判断系统线性,时变,因果方法
《数字信号处理》期末考试A卷答案
《数字信号处理》期末考试 A卷答案
《数字信号处理》期末考试A卷答案 考试形式:闭卷考试考试时间:120分钟 班号学号姓名得分
一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.δ(n)的z变换是 A 。 A. 1 B.δ(w) C. 2πδ(w) D. 2π 2.下列系统(其中y(n)是输出序列,x(n)是输入序列)中______属于线性系统。( C ) A.y(n)=x2(n) B.y(n)=4x(n)+6 C.y(n)=x(n-n0) D.y(n)=e x(n) 3.在应用截止频率为Ωc的归一化模拟滤波器的表格时,当实际Ωc≠1时,代替表中的复变量s的应为( B ) A.Ωc/s B.s/Ωc C.-Ωc/s D.s/ c Ω 4.用窗函数法设计FIR数字滤波器时,在阶数相同的情况下,加矩形窗时所设计出的滤波器,其过渡带比加三角窗时,阻带衰 减比加三角窗时。( A ) A. 窄,小 B. 宽,小 C. 宽,大 D. 窄,大 5.用双线性变法进行IIR数字滤波器的设计,从s平面向z平面转换的关系为s= ( C ) 。 A. 1 1 1
一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.已知某序列z变换的收敛域为有限z平面,则该序列为( )。 A.有限长序列 B.右边序列 C.左边序列 D.双边序列 2.下列系统(其中y(n)是输出序列,x(n)是输入序列)中______属于线性系统。( ) A.y(n)=x2(n) B.y(n)=4x(n)+6 C.y(n)=n2x(n-n0) D.y(n)=e x(n) 3.下列关于因果稳定系统说法错误的是( ) A.极点可以在单位圆外 B.系统函数的z变换收敛区间包括单位圆 C.因果稳定系统的单位抽样响应为因果序列 D.系统函数的z变换收敛区间包括z=∞ 4.按时间抽取的基-2FFT算法的运算量按频率抽取的基-2FFT算法。( ) A.大于 B.小于 C.等于 D.大小不确定 5.序列x(n)=R7(n),其16点DFT记为X(k),k=0,1,…,15则X(0)为( )。 A.2 B.3
[工学]信号与系统答案 西北工业大学 段哲民 信号与系统1-3章答案
[工学]信号与系统答案西北工业大学段哲民信号与系统1-3章答案第一章习题-t1-1 画出下列各信号的波形:(1) f(t)=(2-e)U(t); (2) 1-tf(t)=ecos10πt×[U(t-1)-U(t-2)]。
2答案f(t)1 (1)的波形如图1.1(a)所示.,2T,,0.2sf(t)cos10,t,102(2) 因的周期,故的波形如图题1.1(b)所示.1-2 已知各信号的波形如图题1-2所示,试写出它们各自的函数式。
答案f(t),t[u(t),u(t,1)],u(t,1)1f(t),,(t,1)[u(t),u(t,1)]2f(t),(t,2)[u(t,2),u(t,3)]31-3 写出图题1-3所示各信号的函数表达式。
答案11,(t,2),t,1,2,t,0,22f(t),,1110,t,2,(,t,2),,t,122,f(t),u(t),u(t,1)u(t,2)2,f(t),,sint[u(t,2),u(t,2)]32f(t),u(t,2),2u(t,1),3u(t,1),4u(t,2),2u(t,3)421-4 画出下列各信号的波形:(1) f(t)=U(t-1); (2) f(t)=(t-1)U(t-1); 1222(3) f(t)=U(t-5t+6); (4)f(t)=U(sinπt)。
34答案f(t),u(t,1),u(,t,1)1 (1) ,其波形如图题1.4(a)所示.f(t),(t,1)[u(t,1),u(,t,1)],(t,1)u(t,1),(t,1)u(,t,1)2(2)其波形如图题1.4(b)所示.f(t),u(,t,2),u(t,3)3(3) ,其波形如图1.4(c)所示.f(t),u(sin,t)4(4) 的波形如图题1.4(d)所示.1-5 判断下列各信号是否为周期信号,若是周期信号,求其周期T。
,,2(1)f(t),2cos(2t,)(1)f(t),[sin(t,)]1246; ; (3) f(t),3cos2,tU(t)3。
《信号与系统》第一章知识要点+典型例题
y() 表示系统的输出。
1、线性系统与非线性系统 若系统满足下列线性性质: (1)可分解性 全响应 y () 可分解为零输入响应 y zi () 与零状态响应 y zs () 之和,即
y() y zi () y zs ()
(2)齐次性 零输入响应 y zi () 满足齐次性,零状态响应 y zs () 满足齐次性,即
( t ) 、 ( t ) 的重要性质
1
( t )dt 1 ,
t
( t )dt 0 , ( t )dt ( t ) ( k ) (k )
f ( k ) ( k ) f (0) ( k ) f ( k ) ( k k 0 ) f ( k 0 ) ( k k 0 )
f ( t ) ( t a )dt f (a )
k
f ( k ) ( k ) f (0)
(at )
5
1 (t ) a
1 b (at b) ( t ) a a f ( t ) ( t ) f (0) ( t ) f (0) ( t ) f ( t ) ( t ) f (0) ( t ) f (0) ( t )
2
。
而对离散的正弦(或余弦)序列 sin( k ) [或 cos( k ) ]( 称为数字角频率,单位为 rad ), 只有当
2
为有理数时才是周期序列,其周期 N M
2
, M 取使 N 为整数的最小整数。
如对信号 cos(6 k ) ,由于
2
2 1 为有理数,因此它是周期序列,其周期 N 1 。 6 3
1、2章习题讲解
n
2 1
3 2 1
所以系统是稳定的。 (2)当n<0时,h(n)≠0,所以系统是非因果的。 因为:
n
| h(n) | 1
所以系统是稳定的。
4、已知一个因果线性时不变系统由以下差分方程 描述 y(n) 1 y(n 1) x(n) 1 x(n 1)
m
x(n) X ( z 1 ),
x(n m) z m X ( z 1 ) x(n m) z X ( z ),
若y(n) x1 (n) * x 2 (n),则Y(z) X1 (z)X 2 (z)
解:根据题目所给条件可得:
1 x1 (n) 1 1 1 z 2
1 h (n ) ( ) n 1 u (n 1) (n ) 2
即
(2)对LTI系统的输出等于输入序列和该系统单位 抽样响应的卷积和。所以:
1 y(n ) x (n ) h ( n ) [( ) n 1 u (n 1) (n )] * e jwn u (n ) 2 1 [( ) n 1 u (n 1)] * e jwn u (n ) e jwn u (n ) 2 n 1 ( ) (m 1) e jw(n -m) u (n 1) e jwn u ( n ) m 1 2 1 jw 1 1 n jw(n 1) e ( ) e 2 2 2e jwn 2 u (n 1) e jwn u (n ) 1 1 e jw 2 1 e jw ( n 1) ( ) n e jw 2 u (n 1) e jwn u (n ) 1 1 e jw 2 1 e jwn ( ) n 2 u (n 1) e jwn u (n ) 1 e jw 2
信号与系统复习提纲
复习提纲 第一章一、需要掌握的内容 1、信号的分类。
2、指数信号、正弦信号、复指数信号、Sa(t)信号的表达式及响应波形。
3、信号的运算。
4、斜变信号、阶跃信号、冲激信号的表达式及它们之间的关系。
5、冲激信号的性质。
6、能够用系统仿真框图来表示系统微分方程。
7、线性时不变系统的性质:线性特性、时不变特性、微分特性、因果特性。
第二章一、需要掌握的内容1、系统全响应的划分方法: (1)自由响应与强迫响应 (2)零输入响应与零状态响应 (3)瞬态响应与稳态响应掌握这几种划分方法的定义、以及它们的概念。
2、掌握零输入响应与零状态响应的求解方法。
会用冲击函数匹配法求解边界条件。
3、冲击响应与阶跃响应的定义,以及它们两者之间的关系。
4、卷积的概念与性质。
注意)()()(t h t e t r zs *=的意义及求解方法。
二、练习题1、将函数)2(t f -之图形向右平移52可得函数 之图形。
2、⎰∞∞----dt t t t e t j )]()([0δδω= 。
⎰∞∞--++dtt t e t )2()(δ= 。
3、有一线性时不变系统,已知阶跃响应)()(t u et g at-=,则该系统的冲激响应=)(t h 。
4、单位冲激函数是_______的导数。
5、某一连续线性时不变系统对任一输入信号)(t f 的零状态响应为0,)(00>-t t t f ,则该系统的冲激响应h(t)= ____________。
6、)()(21t t t t f -*-δ= 。
7、已知系统的微分方程)(3)()(2)(3)(22t e t e dt dt r t r dt d t r dt d +=++,2)0(,1)0(='=--r r ,求零输入响应。
8、题图所示系统是由几个子系统组成,各子系统的冲激响应分别为:)()(),1()(),()(321t t h t t h t u t h δδ-=-==,求总的系统的冲激响应)(t h 。
数字信号处理2014年复习
总复习第1章1. 典型数字信号处理系统的主要构成。
2. 系统的线性、 时不变性以及因果性、 稳定性的判断方法。
3. 序列的周期计算方法4. 模拟信号的采样与恢复: 采样定理; 采样前的模拟信号和采样信号的时域;5. 习题:5(2)(6);6(4) 模拟题1. 下列序列的周期各是多少?x (n )=cos ⎪⎭⎫ ⎝⎛+353ππn x (n )=sin 4n π⎛⎫ ⎪⎝⎭ x (n )=sin 4n ⎛⎫ ⎪⎝⎭2. 说明下列各系统的线性、非时变性y (n )=2x (ny (n )=x 2(n ) y (n )=x (n )sin(ωn3. 下列系统是否为因果稳定性系统?y (n )=x (n -n第2章1. Z 变换的定义、零极点、收敛域2. 逆Z 变换(部分分式法)求解3. 常用序列的z 变换4. 序列的傅里叶变换5. 序列的共轭对称性6. 采样前的模拟信号和采样后得到的采样信号之间的频谱关系7. 习题:5(1)(5); 6(2); 13; 21 模拟题1. 若x (n )={-3,0,1,2,1,0,1,2,1,0,-1},序列x (n )的FT 用X (e j ω)表示,求2. 求序列的傅里叶变换x (n )=u (n +3)-u (n -4)3. 线性移不变系统的系统函数的收敛域为|z|<2,则可以判断系统的因果稳定性?4. 已知112122113---+-=z z z X )(求收敛域|z |>2对应的序列x (n )。
5. 已知x a (t )=2 cos(2πf 0t ), 式中f 0=100 Hz , 以采样频率f s =400 Hz 对x a (t )进行采样, 得到采样信号 和时域离散信号x (n ), 求: )(j e )(π-=n n x 81j e 0()?X =πj πd 2|(e )|?X ωω-=⎰j πe ()?X =ˆ()a x t(1) 写出 的傅里叶变换表示式X a (jΩ);(2) 写出 和x (n )的表达式;(3) 分别求出的傅里叶变换和x (n )序列的傅里叶变换。
信号与系统参考答案(第二版)电子工程出版 徐亚宁 苏启常
第一章1.8 系统的数学模型如下,试判断其线性、时不变性和因果性。
其中()0X -为系统的初始状态。
(2)()()2f t y t e= (5)()()cos 2y t f t t = (8)()()2y t f t =解:(2)()()2f t y t e =① 线性: 设 ()()()()1122,f t y t f t y t →→,则 ()()()()122212,f t f t y t ey t e==那么 ()()()()()()()112211222221122a f t a f t a f t a f t a f t a f t y t eee +⎡⎤⎣⎦+→==,显然,()()()1122y t a y t a y t ≠+,所以系统是非线性的。
② 时不变性设()()11,f t y t →则 ()()()()10122110,f t t f ty t e y t t e-=-=设()()102,f t t y t -→则()()()102210f t t y t e y t t -==-,所以系统是时不变的。
③ 因果性因为对任意时刻 1t ,()()121f ty t e =,即输出由当前时刻的输入决定,所以系统是因果的。
(5)()()cos 2y t f t t = ① 线性: 设 ()()()()1122,f t y t f t y t →→,则 ()()()()1122cos 2,cos 2y t f t t y t f t t ==那么()()()()()()()112211221122cos 2cos 2cos 2a f t a f t y t a f t a f t t a f t t a f t t +→=+=+⎡⎤⎣⎦,显然()()()1122y t a y t a y t =+,所以系统是线性的。
② 时不变性设()()11,f t y t →则 ()()()()()1110100cos 2,cos 2y t f t t y t t f t t t t =-=--设()()102,f t t y t -→则()()()21010cos 2y t f t t t y t t =-≠-,所以系统是时变的。
信号与系统课后习题答案
f 2 (−1) (t) =
δ (t − 2) − δ (t − 3)
*
t ε e(−t+1) (t + 1)dt
−∞
= [δ (t − 2) − δ (t − 3)]* (1 − e−(t+1) )ε (t + 1)
= (1 − e−(t−2+1) )ε (t − 2 + 1) − (1 − e−(t−3+1) )ε (t − 3 + 1)
) − iL (t) − uC (t) R1
R2
状态方程为:
⎪⎪⎧u&C (t) ⎨
=
f (t) R1C
−
uC (t) R1C
−
iL (t) C
⎪⎪⎩i&L
(t)
=
uC
(t)
− R2iL L
(t)
1.17 写出题图 1.8 系统的输入输出方程。
解: (b)系统框图等价为:
⎧x′′(t) = f (t) − 3x′(t) − 2 y(t)
x2(0-)=1 时,y2(t)=4e-t-2e-3t,t≥0 则 x1(0-)=5,x2(0-)=3 时,系统的零输入响应: yx(t)=y(t)=5y1(t)+3y2(t)=22e-t 十 9e-3t,t≥0
1.22 在题 1.21 的基础上,若还已知 f(t)=ε(t),x1(0-)=0,x2(0-)=0 时,有 y(t)=2+e-t+2e-3t,t≥0 试求当 f(t)=3ε(t),x1(0-)=2,x2(0-)=5 时的系统响应 y(t)。 解: 记,f(t)=ε(t),x1(0-)=0,x2(0-)=0 时,系统响应 yf(t)=y(t)=2+e-t+2e-3t,t≥0 则当 f(t)=3ε(t),x1(0-)=2,x2(0-)=5 时的系统全响应 y(t)为: y(t)=3yf(t)+2y1(t)+5y2(t)
信号与系统复习题(答案全)
1、 若系统的输入f (t )、输出y (t) 满足()3()4t y t e ft -=,则系统为 线性的 (线性的、非线性的)、 时变的 (时变的、时不变)、 稳定的 (稳定的、非稳定的).2、 非周期、连续时间信号具有 连续 、非周期频谱;周期、连续时间信号具有离散、非周期 频谱;非周期、离散时间信号具有 连续 、周期频谱;周期、离散时间信号具有离散、 周期 频谱。
3、 信号f(t)的占有频带为0-10KHz,被均匀采样后,能恢复原信号的最大采样周期为 5×10—5 s 。
4、 )100()(2t Sa t f =是 能量信号 (功率信号、能量信号、既非功率亦非能量信号)。
5、 ()2cos()f t t =+是 功率信号 (功率信号、能量信号、既非功率亦非能量信号)。
6、 连续信号f(t )=sint 的周期T 0= 2π ,若对f (t )以fs=1Hz 进行取样,所得离散序列f(k)=sin(k ) ,该离散序列是周期序列? 否 。
7、 周期信号2sin(/2)()j n tn n f t e n ππ+∞=-∞=∑,此信号的周期为 1s 、直流分量为 2/π 、频率为5Hz 的谐波分量的幅值为 2/5 。
8、 f (t) 的周期为0。
1s 、傅立叶级数系数**03355532F F F F F j --=====、其余为0。
试写出此信号的时域表达式f (t ) = 5 + 6 cos ( 60 π t ) - 4 sin (100 π t ) . 9、 f (k ) 为周期N=5的实数序列,若其傅立叶级数系数()205=F ()52511,πjeF -+=()54512πjeF -+=、 则F 5 (3 )= ()54512πjeF +=- 、F 5 (4 )= ()52511πj eF +=- 、F 5 (5 )= 2 ;f(k ) =())1.7254cos(62.052)9.3552cos(62.152525140525︒-⨯+︒-⨯+=∑=k k e n F n k jn πππ。
[信号与系统作业解答]第一章
1-3、分别求下列各周期信号的周期 T 1) cos(10 t ) cos(30 t) ; 2) e j 10 t ; 4)
(1)n[u(t nT ) u(t nT T )]
n 0
n
(1) [u(t nT ) u(t nT T )]
图(b)表达式为:
f ( t ) u( t ) u( t 1) 2[u( t 1) u( t 2)] 3u( t 2) ; u( t ) u( t 1) u( t 2)
图(c)表达式为: f ( t ) sin
t [u( t ) u( t T )] ; T
C1e1 (t ) C2e2 (t ) sin[C1e1 (t ) C2e2 (t )]u(t ) C1r1 (t ) C2r2 (t )
由于
所以系统是非线性的。
e( t ) r (t ) sin[e( t )]u(t )
而
e(t t0 ) sin[e(t t0 )]u(t ) r (t t0 ) sin[e(t t0 )]u(t t0 )
5)由于 e1 (t ) r1 (t ) e1 (2t ) , e2 (t ) r2 (t ) e2 (2t ) , 而
C1e1 (t ) C2e2 (t ) C1e1 (2t ) C2e2 (2t ) C1r1 (t ) C2r2 (t )
由于
所以系统是线性的。
C1e1 ( t ) C 2e2 ( t ) C1e1 (t ) C 2e2 (t ) C1r1 (t ) C 2r2 (t )
由于
2
所以系统是非线性的。
信号与系统作业答案郑君里版
信号与系统作业答案郑君里版1.1 1.2 1.3画出信号f(t)sin a(t t0) 的波形。
a(t t0)已知信号f(t) (t 1) u(t 1) u(t 2) ,画出f( 2t 3)的波形。
已知信号f(t) (t 1) u(t 1) u(t 2) ,试求它的直流分量。
答案:01.4 已知信号f(t) (t 1) u(t 1) u(t 2) ,试求它的奇分量和偶分量。
答案:偶分量:0.5(1 t) u(t 2) u(t 1) u(t 1) u(t 1) 0.5(t 1) u(t 1) u(t 2)奇分量:0.5(t 1) u(t 2) u(t 1) t u(t 1) u(t 1) 0.5(t 1) u(t 1) u(t 2)1.5 信号f(t)2 tt 0是否是奇异信号。
t 0答案:二阶以上导数不连续,是奇异信号。
1.6 已知f(t)是有界信号,且当t 时f(t) 0,试问f(t)是否是能量有限信号。
答案:不一定。
1.7 对一连续三角信号进行抽样,每周期抽样8点,求抽样所得离散三角序列的离散角频率。
答案:/41.8 以Ts 0.5s的抽样间隔对下列两个三角信号抽样,写出抽样所得离散序列的表达式,画出它们的波形。
比较和说明两波形的差别,为什么?(1)f1(t) cos4t (2)f2(t) cos15t 4答案:两个离散序列是相同的。
1.9 判断下列信号是否是周期信号。
如果是周期信号,试确定其周期。
(1)f(t) Asin4t Bcos7t Ccos9t 答案:是周期函数,周期T 2 。
(2)fd(n) ejn8答案:是周期信号,周期N 161.10 求下列表达式的函数值(1)(2)(3)(4)(5)(6)(7)f(t t0) (t)dt;答案:f( t0)f(t0 t) (t)dt;答案:f(t0)(t t0)u(t t02)dt;答案:当t0 0时为1;当t0 0时为0 (t t0)u(t 2t0)dt;答案:当t0 0时为1;当t0 0时为0(e t t) (t 2)dt;答案:e2 2 (t sint) (t 6)dt;答案:/6 1/2e j t (2t) (t t0) dt;答案:1/2 e j t01.11 判断下列系统是否线性、时不变和因果de(t);答案:线性,时不变,因果dt(2)r(t) e(t)u(t);答案:线性,时变,因果(1)r(t)(3)r(t) sin e(t) u(t);答案:非线性,时变,因果(4)r(t) e(1 t);答案:线性,时变,非因果(5)r(t) e(2t);答案:线性,时变,非因果(6)r(r) e2(t);答案:非线性,时不变,因果1.12 试证明:f(t) '(t) f(0) '(t) f'(0) (t)。
判断下列系统的线性时不变性因果性和记忆性解析P
1.判断下列系统的线性、时不变性、因果性和记忆性。
(解析P7) ①()10()()dy t y t f t dt += ②()()(10)dy t y t f t dt+=+ ③2()()()dy t t y t f t dt+= ④2()(10)()y t f t f t =++2.判断下列系统的线性、时不变性和因果性。
(解析P7) ①20()()sin ()y t y t t at f t =+ ②()()()y t f t f t b =⋅-3.某系统,当输入为()tδτ-时,输出为()()(3)h t u t u t ττ=---,问该系统是否为因果系统?是否为时不变系统?说明理由。
4.下列信号属于功率信号的是(解析P6) ①cos ()tu t ②()teu t - ③()t te u t - ④te-5. 画出函数波形图:2()(1)f t u t =-(指导P12)6.已知()()2(1)(2)(2),f t tu t u t t u t =--+--画出()f t 波形。
(指导P13) 7.根据1.10图中(32)f t -+的波形,画出()f t 波形。
(指导P18) 8.已知()f t 波形波形如例1.11图所示,试画出1(2)2f t --的波形。
(指导P19) 9.已知(52)f t -的波形如图例1.12图所示,求()f t 波形。
(指导P20) 10.求下列函数值 ①432'(652)(1)t t t t dt δ∞+++-⎰②3'()te d τδττ--∞⎰ ③'2(9)t dt δ+∞-∞-⎰ (指导P24)11.求信号0.20.3()j n j n x n ee ππ-=+的周期。
(指导P36) 12.设()x t 是复指数信号:0()j tx t eΩ=,其角频率为0Ω,基本周期为02T π=Ω。
如果离散时间序列是通过对()x t 以取样间隔s T 进行均匀取样的结果,即00()()s j nT j n s x n x nT e e ωΩ===。
判断系统线性时变因果的方法
分析:根据线性系统的定义,证明此系统是否具有 均匀性和叠加性。可以证明:
系统不满足均匀性
系统不具有叠加性 此系统为非线性系统。 请看下面证明过程
证明均匀性
设信号e(t)作用系统,响应为r(t) 当Ae(t)作用于系统时,若此系统具有线性,则
原方程两端乘A:
(1),(2)两式矛盾。故此系统不满足均匀性
证明叠加性
假设有两个输入信号 所给微分方程式分别有: 分别激励系统,则由
当 应有 (3)+(4)得
同时作用于系统时,若该系统为线性系统,
(5)、(6)式矛盾,该系统为不具有叠加性
例1-7-2
判断下列两个系统是否为非时变系统.
系统1:
系统2:
1.系统的作用是对输入信号作余弦运算。
此系统为时不变系统。
§1.7 线性时线性时不变系统的微分特性 •因果系统与非因果系统
线性特性
2. 判断方法
先线性运算,再经系统=先经系统,再线性运算
若
则系统 是线性系统,否则是非线性系统. 注意:外加激励与系统非零状态单独处理
二.时变系统与时不变系统
1.定义
一个系统,在零初始条件下,其输出响应与输入信号 施加于系统的时间起点无关,称为非时变系统,否则 称为时变系统。
认识:
•电路分析上看:元件的参数值是否随时间而变 • 从方程看:系数是否随时间而变 •从输入输出关系看:
时不变性
2. 判断方法
先时移,再经系统=先经系统,再时移
若 则系统 是非时变系统 ,否则是时变系统.
系统2:
系统作用:输入信号乘cos(t)
此系统为时变系统。
例1-7-3
判断系统是否为线性非时变系统 是否为线性系统?
数字信号处理 李永全 复习题
一、完成下列各题1.判断信号的因果性与稳定性:)(3)(n u n x n -=。
非因果,稳定2.判断系统的因果性与稳定性:∞≤<---=---||10,)21)(101(1)(111z z zzz H 。
因果,不稳定3.判断信号)873cos(5)(ππ-=n n x 是否为周期序列,若是,求其周期。
周期序列,周期为144.判断系统的线性与时不变性:)()()]([)(n x n g n x T n y ==。
线性,时变5.断下述系统是否是最小相位系统)1.01)(5.01()4.0)(3.0()(11------=zzz z z H ,为什么?是,因系统零极点都在单位园内6.用采样频率s rad s /2.0π=Ω对信号t t x 6cos )(π=采样,是否能不失真恢复原信号,为什么?不能,因为3//2.0ππ<=Ωs rad s7.已知系统的差分方程为:()(1)(),y n ay n x n =-+判断该系统是IIR 系统还是FIR 系统,为什么?该系统的传输函数为H(z)=1/(1-az -1)为IIR 系统,(或输出只与输入及前一时刻输出有关) 8.说明冲激响应不变法与双线性变换法的应用范围。
冲激响应不变法一般适用于低通滤波器的设计、加抗混叠滤波器的带通滤波器的设计,模拟频率和数字频率之间是线性关系;双线性变换适用于片段常数特性滤波器的设计,模拟频率与数字频率之间是非线性关系。
二、一线性时不变因果系统由下面差分方程描述:)1(5.0)(2)2(24.0)1(5.0)(-+=---+n x n x n y n y n y 1.确定该系统的系统函数H (z ),画出其零极点图。
2.求系统的冲激响应h (n ),说明该系统是否稳定。
3.求系统频率响应H (e jω)。
1. )8.01)(3.01(5.0224.05.015.02)()()(111211------+-+=-++==z zz zzz z x z Y z H零点:25.0,021-==z z 极点:8.0,3.021-==z z 2.118.0113.011)(--++-=zzz H)())8.0()3.0()(n u n h nn-+=极点全部在单位圆内,系统稳定3. wj jwjwjweee eH 28.05.015.02)(----++=三、已知线性时不变系统的单位冲激响应)(n h 和输入)(n x 分别为:⎩⎨⎧≤≤=其他301)(n n h ⎩⎨⎧≤≤-≤≤=741301)(n n n x1.用线性卷积的方法求输出序列()y n 。
信号与系统 高等教育出版社 第一章作业解答
(6) r(t) = e (t)
2
ae1 (t ) + be2 (t ) ⇒ [ae1 (t ) + be2 (t )]2 ar1 (t ) + br2 (t ) = ae (t ) + be (t )
2 1 2 2
非线性
e(t ) ⇒ e(t − t0 ) ⇒ e (t − t0 )
2
e(t ) ⇒ e (t ) ⇒ e (t − t0 )
2 2
时不变
该系统为非线性、时不变、因果系统 该系统为非线性、时不变、
4
1-20 判断下列系统是否为线性的、时不变的、 判断下列系统是否为线性的、时不变的、 因果的? 因果的? 5t (8) r(t) = ∫ e(τ )dτ
−∞
ae1 (t ) + be2 (t ) ⇒ ∫ [ae1 (τ ) + be2 (τ )]dτ
2
1-20 判断下列系统是否为线性的、时不变的、 判断下列系统是否为线性的、时不变的、 因果的? 因果的?
(4) r(t) = e(1−t)
ae1 (t ) + be2 (t ) ⇒ ae1 (1 − t ) + be2 (1 − t ) ar1 (t ) + br2 (t ) = ae1 (1 − t ) + be2 (1 − t )
d δ (t ) = u (t ) dt
d e2 (t ) = e1 (t ) dt
d r2 (t ) = r1 (t ) dt
d −αt −αt −αt r2 (t ) = [e u (t )] = −αe u (t ) + e δ (t ) dt −αt = δ (t ) − αe u (t )
线性时不变系统的因果和稳定性
()、移不变问题 1
则:y1 (1) = ay1 (0) + x1 (1) = a y1 (2)=ay1 (1)+x1 (2)=a 2 M
令x1 (n) = δ (n),y1 (0) = 1
线性移不变系统的因果性和稳定性
LSI系统输入与输出的关系
单位抽样响应
x ( n) =
∞
h(n)=T[δ(n)]
设系统输入序列x(n)输出序列y(n) ,
∑ x(m)δ (n − m) y (n) = T [ ∑ x( m)δ (n − m)]
m =−∞ ∞
=
m =−∞
∑ x(m)T [δ (n − m)]
N M
∑ a y (n − k ) = ∑ b
k =0 k m=0
m
x ( n − m)
阶差:为未知序列(指输出序列y(n))变量序号的最高值 与最低值之差。
线性:各y(n-k)及各x(n-m)项都只有一次幂且不存在它们的 相乘项;否则时非线性的。
差分方程
线性常系数差分方程的求解
手工迭代 迭代法 序列域求解法 计算机软件(MATLAB) 经典解法 变换域求解法
则:T[ax1 (n)]=aT[x1 (n)]=ay1 (n)
线性移不变系统的因果性和稳定性
例:证明y(n)=ax(n)+b(a、b为常数)所代表的系统 不是线性系统。
证:设T[x1(n)]=ax1(n)+b T[x2(n)]=ax2(n)+b
则:T[x1(n)+x2(n)]=a[x1(n)+x2(n)]+b
信号分析与处理第一章答案
习题11.1 判断题1.1图所示各信号的波形是连续时间信号还是离散时间信号?若是连续时间信号是否为模拟信号?若是离散时间信号是否为数字信号?(1)(2)(3) (4)题1.1图 信号波形解:(1)时间连续函数值连续,连续时间信号,模拟信号(2)时间连续函数值离散,连续时间信号,不是模拟信号 (3)时间离散函数值离散量化,离散时间信号,数字信号 (4)时间离散函数值非量化,离散时间信号,不是数字信号1.2 判断以下各信号是能量信号还是功率信号?是周期信号还是非周期信号?若是周期信号,试求出其周期T 。
(1)sin()atet ω-()t ε (2)cos(10)cos(30)t t + (3)cos(2)sin()t t π+(4)25sin (8)t (5)()(10)t t εε-- (6)10()()200n n x n n ⎧≥⎪=⎨<⎪⎩解:(1)只在大于零的时间段内有信号,非周期信号;判断能量值若0a >则为指数衰减信号为能量信号。
()()()()22-022001cos 2sin d d 21d cos 2d 2at atat at t W e t t t e t e t e t t ωωεω∞∞--∞∞∞---==⎡⎤=-⎢⎥⎣⎦⎰⎰⎰⎰22011d 022at ate t e aa ∞--∞-==⎰()()()()()()()()()()()2222220002200222211cos 2d d +d 2211122212142a j t a j t at at j t j ta j t a j t e t t e e e t e e t e e a j a j a a a a ωωωωωωωωωωω∞∞∞---+------+∞∞=+=⎡⎤=+⎢⎥---+⎣⎦-=-=++⎰⎰⎰()()()22002222221d cos 2d 21122224atat W e t e t t a a a a a a ωωωω∞∞--⎡⎤=-⎢⎥⎣⎦⎡⎤+⎢⎥=-=++⎢⎥⎣⎦⎰⎰ (2)cos(10)cos(30)t t +15T π=215T π=则为周期信号5T π=时间上无限延续,则判断功率[]T dt t t t t dtt t t t dt t x p T T T T T T =⎥⎦⎤⎢⎣⎡+++++=++==⎰⎰⎰---222222222121)60cos()20cos()40cos(21)20cos()30(cos )30cos()10cos(2)10(cos )(余弦信号在一个周期内积分为零。
信号与系统考研真题华东师大数字电路与信号系统考研真题
信号与系统考研真题华东师大数字电路与信号系统考研真题一、第一部分1判断题1信号x(t)经过一个连续时间系统的输出为y(t)=x(2t),该系统是时变系统。
()[北京邮电大学2016研]【答案】对@@【解析】由时不变判断方法可知,y(t-t0)=x[2(t-t0)]≠T[x(t-t0)]=x(2t-t0),因此系统是时变系统。
2信号x(t)经过一个连续时间系统的输出为T为非零实常数,该系统是因果系统。
[北京邮电大学2016研]【答案】错@@【解析】因果系统是指系统在t0时刻的响应只与t=t0和t<t0时刻的输入有关,而该连续时间系统输出y(t)在t时刻的响应与时间段t-T/2<t i<t +T/2内的输入均有关,因此该系统是非因果系统。
3两个线性时不变系统相级联的先后顺序不影响总的输入输出关系。
()[中山大学2010研]【答案】对@@【解析】线性时不变系统级联,总的系统函数相当于各个系统函数相卷积,根据卷积的性质,卷积的次序是可以交换的。
4卷积可用于非线性时不变系统。
()[南京大学2010研]【答案】错@@【解析】设激励信号为e(t),系统的零状态响应为r(t),则此运算是线性时不变系统的输入和系统函数的卷积运算,因此若要满足上式,则系统必须要有叠加性,即要求是线性的;应用于非线性系统时,由于违反了叠加定理,因此不能使用。
简答题分析系统y(t)=f(1-t)的线性、因果和时变特性。
[西安电子科技大学2017研]答:(1)线性设系统算子为T,则c1f1(t)+c2f2(t)通过系统后的结果T[c1f1(t)+c2f2(t)]为:c1f1(1-t)+c2f2(1-t)=c1y1(t)+c2y2(t)。
因此系统是线性的。
(2)因果性令t=0有y(0)=f(1),说明当前响应与未来激励相关,因此系统是非因果的。
(3)时不变令t→t-t0,则经过算子T后T[f(t-t0)]为f(1-t-t0),而y(t-t0)=f[1-(t-t0)]=f(1-t+t0),比较以上两式有y(t-t0)≠T[f(t-t0)],因此系统是时变的。
线性时不变系统的因果和稳定性
线性移不变系统的因果性和稳定性
LSI系统输入与输出的关系
单位抽样响应
x ( n) =
∞
h(n)=T[δ(n)]
设系统输入序列x(n)输出序列y(n) ,
∑ x(m)δ (n − m) y (n) = T [ ∑ x( m)δ (n − m)]
m =−∞ ∞
=
m =−∞
∑ x(m)T [δ (n − m)]
∑ δ (t − mT )
∞ a
∞
T:抽样间隔
理想抽样输出:
$ xa (t ) = xa (t ) δ T (t ) =
m =−∞ ∞
∑ x (t )δ (t − mT )
= ∑ xa (mt )δ (t − mT )
m =−∞
模拟信号数字处理方法
y(n) h1(n)+h2(n)
线性移不变系统的因果性和稳定性 因果系统
某时刻的输出只取决于此时刻和此时刻以前的时刻的输 入的系统。
即:n=n 0的输出y (n)只取决于n ≤ n0的输入x(n) |n≤ n0
对于因果系统:若n<n 0,x1(n)=x2(n),则n<n 0时,y1(n)=y2(n)
y ( n) = x ( n) * h( n) = h( n) * x ( n)
=
x(n)
y(n) h(n)
=
h(n)
y(n) x(n)
线性移不变系统的因果性和稳定性 2、结合律
x(n) * h1 (n) * h2 (n) = [ x(n) * h1 (n)]* h2 (n)
= x(n) *[h1 (n) * h2 (n)] = [ x(n) * h2 (n)]* h1 (n)
nx1n044123454321线性移不变系统的因果性和稳定性ny1n02213513nx2nx1n25024123443216线性移不变系统的因果性和稳定性ny2n50231331ny1n02235131线性移不变系统的因果性和稳定性lsi系统输入与输出的关系单位抽样响应?hntnxn输出序列yn设系统输入序列xnxmmnm??????m????m??ynxmtnm????????xmtmnm???????满足比例性和可加性?xmhnm?满足移不变性线性移不变系统的因果性和稳定性结论
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.系统的作用是对输入信号作余弦运算。 (1)e(t) 时 t0 移 e(tt0) 经 过 r 1( 系 t1 ) c 统 e o (t s t0 )t 0 (2)e(t) 经 过 系 c统 oe(st) 时 t0 移 r 1(2 t) ce o (t s t0 )t 0
叠加性: e e 2 1 ( (tt) ) r r1 2 ( (tt) ) e 1 (t) e2(t) r1 (t) r2(t)
线性特性
e1(t ) H r1t e2t H r2t
1 e 1 t2 e 2 t
1 r 1 t2 r 2 t
f1t H H f1t C 1 C 1H f1t f2t H H f2t C 2 C 2H f2t
C 1H f1t C 2H f2t
若 H C 1 f 1 t C 2 f 2 t C 1 H f 1 t C 2 H f 2 t
四.因果系统与非因果系统
1. 定义
因果系统是指当且仅当输入信号激励系统时,才会出 现输出(响应)的系统。也就是说,因果系统的(响 应)不会出现在输入信号激励系统的以前时刻。
系统的这种特性称为因果特性。
符合因果性的系统称为因果系统(非超前系统)。
2.判断方法
输出不超前于输入
3.实际的物理可实现系统均为因果系统
dr(t)1r0 (t)5e(t) ,t0 dt
分析:根据线性系统的定义,证明此系统是否具有 均匀性和叠加性。可以证明:
系统不满足均匀性 系统不具有叠加性 此系统为非线性系统。 请看下面证明过程
证明均匀性
设信号e(t)作用系统,响应为r(t)
当Ae(t)作用于系统时,若此系统具有线性,则
§1.7 线性时不变系统
•线性系统与非线性系统 •时变系统与时不变系统 •线性时不变系统的微分特性 •因果系统与非因果系统
一.线性系统与非线性系统
1.定义
线性系统:指具有线性特性的系统。 线性:指均匀性,叠加性。
均匀性(齐次性):
e t r t k t e k t r
时不变性
e(t) e(tt0) H e(t)
r(t) r(tt0)
r(t)
0
T
t0
t
e(t t0 )
r(t t0 )
0 t0
t t0 T
0 t0
t
2. 判断方法
先时移,再经系统=先经系统,再时移
f t
H
Hf t
yt
DE
yt
f t
DE
ft H
(3)+(4)得
d d t r 1 t r 2 t 1 r 1 t 0 r 2 t 1 e 1 0 t e 2 t t 0( 6 )
(5)、(6)式矛盾,该系统为不具有叠加性
例1-7-2
判断下列两个系统是否为非时变系统.
d A (t) r1A 0 (t) r5 A (t)e d t
原方程两端乘A:
t 0 (1 )
A d d r( tt) 1r(0 t) 5 A (t)e
(1),(2)两式矛盾。故此系统不满足均匀性
t 0 (2 )
证明叠加性
假设有两个输入信号 e1(t)及e2(t) 分别激励系统,则由
r11 tr12 t
此系统为时不变系统。
系统2:r t e tctots 0
系统作用:输入信号乘cos(t)
(1)e(t) 时 t0 移 e(tt0) 经 过 r 2(t1 系 ) e (t统 t0 )ctots 0
(2)e(t) 经 过 系 e(t统 )cot s时 t0 移 r 2 ( t2 ) e ( t t0 ) cto t0 ) st ( 0
r21 (t)r22 (t)
此系统为时变系统。
例1-7-3
yttft判断系统是否为线性非时变系统
是否为线性系统?
f1t f2t
C 1 C 1f1t C 2 C 2f2t
H Hale Waihona Puke tC 1f1tC 2f2t
f1t H tf1t C 1 C 1tf1t f2t H tf2t C 2 C 2tf2t
所给微分方程式分别有:
dd r1tt1r1 0t5e1t
t0
(3)
dd r2tt1r0 2t5e2t
t0
(4)
当e1(t)e2(t) 同时作用于系统时,若该系统为线性系统,
应有
d d t r 1 t r 2 t 1 r 1 t 0 r 2 t 5 e 1 t e 2 t t 0( 5 )
非因果系统的概念与特性也有实际的意义,如信号 的压缩、扩展,语音信号处理等。
若信号的自变量不是时间,如位移、距离、亮度… 为变量的物理系统中研究因果性显得不很重要。
4.因果信号
t=0接入系统的信号称为因果信号 表示为: e(t)e(t)u(t) 相当 t0,于 e(t)0
例1-7-1
判断下述微分方程所对应的系统是否为线性系统?
Hft
若 H ft y t
则系统 H是 非时变系统,否则是时变系统.
三.线性时不变系统的微分特性
线性时不变系统满足微分特性、积分特性
et
rt
系 统
det
drt
dt
dt
系 统
tetdt
trtdt
系 统
利用线性证明,可推广至高阶。
H
1 e 1 ( t ) 2 e 2 ( t ) 1 r 1 ( t ) 2 r 2 ( t )
2. 判断方法
先线性运算,再经系统=先经系统,再线性运算
f1t f2t
C 1 C 1f1t C 2 C 2f2t
H
H C 1f1tC 2f2t
则系统 H是线性系统,否则是非线性系统.
注意:外加激励与系统非零状态单独处理
二.时变系统与时不变系统
1.定义
一个系统,在零初始条件下,其输出响应与输入信号 施加于系统的时间起点无关,称为非时变系统,否则 称为时变系统。
认识:
•电路分析上看:元件的参数值是否随时间而变 • 从方程看:系数是否随时间而变 •从输入输出关系看:
C 1t1 ftC 2t2 ft
可见,先线性运算,再经系统=先经系统,再线性 运算,所以此系统是线性系统
是否为时不变系统?
ft H tft D E
ft D Eft H
t ft
tft
可见, 时移、再经系统 经系统、再时移,, 所以此系统是时变系统。