初一数学期中测试题 班级________ 姓名_________

合集下载

2024年七年级上学期数学期中模拟测试题 北师大版

2024年七年级上学期数学期中模拟测试题 北师大版

北师大版七年级上册期中预测题数学试题考试时间:120分钟满分150分班级:________________ 姓名:________________ 考号:________________一、单选题(本大题共10小题,总分40分)1.下列说法不正确的是()A.长方体是四棱柱B.八棱柱有16条棱C.五棱柱有7个面D.直棱柱的每个侧面都是长方形2.12025的相反数是()A.2025B.﹣2025C.12025D.−12025 3.下列各式:1,5t,nn5,4500−3600mm,9>2,3y+2=7,xx−yy xx+yy,其中代数式共有()个A.4B.5C.6D.7 4.对于算式(−525)×4可以转换为()A.(−5)×4−25×4B.(−5)×4+25×4 C.(−5)−25×4D.(−5)+25×45.如图,这是一个计算机的运算程序,若一开始输入x的值为−14,则输出y的值是()A.﹣14B.﹣13C.﹣2D.46.有以下四个结论:①绝对值等于本身的数只有正数;②相反数等于本身的数是0;③倒数等于本身的数只有1;④平方等于本身的数是0.其中正确结论的个数是()A.1B.2C.3D.47.下列运算正确的是()A.6a﹣3a=3B.3(a﹣b)=3a﹣bC.8ab﹣ab=7ab D.2+3b=6b8.如图,有理数a、b在数轴上分别对应点A、B,下列各式正确的是()A.a+b<0B.a﹣b<0C.a•b>0D.aa bb>09.定义运算“*”如下:对任意有理数x,y和z都有x*x=0,x*(y*z)=(x*y)+z,这里“+”号表示数的加法,则2023*2022的值是()A.1B.2C.3D.410.小明设计了一台数值转换机,只要依次输入整数x1,x2,则输出的结果为x1﹣x2.比如小明依次输入1,2,则输出的结果是1﹣2=﹣1,再次输入3,则输出的结果为﹣1﹣3=﹣4,此后每输入一个整数都是与前次显示的结果进行求差的运算.下列说法:①若依次输入﹣1,﹣2,﹣3,…,﹣10,则最后输出的结果是55;②若将﹣1,2,﹣3,4,﹣5这5个整数任意地一个一个输入,全部输入完毕后显示的结果的最大值是11,最小值是﹣7;③x,5,y,全部输入完毕后显示的最后结果设为m,若m的最小值为﹣11,那么m的最大值是﹣1.其中正确的个数是()A.0B.1C.2D.3二、填空题(本大题共5小题,总分20分)11.根据国家电影局2月18日发布数据,我国2024年春节档电影票房达80.16亿元,创进了1新的春节档票房纪录,其中数据80.16亿用科学记数法表示为.12.在桌上摆有一些大小相同的正方体木块,其从正面和从上面看到的形状图如图所示,则摆出这样的图形至少需要块木块,最多需要块正方体木块.13.已知a,b互为相反数,m,n互为倒数,则式子aa+bb2024−2024mmmm的值为.14.若a、b、c都是有理数,a+b+c=0且abc<0,则aa+bb|cc|+bb+cc|aa|+aa+cc|bb|=.15.如图所示,各正方形的四个数之间都有相同的规律,根据此规律,“◆”位置的数是.三、解答题(本大题共10小题,总分90分)16.把下列各数按要求分类.﹣4,10%、−112、﹣2、101,2、﹣1.5、0、23、+0.3、7.负整数集合:{…};正分数集合:{…};负分数集合:{…};整数集合:{…};有理数集合:{…}.17.若干个完全相同的小正方体堆成一个几何体,如图是从上面看到的这个几何体的形状,小正方形中的数字表示在该位置的小正方体的个数.请在网格中画出从正面和左面看到的几何体的形状图.18.在数轴上表示下列各数:−|−412|,0,1.5,﹣3,﹣(﹣5).并用“<“号把这些数连接起来.19.计算:(1)217−(+223)+(−517)−513(2)112×57−(−57)×212+(−12)÷12520.先化简,再求值.(1)2(ab2﹣2a2b)﹣3(ab2﹣a2b)+(2ab2﹣2a2b),其中a=2,b=1;(2)已知:A=4x2﹣4xy+y2,B=x2+xy﹣5y2,求A﹣2B的值.21.数学课上,老师布置了这样一道题:计算:(−112)÷(23−14).小明的方法是:原式=(−112)÷23+(−112)÷(−14)=(−112)×32+(−112)×(−4)=(−18)+13=524小亮的方法是:原式的倒数=(23−14)÷(−112)=(23−14)×(−12)=(﹣8)+3=﹣5所以(−112)÷(23−14)=−15(1)两位同学的方法中错误的是,错误的原因是;(2)请你仿照上面正确的方法计算:(−124)÷(23−16−38).22.如图是一个“数值转换机”(箭头是指数进入转换机的路径,方框是对进入的数进行转换的转换机).(1)当小亮输入1,3这两个数时,则两次输出的结果依次为,.(2)当小亮输入数15时,求出输出的结果.(3)当小亮输入数18时,则输出结果为.(4)有一次,小亮操作的时候,输出结果是2,聪明的你判断一下,小亮输入的正整数可能是()A.2022 B.2023 C.202423.某校高度重视学生的体育健康状况,打算在某商店采购一批篮球和跳绳,已知篮球每个定价120元,跳绳每条定价20元.该商店给学校提供以下两种优惠方案:方案①:篮球和跳绳都按定价的90%付款;方案②:买一个篮球送一条跳绳.现学校要购买篮球50个,跳绳x(x>50)条.(1)按方案①购买篮球和跳绳共需付款元;按方案②购买篮球和跳绳共需付款元.(均用含x的最简代数式表示)(2)当x=100时,通过计算说明此时按哪种方案购买较合算.(3)若两种优惠方案可同时使用,当x=100时,请你给出更省钱的购买方案,并说明理由.24.出租车司机小李某天下午的劳动全是在东西走向的裕华路上进行的,他从艺术中心出发如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+10,﹣15,﹣2,+5,﹣1,﹣3,﹣2,+12,+4,﹣5,+6(1)小李这天下午离开艺术中心的最远距离是千米,此时他相对于艺术中心的位置是;(2)小李下午将最后一名乘客送抵目的地时,他是否回到了艺术中心?请说明理由;(3)若汽车耗油量为0.41升/千米,这天下午小李共耗油多少升?25.阅读材料:已知点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离可以表示为|AB|=|a﹣b|.回答下列问题:(1)数轴上点P代表的数是x,数轴上表示7的点到点P之间的距离是(用含x的式子表示):|x+5|可表示为点P到表示数的距离.(2)若|x﹣2|=6,则x=;(3)代数式|x﹣2|+|x+6|的最小值是,代数式|x+3|+|x+6|+|x﹣3|的最小值是.(4)若(|x﹣1|+|x﹣3|+|x﹣7|)×(|y+2|+|y﹣1|+|y﹣3|+|y﹣5|)=54,则3x﹣4y的最大值是.参考答案一、单选题(本大题共10小题,总分40.0分)1-5.BDBAB.6-10.ACBAB.二、填空题(本大题共5小题,总分20分)11.8.016×109.12.7,8.13.﹣2024.14.﹣1.15.158.三、解答题(本大题共10小题,总分90分)16.解:负整数集合:{﹣4,﹣2,…};正分数集合:{10%,2233,+0.3,…};负分数集合:{−111122,﹣1.5,…};整数集合:{﹣4,﹣2,101,2,0,7,…};有理数集合:{﹣4,10%,−111122,﹣2,101,2,﹣1.5,0,2233,+0.3,7,…}.17.解:该几何体的主视图和左视图如下.18.解:如图,在数轴上表示各数如下:从小到大排列:−|−441122|<−33<00<11.55<−(−55).19.解:(1)221177−(+222233)+(−551177)−551133=21177−551177+(﹣22233−551133)=﹣3+(﹣8)=﹣11;(2)111122×5577−(−5577)×221122+(−1122)÷112255=3322×5577+5577×5522+(−1122)×5577=5577×(3322+5522−1122)=5577×7722=5522.20.解:(1)2(ab2﹣2a2b)﹣3(ab2﹣a2b)+(2ab2﹣2a2b)=2ab2﹣4a2b﹣3ab2+3a2b+2ab2﹣2a2b=2ab2+2ab2﹣3ab2﹣4a2b﹣2a2b+3a2b=ab2﹣3a2b,当a=2,b=1时,原式=2×12﹣3×22×1=2×1﹣3×4×1=2﹣12=﹣10;(2)A﹣2B=(4x2﹣4xy+y2)﹣2(x2+xy﹣5y2)=4x2﹣4xy+y2﹣2x2﹣2xy+10y2=4x2﹣2x2﹣4xy﹣2xy+10y2+y2=2x2﹣6xy+11y2.21.解:(1)∵除法没有分配律,∴小明的方法是错误的,故答案为:小明的方法,除法没有分配律;(2)∵(2233−1166−3388)÷(−112244)=(2233−1166−3388)×(−2244)=2233×(−2244)−1166×(−2244)−3388×(−2244)=﹣16+4+9=﹣12+9=﹣3.∴(−112244)÷(2233−1166−3388)=−1133.22.解:(1)输入1时,∵1<2,1的相反数为﹣1,﹣1的绝对值为1,∴输出的结果为1;输入3时,∵3>2,3+(﹣5)=﹣2,﹣2的相反数是2,2的倒数是1122,∴输出的结果为1122;故答案为:1,1122;(2)当输入15时,∵15>2,15+(﹣5)×3=0,0的相反数是0,0的绝对值是0,∴输出的结果是0;(3)当输入18时,∵18>2,18+(﹣5)×4=﹣2,﹣2的相反数是2,2的倒数是1122,∴输出的结果是1122.故答案为:1122;(4)按照倒数计算输出的结果不能是2,当按照绝对值计算输出的结果是2时,输入的数是2,根据题意将这两个数扩大,即再加上5的倍数,5×404=2020,所以符合题意的数是2020+2=2022.故选:A.23.解:(1)∵方案①:篮球和跳绳都按定价的90%付款,∴购买篮球50个,跳绳x(x>50)条付款:50×120×90%+20x×90%=(5400+18x)元;∵方案②:买一个篮球送一条跳绳,∴购买篮球50个,跳绳x(x>50)条付款:50×120+(x﹣50)×20=(5000+20x)元;故答案为:(5400+18x)(5000+20x);(2)当x=100时,按方案①购买需付款5400+18×100=7200(元),按方案②购买需付款5000+20×100=7000(元).∵7200>7000,∴选择方案②购买较合算;(3)购买方案:先按方案②购买50个篮球,再按方案①购买50条跳绳.理由:若按上述方案购买需付款50×120+20×50×90%=6900(元).∵6900<7000<7200,∴按照上述方案购买更省钱.(本小题答案不唯一)24.解:(1)第一次离开艺术中心10千米,第二次离开艺术中心|10+(﹣15)|=|﹣5|=5(千米),第三次离开艺术中心|﹣5﹣2|=|﹣7|=7(千米),第四次离开艺术中心|﹣7+5|=|﹣2|=2(千米),第五次离开艺术中心|﹣2﹣1|=|﹣3|=3(千米),第六次离开艺术中心|﹣3﹣3|=|﹣6|=6(千米),第七次离开艺术中心|﹣6﹣2|=|﹣8|=8(千米),第八次离开艺术中心|﹣8+12|=|4|=4(千米),第九次离开艺术中心|4+4|=|8|=8(千米),第十次离开艺术中心|﹣8+5|=|﹣3|=3(千米),第十一次离开艺术中心|3+6|=|9|=9(千米),∴小李这天下午离开艺术中心的最远距离是10千米,此时他在艺术中心的东边;故答案为:10;他在艺术中心的东边.(2)10﹣15﹣2+5﹣1﹣3﹣2+12+4﹣5+6=9(千米),答:小李下午将最后一名乘客送抵目的地时,他没有回到了艺术中心,在艺术中心东边9千米处.(3)(10+15+2+5+1+3+2+12+4+5+6)×0.41=26.65(升),答:这天下午小李共耗油26.65升.25.解:(1)∵点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离可以表示为|AB|=|a﹣b|.∴数轴上表示7的点到点P之间的距离是|x﹣7|,|x+5|可表示为点P到表示数﹣5的距离;故答案为:|x﹣7|,﹣5;(2)|x﹣2|=6,∴x=2+6=8或x=2﹣6=﹣4;故答案为:﹣4或8;(3)∵|x﹣2|+|x+6|表示数x分别与数﹣6,2之间的距离之和,∴当x在﹣6和2之间时,代数式|x﹣2|+|x+6|的值最小为2﹣(﹣6)=8;同理:当x=﹣3时,代数式|x+3|+|x+6|+|x﹣3|的值最小为:3﹣(﹣6)=9;故答案为:8,9;(4)同(3)可知:当x=3时,|x﹣1|+|x﹣3|+|x﹣7|的值最小为7﹣1=6,当y=1或y=3时,|y+2|+|y﹣1|+|y﹣3|+|y﹣5|的值最小为9,∵(|x﹣1|+|x﹣3|+|x﹣7|)×(|y+2|+|y﹣1|+|y﹣3|+|y﹣5|)=54,∴|x﹣1|+|x﹣3|+|x﹣7|=6,|y+2|+|y﹣1|+|y﹣3|+|y﹣5|=9,∴x=3,y=1或y=3,∴3x﹣4y=3×3﹣4×1=5或3x﹣4y=3×3﹣4×3=﹣3,∴3x﹣4y的最大值是5。

七年级数学上册期中考试卷及答案人教版

七年级数学上册期中考试卷及答案人教版

七年级数学上册期中考试卷及答案人教版人教版数学七年级上学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1. 比小的数是 ( )A. B. C. D.2. 在式子 , , , , , 中 , 整式有 ( )A. 个B. 个C. 个D. 个3. 算式的值为 ( )A. B. C. D.4. 若和相减的结果是, 则的值是 ( ) A. B. C.D.5. 下列计算正确的是 ( )A.B.C.D.6. 若 , 互为相反数 , , 互为倒数 ,.则的值为 ( )A. B. C. 或 D.7. 若, 则 a-b 的值是 ( ) A. B. C.D. 8. 如图 , 在数轴上 , 点 , 所表示的数分别为,, 则 , 两点之间表示整数的点一共有 ( )A. 个B. 个C. 个D. 个9. 按如图所示程序流程计算 , 若开始输入的值.则最后输出的结果是 ( )A. B. C. D.10. 如图 , 把张形状大小完全相同的小长方形卡片不重叠地放在一个底面为长方形的盒子底部 , 盒子底面未被覆盖的部分用阴影部分表示则图中两块阴影部分的周长的和是 ( )A.B.C.D.二、填空题(每小题3分,共15分)11.的相反数是 ____ . 12. 多项式的次数是____. 13. 目前 , 第五代移动通信技术正在阔步前行 , 按照产业间关联关系测算 , 2020 年 ,间接拉动增长将超过亿元数据“亿”用科学记数法表示为_____. 14. 已知数 , 在数轴上的位置如图所示 , 则 , , ,的大小关系是____.15. 观察下列式子:, , 它们是按照一定规律排列的 , 依照此规律 , 则第个式子为 _______ .三.解答题(本大题共8个小题,满分75分)16. 计算:( 1 ); ( 2 ).17. 化简:( 1 ); ( 2 ). 18. 化简并求值:, 其中,.19. 小王在新藏公路某路段设置了一个加水站 , 他每天开着加水车沿东西方向给过路的汽车加水.如果约定向西为正.向东为负 , 加水车当天的行驶记录如下 ( 单位:千米 ) :+8 , -9 , +7 , -4 , -3 , +5 , -6 , -8 , +6 , +7 .( 1 ) 加水车最后到达地方在出发点的哪个方向 ? 距出发点多远 ?( 2 ) 若加水车行驶过程中每千米耗油量为升 , 求这天加水车共耗油多少升 ?20. 小刚同学做一道题:“已知两个多项式 , , 计算.”小刚同学误将看作, 求得结果.若多项式. ( 1 ) 请你帮助小刚同学求出的正确答案; ( 2 ) 若的值与的取值无关 , 求的值.21. 学校让综合实践活动课外学习小组参与学校校办工厂的足球生产活动 , 在工人师傅的指导和帮助下 , 综合实践活动课外学习小组一周计划生产 700 个足球 , 平均每天生产 100 个 , 由于各种原因实际每天生产产量与计划量相比有出入 , 下表是某周的生产情况 ( 超产为正、减产为负 ) :( 1 ) 根据记录可知前四天共生产个;( 2 ) 产量最多的一天比产量最少的一天多生产个;( 3 ) 该校办工厂实行每周计件奖励制 , 生产一个足球奖励给综合实践活动课外学习小组元.超额完成任务超额部分每个再奖元 , 那么该校的综合实践活动课外学习小组这一周得到的奖励总额是多少元 ?22. 某校准备到服装超市购一批演出服装 ( 男 , 女服装价格相同 ) 以供文艺汇演使用 , 一套服装定价元 , 领结 ( 花 ) 每条定价元 , 适逢新中国成立周年 , 服装超市开展促销活动 , 向客户提供两种优惠方案:①买一套服装送一条领结 ( 花 ) ;②服装和领结 ( 花 ) 都按定价的销售. 现该校要到该服装超市购买服装套 , 领结 ( 花 ) 条.( 1 ) 若该校按方案①购买.需付款 _______ 元 ( 用含的式子表示 ) ;若该校按方案②购买.需付款元 ( 用含的式子表示 ) ;( 2 ) 若, 通过计算说明此时按哪种方案付款比较合算; ( 3 ) 当时 , 你能给出一种更为省钱的购买方案吗 ? 试写出你的购买方案 , 并计算出需付款多少元.23. ( 1 ) 如图 , 点 M 在数轴上对应数为 -4 .点 N 在点 M 右边距 M 点 6 个单位长度 , 求点 N 对应的数;( 2 ) 在 ( 1 ) 的条件下.保持 N 点静止不动 , 点 M 沿数轴以每秒 1 个单位长度的速度匀速向右运动 , 经过多长时间 M , N 两点相距 4 个单位长度;( 3 ) 若已知点 M , N 在数轴上对应的数分别为 -6 、 2 .点 M 以每秒 3 个单位长度的速度沿数轴向右运动 , N 以每秒 2 个单位长度的速度同时沿数轴向右运动 , 当 M , N 两点相距个单位长度时 , 请直接写出点 M 所对应的数.初一数学21个必考知识点1.数轴(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.数轴的三要素:原点,单位长度,正方向。

深圳市高级中学2023-2024学年七年级上学期期中考试数学试卷(含答案)

深圳市高级中学2023-2024学年七年级上学期期中考试数学试卷(含答案)

2023-2024学年第一学期期中测试初一数学注意事项:1、答题前,考生务必将在答题卡写上姓名、班级,准考证号用2B铅笔涂写在答题卡上.2、每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动用橡皮擦干净后,再涂其它答案,不能答在试题卷上.3、考试结束,监考人员将答题卡收回.一.选择题(每小题只有一个选项,每小题3分,共计30分)1. 如果分表示比平均分高5分,那么分表示()A. 比平均分低9分B. 比平均分高9分C. 和平均分相等D. 无法确定2. 如图所示的平面图形绕直线l旋转一周,可以得到的立体图形是( )A. B. C. D.3. 据悉,深圳市2022年报考中考的人数为11.2万人,其中11.2万用科学记数法表示为()A. 11.2×104B. 1.12×104C. 0.112×106D. 1.12×1054. 下列运算中,正确的是()A. B. C. D.5. 下列各组数比较大小,正确的是()A. B. C. D.6. 已知,则代数式的值是()A. B. C. D.7. 现定义一种新运算“*”,规定,如,则等于()A. 11B. -11C. 7D. -78. 某种商品每件进价为a元,按进价增加50%出售,现“双十二”打折促销按售价的八折出售每件还能盈利()A. 0.12a元B. 0.2a元C. 1.2a元D. 1.5a元9. 下列说法:①表示负数;②的次数为;③是单项式;④若,,则.其中正确的个数有()A. 个B. 个C. 个D. 个10. 再加上()后,结果就.A. B. C. D.二.填空题(共5个小题,每题3分,共计15分)11. 2的倒数是_____.12. “比的2倍小1的数”用代数式表示是________.13. 若与是同类项,则___________.14. 已知数、、在数轴上的位置如图所示,化简___________.15. 如图所示,图①是边长为1的等边三角形纸板,周长记为,沿图①的底边剪去一块边长为的等边三角形,得到图②,周长记为,然后沿同一底边依次剪去一块更小的等边三角形纸板(即其边长为前一块被剪掉等边三角形纸板边长的),得图③④…,图n的周长记为,若,则___________.三.解答题(共7小题,共55分)16. 计算:(1)(2)17. 先化简再求值:,其中,.18. 一个正方体六个面分别标有字母A、B、C、D、E、F,从三个不同方向看到的情形如图所示.(1)A的对面是______,B的对面是______,C的对面是______;(直接用字母表示)(2)若,,,且小正方体各对面上的两个数都互为相反数,请求出F 所表示的数.19. 某厂一周计划生产700个玩具,平均每天生产100个,由于各种原因实际每天生产量与计划量相比有出入,下表是某周每天生产情况(增产为正,减产为负,单位:个)星期一二三四五六日产量(1)根据记录,求出前三天共生产多少个?(2)请问产量最多的一天比产量最少的一天多生产多少个?(3)该厂实行计件工资制,每生产一个玩具10元,若按周计算,超额完成任务,超出部分每个12元;若未完成任务,生产出的玩具每个只能按8元发工资,那么该厂员工这一周的工资总额是多少?20 观察下列等式:第1个等式:第2个等式:第3个等式:.....将前三个等式的两边分别相加,可以得到.读完这段材料,请你思考后回答:(1)写出第4个等式:;(2)写出第(为正整数)个等式:;(3)计算:.21. 如图,已知数轴上A,B,C三个点表示的数分别是a,b,c,且,若点A沿数轴向右移动个单位长度后到达点B,且点A,B表示的数互为相反数.(1)a的值为,c的值为;(2)动点P,Q分别同时从点A,C出发,点P以每秒3个单位长度的速度向终点C移动,点Q以每秒m 个单位长度的速度向终点A移动,点P表示的数为x.①若点P,Q在点B处相遇,求m的值;②若点Q的运动速度是点P的2倍,当点P,Q之间的距离为2时,求此时x 的值.22. 将7张相同的小长方形纸片(如图1所示)按图2所示的方式不重叠的放在长方形内,未被覆盖的部分恰好被分割为两个长方形,面积分别为和.已知小长方形纸片的长为,宽为,且.(1)当时,长方形的面积是,的值为;(2)当时,请用含的式子表示的值;(3)若保持不变,变长,将这7张小长方形纸片还按照同样的方式放在新的长方形内,当的值也保持不变时,求小长方形纸片的长与宽的比值.参考答案1-5 AADDA 6-10 DABBC11.12.13.14.15. ##16. (1);(2).【小问1详解】解:;【小问2详解】解:17.,解:,当,时,原式.18. (1)F,D,E(2)2小问1详解】由图可知,A相邻的字母有D、C、B、E,所以A的对面是F,与B相邻的字母有A、E、C、F,所以B的对面是D,所以C的对面是E;故答案为:F,D,E.【小问2详解】∵,,B和D表示的数是互为相反数,∴,∴,∴,∵字母A与字母F表示的数互为相反数,∴F所表示的数2.19. (1)296 (2)30(3)7096【小问1详解】(个),∴前三天共生产296个;【小问2详解】(个),∴产量最多的一天比产量最少的一天多生产30个;【小问3详解】这一周多生产的总个数是(个).(元).答:该厂工人这一周的工资是7096元.20. (1)(2)(3)9590【小问1详解】第4个等式为:故答案为:;【小问2详解】;故答案为:;【小问3详解】.故答案为:.21. (1),(2)①;②或【小问1详解】解:∵点A沿数轴向右移动个单位长度后到达点B,∴,∵点A,B表示的数互为相反数,∴,则,解得:,∵,∴,解得:,故答案为:,10;小问2详解】解:①∵,点A,B表示的数互为相反数,∴,即点B表示的数为6,∵点P的速度是每秒3个单位长度,点P,Q在点B处相遇,,∴点P从点A运动到点B所用时间为(秒),∵,∴;②设运动时间为t秒,t秒后点P表示的数为,点Q表示的数为,,则或,解得:或2;∴或,综上:x值为或0.22. (1)630,63(2)(3)4【小问1详解】解:由图可得:长方形的面积为:,,故答案为:630,63;【小问2详解】解:由图可得:;【小问3详解】解:由图可得:,变长,的值也保持不变,的值与无关,解得:,.。

2024年最新人教版初一数学(下册)期中考卷及答案(各版本)

2024年最新人教版初一数学(下册)期中考卷及答案(各版本)

2024年最新人教版初一数学(下册)期中考卷一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. 3B. 0C. 1/2D. 1/22. 一个数的绝对值是它本身的数是?A. 正数B. 负数C. 零D. 正数和零3. 下列哪个数是分数?A. 0.5B. 3/4C. 0.333D. 14. 下列哪个数是无理数?A. 3B. 2/3C. √2D. 0.255. 下列哪个数是整数?A. 1/2B. 0.5C. 3D. 0.3336. 下列哪个数是正整数?A. 0B. 1C. 1D. 1/27. 下列哪个数是负整数?A. 0B. 1C. 1D. 1/28. 下列哪个数是奇数?A. 0B. 2C. 3D. 49. 下列哪个数是偶数?A. 1B. 2C. 3D. 410. 下列哪个数是质数?A. 0B. 1C. 2D. 4二、填空题(每题4分,共20分)1. 5的绝对值是______。

2. 2的相反数是______。

3. 3/4的倒数是______。

4. 5的平方是______。

5. 2的立方根是______。

三、解答题(每题10分,共50分)1. 解方程:2x 3 = 7。

2. 解不等式:3x + 4 > 11。

3. 解方程组:x + y = 5, x y = 1。

4. 解不等式组:x > 2, x < 5。

5. 计算下列表达式的值:(3 + 4) × (5 2) ÷ 2。

四、应用题(每题15分,共30分)1. 小明买了5本书,每本书的价格是8元。

他付了50元,应该找回多少元?2. 一个长方形的长是6厘米,宽是4厘米。

求这个长方形的面积。

五、附加题(每题10分,共20分)1. 证明:对于任意实数a,a的平方总是非负的。

2. 解析几何:在平面直角坐标系中,点A(2, 3),点B(5, 1)。

求线段AB的长度。

选择题答案:1. C2. D3. B4. C5. C6. C7. C8. C9. B10. C填空题答案:1. 52. 23. 4/34. 255. 1.2599210498948732(约等于1.26)解答题答案:1. x = 52. x > 33. x = 3, y = 24. 2 < x < 55. 13应用题答案:1. 找回的金额为10元。

人教版数学七年级下学期《期中测试题》有答案

人教版数学七年级下学期《期中测试题》有答案

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题1.1x =是下列哪个方程的解( )A. 241x -=B. 122x =C. 325x +=D. 4263x x -=- 2.在数轴上表示不等式x -1<0解集,正确的是()A. B. C. D. 3.已知关于x 的方程2x a 50--=的解是x 2=-,则a 的值为A. 1B.C. 9D. 9-4.已知关于x 的不等式(a ﹣2)x >1的解集为x <12a -,则a 的取值范围( ) A. a >2 B. a ≥2 C. a <2 D. a ≤25.长为300米的春游队伍,以2米/秒的速度向东行进.在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为4米/秒.则往返共用的时间为( )A. 200sB. 205sC. 210sD. 215s 6.已知x >y ,m ≠0,则下列说法中,正确的是( )A. m +x >m +yB. m ﹣x >m ﹣yC. mx >myD. m 2x ≥m 2y 7.若关于方程0a x -=有两个解,0b x -=只有一个解,0c x -=无解,则、、的关系是( ).A. a b c <<B. a c b <<C. b c a <<D. c b a << 8.若A =3x 2+5x +2,B =4x 2+5x +2,则A 与B 的大小关系是( )A. A >BB. A <BC. A ≥BD. A ≤B 9.我们知道方程组23193426x y x y +=⎧⎨+=⎩的解是25x y =⎧⎨=⎩.现给出另一个方程组2(25)3(3)193(25)4(3)26x y x y +++=⎧⎨+++=⎩它的解是( ) A 1.52x y =-⎧⎨=⎩B. 1.52x y =⎧⎨=-⎩C. 1.52x y =-⎧⎨=-⎩D. 1.52x y =⎧⎨=⎩ 10.若不等式组7331x x x m+>-⎧⎨-<⎩的解集为x <5,则m 的取值范围为( )A. m <4B. m≤4C. m≥4D. m >4 11.若方程组34526x y k x y k -=-⎧⎨+=⎩的解中2019x y +=,则等于( ) A. 2018 B. 2019 C. 2020 D. 202112.小杨在商店购买了a 件甲种商品,b 件乙种商品,共用213元,已知甲种商品每件5元,乙种商品每件19元,那么a +b 的最大值是( )A. 37B. 27C. 23D. 20二.填空题13.将方程2x ﹣3y =5变形为用x 的代数式表示y 的形式是_____.14.不等式1123x x --<的非负整数解是_____. 15.三元一次方程组598x y y z z x +=⎧⎪+=⎨⎪+=⎩的解是______ .16.解关于x ,y 方程组()()()1328511m x n y n x my ⎧+-+=⎪⎨-+=⎪⎩①②可以用①×2+②,消去未知数x ;也可以用①+②×5消去未知数y .则m =_____,n =_____.17.不等式组﹣1≤345x +<2的所有整数解的和是_____. 18.按下面程序计算,若开始输入的值为正数,最后输出的结果为656,则满足条件所有的值是___.19.已知235345x y x y z x +++==,则x :y :z =_____. 20.若关于x 的不等式组01321x m x ->⎧⎨-≥⎩的所有整数解的和是15,则m 的取值范围是_____. 21.已知a ,b 为定值,关于x 的方程2136kx a x bk ++=-,无论k 为何值,它的解总是1,则a +b =__. 22.如图,将一个正方形分割成11个大小不同的正方形,记图中最大正方形的周长是1C ,最小正方形的周长是2C ,则12C C =_____.三.解答题23.解方程:123134x x-+=-.24.解不等式组,并把解集在数轴上表示出来,()() 533121132x xx x⎧+>+⎪⎨++->⎪⎩.25.已知方程组5457ax yx y+=⎧⎨+=⎩与方程组3151x yx by-=⎧⎨+=⎩的解相同,求a、b的值.26.某幼儿园把一筐桔子分给若干个小朋友,若每人3只,那么还剩59只,若每人5只,那么最后一个小朋友分到桔子,但不足4只,试求这筐桔子共有多少只?27.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?28.学校篮球比赛,初一(1)班和初一(2)班到自选超市去买某种品牌的纯净水,自选超市对某种品牌的纯净水按以下方式销售:购买不超过30瓶,按零售价每瓶3元计算;购买超过30瓶但不超过50瓶,享受零售价的八折优惠;购买超过50瓶,享受零售价的六折优惠,一班一次性购买了纯净水70瓶,二班分两天共购买了纯净水70瓶(第一天购买数量多于第二天)两班共付出了309元.(1)一班比二班少付多少元?(2)二班第一天、第二天分别购买了纯净水多少瓶?29.已知关于x,y的方程满足方程组321 21x y mx y m+=+⎧⎨+=-⎩.(1)若x﹣y=2,求m的值;(2)若x,y,m均为非负数,求m的取值范围,并化简式子|m﹣3|+|m﹣4|;(3)在(2)的条件下求s=2x﹣3y+m的最小值及最大值.30.宜宾某商店决定购进A.B两种纪念品.购进A种纪念品7件,B种纪念品2件和购进A种纪念品5件,B 种纪念品6件均需80元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品资金不少于750元,但不超过764元,那么该商店共有几种进货方案?(3)已知商家出售一件A种纪念品可获利a元,出售一件B种纪念品可获利(5﹣a)元,试问在(2)的条件下,商家采用哪种方案可获利最多?(商家出售的纪念品均不低于成本价)答案与解析一.选择题1.1x =是下列哪个方程的解( )A. 241x -=B. 122x =C. 325x +=D. 4263x x -=- [答案]C[解析][分析]将1x =代入各选项,能令方程两边相等的即为正确答案.[详解]解:当1x =,A. 24121-⨯=-≠,故错误;B. 111222⨯=≠,故错误;C. 3125⨯+=,故正确;D. 41226133⨯-=≠⨯-=,故错误.故选:C.[点睛]本题考查方程的解,理解掌握方程的解的定义是关键.2.在数轴上表示不等式x -1<0的解集,正确的是()A. B. C.D.[答案]B[解析][详解]解:x -1<0的解集为x <1,它在数轴上表示正确的是B .故选B .3.已知关于x 的方程2x a 50--=的解是x 2=-,则a 的值为A. 1B.C. 9D. 9- [答案]D[解析]试题分析:将x 2=-代入方程得4a 50---=,解得:a 9=-.故选D .4.已知关于x 的不等式(a ﹣2)x >1的解集为x <12a -,则a 的取值范围( )A. a >2B. a ≥2C. a <2D. a ≤2 [答案]C[解析]分析]根据题意所求出的不等式·的解集,分式要有意义,分母不能为0[详解]∵不等式(a﹣2)x>1的解集为x<12a,∴a﹣2<0,∴a的取值范围为:a<2.故选C.[点睛]此题考查分式有无意义的条件,难度不大5.长为300米的春游队伍,以2米/秒的速度向东行进.在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为4米/秒.则往返共用的时间为()A. 200sB. 205sC. 210sD. 215s[答案]A[解析][分析]利用当甲从排尾到排头和通讯员再从排头返回排尾这两类,分别建立一元一次方程计算得结论.[详解]解:设甲从排尾到排头用了x(s),再从排头到排尾用了y(s).∵队伍长300米,以2m/s的速度前进,而通讯员以4m/s的速度前进,∴当甲从排尾到排头时,4x=300+2x,解得x=150(s).当甲再从排头返回排尾时,4y=300−2y,解得y=50(s).因此甲往返共用的时间为200s.故选A.[点睛]本题考查了一元一次方程的应用和分类讨论思想.6.已知x>y,m≠0,则下列说法中,正确的是( )A. m+x>m+yB. m﹣x>m﹣yC. mx>myD. m2x≥m2y[答案]A[解析][分析]根据不等式两边加(或减)同一个数(或式子),不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变进行解答即可.[详解]解:A、∵x>y,∴m+x>m+y,故A正确;B、∵x>y,∴m﹣x<m﹣y,故B错误;C、∵x>y,当m>0,则mx>my,故C错误;D、∵x>y,m≠0,∴m2x>m2y,故D错误;[点睛]本题考查了不等式的基本性质,(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变,(2)不等式两边乘(或除以)同一个正数,不等号的方向不变,(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.7.若关于的方程0a x -=有两个解,0b x -=只有一个解,0c x -=无解,则、、的关系是( ).A. a b c <<B. a c b <<C. b c a <<D. c b a <<[答案]D[解析][分析]比较a 、b 、c 的大小,只有从给出已知条件中,算出其值,比较它们的大小,就会迎刃而解了.[详解]∵0a x -=有两个解,∴a >0; ∵0b x -=只有一个解,∴b=0; ∵0c x -=无解,∴c <0;从而可知,c b a <<.故选D.[点睛]本题主要考查的是含有绝对值符号的一元一次方程的拓展计算题,要充分利用已知条件.难易适中. 8.若A =3x 2+5x +2,B =4x 2+5x +2,则A 与B 的大小关系是( )A. A >BB. A <BC. A ≥BD. A ≤B [答案]D[解析][分析]将A 与B 代入A-B 中,根据差的正负即可对于A 与B 大小做出判断.[详解]解:∵A =3x 2+5x +2,B =4x 2+5x +2,∴A-B=3x 2+5x +2-(4x 2+5x +2)=-3x 2+5x +2-4x 2-5x -2=- x 2≤0,故选:D .[点睛]本题考查了整式的加减,熟练掌握运算法则是解本题的关键.9.我们知道方程组23193426x y x y +=⎧⎨+=⎩的解是25x y =⎧⎨=⎩.现给出另一个方程组2(25)3(3)193(25)4(3)26x y x y +++=⎧⎨+++=⎩它的解是( )A 1.52x y =-⎧⎨=⎩ B. 1.52x y =⎧⎨=-⎩ C. 1.52x y =-⎧⎨=-⎩ D. 1.52x y =⎧⎨=⎩ [答案]A[解析][分析]仿照已知方程组的解确定出所求方程组的解即可.[详解]∵方程组23193426x y x y +=⎧⎨+=⎩的解是25x y =⎧⎨=⎩∴2(25)3(3)193(25)4(3)26x y x y +++=⎧⎨+++=⎩的解为25235x y +=⎧⎨+=⎩∴ 1.52x y =-⎧⎨=⎩故选:A[点睛]本题是仿照已知方程组的解,求复杂方程组的解,不需要解方程,只需将25x +和3y 看成整体,即可简便求解.10.若不等式组7331x x x m +>-⎧⎨-<⎩的解集为x <5,则m 的取值范围为( ) A. m <4B. m≤4C. m≥4D. m >4 [答案]C[解析][分析]先求出每个不等式的解集,根据已知得出关于m 的不等式,求出不等式的解集即可.[详解]解:7331x x x m +>-⎧⎨-<⎩①②∵解不等式①得:x<5,解不等式②得:x<m+1,又∵不等式组7331x xx m+>-⎧⎨-<⎩的解集为x<5,∴m+1≥5,解得:m≥4,故选:C.[点睛]本题考查了解一元一次不等式组和解一元一次不等式,能得出关于m的不等式是解此题的关键.11.若方程组34526x y kx y k-=-⎧⎨+=⎩的解中2019x y+=,则等于( )A. 2018B. 2019C. 2020D. 2021[答案]C[解析][分析]将方程组的两个方程相加,可得x+y=k−1,再根据x+y=2019,即可得到k−1=2019,进而求出k的值.[详解]解:34526x y kx y k-=-⎧⎨+=⎩①②,①+②得,5x+5y=5k−5,即:x+y=k−1,∵x+y=2019,∴k−1=2019,∴k=2020,故选:C.[点睛]本题考查二元一次方程组的解法,整体代入是求值的常用方法.12.小杨在商店购买了a件甲种商品,b件乙种商品,共用213元,已知甲种商品每件5元,乙种商品每件19元,那么a+b的最大值是( )A. 37B. 27C. 23D. 20[答案]A[解析][分析]根据题意得出关于a和b的二元一次方程,然后用b表示出a,继而用b表示出a+b,然后可以利用函数的思想得出a+b取得最值的条件,即能得出答案.[详解]解:由题意得,5a+19b=213,∴213195ba-=,∴213192131455b ba b b--+=+=,∵a+b是关于b的一次函数且a+b随b的增大而减小,∴当b最小时,a+b取最大值,又∵a,b是正整数,∴当b=2时,a+b的最大值=37.故选:A.[点睛]本题考查二元一次不定方程的应用,技巧性较强,解答本题的关键是函数思想的应用,同学们要注意掌握这种解题思想,它会在以后的解题中经常用到.二.填空题13.将方程2x﹣3y=5变形为用x的代数式表示y的形式是_____.[答案]y=25 3 x-[解析][分析]要把方程2x-3y=5变形为用x的代数式表示y的形式,需要把含有y的项移到等号一边,其他的项移到另一边,然后合并同类项、系数化1就可用含x的式子表示y的形式:y=25 3x-.[详解]解:移项得:-3y=5-2x系数化1得y=253x-.:y=253x-.故答案为y=25 3x-.[点睛]本题考查方程的基本运算技能:移项、合并同类项、系数化为1等.14.不等式1123x x--<的非负整数解是_____.[答案]0、1、2、3[解析][分析]先去分母,再去括号,移项,合并同类项,求出x的取值范围,然后即可得出答案. [详解]解:原不等式可化为, 3x-2(x-1)<6,去括号得,3x-2x+2<6,移项得, x<6-2,合并同类项得:x<4,所以该不等式组的非负整数解为:x=0、1、2、3.[点睛]本题考查了一元一次不等式的整数解,属于基础题,掌握解不等式的方法,求出不等式的解集是解答本题的关键.15.三元一次方程组598x yy zz x+=⎧⎪+=⎨⎪+=⎩的解是______.[答案]x2 y3 z6=⎧⎪=⎨⎪=⎩[解析]分析:将方程组三个方程相加求出x+y+z的值,进而将每一个方程代入即可求出x,y,z的值.详解:598x yy zz x+=⎧⎪+=⎨⎪+=⎩①②③,①+②+③得:2(x+y+z)=22,即x+y+z=11④, 将①代入④得:z=6,将②代入④得:x=2,将③代入④得:y=3,则方程组的解为236xyz=⎧⎪=⎨⎪=⎩.故答案为236 xyz=⎧⎪=⎨⎪=⎩.点睛:本题考查了解三元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.16.解关于x,y方程组()()()1328511m x n yn x my⎧+-+=⎪⎨-+=⎪⎩①②可以用①×2+②,消去未知数x;也可以用①+②×5消去未知数y.则m=_____,n=_____.[答案](1). ﹣23 (2). ﹣39 [解析][分析]根据已知得出关于m、n的方程组,求出方程组的解即可.[详解]解:∵解关于x,y方程组()()()1328511m x n yn x my⎧+-+=⎪⎨-+=⎪⎩①②可以用①×2+②,消去未知数x;也可以用①+②×5消去未知数y,∴()()()21503250m nn m⎧++-⎪⎨-++⎪⎩==,即27 532m nm n--⎧⎨-⎩==,解得:m=-23,n=-39,故答案为:-23,-39.[点睛]本题考查了解二元一次方程组,能得出关于m、n的方程组是解此题的关键.17.不等式组﹣1≤345x+<2的所有整数解的和是_____.[答案]﹣5.[解析][分析]先解不等式组得到它的解集是-3≤x<2,再找出此范围内的整数,然后求这些整数的和即可.[详解]解:-5≤3x+4<10,-9≤3x<6,所以-3≤x<2,所以不等式组的整数解为-3,-2,-1,0,1,它们的和为-5.故答案为-5.[点睛]本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.18.按下面程序计算,若开始输入值为正数,最后输出的结果为656,则满足条件所有的值是___.[答案]131或26或5或45.[解析][分析]利用逆向思维来做,分析第一个数就是直接输出656,可得方程5x+1=656,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.[详解]用逆向思维来做:第一个数就是直接输出其结果的:5x+1=656,解得:x=131;第二个数是(5x+1)×5+1=656,解得:x=26;同理:可求出第三个数是5;第四个数是45,∴满足条件所有x的值是131或26或5或45.故答案为131或26或5或45.[点睛]此题考查了方程与不等式的应用.注意理解题意与逆向思维的应用是解题的关键.19.已知235345x y x y z x+++==,则x:y:z=_____.[答案]1:1:0.[解析][分析]设x+2y=3a,则x+3y=4a,z+5x=5a,求出y=a, x=a,z=0,即可得到x:y:z=a:a:0=1:1:0. [详解]设x+2y=3a,则x+3y=4a,z+5x=5a,∵x+2y=3a,x+3y=4a,∴组成方程组2334x y a x y a+=⎧⎨+=⎩,解得x ay a=⎧⎨=⎩,将x=a代入z+5x=5a中得z=0, ∴x:y:z=a:a:0=1:1:0,故答案为:1:1:0.[点睛]此题考查二元一次方程组的解法,设未知数分别表示方程中的字母的值是解题的关键,由此在进行比值时即可将所设未知数消去求出答案.20.若关于x 的不等式组01321x m x ->⎧⎨-≥⎩的所有整数解的和是15,则m 的取值范围是_____. [答案]3≤m <4或﹣4≤m <﹣3[解析][分析]解不等式组得出解集,根据整数解的和为15,可以确定整数解必含6,5,4这三个数,再根据解集确定m 的取值范围.[详解]解:解不等式组01321x m x ->⎧⎨-≥⎩,得:m <x≤6, ∵所有整数解的和是15,15=6+5+4∴不等式组的整数解为①6,5,4,或②6,5,4,3,2,1,0,-1,-2,-3∴3≤m <4或-4≤m <-3;故答案为: 3≤m <4或﹣4≤m <﹣3[点睛]考查一元一次不等式组的解集、整数解,根据整数解和解集确定待定字母的取值范围,在确定的过程中,不等号的选择应认真细心,切实选择正确.21.已知a ,b 为定值,关于x 方程2136kx a x bk ++=-,无论k 为何值,它的解总是1,则a +b =__. [答案]0.[解析][分析]先把方程化简,然后把x=1代入化简后的方程,因为无论k 为何值时,它的根总是1,就可求出a 、b 的值.[详解]解:2136kx a x bk ++=- ()()262kx a x bk +=-+其中x=1,()242b k a +=-无论k 为何值对方程无影响,所以20,2b b +==-所以420,2a a -==所以0a b +=[点睛]本题考查了一元一次方程的解,化解方程得出关系式是解题的关键.22.如图,将一个正方形分割成11个大小不同的正方形,记图中最大正方形的周长是1C ,最小正方形的周长是2C ,则12C C =_____.[答案]432[解析][分析]如图(见解析),设,AB x BC y ==,根据正方形的定义可得最小正方形的边长为1411x y -,而且x 和y 满足等式:8101411y x x y -=-,再根据正方形的周长公式12,C C 即可得.[详解]如图,设,AB x BC y ==,最大正方形标记为0号,被分割成的11个正方形标记为1-11号,其中最小正方形标记为11号,各个正方形的边长求解过程如下:0号:1号+2号得x y +5号:1号-2号得y x -3号:2号-5号得()2x y x x y --=-4号:0号-2号-3号得(2)22x y x x y y x +---=-7号:3号-4号得2(22)43x y y x x y ---=-6号:4号-7号得22(43)56y x x y y x ---=-10号:0号-1号得9号:0号-4号-6号-10号得(22)(56)86x y y x y x x x y +-----=-8号:10号-9号得(86)67x x y y x --=-11号:6号-7号得56(43)810y x x y y x ---=-或9号-6号得86(56)1411x y y x x y ---=-因此x 和y 满足等式:8101411y x x y -=-整理得:1924x y =所以最大正方形(0号)的周长143 4()6C x y y=+=最小正方形(11号)的周长21 4(1411)3C x y y=-=则1243 2CC=.[点睛]本题考查了用代数式表示几何图形的周长,设定未知数,利用正方形的性质将最大正方形的周长和最小正方形的周长求出是解题关键.三.解答题23.解方程:123134x x-+=-.[答案]x=1 5[解析][分析]方程去分母,去括号,移项合并,将x系数化为1,即可求出解.[详解]去分母,得4(1﹣2x)=12﹣3(x+3).去括号,得4﹣8x=12﹣3x﹣9.移项、合并同类项,得﹣5x=﹣1.系数化为1,得x=15.[点睛]此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.24.解不等式组,并把解集在数轴上表示出来,()() 533121132x xx x⎧+>+⎪⎨++->⎪⎩.[答案]﹣6<x<﹣5,数轴表示见解析根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可.[详解]()() 5331211?32x xx x⎧+>+⎪⎨++->⎪⎩①②,由①得:x>﹣6;由②得:x<﹣5,∴不等式组的解集为﹣6<x<﹣5,表示在数轴上,如图所示:[点睛]本题主要考查对解一元一次不等式,解一元一次不等式组,不等式的性质,在数轴上表示不等式的解集等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集并把不等式组的解集在数轴上表示出来是解此题的关键.25.已知方程组5457ax yx y+=⎧⎨+=⎩与方程组3151x yx by-=⎧⎨+=⎩的解相同,求a、b的值.[答案]a=﹣6,b=﹣2[解析][分析]联立不含a与b的方程组成方程组,求出方程组的解得到x与y的值,代入剩下的方程求出a与b的值即可.[详解]联立得:5731x yx y+=⎧⎨-=⎩①②,①+②得:8x=8,即x=1, 把x=1代入②得:y=2,把x=1,y=2代入得:104 521ab+=⎧⎨+=⎩,解得:a=﹣6,b=﹣2.[点睛]此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.26.某幼儿园把一筐桔子分给若干个小朋友,若每人3只,那么还剩59只,若每人5只,那么最后一个小朋友分到桔子,但不足4只,试求这筐桔子共有多少只?[答案]这筐桔子共有152个“不足4只”意思是最后一个小朋友分得的桔子数在0和4之间,把相关数值代入计算即可.[详解]设幼儿园共有x名小朋友,则桔子的个数为(3x+59)个,由“最后一个小朋友分到桔子,但不足4个”可得不等式组0<(3x+59)﹣5(x﹣1)<4,解得30<x<32,∴x=31,∴有桔子3x+59=3×31+59=152(个).答:这筐桔子共有152个.[点睛]考查一元一次不等式组的应用,得到最后一个小朋友分得的桔子数的关系式是解决本题的关键.27.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?[答案]25人加工大齿轮,60人加工小齿轮[解析][分析]设需安排x名工人加工大齿轮,安排y名工人加工小齿轮,根据加工大齿轮人数+加工小齿轮人数=85和加工的大齿轮总数:加工的小齿轮总数=2:3列出方程组求解即可.[详解]解:设需安排x名工人加工大齿轮,安排y名工人加工小齿轮,根据题意得:8516:102:3 x yx y+=⎧⎨=⎩,解得:2560 xy=⎧⎨=⎩.答:需安排25名工人加工大齿轮,安排60名工人加工小齿轮.[点睛]本题考查了二元一次方程组的实际应用—产品配套问题,关键是能根据2个大齿轮和3个小齿轮配成一套找出相等关系,据此正确列出方程.28.学校篮球比赛,初一(1)班和初一(2)班到自选超市去买某种品牌的纯净水,自选超市对某种品牌的纯净水按以下方式销售:购买不超过30瓶,按零售价每瓶3元计算;购买超过30瓶但不超过50瓶,享受零售价的八折优惠;购买超过50瓶,享受零售价的六折优惠,一班一次性购买了纯净水70瓶,二班分两天共购买了纯净水70瓶(第一天购买数量多于第二天)两班共付出了309元.(1)一班比二班少付多少元?(2)二班第一天、第二天分别购买了纯净水多少瓶?[答案](1)57元;(2)第一天买了45瓶,第二天买了25瓶[解析][分析](1)由题意知道一班享受六折优惠,根据总价=单价×数量,可以求出一班的花费,由两个班的总花费,则可以求出二班的花费,两者相减即可得出结论.(2)先设第一天购买了x瓶,则得出第二天购买(70-x)瓶,由第一天多于第二天,有三种可能:①两天均是超过30瓶但不超过50瓶,享受八折优惠;②第一天超过50瓶,享受六折优惠,第二天不超过30瓶,不享受优惠;③第一天超过30瓶但不超过50瓶,享受八折优惠,第二天不超过30瓶,不享受优惠.根据三种情况,总价=单价×数量,列出方程求解即可.[详解]解:(1)∵一班一次性购买了纯净水70瓶,∴享受六折优惠,即一班付出:70×3×60%=126元,∵两班共付出了309元,∴二班付出了:309-126=183元,∴一班比二班少付多:183-126=57元.答:一班比二班少付57元.(2)设第一天购买了x瓶,则得出第二天购买(70-x)瓶,①两天均是超过30瓶但不超过50瓶,享受八折优惠,列出方程得:[x+(70-x)]×3×80%=183元,此方程无解.②第一天超过50瓶,享受六折优惠,第二天不超过30瓶,不享受优惠,列出方程得:x×3×60%+(70-x)×3=183,求解得出x=22.5,不是整数,不符合题意,故舍去.③第一天超过30瓶但不超过50瓶,享受八折优惠,第二天不超过30瓶,不享受优惠,列出方程得:x×3×80%+(70-x)×3=183,解得:x=45,即70-45=25.答:第一天购买45瓶,第二天购买25瓶.[点睛]本题考查了一元一次方程的运用.要注意此题中的情况不止一种,分情况讨论.29.已知关于x,y的方程满足方程组321 21x y mx y m+=+⎧⎨+=-⎩.(1)若x﹣y=2,求m的值;(2)若x,y,m均为非负数,求m的取值范围,并化简式子|m﹣3|+|m﹣4|;(3)在(2)的条件下求s=2x﹣3y+m的最小值及最大值.[答案](1)m=5;(2)2m﹣7;(3)s的最小值为﹣3,最大值为9[解析][分析](1)把m看做已知数表示出方程组的解,得到x与y,代入x-y=2求出m的值即可;(2)根据x,y为非负数求出m的范围,判断出绝对值里边式子的正负,利用绝对值的代数意义化简,计算即可得到结果;(3)把表示出的x与y代入s,利用一次函数性质求出最大值与最小值即可.[详解](1)321 21?x y mx y m+=+⎧⎨+=-⎩①②,①﹣②×2得:﹣x=﹣m+3,即x=m﹣3,把x=m﹣3代入②得:2m﹣6+y=m﹣1,即y=﹣m+5,把x=m﹣3,y=﹣m+5代入x﹣y=2中,得:m﹣3+m﹣5=2,即m=5;(2)由题意得:3050 mm-≥⎧⎨-+⎩,解得:3≤m≤5,当3≤m≤4时,m﹣3≥0,m﹣4≤0,则原式=m﹣3+4﹣m=1;当4<m≤5m﹣3≥0,m﹣4≥0,则原式=m﹣3+m﹣4=2m﹣7;(3)根据题意得:s=2m﹣6+3m﹣15+m=6m﹣21,∵3≤m≤5,∴当m=3时,s=﹣3;m=5时,s=9,则s的最小值为﹣3,最大值为9.[点睛]此题考查了二元一次方程组的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.30.宜宾某商店决定购进A.B两种纪念品.购进A种纪念品7件,B种纪念品2件和购进A种纪念品5件,B 种纪念品6件均需80元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于750元,但不超过764元,那么该商店共有几种进货方案?(3)已知商家出售一件A种纪念品可获利a元,出售一件B种纪念品可获利(5﹣a)元,试问在(2)的条件下,商家采用哪种方案可获利最多?(商家出售的纪念品均不低于成本价)[答案](1)A种纪念品每件需10元、B种纪念品每件需5元;(2)有三种方案;(3)当a=2.5时,三种方案获利相同;当0≤a<2.5时,方案一获利最多;当2.5<a≤5时,方案三获利最多[解析][分析](1)设购进A种纪念品每件需x元、B种纪念品每件需y元,根据题意得关于x和y的二元一次方程组,解得x 和y的值即可;(2)设购进A种纪念品t件,则购进B种纪念品(100﹣t)件,由题意得关于t的不等式,解得t的范围,再由t为正整数,可得t的值,从而方案数可得;(3)分别写出三种方案关于a的利润函数,根据一次函数的性质可得答案.[详解]解:(1)设购进A种纪念品每件需x元、B种纪念品每件需y元,根据题意得:7280 5680 x yx y+=⎧⎨+=⎩解得:105 xy=⎧⎨=⎩答:购进A种纪念品每件需10元、B种纪念品每件需5元;(2)设购进A种纪念品t件,则购进B种纪念品(100﹣t)件, 由题意得:750≤5t+500≤764解得264 505t∵t为正整数∴t=50,51,52∴有三种方案.第一种方案:购进A种纪念品50件,B种纪念品50件;第二种方案:购进A种纪念品51件,B种纪念品50件;第三种方案:购进A种纪念品52件,B种纪念品48件;(3)第一种方案商家可获利:w=50a+50(5﹣a)=250(元);第二种方案商家可获利:w=51a+49(5﹣a)=245+2a(元);第三种方案商家可获利:w=52a+48(5﹣a)=240+4a(元).当a=2.5时,三种方案获利相同;当0≤a<2.5时,方案一获利最多;当2.5<a≤5时,方案三获利最多.[点睛]本题考查了二元一次方程组、一元一次不等式及一次函数在实际问题中应用,理清题中的数量关系是解题的关键.。

北京市第八中学2022_2023学年七年级上学期期中数学试卷(含答案)

北京市第八中学2022_2023学年七年级上学期期中数学试卷(含答案)

2022—2023学年第一学期期中练习题考试注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题答案用 0.5 毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.作图可先使用 2B 铅笔画出,确定后必须用 0.5 毫米黑色墨水签字笔描黑.一、选择题(本题共30分,每题3分,每小题所给4个选项只有一个符合要求). 1. 现实生活中,如果收入100元记作100+元,那么700-元表示( )A. 支出700元B. 收入700元C. 支出300元D. 收入300元 2. 13-的相反数是( ) A. 13- B. 32 C. 13 D. 32- 3. 根据《北京市“十四五”信息通信行业发展规划》,预计到2025年末,北京市将建成并开通5G 基站63000个,基本实现对城市、乡镇、行政村和主要道路连续覆盖.将63000用科学记数法表示应为( )A. 63×103B. 6.3×103C. 6.3×104D. 0.63×105 4. 若单项式13n x y -与213m y x -是同类项,则m n +的值为( ) A. 3 B. 4 C. 5 D. 65. 下列运算有错误的是( )A. ()2521--=B. ()538-++=C. ()9327-⨯-=D. 14205⎛⎫-÷-= ⎪⎝⎭6. 如图,池塘边有一块长为a ,宽为b 的长方形土地,现将其余三面留出宽都是2的小路,中间余下的长方形部分做菜地,则菜地的周长为( )A. 2b -B. 4a -C. 22a b +D. 2212a b +- 7. 下列式子中去括号正确的是( )A. ()22x y x y --=--B. ()33a b a b +-+=+C. ()222222x x yx x y +-=++ D. ()223363318x x x x -+=-- 8. 式子595559+9++9m n ⨯⨯⨯个个可表示为( ) A. 59n m B. 59mn C. 95m n D. 59m n9. 已知a ,b ,c 为有理数,且0a b c ++=,a b c ≥->,则a ,b ,c 满足的条件是( )A. 0a >,0b <,0c <B. 0a >,0b <,0c >C. 0a >,0b <,0c ≤D. 0a >,0b <,0c ≥ 10. a 是不为2的有理数,我们把22a-称为a 的“哈利数”.例如:3的“哈利数”是2223=--,2-的“哈利数”是()21222=--,已知13a =,2a 是1a 的“哈利数”,3a 是2a 的“哈利数”,4a 是3a 的“哈利数”,…,依此类推,则2024a =( ) A. 3 B. 2- C. 12 D. 43三、填空题(本题共16分,每题2分)11. 请写出一个能与35x y -合并成一项的单项式______.12. 用四舍五入法对8.4348取近似数,精确到0.001______.13. 如图是一个“数值转换机”的示意图,若输入的数值是2-,则输出的数值为______.14. 关于a ,b 的多项式2453ba a b --是______次______项式,按字母a 降幂排列为______.15. 比较大小:56-______79-(填“>”或“<”). 16. 若关于x ,y 的多项式226x kxy y xy -++中不含xy 项,则k =______.17. 已知多项式22x x +的值是2,则多项式242x x --的值是______.18. 阅读材料,并回答问题:钟表中蕴含着有趣的数学运算,不用负数也可以作减法,例如:现在是10点钟,4小时以后是几点钟?虽然10414+=,但在表盘中看到的是2点钟.如果用符号“⊕”表示钟表上的加法,则1042⊕=.若问2点钟之前4小时是几点钟,就得到钟表上的减法概念,用符号“”表示钟表上的减法.(注:我们用0点钟代替12点钟).(1)96⊕=______;(2)在有理数运算中,相加得零两个数互为相反数,如果在钟表运算中沿用这个概念,则7的相反数是______三、计算题(本题共20分,每题5分)19. 计算:()()9387--+-+.20. 计算:141553⎛⎫⨯-÷ ⎪⎝⎭21. 计算:()11312324⎛⎫-+⨯- ⎪⎝⎭22. 计算:231193213⎛⎫---++⨯- ⎪⎝⎭ 四、化简下列各式(本题共7分,23题3分,24题4分)23. 化简:22247a a a a -+-24. ()()223122513x x x x +--+- 五、解答题(本题共27分,其中25,26题每题6分,27题7分,28题分)25. 某餐厅中,一张桌子可坐6人,有以下两种摆放方式:()1当有n 张桌子时,两种摆放方式各能坐多少人?()2一天中午餐厅要接待98位顾客共同就餐,但餐厅只有25张这样的餐桌,若你是这个餐厅的经理,你打算选择哪种方式来摆放餐桌为什么?26. 先化简,再求值: 222213222x y xy xy x y xy ⎡⎤⎛⎫+-+- ⎪⎢⎥⎝⎭⎣⎦,其中2x =,13y =-. 27. 某检修小组从A 地出发,在东西方向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶记录如下(单位:千米):(1)请描述收工时检修小组在A 地的什么方向,并求距离A 地多远?(2)在第______次记录时距A 地最远;(3)若每千米耗油0.3升,每升汽油需7.2元,求检修小组工作一天需汽油需多少元?28. 已知有理数a ,b ,c 在数轴上所对应的点分别为点A ,B ,C ,且a b =-,()2130a c ++-=.(1)求a ,b ,c 的值;(2)若将数轴折叠,使点A 与点C 重合.数轴上M ,N 两点经过上述折叠后重合,且M ,N 两点之间的距离为2022,则M 表示的数为______,N 表示的数为______.(点M 在点N 的左侧)(3)若点P 为数轴上一动点,其对应的数为x ,当点P 在点B 与点C 之间时,化简式子:31124x x x +--+-(写出化简过程).附加题(本题共20分,每题10分)29. 我们用xyz 表示一个三位数,其中x 表示百位上的数,y 表示十位上的数,z 表示个位上的数,即10010xyz x y z =++.(1)证明:abc bca cab ++一定是111的倍数;(2)①写出一组不全相等的a ,b ,c 的值,使abc bca cab ++能被7整除,这组值可以是=a ______,b =______,c =______; ②若abc bca cab ++能被7整除,则a b c ++的值是______.30. 对于数轴上点P ,Q ,给出如下定义:若点P 到点Q 的距离为d (0d ≥),则称d 为点P 到点Q 的追击值,记作[]d PQ .例如,在数轴上点P 表示的数是5,点Q 表示的数是2,则点P 到点Q 的追击值为[]3d PQ =.(1)点M ,N 都在数轴上,点M 表示的数是1,且点N 到点M 的追击值[]d MN a =(0a ≥),则点N 表示的数是______(用含a 的代数式表示);(2)如图,点C 表示数是1,在数轴上有两个动点A ,B 都沿着正方向同时移动,其中A 点的速度为每秒4个单位,B 点的速度为每秒1个单位,点A 从点C 出发,点B 从表示数b 的点出发,且数b 不超过5,设运动时间为t (0t ≥).①当4b =且t =______时,点A 到点B 的追击值[]2d AB =;②当时间t 不超过3秒时,求点A 到点B 的追击值[]d AB 的最大值是多少?(用含b 的代数式表示).2022—2023学年第一学期期中练习题年级:初一科目:数学班级:______ 姓名:______ 学号:______考生须知:1.本试卷共6页,共5道大题,一卷28个题,满分100分.附加2个题,共20分;考试时间100分钟.2.在试卷和答题纸上准确填写班级、姓名、学号.3.答案一律填写在答题纸上,在试卷上作答无效.4.考试结束,将试卷和答题纸一并交回.一、选择题(本题共30分,每题3分,每小题所给4个选项只有一个符合要求).【1题答案】【答案】A【2题答案】【答案】C【3题答案】【答案】C【4题答案】【答案】D【5题答案】【答案】B【6题答案】【答案】D【7题答案】【答案】D【8题答案】【答案】B【9题答案】【答案】C【10题答案】【答案】D三、填空题(本题共16分,每题2分)【答案】3x y (答案不唯一)【12题答案】【答案】8.435【13题答案】【答案】2【14题答案】【答案】 ①. 三 ②. 三 ③. 2345a b ba -+-【15题答案】【答案】<【16题答案】【答案】6【17题答案】【答案】2【18题答案】【答案】 ①. 3 ②. 5三、计算题(本题共20分,每题5分)【19题答案】【答案】11【20题答案】 【答案】94-. 【21题答案】【答案】7-【22题答案】 【答案】439-##319四、化简下列各式(本题共7分,23题3分,24题4分)【23题答案】【答案】259a a -【答案】27131x x -+-五、解答题(本题共27分,其中25,26题每题6分,27题7分,28题分)【25题答案】【答案】(1)第一种方式坐的人数:4n+2,第二种方式坐的人数:2n+4;(2)选第一种方式,理由见解析.【26题答案】【答案】22232x y xy xy +-;23-【27题答案】【答案】(1)收工时距A 地2千米(2)五 (3)检修小组工作一天需汽油费90.72元【28题答案】【答案】(1)1a =-,1b =,3c =.(2)-1010,1012.(3)12 附加题(本题共20分,每题10分)【29题答案】【答案】(1)见解析 (2)①1,2,4(答案不唯一);②7或14或21【30题答案】【答案】(1)1a -或1a +;(2)①43或2;②10b -。

河南省信阳市数学七年级上学期期中复习专题7 有理数的混合运算

河南省信阳市数学七年级上学期期中复习专题7 有理数的混合运算

河南省信阳市数学七年级上学期期中复习专题7 有理数的混合运算姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2018·重庆) 制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是()A . 360元B . 720元C . 1080元D . 2160元2. (2分) (2020七上·吴兴期末) 下列四个运算中,结果最大的是()A . 1-(-2)B . 1+(-2)C . 1×(-2)D . 1÷(-2)3. (2分)计算:3﹣2×(﹣1)=().A . 5B . 1C . -1D . 64. (2分) (2017七上·衡阳期中) 数轴上的点A到原点的距离是3,则点A表示的是为()A . 6或﹣6B . 3C . ﹣3D . 3或﹣35. (2分) (2019七上·保定期中) 有理数,,,,,中,其中等于1的个数是()A . 3B . 4C . 5D . 66. (2分) (2018九上·长沙期中) 对于两个不相等的实数,我们规定符号表示中较大的数,如 ,按这个规定,方程的解为()A .B .C .D .7. (2分)有1000个数排一行,其中任意相邻的三个数中,中间的数等于它前后两数的和,若第一个数和第二个数都是1,则1000个数的和等于()A . 1000B . 1C . 0D . -18. (2分)请你认真观察和分析图中数字变化的规律,由此得到图中所缺的数字应为()A . 32B . 29C . 25D . 239. (2分) (2020七上·江阴月考) 如图所示是计算机某计算程序,若开始输入x=-2,则最后输出的结果是()A . -4B . -10C . -6D . -1210. (2分)北京、纽约等5个城市的国际标准时间(单位:时)可在数轴上表示如图,如果将两地国际标准时间的差简称为时差,那么()A . 首尔与纽约的时差为13小时B . 首尔与多伦多的时差为13小时C . 北京与纽约的时差为14小时D . 北京与多伦多的时差为14小时二、填空题 (共6题;共6分)11. (1分)(2019·娄底模拟) 记Sn=a1 ,+a2+…an ,令Tn=,则称Tn为a1 , a2 ,…,an这列数的“凯森和”,已知a1 , a2 ,…a500的“凯森和”为2004,那么1,a1 , a2 ,…a500的“凯森和”为________.12. (1分) (2019七上·高港月考) 某公交车原坐有22人,经过2个站点时上下车情况如下(上车为正,下车为负):(+4,﹣8),(﹣5,6),则车上还有________人.13. (1分) (2016七上·肇源月考) 电视机原价1000元,先提价10%,再降价10%,这时电视机的售价为________。

福建泉州市南安市2024年七年级上学期期中数学测试题

福建泉州市南安市2024年七年级上学期期中数学测试题

南安市2024-2025学年度上学期初中期中教学质量监测初一年数学试题(满分:150分;考试时间:120分钟)学校班级姓名考号友情提示:所有答案必须填写到答题卡相应的位置上.一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.−2的倒数是A .12B .12-C .2D .−22.立冬是冬季的第一个节气,通常标志着气温逐渐下降,进入冬季.如图记录了某地连续5天的日最低气温,则这5天中日最低气温中最低的一天是A .星期一B .星期二C .星期四D .星期五3.铁观音,是中国十大名茶之一.铁观音最佳保存的温度为(126-±)℃,以下几个温度中,不适合储存铁观音的是A .−4℃B .−8℃C .−12℃D .−16℃4.在()3--,12-,0,3(5)-这四个数中,非负数共有A .1个B .2个C .3个D .4个5.九天揽月,从“嫦娥”一号到六号,“嫦娥”探月之旅每一步都令人激动.已知地球与月球的平均距离约为384400千米,数据384400用科学记数法表示为A .38.44×104B .0.3844×106C .3.844×104D .3.844×1056.受今年第18号台风“山陀儿”的影响,某水库需要开闸泄洪.高于安全水位记为正,低于安全水位记为负.若开闸前水位为+2米,连续泄洪5天后水位为−0.5米,则这5天水位日平均下降A .0.3米B .0.4米C .0.5米D .0.6米7.有理数x 、y 在数轴上对应点如图所示,下列大小关系正确的是A .x y x y<-<<B .y x x y -<<<C .y x y x -<<<D .y x x y-<<<8.《孙子算经》中载有“今有出门望见九堤,堤有九木,木有九枝,枝有九巢……”.大意为:今天出门看见9座堤坝,每座堤坝上有9棵树,每棵树上有9根树枝,每根树枝上有9个鸟巢……文中的鸟巢共有A .39个B .49个C .310个D .410个9.若1abca b c ++=,则abcabc 的值是A .−1B .1C .2D .−210.取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则,经过若干步的计算最终可得到1.如图所示,取自然数21,经过下面7步运算可得1.如果自然数m 恰好经过8步此规则运算可得到1,则所有符合条件的m 的值有A .3个B .4个C .5个D .6个二、填空题:本题共6小题,每小题4分,共24分.11.中国古代数学著作《九章算术》,在世界数学史上首次正式引入负数,用正、负数来表示具有相反意义的量.追溯到两千多年前,中国人已经开始使用负数,并应用到生产和生活中.在农业生产中,如果增产100kg 记为+100kg ,那么减产50kg 记为______kg .12.2024年10月16日是第44个世界粮食日.粮食安全是“国之大者”,让我们共同携手“强法治,保供给,护粮安”——国家粮食和物质储备局宣.联合国粮农组织的数据显示,每年全世界约有13.256亿吨粮食被浪费.把数据13.256用四舍五入法精确到0.01表示的近似数是______.13.如图是泉州市某条东西走向的公交线路,东起泉州市图书馆站,西至清源山风景区站,共17个站点.某天,小明同学参加该线路上的志愿者服务活动,从现代广场站出发,最后在A 站结束.如果规定向东记为正,向西记为负,小明同学当天的乘车站数按先后顺序依次记录如下(单位:站):+5,−2,−6,−5,+2.则A 站是______站.14.“琴棋书画”之“棋”通常指的是围棋,围棋起源于中国.如图,都是由同样大小的黑棋子按一定规律摆出的图案,第1个图有2颗黑棋子,第2个图有7颗黑棋子,第3个图有14颗黑棋子……依此规律,第5个图有______颗黑棋子.15.贡糖是泉州著名的传统小吃之一,被列入泉州市非物质文化遗产名录.某店推出一款特色贡糖,已知这款贡糖的日均销量为108盒,经调查发现,该种贡糖单价每降低1元,日均销量将增加20盒,若将这款贡糖单价降低x 元,则日均销量为________盒.(用含x 的代数式表示)16.小明同学在机器人编程课上为机器人编写了如下程序:一个机器人从数轴原点出发,沿数轴正方向,以每前进3步后退2步的程序移动.设定该机器人每秒前进或者后退移动1步,且每步移动的距离是1个单位长度,用x n 表示第n 秒时机器人在数轴上的位置所对应的数(n 为正整数).给出下列结论:①62x =;②410x x =;③20242025x x >;④5n x n =.其中正确的结论是___________.(填序号)三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)计算:8(2)3(18)÷-+---.18.(8分)计算:157(36)2612⎛⎫-⨯+- ⎪⎝⎭.19.(8分)计算:()4220211325⎡⎤-+⨯--⎣⎦.20.(8分)已知有理数x 的绝对值是4,有理数y 的平方是9,且0xy <,求x y -的值.21.(8分)2024年春节期间,泉州“十龙九子”龙年艺术装置火速出圈,追“龙”合影、拍照打卡,已经成为古城游的新热潮.国庆节假期间,来泉旅游依旧火爆.下表是2024年10月1日~7日某区统计的七天内游客人数变化表:(正号表示人数比前一天多,负号表示比前一天少)已知该区9月30日的游客人数约为0.3万人,根据图表,可求出10月1日的游客人数约是0.3+1.2=1.5(万人).结合以上信息解决下列问题:(1)该区10月1日~7日中游客人数最多的一天比最少的一天约多万人;(2)若每位游客带动的旅游消费约为100元,则该区10月1日~7日的游客带动的旅游消费约为多少万元?22.(10分)阅读材料:求2320232024122222++++⋯++的值.解:设23202320241222...22S =++++++①,将等式①的两边同乘以2,得2342024202522222...22S =++++++②,用②-①得,2025221S S -=-,即202521S =-.所以,232023202420251222...2221++++++=-.请仿照此法计算:(1)填空:3524133333+++++=;(2)求23202320241777...77++++++的值.23.(10分)根据以下素材,探索完成任务.不同方案利润问题的探索素材1某校开展爱心义卖活动,小方和同学们打算推销自己的手工制品.他们以每块12元的价格买了30块长方形木板,每块木板的长和宽分别为40cm 和20cm .素材2木板可按图1虚线裁割,裁去四个边长相同的小正方形(阴影部分),把裁出的五个长方形拼制成无盖长方体收纳盒,使其底面长为30cm .木板也可按图2虚线裁割出两块木板(阴影部分是余料),给图1制成的盒子配上盖子.除购买木板支出和销售手工制品收入,其它费用忽略不计.素材3方案1:木板都制成无盖长方体收纳盒;方案2:木板制成有盖的长方体收纳盒,且每个收纳盒配一个盖子;方案3:在方案2的基础上,每块图2的余料可以另制作1个小玩具.素材4义卖时的售价如标签所示:(所有手工制品全部售出)问题解决任务1求出收纳盒的高度收纳盒的高度=cm ;任务2不同分配方案利润相同的探索当方案1与方案2利润相同时,求a 的值;任务3不同分配方案最大利润的探索当a 值为39时,为使获得的利润最大,应选用哪种方案,并说明理由.24.(13分)一个十位数字不为0的三位数m ,若将m 的百位数字与十位数字相加,所得和的个位数字放在m 的个位数字右边,与m 一起组成一个新的四位数,则把这个新的四位数称为m 的“生成数”.将m 的“生成数”的任意一个数位上的数字去掉,可以得到四个三位数,则把这四个三位数之和记为S .例如:123m =,因为123+=,所以123的“生成数”是1233,将1233的任意一个数位上的数字去掉后得到的四个三位数是:233,133,123,123,则233133123123612S =+++=.根据以上材料,解决以下问题:(1)568的“生成数”是;(2)试说明S 一定能被3整除;(3)已知一个三位数10010119m x y =++(x ,y 为整数,19y x ≤≤≤且9x y +≥),若m 的“生成数”能被5整除,求m 的最大值.25.(13分)数轴上点A 与点B 之间的距离记为:AB .如图,在数轴上A ,B ,C 三点对应的数分别为a ,b ,c ,已知24a =-,8c =-,且点A ,点B 到点C 的距离相等,即AC =BC .(1)填空:点B 对应的数为;(2)若点M 从点A 出发,以4个单位/秒的速度沿数轴向右移动,同时点N 从点B 出发,以2个单位/秒的速度向右移动,在点M ,N 移动的同时点P从点O 出发,以1个单位/秒的速度沿数轴向右移动,设移动时间为t 秒.①若点P 到A 的距离是点P 到B 的距离的两倍,我们就称点P 是(A ,B )的“幸福点”.当点P 是(A ,N )的“幸福点”时,求此时点P 对应的数;②在三个点移动的过程中,2PN MN +或2PN MN -在某种条件下是否会为定值,请分析并说明理由.。

2023_2024学年广西壮族自治区崇左市七年级上册期中数学模拟测试卷(附答案)

2023_2024学年广西壮族自治区崇左市七年级上册期中数学模拟测试卷(附答案)

2023_2024学年广西壮族自治区崇左市七年级上册期中数学模拟测试卷注意事项:1.答题前,考生务必将姓名、学校、班级、准考证号填写在试卷和答题卡上。

2.考生作答时,请在答题卡上作答(答题注意事项见答题卡),在本试卷上作答无效第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B 铅笔把答题卡上对应题目的答案标号涂黑.)1.的倒数是()2023-A .B .2023C .D .2023-1202312023-2.在数中,最小的是()13,0,1,2+--A .3B .C .D .01-12-3.广西某县位于广西西北部,是百越古道上重要的支点,滇桂黔三省结合部,全县总人口约22.9万人,数据22.9万用科学记数法表示为()A .B .C .D .52.2910⨯62.2910⨯422.910⨯60.22910⨯4.下列说法正确的是()A .是单项式B .单项式的次数是11ax C .是二次二项式D .没有系数3x y +xy 5.下面各题中的两项是同类项的是()A .与B .与C .与2a b 2ab 3x 3y 6abc 6bcD .与3xy 2xy-6.下列计算正确的是()A .B .C .D .325x y xy+=22624x x -=10100xy yx -=257x x x +=7.下列添括号正确的是()A .B .()a b c a b c -+=-+()a b c a b c -+=--C .D .()a b c a b c -+=+-()a b c a b c -+=--+8.下列各组数中,数值相等的是()A .和B .和C .与D .4-()4++21-()21-323⎛⎫⎪⎝⎭323和()2--2--9.下列等式变形正确的是()A .若,则B .若,则a b =a c b c +=-a b =a bc c=C .若,则D .若,则a b =3131a b +=+23a bc c=23a b =10.已知,则的值是()()22210a b ++-=142a b +A .B .C .3D .11-3-11.如果代数式的值是2,那么代数式的值为()2x y -631x y -+A .6B .C .7D .6-7-12.如图所示的运算程序中,若开始输入的值为15,我们发现第1次输出的结果为18,第x 2次输出的结果为,则第2023次输出的结果为()9,⋅⋅⋅第12题图A .3B .6C .9D .18第П卷二、填空题(本大题共6小题,每小题2分,共12分.请将答案填在答题卡上.)13.微信钱包零钱明细中收入30元记作元,那么支出20元记作______.30+14.近似数1.20万精确到______位.15.已知是关于的方程的解,则的值是______.3x =x 58x a -=a16.某种商品的原价是元,连续两次降价后售价是______元.p 10%17.多项式按降幂排列为______.2233324xy x y x y ---x 18.对于有理数,定义,化简式子,a b 2a b a b =-※______.()()()3x y x y y ⎡⎤-+-=⎣⎦※※三、解答题(本大题共8小题,共72分.解答应写出文宇说明、证明过程或演算步骤)19.(本题满分6分)在数轴上表示下列各数,并把它们的相反数用“”连接起来:<()211,3.5,4,0,1,.32⎛⎫--++- ⎪⎝⎭20.(本题满分6分)把下列各数分别填入相应的大括号内:12116,0.04,,,25,0, 3.6,30%,1.233--+--整数:;分数:;负有理数:.{}⋅⋅⋅{}⋅⋅⋅{}⋅⋅⋅21.(本题满分10分)计算:(1);()()56384+-+---(2).()()232123112⎛⎫--⨯---÷- ⎪⎝⎭22.(本题满分10分)解下列方程:(1);(2).2751x x -=-21126x x ---=23.(本题满分10分)小丽周末准备完成题目:化简求值:,其中,发现系数印刷不清楚.()()2232534xx x x ---+-□2x =-□(1)她把猜成8,请你化简,并求当时式子的值;□()()22325834x x x x ---+-2x =-(2)她爸爸说她猜错了,标准答案的化简结果不含二次项,请你通过计算说明原题中的是多少?□24.(本题满分10分)为了有效控制同学们放学乱丢垃圾问题,吴老师在学校旁边的一条东西走向的公路上巡视,如果规定向东为正,向西为负,吴老师从学校出发,所走的路程为:,,(单位:米).620,580+-450,650,520,480,660++---550+(1)此时,校长找吴老师有事,吴老师如何向校长描述他的位置?(2)吴老师喜欢用微信运动记录他走路步数(2步/米),如果吴老师此时需马上返回学校,到校时微信运动显示他的步数为多少步?25.(本题满分10分)某市白天出租车的乘车收费(元)与里程数千米的关系如下表,表x 中9是起步价,计费时不足1千米的按1千米收费:里程数千米x 03x ≤≤4567⋅⋅⋅收费(元)91.29+2.49+3.69+4.89+⋅⋅⋅(1)请用里程数的代数式表示出租车的乘车收费;()3x x >(2)从该市动车站到某景区路程约有19.4千米,应准备多少钱坐出租车?(3)如果小黄坐出租车付费19.8元,出租车大约行驶了多少千米?26.(本题满分10分)综合与实践【问题情境】数形结合是解决数学问题的一种重要思想,有时我们可以借助图形的直观性研究数之间的某种关系.数学课上数学老师组织同学们以探究“?”为主题开123n +++⋅⋅⋅+=展数学活动.【实践探究】小明所在这个数学小组想到了用图形来帮忙解决这个问题,解决方法如下:;;12+()2122+123++()3132+.1234+++()4142+【问题解决】(1)请你观察上面图形和式子填空:______;12345++++⋅⋅⋅(2)根据以上分析,他们得出“?”的计算方法为______(用含的代数123n +++⋅⋅⋅+=n 式表示,为正整数)n (3)利用上述结论计算:.123100+++⋅⋅⋅+【拓展延伸】计算:.369121590------⋅⋅⋅-七年级数学答案一、选择题(本大题共12小题,每小题3分,共36分)题号123456789101112答案DBABDCBACDCA2、填空题(本大题共6小题,每小题2分,共12分)13.−20元14.百15.a=716.0.81p 或17.18.()p 2%101-4322233-+--xy y x y x yx 32-三、解答题(本大题共8小题,满分72分)19(数轴画对1分,标对一个数0.5分)……………………4分∵()[]44=+--321321=⎪⎭⎫⎝⎛--2121=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+-∴432121015.3<<<<<--20.(本题满分6分)解:整数:{ -16,+25,0…};分数:{ 0.04,,,-3.6,-30%, …};2132-311负有理数:{ -16,,-3.6,-30%…};32-21.(本题满分10分)解:(1)5+(-6)+3-8-(-4)(2)232211132 ()()(-÷---⨯--= 5-6+3-8+4 = ()()411134÷---⨯--=5+3+4-6-8 =434++-=12-14 =3=-222.(本题满分10分)解:(1)(2)1572-=-x x 16122=---x x …………2分7152+-=-x x ()()6123=---x x ……………3分63=-x 6163=+--x x ……………4分2-=x 1663-+=-x x 112=x 211=x 23.(本题满分10分)解:(1))43852322-+---x x x x ()(=43852322+----x x x x 78102+--=x x 当x=-2时,177)2(8)2(10781022-=+-⨯--⨯-=+--x x(2a ,则)4352322-+---=x ax x x ()(原式4352322+----=x ax x x ()7822+---=x x a 2-a=0,所以a=-2224.(本题满分10分)解:(1)+620-580+450+650-520-480-660+550=30(米)所以吴老师在离学校往东方向30米处(2)30550660480520650450580620++++-+-+-+++++-++=4540(米)4540×2=9080(步)答:到校时微信运动显示他的步数为9080步. 25.(本题满分10分)解:(1)()932.1+-x 即.4.52.1+x (2)当x=19.4时,(元)68.284.54.192.14.52.1=+⨯=+x 答:应准备28.68元钱坐出租车. (3)8.194.52.1=+x x=12答:出租车大约行驶了12千米26.(本题满分10分)【问题解决】解:(1)()2515+(2)()21n n +(3)解:1+2+3+…+100()21001100+=5050=【拓展延伸】解:-3-6-9-12-15-…-90=-3(1+2+3+…+30) =()⎥⎦⎤⎢⎣⎡+-2301303 =-3×465 =-1395。

人教版2024-2025学年第一学期七年级数学期中测评卷(第1-3章)

人教版2024-2025学年第一学期七年级数学期中测评卷(第1-3章)

题号 1
2
3
45
6
789
D.一个数的前面加上负号,就是负数 7.当 m=-2 时,代数式 m2 6m 9 的值为( )
答案
1.下列四个数中,比-3 小的数是( )
A. 2
B. 5
C.1
D. 1
2.下列具有相反意义的量的是( )
A.向东走 1 米和向南走 3 米
B.盈利 100 元和收入 400 元
18.(9 分)把下列各数填入对应的括号内
12,7 ,,10.5,26, 9,0,2 1
3
87
负数:{
}
整数:{
}
分数:{
}
21.(6 分)已知 a 3 b 2 (c 1)2 0,求a 3b 2c的值.
19.(10 分)食堂购进 6 筐白菜,每筐以 20 千克为标准,超过标准质量的部分记 作正数,以下是这 6 筐白菜的质量记录数据: 2, 3,1,0, 2,1 (1)这 6 筐白菜中,质量最多的比质量最小的多多少? (2)计算这 6 筐白菜的平均质量.
三.解答题(共 6 小题,共,55 分)16.(10 分)计算
(1)(3) (5) 4 (6)
(2() 10) 1 (35) (7) 5
第1页 共6页

第2页 共6页
…………○…………内…………○…………装…………○…………订…………○…………线…………○………… ※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
12.数轴上点 A,B 之间的距离等于 9,点 A 所表示的数为 3,则点 B 所表示的数是
________.
13.比较大小: 3 ____( 4)(填>,<或=)
14.已知 (a 4)2 b 3 0,则2a 3b 的值为________.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档