第二章 代数初步 习题(1)
七上数学长江练习册答案人教版
七上数学长江练习册答案人教版本练习册答案适用于人教版七年级上册数学课程,旨在帮助学生巩固课堂所学知识,提高解题能力。
以下是部分习题的答案,供学生参考。
第一章:有理数习题1:判断下列各数是正数还是负数。
1. 352. -233. 04. -45答案:1. 正数2. 负数3. 既不是正数也不是负数4. 负数习题2:计算下列各题的值。
1. -3 + 52. 8 - 73. -12 × 34. 45 ÷ (-9)答案:1. 22. 13. -364. -5第二章:代数初步习题1:解下列方程。
1. 2x + 3 = 72. 3y - 4 = 11答案:1. x = 22. y = 5习题2:简化下列代数式。
1. 3x - 2x2. 4y + 5y - y答案:1. x2. 8y第三章:几何初步习题1:根据题目所给的几何图形,计算下列图形的周长。
1. 一个正方形,边长为5cm。
2. 一个长方形,长为8cm,宽为4cm。
答案:1. 20cm2. 24cm习题2:计算下列图形的面积。
1. 一个圆,半径为3cm。
2. 一个三角形,底为6cm,高为4cm。
答案:1. 28.26cm²2. 12cm²结束语:本练习册答案仅供参考,希望同学们能够通过练习,加深对数学知识的理解和应用。
在解题过程中,遇到不懂的问题,要及时向老师或同学请教,共同进步。
数学是一门需要不断练习和思考的学科,希望每位同学都能在数学的海洋中遨游,享受解题的乐趣。
线性代数每章习题
线性代数每章习题第一章 行列式一、判断题1、排列213是一个奇排列。
( )2、行列式主对角线上的元素全为零,则行列式的值必为零。
( )3、如果行列式中有两行(列)的对应元素成比例,那么这个行列式的值为零。
( )4、两个行列式相加,等于对应元素相加。
( )5、333231232221131211333231232221131211a a a a a a a a a a a a a a a a a a -=---------。
( )6、行列式等于任意行元素与其对应的余子式乘积的代数和。
( )7、把行列式的行和相应的列互换,则行列式的值变号。
( ) 二、填空题1、43_________75=。
2、135135___________263=。
3、行列式334513221--中元素2的代数余子式为___________。
三、计算(1)102125113(2)讨论当k 为何值时,11001100002002k D kk=≠。
第二章 矩阵一、判断题1、所有的矩阵都是可逆的。
( )2、设B A ,是n 阶可逆方阵,则111()AB A B ---=。
( )3、若矩阵A 的秩为r ,则矩阵A 的所有1r +阶子式均为零。
( )4、若矩阵A 的所有r 阶子式均为零,则矩阵A 的秩小于r 。
( )5、n 阶方阵A 可逆的充分必要条件是0A ≠。
( )二、填空题1、当a 满足 时,矩阵131A a ⎛⎫=⎪-⎝⎭可逆。
2、设A 是可逆矩阵,且2A AB E +=,则A -=1 。
3、112________35-⎛⎫= ⎪⎝⎭。
4、矩阵10114063030002000000⎛⎫⎪⎪⎪⎪⎝⎭的秩为________________。
5、若矩阵110A a ⎛⎫= ⎪⎝⎭的秩为1,则a 应满足的条件为 。
三、计算题1、计算矩阵的乘积111310012011131320--⎛⎫⎛⎫⎪⎪-- ⎪⎪ ⎪⎪--⎝⎭⎝⎭。
第二章-线性代数(第四版)习题答案
y2 = 3 3 y2
5 3
x2 = 6 3 x3
−7 y2 . y3 −4
即
y1 = −7x1 − 4x2 + 9x3 , y2 = 6x1 + 3x2 − 7x3 , y = 3x + 2x − 4x . 3 1 2 3
由数学归纳法知: Ak =
8 .设 A = 0
解: 方法一. 首先计算
1 = 0 0 λ λ3 0 λn 猜测: An = 0 0 nλn−1 λn 0
同理得 y2 = 6x1 + 3x2 − 7x3 , y3 = 3x1 + 2x2 − 4x3 .
2 . 已知两个线性变换 x1 = 2y1 + y3 , x2 = −2y1 + 3y2 + 2y3 , x = 4y + y + 5y , 3 1 2 3 y1 = −3z1 + z2 , y 2 = 2 z1 + z3 , y = −z + 3z , 3 2 3
1 0 (6) 0 0
1 3 (1) AB = BA 吗?
5. 设A=
1
2
,B=
1 1
0 2
, 问:
(2) (A + B )2 = A2 + 2AB + B 2 吗? (3) (A + B )(A − B ) = A2 − B 2 吗?
解: (1) 因为
AB = 3 4 4 6 , BA = 1 2 3 8 ,
《高等代数》第二章习题及答案
习题2.11. 设m,n 是不同的正整数,A 是m ×n 矩阵,B 是n ×m 矩阵,下列运算式中有定义的有哪几个?A+B ,AB ,BA ,AB T ,A-B T 答 只有AB 和A-B T 有定义. 2. 计算①⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-322113075321134 ②⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-213075321134 ③()⎪⎪⎪⎭⎫ ⎝⎛213321 ④()321213⎪⎪⎪⎭⎫⎝⎛⑤()⎪⎪⎪⎭⎫ ⎝⎛-0713******** ⑥⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛c b a 321012100010501 ⑦()⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321333231232221131211321x x x a a a a a a a a a x x x解①⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-322113075321134=⎪⎪⎪⎭⎫⎝⎛-922147117②⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-213075321134=⎪⎪⎪⎭⎫ ⎝⎛22717 ③()⎪⎪⎪⎭⎫⎝⎛213321=()11④()321213⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛642321963 ⑤()⎪⎪⎪⎭⎫⎝⎛-0713********=()111813⑥⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛c b a 321012100010501=⎪⎪⎪⎭⎫ ⎝⎛-+-c b a c b a 32155125 ⑦()⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321333231232221131211321x x x a a a a a a a a a x x x=233323321331322322221221311321122111x a x x a x x a x x a x a x x a x x a x x a x a ++++++++3. 设A=⎪⎪⎭⎫⎝⎛3121,B=⎪⎪⎭⎫⎝⎛3101,计算: ① (A+B)(A-B) ② A 2-B 2③ (AB)T ④ A T B T解 ① (A+B)(A-B)= ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛4040002062223101312131013121 ② A 2-B 2=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛20829401114833101310131213121③ (AB)T=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛9643946331013121TT④ A T B T=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛112413011321131013121TT 4. 求所有的与A=⎪⎪⎭⎫⎝⎛1011可交换的矩阵. 解 设矩阵B 与A 可交换,则B 必是2×2矩阵,设B=⎪⎪⎭⎫⎝⎛d c b a ,令AB=BA ,即 ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛10111011d c b a d c b a 从而有 ⎪⎪⎭⎫⎝⎛++=⎪⎪⎭⎫⎝⎛++d c c b a a d cd b c a 由此得⎪⎪⎩⎪⎪⎨⎧+==+=+=+dc d c c b a d b ac a解得,c=0,a=d ,b 为任意数.即与A 可交换的矩阵B 可写成B=⎪⎪⎭⎫⎝⎛a b a 0. 5. 设A ,B 是n ×n 矩阵,并且A 是对称矩阵,证明:B T AB 也是对称矩阵.证 已知A 是对称矩阵,即A T =A ,从而 (B T AB)T =B T A T (B T ) T =B T AB ,所以B T AB 也是对称矩阵.6. 设A=⎪⎪⎭⎫ ⎝⎛b a b 0,求A 2,A 3,…,A k.解A 2=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛222000b ab b b a b b a bA 3=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛3232230020b ab b b a b b ab b …A k =⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----k k k k k k b kabb b a b b ab k b 112100)1(0 7.设B 是2×2矩阵.由B 2=02×2能推出B=0吗?试举反例.(提示:参见上题.) 解 不能.例如令B=⎪⎪⎭⎫⎝⎛000a ,当a ≠0时,B ≠0,但B 2=02×2. 8. 设A ,B 是n ×n 矩阵,证明:(A+2B)(A-5B)=A 2-3AB-10B 2的充分必要条件是A 与B 可交换.证 充分性:若A 与B 可交换,即AB=BA ,则(A+2B)(A-5B)=A 2-5AB+2BA-10B 2= A 2-5AB+2AB-10B 2= A 2-3AB-10B 2 必要性:若(A+2B)(A-5B)=A 2-3AB-10B 2 即 A 2-5AB+2BA-10B 2= A 2-3AB-10B 2 比较两边相同的项得 -2AB+2BA=0 故 AB=BA9. 设A ,B 是n ×n 对称矩阵,证明:AB 是对称矩阵的充分必要条件是A 与B 可交换. 证 因A ,B 是n ×n 对称矩阵,即A T =A ,B T =B .必要性:若AB 是对称矩阵,则(AB)T =AB ,有因 (AB)T =B T A T =BA ,从而AB= BA ,即A 与B 可交换.充分性:若A 与B 可交换,由必要性证明过程反图推,知AB 是对称矩阵.习题2.21.设A ,B ,C 是矩阵,且满足AB=AC ,证明:如果A 是可逆的,则B=C .证 已知AB=AC ,两边左乘矩阵A -1,有A -1(AB)= A -1(AC),根据结合律得(A -1A)B=( A -1A)C ,从而有EB=EC ,故B=C .2.设P 是可逆矩阵,证明:线性方程组AX=β与线性方程组PAX=P β同解.证 设X (1)是AX=β的任一解解,即有AX (1)=β成立,两边左乘矩阵P ,得PAX (1)=P β,说明X (1)也是PAX=P β的解.反之,设X (2)是PAX=P β的任一解,即有PAX (2)=P β成立,两边左乘矩阵P -1,得P -1 (PAX (2))= P -1 (P β),根据结合律得(P -1 P)AX (2)=(P -1 P)β,从而有AX (2)=β,这说明X (2)也是AX=β的解.综合以上可知,线性方程组AX=β与线性方程组PAX=P β同解.3.设P 是n ×n 可逆矩阵,C 是n ×m 矩阵.证明:矩阵方程PX=C 有唯一解.证 令X *=P -1C ,代入PX=C 中验证知X *是矩阵方程的一个解.反之,设X (1)是矩阵方程PX=C的任一解,即有PX (1)=C 成立,两边左乘P -1得,X (1)=P -1C=X *,所以矩阵方程PX=C 有唯一解.4. 设A 是n ×n 可逆矩阵,且存在一个整数m 使得A m=0.证明:(E-A)是可逆的,并且(E-A)-1=E+A+…+A m-1.证 由于(E-A)(E+A+…+A m-1)=E+A+…+A m-1-A-A 2-…-A m =E-A m=E-0=E显然交换(E-A)和(E+A+…+A m-1)的次序后相乘结果仍成立,根据逆阵的定义知(E-A)-1=E+A+…+A m-1.5.设P ,A 都是n ×n 矩阵,其中P 是可逆的,m 是正整数.证明:(P -1AP)m =P -1A mP .证 (P -1AP)m =(P -1AP)(P -1AP)(P -1AP)…(P -1AP)=P -1A(PP -1)A(PP -1)…AP=P -1AEAE …AP=P -1A m P6. 设A ,B 都是n ×n 可逆矩阵,(A+B)一定是可逆的吗?如果(A+B)是可逆的,是否有(A+B)-1=A -1+B -1?若不是,试举出反例.解 如果A ,B 都是n ×n 可逆矩阵,(A+B)不一定是可逆的.例如A=⎪⎪⎭⎫ ⎝⎛1001,B=⎪⎪⎭⎫⎝⎛--1001都是可逆的,但A+B=⎪⎪⎭⎫⎝⎛0000是不可逆的. 如果(A+B)是可逆的,也不能说(A+B)-1=A -1+B -1.例如A=⎪⎪⎭⎫ ⎝⎛1001,B=⎪⎪⎭⎫⎝⎛1001,则A ,B 可逆,A+B=⎪⎪⎭⎫⎝⎛2002可逆,且(A+B)-1=⎪⎪⎭⎫ ⎝⎛2/1002/1,但A -1+B -1=⎪⎪⎭⎫ ⎝⎛1001+⎪⎪⎭⎫ ⎝⎛1001=⎪⎪⎭⎫ ⎝⎛2002.显然(A+B)-1≠A -1+B -1.7*.设A ,B 都是n ×n 矩阵,满足ABA=A ,β是n ×1矩阵.证明:当且仅当AB β=β时,线性方程组AX=β有解.证 当AB β=β时,记X *=B β,即X *是AX=β的一个解.反之,若线性方程组AX=β有解,设X (1)是它的一个解,即有AX (1)=β,两边左乘(AB)得(ABA)X (1)=AB β用已知条件ABA=A 代到上式左边得AX (1)=AB β 由于X (1)是AX=β的一个解,即AX (1)=β,所以AB β=β.习题2.31.用行和列的初等变换将矩阵A 化成⎪⎪⎭⎫⎝⎛000E 的形式: A=⎪⎪⎪⎪⎪⎭⎫⎝⎛----10030116030242201211解 ⎪⎪⎪⎪⎪⎭⎫⎝⎛----10030116030242201211→⎪⎪⎪⎪⎪⎭⎫⎝⎛---10030140300400001211→⎪⎪⎪⎪⎪⎭⎫⎝⎛---04000100301403001211→⎪⎪⎪⎪⎪⎭⎫⎝⎛--00000040001403001211→⎪⎪⎪⎪⎪⎭⎫⎝⎛00000040000003000001→⎪⎪⎪⎪⎪⎭⎫⎝⎛000000010000010000012.用初等变换判定下列矩阵是否可逆,如可逆,求出它们的逆矩阵:①⎪⎪⎪⎭⎫ ⎝⎛-----134112112 ②⎪⎪⎪⎭⎫⎝⎛----153132543 解 ①⎪⎪⎪⎭⎫ ⎝⎛-----100134010112001112→⎪⎪⎪⎭⎫ ⎝⎛---102110011200001112→→⎪⎪⎪⎭⎫ ⎝⎛---011200102110001112→⎪⎪⎪⎭⎫ ⎝⎛--02/12/110012/12/301002/12/1012→ →⎪⎪⎪⎭⎫ ⎝⎛-02/12/110012/12/3010112002→⎪⎪⎪⎭⎫ ⎝⎛-02/12/110012/12/30102/12/11001 所给矩阵可逆,其逆阵为⎪⎪⎪⎭⎫ ⎝⎛-02/12/112/12/32/12/11②⎪⎪⎪⎭⎫ ⎝⎛----100153010132001543→⎪⎪⎪⎭⎫⎝⎛-------101610013/23/73/10001543→⎪⎪⎪⎭⎫ ⎝⎛---131100032710001543→⎪⎪⎪⎭⎫ ⎝⎛------13110071850105154043 →⎪⎪⎪⎭⎫ ⎝⎛-----1311007185010338724003→⎪⎪⎪⎭⎫ ⎝⎛-----131100718501011298001 所给矩阵可逆,其逆阵为⎪⎪⎪⎭⎫⎝⎛-----1317185112982.解下列矩阵方程:①⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛-11111152X ②⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--101111201021121101X ③⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--234311*********X解 ①⎪⎪⎭⎫⎝⎛---11111152→⎪⎪⎭⎫ ⎝⎛---11521111→⎪⎪⎭⎫⎝⎛---33701111 →⎪⎪⎭⎫⎝⎛--7/37/3107/47/401 由此得⎪⎪⎭⎫ ⎝⎛--=7/37/37/47/4X ②⎪⎪⎪⎭⎫ ⎝⎛---101021111121201101→⎪⎪⎪⎭⎫ ⎝⎛---302120112220201101 →⎪⎪⎪⎭⎫ ⎝⎛----414300112220201101→⎪⎪⎪⎭⎫ ⎝⎛--3/43/13/41006/56/13/10103/23/13/1001 由此得⎪⎪⎪⎭⎫⎝⎛--=3/43/13/46/56/13/13/23/13/1X ③对等式两端分别转置得⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--233141*********T X 因为⎪⎪⎪⎭⎫ ⎝⎛---231013111141122→⎪⎪⎪⎭⎫ ⎝⎛---231014112231111→⎪⎪⎪⎭⎫ ⎝⎛---520102330031111 →⎪⎪⎪⎭⎫ ⎝⎛---233005201031111→⎪⎪⎪⎭⎫ ⎝⎛-3/21100520103/70011→⎪⎪⎪⎭⎫⎝⎛---3/21100520103/82001 所以⎪⎪⎪⎭⎫⎝⎛---=3/21523/82TX⎪⎪⎭⎫ ⎝⎛---=3/253/8122X4.设⎪⎪⎪⎭⎫ ⎝⎛=011110001A ,⎪⎪⎪⎭⎫⎝⎛-=110020102B ,又X 是可逆矩阵,并且满足矩阵方程AX 2B=XB ,求矩阵X .解 (B,E)=⎪⎪⎪⎭⎫ ⎝⎛-100110010020001102→⎪⎪⎪⎭⎫⎝⎛-10011002/10010001102→⎪⎪⎪⎭⎫ ⎝⎛-12/1010002/10010001102→⎪⎪⎪⎭⎫ ⎝⎛---12/1010002/1001012/11002 →⎪⎪⎪⎭⎫ ⎝⎛---12/1010002/100102/14/12/1001 从以上看出B 可逆,对AX 2B=XB 两边右乘B -1得AX 2=X .已知X 可逆,对AX 2=X 两边右乘B -1得AX=E .又(A,E)=⎪⎪⎪⎭⎫ ⎝⎛100011010110001001→⎪⎪⎪⎭⎫ ⎝⎛-101010010110001001→⎪⎪⎪⎭⎫ ⎝⎛--101010111100001001→⎪⎪⎪⎭⎫ ⎝⎛--111100101010001001 所以 X=⎪⎪⎪⎭⎫⎝⎛--1111010015.①证明:B 与A 行等价⇔存在可逆矩阵P ,使B=PA .②证明:B 与A 等价⇔存在可逆矩阵P 与Q ,使B=PAQ .证 若B 与A 行等价,即A 可经有限次初等行变换得到B ,而对矩阵A 每做一次初等行变换,相当于对它左乘一个初等方阵,假设对A 依次左乘初等方阵P 1,P 2,…,P K ,使P k …P 2P 1A=B令P=P k …P 2P 1,则P 是可逆矩阵,且B=PA .反之,若存在可逆矩阵P ,使B=PA ,因为可逆矩阵P 可以写成一系列初等方阵P 1,P 2, …,P k的乘积,即P=P 1P 2…P k ,从而有B=P 1P 2…P k A ,说明A 可经有限次初等行变换得到B ,即B 与A 行等价.② 若B 与A 等价,即对A 经过有限次初等变换得到B .而对矩阵A 每做一次初等行变换,相当于对它左乘一个初等方阵;对矩阵A 每做一次初等列变换,相当于对它右乘一个初等方阵.假设对A 左乘的初等方阵依次为P 1,P 2,…,P s ,对A 右乘的初等方阵依次为Q 1,Q 2,…,Q t ,使P s …P 2P 1AQ 1Q 2…Q t =B令P=P s …P 2P 1,Q=Q 1Q 2…Q t ,则P ,Q 都是可逆矩阵,且B=PAQ .反之,若存在可逆矩阵P 和Q ,使B=PAQ ,因为可逆矩阵P 和Q 均可以写成一系列初等方阵的乘积,设P=P 1P 2 …P s ,Q=Q 1Q 2…Q t ,这里P i ,Q i 都是初等方阵,从而有B=P 1P 2…P k A Q 1Q 2…Q t ,说明A 可经有限次初等行变换和初等列变换得到B ,即B 与A 等价. 6*.设A 是s ×n 矩阵,B 是s ×m 矩阵,B 的第i 列构成的s ×1矩阵是βj (j=1,2,…,m ).证明:矩阵方程AX=B 有解的充分必要条件是:AX=βj (j=1,2,…,m )都有解.证 先证必要性.如果矩阵方程AX=B 有解,设X *是它的解,则X *是n ×m 矩阵,记X *的第j 列为X *j ,根据矩阵先相乘的规则知,A 与X *j 相乘的结果是βj ,即X *j 是AX=βj 的解(j=1,2,…,m ).再证充分性.若AX=βj (j=1,2,…,m )都有解,设X *j 是AX=βj 的解,这里X *j 是n ×1矩阵,令X *=(X *1, X *2,…,X *m ),则X *是n ×m 矩阵,且X *是矩阵方程AX=B 的解. 7*.设A=(a ij )是n ×n 矩阵.①证明:如果P n (h(2))A=AP n (h(2)),则a hj =0,j=1,2,…,h-1,h+1,…,n ;并且a ih =0,i=1,2,…,h-1,h+1,…,n .②设B=diag(b 1, b 2,…, b n )是一个对角矩阵,设l ≠k .证明:如果P n (l,k)B=BP n (l,k),b l =b k .③证明:如果矩阵A 与所有的n ×n 矩阵都可交换,则A 是一个数量矩阵.证 ①如果P n (h(2))A=AP n (h(2)),则A 是n ×n 矩阵,等式左边的P n (h(2))A 表示将矩阵A 的第h 行每个元素乘以2得到的矩阵;等式右端的AP n (h(2))表示将A 的第h 列每个元素乘以2得到的矩阵.从等式可知2a hj = a hj (j=1,2,…,h-1,h+1,…,n ),a ih =2a ih (i=1,2,…,h-1,h+1,…,n ),从而得a hj =0,j=1,2,…,h-1,h+1,…,n ;并且a ih =0,i=1,2,…,h-1,h+1,…,n .②如果P n (l,k)B=BP n (l,k),则B 是n ×n 矩阵,等式左边的P n (l,k)B 表示将矩阵B 的第l 行和第k 行交换位置;等式右端的BP n (l,k) 表示将矩阵B 的第l 列和第k 列交换位置.由于B=diag(b 1, b 2,…, b n )是一个对角矩阵,且l ≠k ,不妨设l<k ,则有P n (l,k)B=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n l k b b b b 001=BP n (l,k)=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛n k lb b b b001比较对应元素,可知b l =b k .③如果矩阵A 与所有的n ×n 矩阵都可交换,在①中分别令h=1,2,…,n ,可知A 除对角线上元素以外其它元素都是零,即A 可写成diag(b 1, b 2,…, b n );在②可令l=1,分别令k=2,…,n ,可知A 的对角线上元素都相等.习题2.41.设A=⎪⎪⎭⎫ ⎝⎛421A A A ,其中A 1是s ×s 矩阵,A 2是s ×t 矩阵,A 4是t ×t 矩阵.求A 3. 解 A 2=⎪⎪⎭⎫ ⎝⎛421A A A ⎪⎪⎭⎫ ⎝⎛4210A A A =⎪⎪⎭⎫⎝⎛+244221210A A A A A A A 3=⎪⎪⎭⎫ ⎝⎛4210A A A ⎪⎪⎭⎫ ⎝⎛+244221210A A A A A A =⎪⎪⎭⎫ ⎝⎛++34242421221310A A A A A A A A A2.①设G=⎪⎪⎭⎫⎝⎛000rE 是m ×n 矩阵,证明:存在矩阵B ,使得GBG=G . ②设A 是m ×n 矩阵,证明:存在矩阵B ,使得ABA=A .证 ①构造n ×m 矩阵B 为B=⎪⎪⎭⎫⎝⎛-⨯-⨯--⨯)()()()(000r m r n rr n r m r rE ,则GBG=⎪⎪⎭⎫⎝⎛-⨯-⨯--⨯)()()()(000r n r m rr m r n r rE ⎪⎪⎭⎫ ⎝⎛-⨯-⨯--⨯)()()()(000r m r n r r n r m r rE ⎪⎪⎭⎫⎝⎛-⨯-⨯--⨯)()()()(000r n r m rr m r n r rE=⎪⎪⎭⎫ ⎝⎛-⨯-⨯--⨯)()()()(000r n r m rr m r n r rE =G②设矩阵A 的秩为r ,则可经过有限次初等变换使A 变为⎪⎪⎭⎫⎝⎛-⨯-⨯--⨯)()()()(000r n r m rr m r n r rE 的形式,即存在可逆的n ×n 矩阵P 和可逆的m ×m 矩阵Q 使PAQ=⎪⎪⎭⎫⎝⎛-⨯-⨯--⨯)()()()(000r n r m r r m r n r r E =D ,即A=P -1DQ -1.定义n ×m 矩阵B 如下:B=QCP ,其中C=⎪⎪⎭⎫⎝⎛-⨯-⨯--⨯)()()()(000r m r n rr n r m r rE .则有ABA=(P -1DQ -1)(QCP)(P -1DQ -1)= P -1DCDQ -1=P -1⎪⎪⎭⎫⎝⎛-⨯-⨯--⨯)()()()(000r n r m r r m r n r r E ⎪⎪⎭⎫ ⎝⎛-⨯-⨯--⨯)()()()(000r m r n r r n r m r rE ⎪⎪⎭⎫ ⎝⎛-⨯-⨯--⨯)()()()(000r n r m rr m r n r rE Q -1= P -1⎪⎪⎭⎫ ⎝⎛-⨯-⨯--⨯)()()()(000r n r m rr m r n r rE Q -1=A3*.设A=⎪⎪⎭⎫⎝⎛4210A A A ,其中A 1是s ×s 矩阵,A 2是s ×t 矩阵,A 4是t ×t 矩阵.证明:如果A 1,A 4都是可逆的,则A 也是可逆的,进一步,求A 的逆矩阵.证 如果A 1,A 4都是可逆的,令B=⎪⎪⎭⎫ ⎝⎛--142110A B A ,其中A 1-1,A 4-1分别是A 1,A 4的逆阵,B 2是s ×t 矩阵.令AB=E ,即有⎪⎪⎭⎫ ⎝⎛421A A A ⎪⎪⎭⎫ ⎝⎛--142110A B A =⎪⎪⎭⎫ ⎝⎛+-t s E A A B A E 014221=⎪⎪⎭⎫⎝⎛t s E E 00, 从而 A 1B 2+ A 2A 4-1=0,由此得B 2=-A 1-1A 2A 4-1.说明A 也是可逆的,且A -1=⎪⎪⎭⎫⎝⎛-----1414211110A A A A A。
六年级数学代数初步知识练习题
代数初步知识试题精选一、填空题。
1. 学校买来a 个足球,每个b 元;又买来9个篮球,每个45元。
ab 表示( );ab +9×45表示( )。
2. 一本故事书有a 页,小华每天看8页,看了b 天,还剩( )页未看。
3. 如果a=3b (a 、b 都是不为0的自然数),那么a 和b 的最大公约数是( ),最小公倍数是( )。
4. 摆1个正方形需要4根小棒,摆2个需要7根小棒,摆3个需要10根小棒,摆n个正方形需要( )根小棒。
5. 小红比小刚多a 元,那么小红给小刚( )元,两人的钱数相等。
6. m 千克油菜子可以榨出n 千克菜子油,每榨出1千克菜子油需要( )千克油菜子,1千克油菜子可以榨出( )千克菜子油。
7. 列式表示下面各数。
⑴比80大x 的数是( );⑵一件衬衣a 元,一件毛衣的价格比它的3倍少b 元,毛衣的价格是( )元; ⑶b 的4倍与c 的和是( )。
8. M 与N 是两种相关联的量,a 、b 、c 、d (都不为0)是它们其中的两组相对应的值。
如下表: M a b ……N c d ……⑴如果a:c=b:d ,那么M 、N 成( )比例;⑵如果a ×c=b ×d ,那么M 、N 成( )比例。
9. 若a :b=2:3,b :c=1:2,且a +b +c=66,则a=( ),b=( )。
10. 用含字母的式子表示“比a 的2倍多8的数”是( )。
当a=1.2时,这个式子的值是( )。
11. 如果y=x8,那么x 和y 成( )比例,比值是( )。
12. 7.5:1.5化成最简整数比是( ),比值是( )。
13. 一个自然保护区天鹅和丹顶鹤数量的比是4:1。
已知丹顶鹤和天鹅共105只,天鹅有( )只。
14. 五年级向希望工程捐款x 元,比四年级多45元,四年级和五年级共捐款多少元?列式为( )。
15. 一堆化肥共6吨,按1:3:4分给甲、乙、丙三个村,甲村分得这堆化肥的)() (,乙村分得( )吨。
第二章 逻辑代数基础习题解答
(2)F ( A B)(A C)(C DE ) E F [ A B AC C(D E)] E
F [ AB AC C(D E)] E
(3)F [ AB (C D) AC]
F AB (C D) AC [( A B )(C D AC )] F [( A B)(CD A C )]
2.8 用卡诺图化简法求出下列逻辑函数的最简 “与-或” 表达式和最简“或-与”表达式。 (1)F ( A, B, C, D) A B A CD AC BC (2)F ( A, B, C, D) BC D D(B C)(AD B)
, (3)F ( A, B, C, D) M (2,4,6,10,1112,13,14,15)
G( A, B, C, D) ( AB BC AC)( A B C) ABC
解: (1)F ( A, B, C, D) B D A D C D ACD G ( A, B, C, D) BD CD A CD ABD
卡诺图如下:
由卡诺图知: F D
b.求必要质蕴涵项(右上角加“*”标记) c.找出函数的最小覆盖
∴ F ( A, B, C, D) P1 P2 P4 BD CD B D 或 F ( A, B, C, D) P1 P3 P4 BD BC B D
(2)F ( A, B, C, D) m(3,5,8,9,10,12) d ( 0,1,2,13)
( A B AC BC)(A C) ABC A B C
2.3
用真值表验证下列表达式。
(1)AB AB ( A B)(A B) (2) ( A B)( A B) ( AB A B) 解:等式(1)、(2)的真值表如表T2.3所示。
(完整版)代数的初步认识练习题
(完整版)代数的初步认识练习题代数的初步认识练题1. 简答题1. 什么是代数?代数是研究数学结构和运算符号的一种数学分支,包括数与代数运算(加、减、乘、除),代数方程和代数函数等。
2. 代数中的常见符号有哪些?代数中常见的符号有:数字(0、1、2、...)、运算符号(+、-、×、÷)、等号(=)、未知数(x、y、z)、代数变量(a、b、c)等。
3. 什么是方程?方程是一种陈述式,它表达了两个表达式相等的关系。
方程通常包含未知数,并通过解方程得到未知数的值。
4. 解方程的步骤是什么?解方程的步骤一般为:- 通过合并同类项化简方程;- 移项,将未知数移到一个方程的一边;- 使用逆运算消去系数;- 计算未知数的值。
2. 计算题1. 计算下列代数式的值:(2x + 3y) / (x + y),已知 x = 5,y = 2。
将 x = 5,y = 2 代入代数式得:(2 x 5 + 3 x 2) / (5 + 2) = (10 + 6) / 7 = 16 / 7。
2. 解方程:2(x - 3) + 5 = 13。
将式子展开得:2x - 6 + 5 = 13,合并同类项得:2x - 1 = 13,移项得:2x = 14,解得:x = 7。
3. 解方程组:- 3x + 2y = 6- 4x - y = 10通过消元法可得:x = 2,y = 0。
4. 计算下列代数式的值:(a - 1)(a + 1)。
将式子展开得:a^2 - 1。
以上是代数的初步认识练题的解答。
参考资料- 《高中数学九年级上册》- 《高中数学九年级下册》。
线性代数第二章习题及解答
··· ··· .. . ···
∗ ∗ . . .
2 a2 n1 + · · · + ann
(1)
(2)
2 2 由 A2 = 0 得到 a2 0 i1 + ai2 + · · · + ain = 0, i = 1, 2, . . . , n 于是 aij = ( ) 1 2 2 cos θ sin θ 8. 设 A = ,B = , C = 2 1 −2 − sin θ cos θ 2 −2 1
证明:|A−1 | =
|A| = ±1
1 |A|
注意到 A−1 的元素为正数所以其行列式必为整数, 即
1 |A|
为正数, 于是只有
若 |A| = ±1, 由于 A−1 = 整数.
A∗ |A|
注意到 Aij 为整数,于是 A∗ 的元素必为整数,则 A−1 的元素为
1 3 0 0 0
0 2
20 −1 −1 0 , P AP = 0 1 0 求 A 0 0 2 1 2 520 0 0 解:P AP −1 P AP −1 · · · P AP −1 = P A20 P −1 = 0 1 0 20 0 0 220 520 0 0 2 · 520 − 1 1 − 220 2 · 520 − 221 20 20 那么 A20 = P −1 2 · 520 − 221 0 1 0 P = 2 · 5 − 2 2 − 2 0 0 20 −520 + 1 −1 + 220 −520 + 221 19. 设 A, B, A + B 可逆, 证明 (A−1 + B −1 )−1 = A(A + B )−1 B
线性代数习题 第二章 (附详解)
线性代数习题 第二章 (附详解)第二章 矩阵及其运算【编号】ZSWD2023B0061 1 已知线性变换3213321232113235322y y y x y y y x y y y x 求从变量x 1 x 2 x 3到变量y 1 y 2 y 3的线性变换解: 由已知221321323513122y y y x x x故3211221323513122x x x y y y321423736947y y y 321332123211423736947x x x y x x x y x x x y2 已知两个线性变换32133212311542322y y y x y y y x y y x 323312211323z z y z z y z z y求从z 1 z 2 z 3到x 1 x 2 x 3的线性变换 解: 由已知221321514232102y y y x x x321310102013514232102z z z321161109412316z z z所以有 3213321232111610941236z z z x z z z x z z z x3 设 111111111A150421321B 求3AB 2A 及A TB解:1111111112150421321111111111323A AB2294201722213211111111120926508503092650850150421321111111111B A T4 计算下列乘积(1)127075321134解:127075321134 102775132)2(7111237449635(2)123)321(解:123)321( (1 3 2 2 3 1) (10)(3))21(312解: )21(31223)1(321)1(122)1(2632142(4)20413121013143110412 解:20413121013143110412 6520876(5)321332313232212131211321)(x x x a a a a a a a a a x x x 解:321332313232212131211321)(x x x a a a a a a a a a x x x(a 11x 1 a 12x 2 a 13x 3 a 12x 1 a 22x 2 a 23x 3 a 13x 1 a 23x 2 a 33x 3)321x x x322331132112233322222111222x x a x x a x x a x a x a x a5 设3121A2101B 问(1)AB BA 吗? 解: AB BA 因为6443AB8321BA 所以AB BA(2)(A B)2A 22AB B 2吗? 解: (A B)2A 22AB B 2因为5222B A52225222)(2B A2914148但 43011288611483222B AB A27151610 所以(A B)2A 22AB B 2(3)(A B)(A B) A 2B 2吗?解: (A B)(A B) A 2B 2因为5222B A1020B A906010205222))((B A B A而718243011148322B A 故(A B)(A B) A 2B 26 举反列说明下列命题是错误的 (1)若A 20 则A 0解: 取0010A 则A 20 但A 0 (2)若A 2A 则A 0或A E 解: 取0011A 则A 2A 但A 0且A E (3)若AX AY 且A 0 则X Y 解: 取0001A 1111X1011Y则AX AY 且A 0 但X Y7 设101 A 求A 2A 3A k解:12011011012 A1301101120123 A A A101 k A k8 设001001A 求Ak解: 首先观察0010010010012A2220020123232323003033 A A A43423434004064 A A A545345450050105A A AkA k k kk k k k k k k 0002)1(121用数学归纳法证明 当k 2时 显然成立 假设k 时成立,则k 1时,0010010002)1(1211k k k k k k k k k k k k A A A11111100)1(02)1()1(k k k k k k k k k k 由数学归纳法原理知k k k k k k k k k k k A 0002)1(1219 设A B 为n 阶矩阵,且A 为对称矩阵,证明B TAB 也是对称矩阵 证明: 因为A TA 所以(B TAB)TB T(B TA)TB T A TB B TAB从而B TAB 是对称矩阵10 设A B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB BA 证明: 充分性 因为A TA B TB 且AB BA 所以(AB)T(BA)TA TB TAB即AB 是对称矩阵必要性 因为A TA B TB 且(AB)TAB 所以AB (AB)TB T A TBA11 求下列矩阵的逆矩阵 (1)5221 解:5221A |A| 1 故A 1存在 因为1225*22122111A A A A A故 *||11A A A1225(2)cos sin sin cos 解cos sin sin cos A |A| 1 0 故A 1存在 因为cos sin sin cos *22122111A A A A A所以 *||11A A Acos sin sin cos(3)145243121解145243121A |A| 2 0 故A 1存在 因为214321613024*332313322212312111A A A AA A A A A A所以 *||11A A A1716213213012(4)n a a a 0021(a 1a 2a n0)解 n a a a A 0021由对角矩阵的性质知n a a a A 1001121112 解下列矩阵方程 (1)12643152X解:126431521X1264215380232(2)234311*********X 解: 1111012112234311X0332321012343113132538122(3)101311022141X解: 11110210132141X2101101311421212101036612104111 (4)021102341010100001100001010X解: 11010100001021102341100001010X01010000102110234110000101020143101213 利用逆矩阵解下列线性方程组(1) 3532522132321321321x x x x x x x x x解: 方程组可表示为321153522321321x x x故0013211535223211321x x x从而有 001321x x x(2) 05231322321321321x x x x x x x x x解: 方程组可表示为012523312111321x x x故3050125233121111321x x x 故有 305321x x x14 设A kO (k 为正整数) 证明(E A) 1E A A 2A k 1证明: 因为A kO 所以E A kE 又因为E A k(E A)(E A A 2A k 1)所以 (E A)(E A A 2A k 1) E由定理2推论知(E A)可逆 且 (E A) 1E A A 2A k 1证明 一方面 有E (E A) 1(E A)另一方面 由A kO 有E (E A) (A A 2) A 2A k 1(A k 1A k)(E A A 2 Ak 1)(E A)故 (E A) 1(E A) (E A A 2A k 1)(E A)两端同时右乘(E A) 1就有 (E A) 1(E A) E A A 2A k 115 设方阵A 满足A 2A 2E O 证明A 及A 2E 都可逆 并求A 1及(A 2E) 1证明: 由A 2A 2E O 得A 2A 2E 即A(A E) 2E或 E E A A)(21 由定理2推论知A 可逆 且)(211E A A 由A 2A 2E O 得A 2A 6E 4E 即(A 2E)(A 3E) 4E或 E A E E A)3(41)2( 由定理2推论知(A 2E)可逆 且)3(41)2(1A E E A证明 由A 2A 2E O 得A 2A 2E 两端同时取行列式得 |A 2A| 2即 |A||A E| 2 故 |A| 0所以A 可逆 而A 2E A 2|A 2E| |A 2| |A|20 故A 2E 也可逆由 A 2A 2E O A(A E) 2EA 1A(A E) 2A 1E )(211E A A又由 A 2A 2E O (A 2E)A 3(A 2E) 4E (A 2E)(A 3E) 4 E所以 (A 2E) 1(A 2E)(A 3E) 4(A 2 E) 1)3(41)2(1A E E A16 设A 为3阶矩阵 21||A 求|(2A) 15A*| 解: 因为*||11A A A所以 |||521||*5)2(|111 A A A A A |2521|11 A A | 2A 1| ( 2)3|A 1| 8|A| 18 2 1617 设矩阵A 可逆 证明其伴随阵A*也可逆 且(A*) 1(A 1)*证明: 由*||11A A A得A* |A|A 1所以当A 可逆时 有|A*| |A|n|A 1| |A|n 10 从而A*也可逆因为A* |A|A 1所以(A*) 1|A| 1A又*)(||)*(||1111A A A A A 所以 (A*) 1|A| 1A |A| 1|A|(A 1)* (A 1)*18 设n 阶矩阵A 的伴随矩阵为A* 证明 (1)若|A| 0 则|A*| 0 (2)|A*| |A|n 1证明:(1)用反证法证明 假设|A*| 0 则有A*(A*) 1E 由此得A A A*(A*) 1|A|E(A*) 1O所以A* O 这与|A*| 0矛盾,故当|A| 0时 有|A*| 0(2)由于*||11A A A则AA* |A|E 取行列式得到 |A||A*| |A|n若|A| 0 则|A*| |A|n 1若|A| 0 由(1)知|A*| 0 此时命题也成立 因此|A*| |A|n 119 设321011330A AB A 2B 求B解: 由AB A 2E 可得(A 2E)B A 故321011330121011332)2(11A E A B01132133020 设101020101A 且AB E A 2B 求B解: 由AB E A 2B 得(A E)B A 2E即 (A E)B (A E)(A E)因为01001010100|| E A 所以(A E)可逆 从而201030102E A B21 设A diag(1 2 1) A*BA 2BA 8E 求B 解: 由A*BA 2BA 8E 得 (A* 2E)BA 8E B 8(A* 2E) 1A 18[A(A* 2E)] 18(AA* 2A)18(|A|E 2A) 18( 2E 2A) 14(E A)14[diag(2 1 2)] 1)21 ,1 21(diag 4 2diag(1 2 1)22 已知矩阵A 的伴随阵8030010100100001*A 且ABA 1BA 13E 求B解: 由|A*| |A|38 得|A| 2由ABA 1BA 13E 得AB B 3AB 3(A E) 1A 3[A(E A 1)] 1A11*)2(6*)21(3A E A E103006060060000660300101001000016123 设P 1AP 其中1141P2001 求A 11解: 由P 1AP 得A P P 1所以A 11A=P 11P 1. |P| 31141*P 1141311P而11111120 012001故31313431200111411111A6846832732273124 设AP P 其中111201111P511求 (A) A 8(5E 6A A 2) 解: ( ) 8(5E 6 2)diag(1 1 58)[diag(5 5 5) diag( 6 6 30) diag(1 1 25)] diag(1 1 58)diag(12 0 0) 12diag(1 0 0) (A) P ( )P 1*)(||1P P P1213032220000000011112011112111111111425 设矩阵A、B 及A B 都可逆 证明A 1B 1也可逆 并求其逆阵证明: 因为A 1(A B)B 1B 1A 1A 1B 1而A 1(A B)B 1是三个可逆矩阵的乘积 所以A 1(A B)B 1可逆 即A 1B 1可逆(A 1B 1) 1[A 1(A B)B 1] 1B(A B) 1A26 计算30003200121013013000120010100121 解: 设10211A30122A 12131B30322B则 2121B O B E A O E A222111B A O B B A A而4225303212131021211B B A90343032301222B A 所以 2121B O B E A O E A 222111B A O B B A A9000340042102521即30003200121013013000120010100121900034004210252127 取1001D C B A 验证|||||||| D C B A D C B A解:4100120021010*********0021010010110100101D C B A 而01111|||||||| D C B A 故|||||||| D C B A D C B A28 设22023443O O A 求|A 8|及A 4解: 令 34431A22022A则21A O O A A故 8218 A O O A A8281A O O A 1682818281810|||||||||| A A A A A464444241422025005O O A O O A A29 设n 阶矩阵A 及s 阶矩阵B 都可逆 求 (1)1O B A O解: 设43211C C C C O B A O 则O B A O 4321C C C Cs n E O O E BC BC AC AC 2143 由此得 s n E BC O BC O AC E AC 2143 121413B C O C O C A C所以O A B O O B A O 111(2)1B C O A解: 设43211D D D D B C O A 则s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321由此得 s n E BD CD O BD CD O AD E AD 423121 14113211B D CA B D O D A D所以11111B CA B O A BC O A30 求下列矩阵的逆阵(1)2500380000120025 解: 设1225A2538B 则5221122511A8532253811B于是850032000052002125003800001200251111B A B A(2)4121031200210001 解: 设 2101A 4103B2112C 则1111114121031200210001B CA B O A BC O A411212458103161210021210001。
线性代数第二章习题部分答案(
第二章向量组的线性相关性§2-1 §2-2 维向量,线性相关与线性无关(一)一、填空题1. 设3 α1−α +2 α2+α =5 α3+α , 其中α1=(2,5,1,3)T,α2=(10,1,5,10)T, α3=(4,1,−1,1)T, 则α= (1,2,3,4)T .2. 设α1=(1,1,1)T, α2=(2,1,1)T,α3=(0,2,4)T,则线性组合α1−3α2+α3= (−5,0,2)T .3. 设矩阵A= ,设βi为矩阵A的第i个列向量,则2β1+β2−β3= (−2,8,−2)T .二、试确定下列向量组的线性相关性1. α1=(2,1,0)T, α2=(1,2,1)T, α3=(1,1,1)T解:设k1α1+k2α2+k3α3=0,则k1 210 +k2 121 +k3 111 = 000即2k1+k2+k3=0k1+2k2+k3=0k2+k3=0k1+2k2+k3=0−3k2−k3=0k2+k3=0 k1+2k2+k3=0k2+k3=0k3=0 k1=k2=k3=0,线性无关。
2. α1=(1,−1,2)T, α2=(0,0,0)T, α3=(1,4,3)T线性相关三、设有向量组α1=(1,1,0)T, α2=(1,3,−1)T, α3=(5,−3,t)T,问t取何值时该向量组线性相关。
解:设k1α1+k2α2+k3α3=0,则k1 110 +k2 13−1 +k3 5−3t =0即k1+k2+5k3=0k1+3k2−3k3=0−k2+tk3=0k1+k2+5k3=0k2−4k3=0−k2+tk3=0k1+k2+5k3=0k1+3k2−3k3=0(t−4)k3=0所以,t=4, 线性相关; t≠4, 线性无关四、设a1,a2线性无关,a1+b,a2+b线性相关,求向量b用a1,a2线性表示的表示式。
解:因为a1+b,a2+b线性相关,所以存在不全为零的k1,k2,使得k1(a1+b)+k2(a2+b)=0, 即(k1+k2)b=−k1a1−k2a2.又因为a1,a2线性无关,所以k1+k2≠0,于是,b=−k1k1+k2a1−k2k1+k2a2.五、已知向量组α1,α2,⋯,α2n,令β1=α1+α2,β2=α2+α3,⋯,β2n=α2n+α1,求证向量组β1,β2,⋯,β2n线性相关。
人教版八年级上册数学书答案
人教版八年级上册数学书答案第一章有理数习题1.1:1.有理数是指能够用两个整数的比表示的数,可以是正数、负数或0。
2.(1)+12;(2)-7;(3)-32;(4)+18;(5)03.(1)-8;(2)-76;(3)0;(4)+20;(5)+9;(6)+364.(1)-9;(2)+24;(3)0;(4)-14;(5)+425.(1)0;(2)-45;(3)2;(4)-88;(5)9;(6)-656.(1)+13;(2)-37;(3)-45;(4)0;(5)+16;(6)+1;(7)-77;(8)+887.(1)-0.2;(2)+0.8;(3)-0.05;(4)+0.15;(5)-0.6;(6)+0.38.(1)-0.1;(2)+0.2;(3)-1.3;(4)+0.5;(5)-0.7;(6)+1.2习题1.2:1.(1)-4.3;(2)0;(3)-2.8;(4)-3.4;(5)-2.92. (1) -12.15 (2) 1.2 (3) -1.25 (4) -0.125 (5) 1.48 (6)3.4 (7) -15.6253. (1) -1.375 (2) 5.5 (3) 7 (4) -3.2 (5) -0.894 (6) 12.1254. (1) 69.50 (2) -8.2 (3) -1.8 (4) 1.7 (5) -0.02习题1.3:1. 总结:两个整数的和、差、积仍然是有理数。
2. 总结:两个有理数的和、积、商仍然是有理数,但当除数为0时,没有意义。
3. 总结:有理数的相反数仍然是有理数。
习题1.4:1. 一个有理数的绝对值等于该数与0之间的距离,绝对值表示数的大小。
2. (1) 3 (2) 8 (3) 15 (4) -63. (1) 6 (2) -14 (3) 20 (4) -3习题1.5:1. (1) -2.5 (2) -0.2 (3) 0.6 (4)3.52. (1) 1.3 (2) -0.7 (3) 0.9 (4) -0.1习题1.6:1. (1) 7 (2) 0 (3) 5 (4) 8 (5) -42. (1) -0.5 (2) -0.3 (3) -0.4 (4) 0.2 (5) -0.1习题1.7:1. x = -52. x = 33. x = -5习题1.8:1. 自定义答案第二章代数初步习题2.1:1. 解:x = 32. 解:x = 13. 解:x = 3习题2.2:1. 解:x = 22. 解:x = 03. 解:x = -1习题2.3:1. 代解得a = 6,b = 4习题2.4:1. 代入原式:1 + (2 + 3 + 4) = 1 + 9 = 102. 解:x = 83. 代入原式:3(8) = 24习题2.5:1. 代入原式:6 - (20 + 14) = 6 - 34 = -28习题2.6:1. 解:x = 3习题2.7:1. 解:x = 9习题2.8:1. 解:x = -5习题2.9:1. 解:x = 3习题2.10:1. 解:x = 4习题2.11:1. 解:x = 2习题2.12:1. 代入原式:8(2) = 16习题2.13:1. 解:y = 4习题2.14:1. 解:x = 62. 解:y = 6习题2.15:1. 解:x = -2习题2.16:1. 解:x = 7习题2.17:1. 解:a = 5习题2.18:1. 解:x = 1习题2.19:1. 解:x = -8习题2.20:1. 解:y = -3习题2.21:1. 解:x = 0习题2.22:1. 解:x = -4习题2.23:1. 解:x = -12习题2.24:1. 解:y = -4习题2.25:1. 代入原式:8 - (-12) = 8 + 12 = 202. 代入原式:-5 - (-3) = -5 + 3 = -83. 代入原式:3 - 7 = -4习题2.26:1. 代入原式:3 + 5(4) = 3 + 20 = 23习题2.27:1. 代入原式:4 + 5(-2) = 4 - 10 = -6习题2.28:1. 代入原式:7 - 5(3) = 7 - 15 = -8习题2.29:1. 代入原式:-3 + 5(-2) + 4 = -3 - 10 + 4 = -9习题2.30:1. 代入原式:3(5 - 2) = 3(3) = 9综上所述,以上是人教版八年级上册数学书第一章和第二章习题的答案。
线性代数第二章习题部分答案
线性代数第二章习题部分答案第二章向量组的线性相关性§2-1 §2-2 n维向量,线性相关与线性无关(一)一、填空题1. 设3 α1?α +2 α2+α =5 α3+α , 其中α1=(2,5,1,3)T,α2=(10,1,5,10)T, α3=(4,1,?1,1)T, 则α= (1,2,3,4)T . 2. 设α1=(1,1,1)T, α2=(2,1,1)T,α3=(0,2,4)T,则线性组合α1?3α2+α3= (?5,0,2)T .3. 设矩阵A= 5 ,设βi为矩阵A的第i个列向量,则2β1+β2?β3= (?2,8,?2)T .二、试确定下列向量组的线性相关性1. α1=(2,1,0)T, α2=(1,2,1)T, α3=(1,1,1)T解:设k1α1+k2α2+k3α3=0,则k1 210 +k2 121 +k3 111 = 000即2k1+k2+k3=0k1+2k2+k3=0k2+k3=0 k1+2k2+k3=0?3k2?k3=0k2+k3=0 k1+2k2+k3=0k2+k3=0k3=0 k1=k2=k3=0,线性无关。
2. α1=(1,?1,2)T, α2=(0,0,0)T, α3=(1,4,3)T线性相关三、设有向量组α1=(1,1,0)T, α2=(1,3,?1)T, α3=(5,?3,t)T,问t 取何值时该向量组线性相关。
解:设k1α1+k2α2+k3α3=0,则k1 110 +k2 13?1 +k3 5?3t =0即 k1+k2+5k3=0k1+3k2?3k3=0?k2+tk3=0k1+k2+5k3=0k2?4k3=0?k2+tk3=0k1+k2+5k3=0k1+3k2?3k3=0(t?4)k3=0所以,t=4, 线性相关; t≠4, 线性无关四、设a1,a2线性无关,a1+b,a2+b线性相关,求向量b用a1,a2线性表示的表示式。
解:因为a1+b,a2+b线性相关,所以存在不全为零的k1,k2,使得k1(a1+b)+k2(a2+b)=0, 即(k1+k2)b=?k1a1?k2a2.又因为a1,a2线性无关,所以k1+k2≠0,于是,b=?k1k1+k2a1?k2k1+k2a2.五、已知向量组α1,α2,?,α2n,令β1=α1+α2,β2=α2+α3,?,β2n=α2n+α1,求证向量组β1,β2,?,β2n线性相关。
代数初步认识练习题
代数初步认识练习题
1. 计算下列算式:
a) $3 + 7 \times 2$
b) $5 - (4 - 3) \times 2$
c) $8 \div 4 + 2 \times 3$
2. 将下列算式的结果化简并写成最简形式:
a) $3x + 2x - x$
b) $5y - (3y - 2)$
c) $2a^2 - 4a + 6 - 3a^2 + a - 2$
3. 解下列方程:
a) $2x + 3 = 9$
b) $4y - 5 = 7$
c) $5z + 7 = 2z - 1$
4. 根据给定条件,求未知数:
a) $2x - 3 = 9$,求x
b) $7y + 5 = 26$,求y
c) $4z + 3 = 15$,求z
5. 将下列文字问题翻译为数学式子,并求解:
a) 有一个数比自己大15,结果是27,求这个数是多少。
b) 小明现在的年龄是小红的三倍,两年前小明的年龄是小红的6倍,求他们现在的年龄分别是多少。
6. 根据给定的图形,求解下列问题:
a) 图中阴影部分表示的是什么集合?
b) 集合P和集合Q的交集是什么?
c) 集合Q中共有多少元素?
7. 已知$a = 3$,$b = 4$,求下列各式的值:
a) $(a + b)^2$
b) $a^3 + b^3$
c) $a^2b + ab^2$
8. 根据图表中的数据,回答问题:
| 学科 | 人数 |
b) 哪个学科的人数最多?最少?
这些练题旨在帮助你巩固代数初步认识的知识点。
完成这些题
目可以帮助你更好地理解和应用代数的基础概念。
祝你顺利完成练!。
线性代数第二章习题
则此排列的逆序数为
t t1 t 2 t n
上页 下页
二. n阶行列式的性质
1)行列式与它的转置行列式相等, 即D DT . 2)互换行列式的两行(列), 行列式变号. 3)如果行列式有两行(列)完全相同, 则此行列式 等于零. 4)行列式的某一行(列)中所有的元素都乘以同 一数k , 等于用数 k 乘此行列式.
b11 b1n bn1 bnn
(6) 范德蒙行列式
1 x1 Dn
2 x1
1 x2
2 x2
1 xn
2 xn
n x1 1
n x2 1
n xn 1
n i j 1
( xi x j ).
上页 下页
9 1/ 2
6 0 b d f
0 0 0 0
0 0 3
0 0 7 . 1
第二章
习题课
上页 下页
一. n阶行列式的定义
a11 a12 a1n D a21 a22 a2 n an1 an 2 ann
其中t为列标排列 p1 p 2 p n的逆序数 ; p1 p 2 p n为自然数1, 2, , n的一个排列;
p1 p 2 p n
p1 p2 pn
上页 下页
1.
例1
0
定义法- (一般适用于0元素较多)
用行列式定义计算
a a
21 31
0 0
a a a a a
12 22 32 42 52
a a a a a
13 23 33 43 53
0
0
0 0 0 n
1 0 0 0
0 2
线性代数第二章习题及解答
解:令 X
−1
比较矩阵等式得
4
AX21 = E, AX22 = 0, BX12 + CX22 = E, BX11 + CX21 = 0, 于是 X21 = A−1 , X22 = 0 X12 = B −1 , X11 = −B −1 CA−1 15.A 的元素均为整数, 求证 A−1 的元素均为整数的充要条件是 |A| = ±1
那么 1 1 0 1 0 0 0 0
A=0 0 0 1 0 , 分别求 A−1 , B −1 1 1 0 1
和 C −1
(
解:A−1 = sin θ cos θ 1 2 2 B −1 = 1 1 −2 9 2 2 −2 1
cos θ
− sin θ
)
2
C
−1
0 = 0 0
1
−1 0 0
1 −1 1 0 2
1 −1
1 −1 1 −1
2 1
1 1 1
1 = 1
9.解矩阵方程
3
1 2 −1 2
0 X = −1 0 ; 10.解矩阵方程A 0 1 −2 3 1 0 0
aa7a是实对称矩阵且注意到ax我们仅对矩阵ab进行行初等变换将10如法炮制恕不赘述其结果为11
第二章练习题解答
( 1. 设 A = , 计算: 2A, 3B, A + B, 2A − 3B 1 1 1 3 1 1 2. 设 A = 2 1 2 , B = 2 −1 0 , 求 AB − BA. 1 0 2 1 2 3 1 a11 a12 · · · a1n 2 a21 a22 · · · a2n 0 3. 计算 . . . . . . . . . .. . an1 an2 · · · ann 0 ( ) ( ) ( 2 3 1 0 2 4. 已知 A = P ΛQ, 其中 P = ,Λ = ,Q = 1 2 0 −1 −1 2 −1 ,B = 1 2 A8 , A9 , A2n , A2n+1 , (n 为正整数) 解:An = P ΛQP ΛQ · · · P ΛQ
数学书九上北师习题答案
数学书九上北师习题答案数学是一门具有严密逻辑和抽象思维的学科,它不仅在我们的日常生活中起着重要的作用,而且在各个领域都有广泛的应用。
而北师大版九年级上册数学教材中的习题是帮助学生巩固知识、提高技能的重要工具。
下面,我将为大家提供一些九上北师习题的答案,希望能够对大家的学习有所帮助。
第一章:有理数1. 计算下列各题:(1)$(-3.2)+5.6+(-1.8)+4.9$解:将数按照正负号进行分类,然后相加,得到结果为$6.5$。
(2)$(-0.6)-(-2.9)-1.5$解:将减法转化为加法,即$(-0.6)+2.9-1.5$,然后按照正负号进行分类,得到结果为$0.8$。
(3)$(-0.5)\times(-3.6)\div(-1.2)$解:先计算括号里的乘法和除法,得到结果为$1.5$。
2. 下列各题中,哪些是真命题,哪些是假命题?(1)若$a>b$,则$-a<-b$。
解:真命题。
(2)若$a>b$,则$-a>b$。
解:假命题。
(3)若$a>b$,则$a^2>b^2$。
解:假命题。
第二章:代数初步1. 求下列各题中的未知数:(1)$3x+5=17$解:将方程两边同时减去5,得到$3x=12$,再将方程两边同时除以3,得到$x=4$。
(2)$2(4x-3)=10$解:先计算括号里的乘法,得到$8x-6=10$,然后将方程两边同时加上6,得到$8x=16$,再将方程两边同时除以8,得到$x=2$。
2. 求下列各题中的未知数组成的方程:(1)若某数的三倍减去5等于7,求这个数。
解:设这个数为$x$,则有$3x-5=7$,解得$x=4$。
(2)某数的四倍加上3等于11,求这个数。
解:设这个数为$x$,则有$4x+3=11$,解得$x=2$。
第三章:图形的认识1. 判断下列各题中的图形是否相似:(1)两个正方形。
解:相似。
(2)一个正方形和一个长方形。
解:不相似。
(3)一个正方形和一个圆。
人教版八年级上册数学习题讲解
人教版八年级上册数学习题讲解在本文中,我将对人教版八年级上册数学习题进行详细的讲解。
通过这些讲解,希望能够帮助读者更好地理解和掌握这些数学题目。
以下是各章节的习题讲解:第一章:有理数1. 习题一:有理数的加减法这一部分主要介绍了有理数的加法和减法规则,包括同号的加减法以及异号的加减法。
通过一些例题的讲解,读者可以更清楚地了解有理数的运算规律。
2. 习题二:数轴与有理数在这一小节中,我们主要学习了数轴的概念以及如何在数轴上表示有理数。
通过练习题的讲解,读者可以加深对数轴和有理数的理解。
第二章:代数初步1. 习题一:字母与式子这一部分主要介绍了字母与式子的概念,包括字母的代表含义以及如何根据实际情况写出对应的代数式。
通过一些例题的讲解,读者可以更好地理解字母与式子之间的关系。
2. 习题二:代数式的加减法在这一小节中,我们学习了代数式的加法和减法规则,包括同类项的合并与化简。
通过练习题的讲解,读者可以提高对代数式的加减法运算能力。
第三章:图形的初步认识1. 习题一:平面图形及其性质这一部分主要介绍了常见的平面图形,如三角形、四边形等,并学习了它们的性质和判定方法。
通过一些例题的讲解,读者可以更好地掌握图形的认识。
2. 习题二:图形的放缩在这一小节中,我们学习了图形的放大和缩小操作,包括放缩比例的计算和图形的相似性质。
通过练习题的讲解,读者可以进一步提高对图形放缩概念的理解和运用能力。
第四章:实数1. 习题一:无理数的概念这一部分主要介绍了无理数的概念和性质,包括无理数的表达形式和运算性质。
通过一些例题的讲解,读者可以更全面地了解无理数的特点和运算规律。
2. 习题二:实数的运算在这一小节中,我们学习了实数的加减乘除运算规则,包括有理数和无理数之间的运算。
通过练习题的讲解,读者可以更熟练地进行实数的运算。
通过以上对人教版八年级上册数学习题的讲解,相信读者可以更好地理解和掌握这些数学题目。
希望本文对读者的学习有所帮助!。
初二数学上册课后练习题
初二数学上册课后练习题在初二数学上册中,课后练习题是巩固和加深学生对所学知识的理解和应用的重要途径之一。
通过解答课后习题,可以帮助学生巩固基础,并培养数学思维和解决问题的能力。
下面将对初二数学上册的课后练习题进行简要介绍。
第一章:有理数有理数是初二数学的基础,课后练习题主要包括:1. 完成数轴上的有理数表示;2. 有理数的比较与排序;3. 有理数的加减乘除运算。
第二章:代数初步代数是数学的重要分支,课后练习题主要包括:1. 数字和代数式的基本概念;2. 两个代数式的加减运算;3. 公式的表示和转化。
第三章:平方根与解二次方程平方根和解二次方程是初二数学的重要内容,课后练习题主要包括:1. 平方根的概念和性质;2. 二次方程的定义和解法;3. 利用解二次方程解决实际问题。
第四章:比例与相似比例和相似是初二数学的基础,课后练习题主要包括:1. 比例及比例的性质;2. 相似三角形的判定和性质;3. 利用比例和相似解决实际问题。
第五章:统计与概率统计与概率是初二数学的拓展内容,课后练习题主要包括:1. 数据的收集和整理;2. 统计图表的制作和分析;3. 概率的基本概念和计算方法。
以上是初二数学上册课后练习题的简要介绍,通过认真解答和分析这些练习题,可以帮助学生更好地理解和掌握所学知识,并提高解决实际问题的能力。
除了课后习题,还可以通过做题竞赛、小组讨论等方式来加深对数学知识的理解和应用。
初二数学上册课后练习题的目的是帮助学生巩固基础知识、增强解决问题的能力,形成良好的数学思维和学习习惯。
在解答习题的过程中,学生要注重理论与实践的结合,灵活运用知识,培养创新思维和解决实际问题的能力。
总之,初二数学上册的课后练习题是巩固和拓展学生数学知识的重要途径之一,通过认真解答习题,学生能够提高数学水平和应用能力,为进一步学习和掌握更高层次的数学知识奠定坚实的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.已知一十六状态的
RSC
码的
G(D)=
⎡ ⎢1,
⎣
1
+
D + D3 +(1)画出此 RSC 编码器;
(2)对长为 L=8 的信息序列画出篱笆图:
(3)求出信息序列 M=(1 1 1 0 0 1 0 1 )相应的码字;
(4)求出对上信息序列编码后归零所需的尾比特。
2.一信息序列长为 490bit,经过一个 3G 交织器后,原序列第 19 位信息处于交织后序列的
第几位?(可采用计算机模拟编程求得。)
3.假设一个八状态二进制 Turbo 码交织器大小为 M,若译码深度为交织器大小,分别计算
一个 SISO 译码器采用 BCJR 译码算法和 SOVA 译码算法所需要的存储单元。(假设一个
数值占用一个存储单元。)
1