘表面吸附金属微粒,在其催化作用下,使二氧化硫氧化为硫酸雾,其刺激作用比二氧化硫增强约1倍。

长期生活在大气污染的环境中,由于二氧化硫和飘尘的联合作用,可促使肺泡纤维增生。

如果增生范围波及广泛,形成纤维性病变,发展下去可使纤维断裂形成肺气肿。

二氧化硫可以加强致癌物苯并(α)芘的致癌作用。

据动物试验,在二氧化硫和苯并(α)芘的联合作用下,动物肺癌的发病率高于单个因子的发病率,在短期内即可诱发肺部扁平细胞癌。

二氧化硫对植物的危害:大气中含二氧化硫过高,对叶子的危害首先是对叶肉的海绵状软组织部分,其次是对栅栏细胞部分。

侵蚀开始时,叶子出现水浸透现象,特别是介于叶边和叶脉之间的部分损害尤为严重。

干燥后,受影响的叶面部分呈白色或乳白色。

10 ,并持续几天后,就会对敏感性如果二氧化硫的浓度为(0.3-0.5)×6植物产生慢性损害。

二氧化硫直接进入气孔,叶肉中的植物细胞使其转化为亚硫酸盐,再转化成硫酸盐。

当过量的二氧化硫存在时,植物细胞就不能尽快地把亚硫酸盐转化成硫酸盐,并开始破坏细胞结构。

菠菜,莴苣和其他叶状蔬菜对二氧化硫最为敏感。

棉花和苜蓿也都很敏感。

松针也受其影响,不论叶尖或是整片针叶都会变成褐色,并且很脆弱。

二氧化硫对建筑物及其它的危害:大气中的二氧化硫及其生成的酸雾、酸滴等,能使金属表面产生严重的腐蚀,使纺织品、纸品、皮革制品等腐蚀破损,使金属涂料变质,降低其保护效果。

造成金属腐蚀最为有害的污染物一般是二氧化硫,已观察到城市大气中金属的腐蚀率约是农村环境中腐蚀率的1.5-5倍。

温度尤其是相对湿度皆显著影响着腐蚀速度。

含硫物质或硫酸会侵蚀多种建筑材料,如石灰石、大理石、花岗岩、水泥砂浆等,这些建筑材料先形成较易溶解的硫酸盐,然后被雨水冲刷掉。

尼龙织物,尤其是尼龙管道等,其老化显然是由二氧化硫或硫酸气溶胶造成的。

长期的酸雨作用还将对土壤和水质产生不可估量的损失,对生态环境会产生严重的影响。

二、SO2的净化技术:二氧化硫不仅在大气中形成酸雨,造成空气污染,而且严重腐蚀锅炉尾部设备,影响生产和安全运行。

电站锅炉是我国二氧化硫的主要排放源,它的特点是浓度低,综合利用难度大。

在电站烟气脱硫的运行费中,脱硫剂烟气量大,SO2的费用占有很高比例。

我国发电用煤的平均含硫量高达1.15%,因此,电站烟气排放的工艺按其在燃烧过程中所处位置可分脱硫对我国来说更为重要。

控制SO2为燃烧前、燃烧中和燃烧后脱硫三种。

燃烧前脱硫主要是洗煤、煤的气化和液化。

洗煤可用作脱硫的辅助手段,经济适用的煤气化和液化技术在进一步开发之中。

就燃烧中脱硫的型煤和循环流化床燃烧来说,燃用型煤比直接燃用原煤节煤又干净,较多用于中小锅炉上。

当前应用的脱硫方法,大致可分为两类,即干法脱硫和湿法脱硫。

干法脱硫:该法是用粉状、粒状吸收剂,吸附剂或催化剂去除废气中的二氧化硫。

干法的最大优点是治理中无废水、废酸排出,减少了二次污染;缺点是脱硫效率低,设备庞大,操作要求高。

湿法脱硫:该法是采用液体吸收剂如水或碱溶液洗涤含二氧化硫的烟气,通过吸收去除其中的二氧化硫,湿法脱硫所用设备较简单,操作容易,脱硫效率较高。

但脱硫后烟气温度降低,于烟囱排烟扩散不利。

由于使用不同的吸收剂可获得不同的副产物而加以利用,因此湿法是全国研究最多的方法。

湿法脱硫效率较高,而且设备简单,操作运行方便,运行成本低,产生的副产物如硫酸盐和压硫酸盐,可回收利用,作为工业原料。

所以在本设计中选取湿法脱硫。

三、吸收设备:板式塔与填料塔的比较一般为了强化吸收过程,降低设备的投资和运行费用,要求吸收设备应满足以下基本要求:1.气液之间应有较大的接触面积和一定接触时间;2.分离效率高;操作稳定,弹性大;3.对气体的阻力小;4.结构简单,制作维修方便,造价低廉;5.相应的抗腐蚀能力和防堵塞能力。

常用的吸收设备有喷淋塔、填料塔、板式塔、湍流塔、鼓泡塔等。

这里我们主要比较板式塔和填料塔各自的特点:板式塔内沿塔高装有若干层塔板(或称塔盘),液体靠重力作用由顶部逐板流向塔底,并在各块板面上形成流动的液层;气体则靠压强差推动,由塔底向上依次穿过各塔板上的液层而流向塔顶。

相关文档
最新文档