音乐传真A2原理图

合集下载

EC20_Mini_PCIe(Audio版本)_硬件设计手册_V1.0

EC20_Mini_PCIe(Audio版本)_硬件设计手册_V1.0
2 产品综述 ................................................................................................................................................. 8 2.1. 本章概述..................................................................................................................................... 8 2.2. 产品简介..................................................................................................................................... 8 2.3. 关键特性..................................................................................................................................... 9 2.4. 主要功能................................................................................................................................... 11
1 引言 ........................................................................................................................................................ 7 1.1. 安全须知..................................................................................................................................... 7

名胆2A3经典电路实用赏析

名胆2A3经典电路实用赏析

名胆2A3经典电路实用赏析罱一罱胆功放在时下的Hi—Fi热潮ff1被广大音响发烧友推崇,实践中以模仿经典电路和名机电路为主流,具有避开繁琐的电路设汁汁算,直接追求名机放音风格便捷的优点.但是一个经典电路的完成和名机的形成与认同,是在反复推敲和多次实践的基石jIi上奠定的产物,其巾融会了设计者与文践者的理沦素养和文化品味,还有对音响的理解和实用技巧从实用的意义出发,分析这些电路的技巧,为我所用,是颇具有价值的.下面以2A3为例进行剖析.如电路图1.该电路日本音响发烧资深人士设计,整体电路尊崇r简洁至.1的原则,设汁思维精妙,其中不乏具有指导意义的地方.为简沽明了地分析电路,直观快捷地掌握其设计理念和方法,下面采用逐级分析的方法,从功半级开始进行阐述.功率级2A3的经典用法是甲类单端状态下不人丁3w的柏效输出.音色柔美.但功率偏小,适配的音箱太少,使用局限性很人.当将2A3设计在AB1类推挽状态下时,实际有效输出可达11W左右.不但功率提高,而且还拓展了适配范围.在放肯效果I:,还可增人声3—62占响技术赏析●j_-rfJ¨_口王悦林.宽频响的听音要求,近一步满足现代放音大动态,压这一级的实践价值在于:1.小信号时是甲类推挽状态,大信号时进入甲乙1类状态.2.在满足平衡与音色的前提下,采用固定式偏压设计.好处足,2A3灯丝直接对地,可有效地减少灯丝交流供电的噪声干扰.给前级放大推动级的设计带来噪声控制上的方便.3.改推动级的负载特性,使推动级负载变得更轻,这使推动级的线性与失真指抓大大改善.当输ffJ管居于推挽状态时,可充分利用其上下管分别工作于正债半周的特点,拓展其线性区范围.2A3的辟压值使用限制较严,…一般以辟地不高于DC300V为准. II改在设时,该电路中标注屏压为上管各DE302V,十日廊的栅负可以更深,达一60V.只要推动级有足够的不失真输出激励电,可获得更大的动态信号怕值.巾提示2A3用的是RCA产品,可以说明的问题是该管允许屏阴之间的压差在DE300V范同内, 在AB1类状态下,允许屏流随信号电压的振幅大小波动,而不会发生跳火现象.J}j产标准型2A3时,就得适当降低屏压约在270V芹右.但使用近期改进型的如2A3C?类管子时,仍可照搬该电路.一-一100k43.1nll500T100MU20kl0.47一-A.-.V0.22/600V22k47k47kRCA,2A3(1JXY一360-O2800'P1B+上47LL×2+上T506VTT图1电路图即便是固定偏压,从电路设计技巧和高保真的苛刻要求出发,该电路中2A3的灯丝也通过在灯丝电压绕组两端的50n可调电阻进行接地,一来是精确调整交流平衡,达到很高的噪声控制水平;还有就是通过这个电阻来限流和检测单边功率管的_丁作状况,为调试提供方便.当表笔一端接在此微调电阻的中点, 另一端分别接触此电阻两端时,不但随时直观的控制平衡,同时可测得表笔两端的压差,观察管子的工作状态,及时修正.使用时,这个5On平衡电阻的并过大.之间选取100n~30故只能在,联值已很小就得增加其功率值,且影响音质;过小将影响灯丝供电和产生调整闲难.4.该电路的负压设置也值得捎带一笔.根据实践,半周整流只要充分的滤除纹波,其对音质的影响程度是正面的.该电路的负压采用了方便大众化的晶体管半波整流,因为负乐几乎不消耗电流,故采用了极简单的RC滤波网络,并通过一只1kn的滑动电阻精确地取得一60v的固定负偏压.简单的RC滤波相移很小,有利于2A3重播品质的提高.这些看似平常和微不足道的地方,恰是基础的电路设计校声的前提.和整个电路配合起来,达到很高的放音水平. RehOIyrFW505倒卒且推动电路16n8n4n0il倒相推动电路较为典型.选用了南6SN7组成的长尾式倒相器.该级值得注重的是那只5kn电阻的设置.这电阻是可调的.用丁取得倒相电路L下两端的交流平衡,获得幅值相同,而方向相反的对称信号. 这只电阻因管子的误筹而定.存示波器上输入一定的信号观察调整后,可和同一侧的屏极负载电阻合为一体,以减少串接电阻带来的引入干扰和失真.电塬电源的设计在整个电路中是最重要的,一个好的是具有足鼎立,电源设计与选管和好的输出变压器.重要地位的.电路中,电源在奉行简洁至上的总体原则下,采取了内在的分体设汁,极具靓声调校原则.它的特点有以下几个方面.1.前面提到的负偏压采J}=}=j的独立绕组.2.电压放大推动的B+供电与功率级B十供电分开.3.精确的选用元件数值和没汁滤波网络.是否用胆整流是见仁见智的问题.按照该电路的电源配置方式,用胆整流会产生体积庞杂,噪声增大,音响技术3—63vv2×v盟一45k一5厂J_一v—vv茹o()()0v(}蜃0().星0■iiI■功耗增加的弊端.同时,好的品体管整流除了带来放音风格的差异,不会有太多的不适.毋庸沛占,山于采用了晶体管整流,该电路在实装的情况下开机会产生很大的冲击电流,而在开机的一瞬间各级放大管还未预热到最佳状态,这样开一次机冲占一次,尤其对RCA2A3这样的管子,是得不偿失的.这恐怕是原电路设计的一个缺陷,参考时麻引起注意.近年来,随着技术的进步,存半导体硅整流_二极管中,出现一种耐T伏以上,电流在2~3A的肖特基势垒._极管,用这种管子替代普通的整流二极管,在音色上会有正面的效果产乍,不妨一试.带来,电源B+式的整体内分体因为采用了.的好处是:1.放青时定位感,声场,层次,解析度都会有更好的再现效果;2.电压及推动的恒流与功率级在推挽状态下的跃动电流不在一个同路,避免了相互T扰,有利于校卢的完美程度需要注意的是,分离开的B+电源所选用滤波电容的容量并不很人,根据专用软件在计算机上的仿真可知,电源的纹波是随着电压的高低和所需电流的大小而增加或减小的.那么当大电流消耗的功率级用单独的供电回路,可以结合推挽电路的纹波电压的共模抑制作用抵消而取得良好的效果时,采用分体的电压放大专用B+电源回路就可大大简化,当变器制作精良,空载电流很小,裕度足够,也不过分追求人音量时,滤波电路就可用最方便简洁的Rc方式来取得.相对电源变压器来讲,多一个小电流的绕组升不困难,也并不增加多少成本,好处却是成倍的增加, 结合轻便的低耗能的半导体整流.功效是不言喻的.值得借鉴和推崇.电压输入牧大级电压输入放大级从某种意义上来阱,是决定一台Hi-I~i功放音色是备饱满不失真的咽喉.在该电路中,也是设计者的理念精华所在.1.结合了2A3在推挽状态下的音色取向和平衡.2.顾及了电源电路对整机音色的影响2A3在单端和推挽状态卜的音色是不同的.相对于单端下的醇厚妖艳,推挽状态则明亮快捷,犀利得3—64音响技术的本质特色既便2A3很弈易失去,校声不好.多是成品机也存所难免,音色取向把握得好的也不多. 在该电路中,输入级南丁采用了内在的并管接法.带来的好处是,内阻减少一半,灵敏度增加一倍,屏极电流增大一倍,值得借鉴的是:1.根据实践证明,屏乐一定时,将放大管的屏流一定范同内增加,会极大地改营音色,变得更加动听;2.推动力增强;3.同一参数取值下,输的非线性失真变小;4.音色厚有加,在该电路巾,和2A3在推挽状态卜的清丽的音色,互起l衡作用;5.便于取得适当的木级电流负反馈,以增加线性度,扩展频响;6.便于消除本级的胆管内部噪声,抵消【六l施加本级电流负反馈增加的输出交流阻抗.双■极管内部并管需注意粗声.故本级的屏极电压在兼顾木级增益和整体电路的性能时,采用了低屏压设汁和/J,屏极负载电阻的取值.时巧妙结合倒相级的长尾,抬高r阴级电位的条件,直接产牛两级无电容隔直的耦合.保证了低频的无相移和极低的下限频响.使整机指标极为越,减少r元件的同时取得了很高的完美度.为使其级放火的电路(二级直耦)』作稳定,该电路增加了约6dB的大环路负反馈.这种设计理念有利也有弊,如果不:考虑相移的影响(实际也听不出来),可适当增大反馈电阻的阻值.根据实际的听音来选择.整机评价,陔电路所选元件和参数值非常大众化,整体评价.便于业余摩装.良好的级问阻抗匹配设计和级连关系的选择,恰到好处地发挥了配靓声的选管特色整体成本不高,但性能极其申.越,值得品味.有关该电路测试装测,只要按照电路图所列数据IF确焊接,仔细调试,一次就可成功.该电路音色特质为清晰明亮,声线刻画细腻,细节再现能力较好,适合播放人声,单件器乐,小编制内乐等作品.推动88dB以卜灵敏度的音箱有可人的表现力和感染力. 有关指标的原理分析和测试参数,已有文章介绍.再赘述.圆。

传真机基础

传真机基础

日本

新西兰 4 3 2 1 3 2


7 8

6 7 8 9
挪威 瑞典


6 7
3 2 1 0






5
拨号方式? 之2 2.键盘按键(PB、音频或DTMF)
比、波、叭等拨号音 高频带(高频率)和低频带(低频率)2种声音的混合。 (DTMF:Dual Tone Modulated Frequency)
传 真 的 结 构
③转换传真信号 (调制解调器・固件)
⑥主板 (一部NCU) 电话功能
+ 手机话柄 免提
7
拨号音。
(连接)
拨号。
(拨号盘)
通话。 (通话网络)
传真是如何实现的 之① ① 读取原稿 CCD读取
(CCD是传感器IC的种类。 Charge Coupled Device) 方式:缩小光学读取方式 原稿(210mm)
回声 TCF
发送方 接收
CED NSF CSI DIS NSF CSI DIS
发送
忽略 无声(抑制器ON)
NSS TSI DCS 握手 TCF CFR 21
再次发送
通信一览表
*** COMMUNICATION LIST *** ERROR CODE: 00 00 00 00 MODEL: 8X5-453 TIME : 01/01/2000 02:40 REV.: U0003311859VER.A PCI : 5.00 SUM : DABB
TX/RX SPEED MODE
: TX : V.17 14400 BPS 20 MSEC/LINE : MR STANDARD

高级功放原理图

高级功放原理图

TP106 TEIO HC124 HR128 HC127 + HR132 47K HR133 CE107 HC128 104 + HC129 473 CE110 104 HR131 100K HR127 HR126 33K HC122 100K HR125 HR124 10uF HC121 HR123 HC120 HC106 SGND HR122 104 180K 47K 683 15K 103 68K 152 HR130 HR129 XXX HC123 000 100K
D5 I A H COM F J COM B G1 G2 E COM M DP D C L K REC-S3192 REC-S3192 18 17 16 15 14 13 12 11 10 O0 O14 O2 O11 O18 O3 O15 O13 1 O12 2 O9 3 O5 4 O10 5 O8 6 O17 7 O6 8 O16 9
1
C
2 1
2 1
2 1
2 1
2 1
2 1
2 1
SW-TACT-S
SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8 4 SW 3 SW 3 SW 3 SW 3 SW 3 SW 3 SW 3 SW 3 4 4 4 4 4 4 4 2
C
R3 470R R2012
R4
R5
R6 1K3 R2012
A
R2012 P3
Title <Title> Size A3 Date:
5 4 3 2
Document Number <Doc> Friday, November 17, 2006 Sheet
1
Rev <RevCode> 1 of 1

音频放大器原理图

音频放大器原理图

音频放大器原理图音频放大器已经有快要一个世纪的历史了,最早的电子管放大器的第一个应用就是音频放大器。

然而直到现在为止,它还在不断地更新、发展、前进。

主要因为人类的听觉是各种感觉中的相当重要的一种,也是最基本的一种。

为了满足它的需要,有关的音频放大器就要不断地加以改进。

音频放大器简介进入21世纪以后,各种便携式的电子设备成为了电子设备的一种重要的发展趋势。

从作为通信工具的手机,到作为娱乐设备的MP3播放器,已经成为差不多人人具备的便携式电子设备。

陆续将要普及的还有便携式电视机,便携式DVD等等。

所有这些便携式的电子设备的一个共同点,就是都有音频输出,也就是都需要有一个音频放大器;另一个特点就是它们都是电池供电的。

都希望能够有较长的使用寿命。

就是在这种需求的背景下,D类放大器被开发出来了。

它的最大特点就是它能够在保持最低的失真情况下得到最高的效率。

高效率的音频放大器不只是在便携式的设备中需要,在大功率的电子设备中也需要。

因为,功率越大,效率也就越重要。

而随着人们的居住条件的改善,高保真音响设备和更高档的家庭影院也逐渐开始兴起。

在这些设备中,往往需要几十瓦甚至几百瓦的音频功率。

这时,低失真、高效率的音频放大器就成为其中的关键部件。

音频放大器背景音频放大器的目的是在产生声音的输出元件上重建输入的音频信号,信号音量和功率级都要理想——如实、有效且失真低。

音频范围为约20Hz~20kHz,因此放大器在此范围内必须有良好的频率响应(驱动频带受限的扬声器时要小一些,如低音喇叭或高音喇叭)。

根据应用的不同,功率大小差异很大,从耳机的毫瓦级到TV或PC 音频的数瓦,再到“迷你”家庭立体声和汽车音响的几十瓦,直到功率更大的家用和商用音响系统的数百瓦以上,大到能满足整个电影院或礼堂的声音要求。

音频放大器的一种简单模拟实现方案是采用线性模式的晶体管,得到与输入电压成比例的输出电压。

正向电压增益通常很高(至少40dB)。

如果反馈环包含正向增益,则整个环增益也很高。

MusicalFidelity音乐传真

MusicalFidelity音乐传真

“音乐传真”的起源“音乐传真”(Musical Fidelity)的创办人Antony Michaelson出生于1951年,从小就热爱音乐,他本身是一位专业音乐师并且以吹奏单簧管为主要学习和演奏乐器。

在他31岁的时候(1982年),由于一次偶然的机会(失业),Antony Michaelson和他的妻子毅然创立了“Musical Fidelity”公司。

Antony Michaelson一开始已经确定了自己的经营方针和宗旨,就是要用最低成本制造出拥有丰富音乐感和杰出表现的音响器材。

由于在那个时候,市场上的所有高级音响器材均取价高昂,故此要购买一部具有质素的放大器,实在不是一般人所能够负担的,而Antony Michaelson在他那股热爱音乐的诚意带动之下,便决心把高级音响推进普及化市场,制造他认为拥有绝佳声音且是大部分人可以承担得起的放大器。

他先把主要生产放大器的厂房设于英国的Wembley,这间厂房的设备和员工在短短的十多年间不断扩充,到今天已经拥有超过40个员工,成为英国具规模的音响制造商之一。

Antony Michaelson创业初期所生产的放大器主要仍是以他自己一手一脚所制作出来的简单制品,其中最知名的是一部名为“The Pre-Amps”的前级放大器。

当时主要是卖给自己一些爱好欣赏音乐的朋友,而生产的费用,是从他的太太和岳母所借出的三百多英镑加上他自己从银行信用卡所借贷得来的。

到了1984年,Antony Michaelson在一次意大利旅程中获得灵感开始设计他的成名作品——A1合并式放大器。

以A系列打头炮从Antony Michaelson开始创业之时已经把生产音响器材建基于音乐化之上,故此他坚持的理念就是要生产一些价格定得合理和音质得到绝大部分爱好音乐的人所认同的器材,而A1的制作和往后在市场上所取得的空前成功证明他的努力没有白费。

A1合并式放大器的设计和理念事实非常明确和简单直接,它采用了纯甲类输出,是音色甜美的高品质机种。

各类功放原理图及原理介绍

各类功放原理图及原理介绍

各类功放原理图及原理介绍Revised by Liu Jing on January 12, 2021D类功放的原理在音响领域里人们一直坚守着A类功放的阵地。

认为A类功放声音最为清新透明,具有很高的保真度。

但是,A类功放的低效率和高损耗却是它无法克服的先天顽疾。

B类功放虽然效率提高很多,但实际效率仅为50%左右,在小型便携式音响设备如汽车功放、笔记本电脑音频系统和专业超大功率功放场合,仍感效率偏低不能令人满意。

所以,效率极高的,因其符合绿色革命的潮流正受着各方面的重视。

由于集成电路技术的发展,原来用分立元件制作的很复杂的调制电路,现在无论在技术上还是在价格上均已不成问题。

而且近年来数字音响技术的发展,人们发现与数字音响有很多相通之处,进一步显示出的发展优势。

是放大元件处于开关工作状态的一种放大模式。

无信号输入时放大器处于截止状态,不耗电。

工作时,靠输入信号让晶体管进入饱和状态,晶体管相当于一个接通的开关,把电源与负载直接接通。

理想晶体管因为没有饱和压降而不耗电,实际上晶体管总会有很小的饱和压降而消耗部分电能。

这种耗电只与管子的特性有关,而与信号输出的大小无关,所以特别有利于超大功率的场合。

在理想情况下,的效率为100%,B类功放的效率为%,A类功放的效率才50%或25%(按负载方式而定)。

实际上只具有开关功能,早期仅用于继电器和电机等执行元件的开关控制电路中。

然而,开关功能(也就是产生数字信号的功能)随着数字音频技术研究的不断深入,用与Hi-Fi音频放大的道路却日益畅通。

20世纪60年代,设计人员开始研究用于音频的放大技术,70年代Bose公司就开始生产D类汽车功放。

一方面汽车用蓄电池供电需要更高的效率,另一方面空间小无法放入有大散热板结构的功放,两者都希望有D类这样高效的放大器来放大音频信号。

其中关键的一步就是对音频信号的调制。

图1是的基本结构,可分为三个部分:图1基本结构第一部分为调制器,最简单的只需用一只运放构成比较器即可完成。

音乐运放闲聊

音乐运放闲聊

AD828AR运放:AD设计制造的高性能运放AD828AR,性能指标比著名的发烧运放AD827JN更好。

音质全频中性,中频解析度好,低频有极佳的跳感,高频晶莹剔透,延伸无穷无尽,性能无可挑剔。

AD828AR适合使用在数码设备,如声卡运放、DVD输出运放等。

youp|pax|YouP-PAX|PAX A4|PAX Fi|游飘驱动|X-Fi|创新&k9B C |(IAD828AR的低压性能很好,摩各种声卡上效果都很出色,比如在创新Audigy2 ZS声卡上应用就非常成功,使这块中档声卡有比试高级声卡的实力!创新声卡改造篇之运放情缘:近段时间身边几个朋友玩了音响又开始迷上了磨机换运放,CD机、功放,连电脑上声卡也弄个827、275什么的。

所以周末,特意去拿了堆运放回来测试,简单谈谈感受吧。

NE5532:确实有点胆味,解析力一般,高频比较燥,低频比较糊且肥。

价廉物美足已弥补一切!op275:和5532比,胆性还重一点,解析力、低频、音场更好一点,可以买贴片的来打磨声卡用(特别是创新的),可以改善硬冷的数码声。

EL2244:音色中性,音场比较宽,高频还可以,中频音乐味差,有人说解析力很高,其实是因为低频量感少,中频薄,高频显得突出而已。

要用好比较难。

LT1057:两端延伸不错,速度、动态和解析力也挺好,就是属冷色调,放出的音乐好象有种不食人间烟火的味道,让你可以静静的听,却燃不起对音乐的那份激情。

AD827:延伸非常好,解析力高,高频华丽,中频纯厚,低频下潜和力度都不错,音场向前后左右拓展,有了凹凸感(这一点比其它运放强),速度快,动态好,感觉很大气,初换上此运放后确实有让人为之一振的感觉。

但久听之下,也发现很多问题,1虽然三频段、音场很宽,气势足,大开大合,但总感觉结构有点松,不够紧溱,2人声部份一般,有时大动态时,人声被配乐声淹没3不够细腻,属于激情有余而柔情不足,4音乐味不够。

不过很多的人喜欢这种风格。

功放原理图

功放原理图

功放原理图功放(Power Amplifier)是指将输入信号放大到一定功率的电子设备,它是音频系统中不可或缺的一部分。

功放的原理图包含了多种元件和电路,它们共同协作以实现信号放大的功能。

本文将从功放的原理图入手,介绍功放的工作原理和组成结构。

首先,功放的原理图通常包括输入端、放大电路和输出端三个主要部分。

输入端接收来自前级音频设备的低功率信号,放大电路对该信号进行放大处理,最终输出端将信号输出到扬声器或其他输出设备。

在功放的原理图中,放大电路是最核心的部分,它由多个放大器件和电路组成,如晶体管、电容、电阻等。

这些元件通过精确的布局和连接方式,实现了对输入信号的放大处理。

其次,功放的原理图中的放大电路通常包括前级放大电路和输出级放大电路。

前级放大电路负责对输入信号进行初步放大和处理,它通常包括了输入阻抗匹配电路、放大器件和负载电路等。

输出级放大电路则负责将前级放大后的信号进一步放大,以达到所需的输出功率。

在功放的原理图中,这两个放大电路的设计和连接方式至关重要,它们直接影响功放的放大效果和音质表现。

另外,功放的原理图中还包括了反馈电路和保护电路。

反馈电路是为了稳定功放的工作状态和减小失真,它通过对输出信号进行采样和比较,调整放大电路的工作状态以实现稳定的放大效果。

保护电路则是为了保护功放和扬声器等设备,它通常包括过载保护、短路保护和温度保护等功能,以确保功放在各种工作状态下都能够正常工作并保持稳定。

总之,功放的原理图是功放设计的基础,它反映了功放的工作原理和内部结构。

通过对功放原理图的深入理解,我们可以更好地了解功放的工作原理和设计特点,为功放的选购和应用提供更多的参考依据。

同时,功放的原理图也是功放技术研发和创新的重要依据,它为功放技术的不断进步和发展提供了重要支持。

希望本文能够帮助读者更好地理解功放的原理和结构,为功放的应用和研发提供一定的参考价值。

耳机放大器电路图

耳机放大器电路图

耳机放大器电路图发布时间:2010-1-8 16:00 发布者:我爱电路图阅读次数:194用头戴式耳机,尤其是小型耳机听音乐,总感到音乐味不够足,在低频段的效果更差。

因此用本机增强耳机的低频特性,并采用立体声反相合成的办法,加上内藏简易矩阵环绕声电路,能获得强劲的低音和在较宽的范围内展宽音域。

本机称为超级广场效果。

这种扣人心弦的力量,不亚于实况立体声。

电路原理本机电路大致可分为下面三部分:1.由电阻电容组成的低频增强电路。

2.利用功率放大器IC的反馈输入,组成立体声反相合成电路。

3.利用功率放大器IC,组成头戴耳机的驱动电路。

从输入端IC之间的电阻电容起到增强低频特性的作用,因为加有电位器,低频部分的增强量可在0--10倍之间连续可调。

立体声反相合成电路IC 2脚和8脚的直流耦合电容之后,由0.47UF和50K的电位器组成。

在此电路中,把立体声的广场效果成分中的高音部分左右分别反相后合成,起到增强效果的作用。

用东芝TA7376P推动头戴式耳机。

这种IC内藏两个通道,外接元件少,可在低电压下工作。

负载阻抗较低时,可重放出动人效果的低频声音。

电源若改用5#电池,用四只串联,电压为6V,可直接驱动高输出的扬声器。

若将三个200UF/10V的电容增加到1000UF左右,可获得更好的效果。

元件所有元件没有什么特殊的。

电阻均为1/8W。

0.1UF和0.47UF的电容用独石电容,其它的用电解电容。

电位器中,20K为双连电位器,50K用带开关电位器。

插头用立体声插头。

制作制作极其简单,即使是初学者,有一天的时间就足够了。

要留心IC的脚和电解电容的极性。

电位器的接线比较凌乱,不要搞错了。

若没有接线错误和焊接不良,一定会马到成功。

接入头戴式立体声耳机或普通耳机,装入电池,打开开关。

若两个旋钮配合得好,收听音乐可得到极其感人的效果,。

根据聆听的音乐和音源适当的调整,这就是本机的使用方法要点。

不用说,和小型音响,电视,CD相连会得到更佳的效果。

佳能FAX-450型传真机的电源电路图及原理解析

佳能FAX-450型传真机的电源电路图及原理解析

电机行业求职平台佳能FAX-450型传真机的电源电路图及原理解析1. 浪涌电流抑制电路的工作原理与工作过程浪涌电流抑制电路主要由CR1、R2、T1 的⑤~⑥绕组、D3、R3、R4 等元件组成。

其作用是抑制开机瞬间电容C7、C8 较大的充电浪涌电流。

在通电瞬间,由于电容C7、C8 相当于瞬间短路,较大的充电电流通过电阻R2 时得到抑制。

当C7、C8 两端电压稳定后,T1 的⑤~⑥绕组感应的电压经D3、R3、R4 加到双向可控硅CRl 的控制极,触发CRl 导通,将电阻R2 短路。

这样,主电流不再经过电流抑制电阻R2,使得R2 在完成开机瞬间浪涌电流抑制作用后,不再对电源正常电流有影响。

2. 主开关变换电路的工作原理与过程该传真机的主开关变换电路主要由开关管Q 1、集成电路ICl、开关脉冲变压器T1、电容器C12 等元器件组成。

其作用是将整流、平滑滤波后的300 V 脉动直流电压变换成脉冲电压经T1 耦合给次级回路。

具体工作过程如下。

当接通交流供电后,经整流、平滑滤波后的300 V脉动直流电压,一路经脉冲变压器T1 的初级绕组①~③加到开关场效应管Q1 的漏极;另一路经电阻R8向集成电路I Cl 的辊輲讹脚即Vcc 端供电。

当电源正常工作后,ICl辊輲讹脚供电改由T1 的⑦~⑥绕组感应的电压经D4 整流、C12 滤波后,输出的直流电压提供。

ICl辊輲讹脚获得正常电压后,其内部电路开始工作,由振荡器产生的脉冲经其内部放大整形管处理后,由其辊輰讹脚输出宽度可调的开关脉冲加到Q1 的栅极,控制Q1 的间歇导通。

这样便在T1 的次级产生交变电流,经RC2、RC3 等整流后,便得到所需的各种直流电压。

输出电压的高低可通过改变开关管Q1 的导通时间来进行控制。

3. 直流电压输出电路的工作原理与工作过程见图1 所示。

该传真机的直流电压输出电路由T1次级各高频整流、滤波、稳压电路组成,分别输出稳定的+5 V、±12 V 和+ 24 V 直流电压。

收藏!经典超再生FM接收机电路图,简单到可自制

收藏!经典超再生FM接收机电路图,简单到可自制

收藏!经典超再生FM接收机电路图,简单到可自制由分离元件组装的FM接收机中,超再生式具有灵敏度比较高、电路比较简单、制作和调试比较容易。

在很长的一段时间里,超再生式FM接收机,是很多爱好者动手制作必做的机型。

1、电路原理如下图所示,是超再生FM接收机电路图。

超再生FM接收机电路图电路的左边,是高频三极管组成的超再生检波器,能将调频信号变为调幅信号,并检波得到音频信号。

电路的右边,是有VT2和VT3组成的音频放大器,对检波得到的音频信号进行放大,VT3构成射极跟随器输出,以便驱动低阻抗的普通耳机。

超再生的检波原理如下图所示。

超再生的检波原理三极管VT1与极间分布电容C0、谐振回路(L1、C1、C2)、反馈电容C5构成电容反馈式振荡电路。

L2是高频扼流线圈,R2、C6在此处构成阻塞振荡,从而产生控制电压,使电路工作在超再生状态。

调频信号被调谐回路接收后,在回路两端形成与调频信号相对应的电压,经过VT1检波后,在R2上得到音频信号。

2、元器件选择与制作调谐回路L1的自制方法如下图所示。

调谐回路L1的制作用直径1.5mm的镀银铜线(如无法找到,普通单股铜丝也行,只是效果稍差。

)在直径10mm的钻头柄上绕2匝,匝间距1mm,然后脱胎成空心线圈。

高频扼流线圈L2的自制方法如下图所示。

高频扼流线圈L2的自制方法用直径0.1mm左右的高强度漆包线,在一个200kΩ的电阻上,密绕50匝,线圈的引线焊在电阻的引脚上。

其余部分没有特别之处,用常规方法自制即可。

3、电路调试电路调试第一步,调试工作点。

如下图所示,是调节VT3和VT1的工作点。

调节VT3和VT1的工作点调节R3使VT3的集电极电流在10mA左右。

调节R1使VT1的集电极电流在1.8mA左右。

此时转动可变电容C1,应该能听到“丝丝”白噪声,说明VT1已经起振,电路进入工作状态,如果没有起振,可以重新调节R1,直到起振。

电路调试第二步,调整覆盖频率。

这个调整,如果有信号发生器,会比较容易,如果没有,只能配合一台收音机来参照调整。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档