高中数学第一章算法初步1.1算法与程序框图1.1.1算法的概念教学案新人教B必修3
2017-2018学年高中数学必修三(人教B版)课件:1.1算法与程序框图1.1.1
S6 输出运算结果 21.
返回导航
第一章 算法初步
命题方向3 ⇨非数值性问题的算法
有蓝和黑两个墨水瓶,但是错把黑墨水装在了蓝墨水瓶里面,而 蓝墨水装在了黑墨水瓶里面.请你设计一个算法,将其互换. 导学号 95064009
[分析]
数 学 必 修 ③ · 人 教 B 版
数 学 必 修 ③ · 人 教 B 版
S4 整理 S3 得到的方程,得到方程 3x-y+2- 3=0.
返回导航
第一章 算法初步
互动探究学案
数 学 必 修 ③ · 人 教 B 版
返回导航
第一章 算法初步
命题方向1 ⇨算法的概念
我们已学过的算法有一元二次方程的求根公式、加减消元法求二 元一次方程组的解、二分法求函数零点等.对算法的描述有: (1)对一类问题都有效; (2)对个别问题有效;
-b- b2-4ac x2= . 2a
数 学 必 修 ③ · 人 教 B 版
b S5 当 a≠0,b -4ac=0 时,原方程有两个相等实数解 x1=x2=- . 2a
2
S6 当 a≠0,b2-4ac<0 时,原方程没有实数解.
返回导航
第一章 算法初步
1.下面四种叙述中,能称为算法的是 导学号 95064013 ( B ) A.上学须有自行车 B.做米饭需要刷锅、淘米、添水、加热这些步骤 C.网上认识的朋友叫网友
数 学 必 修 ③ · 人 教 B 版
有限步后 能得出结果. 混不清,而且经过__________
返回导航
第一章 算法初步
1.算法的有穷性是指 导学号 95064000 ( C ) A.算法的最后包含输出 B.算法中每个操作步骤都是可执行的 C.算法的步骤必须有限
第1章 1.1.2 程序框图与算法的基本逻辑结构第3课时 教师配套用书课件(共39张ppt)
明目标、知重点
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
填要点、记疑点
2.常见的两种循环结构
名称 直到型 循环结 构 结构图 特征 先执行循环体后判断条件,若不 满足条件则 执行循环体 ,否则
第3课时
终止循环
当型循 环结构
先对条件进行判断,满足时
执行循环体 ,否则 终止循环
明目标、知重点
填要点、记疑点
答
反思与感悟 变量S作为累加变量,来计算所求数据之 和.当第一个数据送到变量i中时,累加的动作为S=S+i, 即把S的值与变量i的值相加,结果再送到累加变量S中,如 此循环,则可实现数的累加求和.
明目标、知重点
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
探要点、究所然
第3课时
探究点二:循环结构的形式
探究点三:程序框图的画法
例3 下面是“二分法”求方程x2-2=0(x>0)的近似解的算法步骤. 第一步,令f(x)=x2-2,给定精确度d. 第二步,确定区间[a,b],满足f(a)f(b)<0. a+b 第三步,取区间中点m= . 2 第四步,若f(a)f(m)<0,则含零点的区间为[a,m];否则,含零点的区间为[m,b]. 将新得到的含零点的区间仍记为[a,b]. 第五步,判断[a,b]的长度是否小于d或f(m)是否等于0.若是,则m是方程的近似解; 否则,返回第三步. 请根据以上的算法步骤画出算法的程序框图.
1 2 3 n 跟踪训练1 已知有一列数 , , ,„, ,设计程序框图实现求该数列前20 2 3 4 n+ 1 项的和.
解 算法分析:该列数中每一项的分母是分子数加1,单独观察分子,恰好是
第一章 算法初步全章教案
第一章 算法初步第一课时 1.1.1 算法的概念教学要求:了解算法的含义,体会算法的思想;能够用自然语言叙述算法;掌握正确的算法应满足的要求;会写出解线性方程(组)的算法、判断一个数为质数的算法、用二分法求方程近似根的算法.教学重点:解二元一次方程组等几个典型的的算法设计.教学难点:算法的含义、把自然语言转化为算法语言.教学过程:一、复习准备:1. 提问:我们古代的计算工具?近代计算手段?(算筹与算盘→计算器与计算机,见章头图)2. 提问:①小学四则运算的规则?(先乘除,后加减) ②初中解二元一次方程组的方法?(消元法) ③高中二分法求方程近似解的步骤? (给定精度ε,二分法求方程根近似值步骤如下:A .确定区间[,]a b ,验证()()0f a f b <,给定精度ε;B. 求区间(,)a b 的中点1x ;C. 计算1()f x : 若1()0f x =,则1x 就是函数的零点; 若1()()0f a f x <,则令1b x =(此时零点01(,)x a x ∈); 若1()()0f x f b <,则令1a x =(此时零点01(,)x x b ∈);D. 判断是否达到精度ε;即若||a b ε-<,则得到零点零点值a (或b );否则重复步骤2~4.二、讲授新课:1. 教学算法的含义:① 出示例:写出解二元一次方程组22(1)24(2)x y x y -=⎧⎨+=⎩的具体步骤. 先具体解方程组,学生说解答,教师写解法 → 针对解答过程分析具体步骤,构成其算法第一步:②-①×2,得5y =0 ③; 第二步:解③得y =0; 第三步:将y =0代入①,得x =2.② 理解算法: 12世纪时,指用阿拉伯数字进行算术运算的过程. 现代意义上的算法是可以用计算机来解决的某一类问题的程序或步骤,程序和步骤必须是明确和有效的,且能在有限步完成. 广义的算法是指做某一件事的步骤或程序. 算法特点:确定性;有限性;顺序性;正确性;普遍性.举例生活中的算法:菜谱是做菜肴的算法;洗衣机的使用说明书是操作洗衣机的算法;歌谱是一首歌曲的算法;渡河问题.③ 练习:写出解方程组()1111221222(1)0(2)a x b y c a b a b a x b y c +=⎧-≠⎨+=⎩的算法.2. 教学几个典型的算法:① 出示例1:任意给定一个大于1的整数n ,试设计一个程序或步骤对n 是否为质数做出判断.提问:什么叫质数?如何判断一个数是否质数? → 写出算法.分析:此算法是用自然语言的形式描述的. 设计算法要求:写出的算法必须能解决一类问题,并且能够重复使用. 要使算法尽量简单、步骤尽量少. 要保证算法正确,且计算机能够执行.② 出示例2:用二分法设计一个求方程230x -=的近似根的算法.提问:二分法的思想及步骤?如何求方程近似解→写出算法.③练习:举例更多的算法例子;→对比一般解决问题的过程,讨论算法的主要特征.3. 小结:算法含义与特征;两类算法问题(数值型、非数值型);算法的自然语言表示.三、巩固练习:1. 写出下列算法:解方程x2-2x-3=0;求1×3×5×7×9×11的值2. 有蓝和黑两个墨水瓶,但现在却错把蓝墨水装在了黑墨水瓶中,黑墨水错装在了蓝墨水瓶中,要求将其互换,请你设计算法解决这一问题.3. 根据教材P6 的框图表示,使用程序框表示以上算法.4. 作业:教材P4 1、2题.第二课时 1.1.2 程序框图(一)教学要求:掌握程序框图的概念;会用通用的图形符号表示算法,掌握算法的三个基本逻辑结构. 掌握画程序框图的基本规则,能正确画出程序框图. 通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程;学会灵活、正确地画程序框图.教学重点:程序框图的基本概念、基本图形符号和3种基本逻辑结构.教学难点:综合运用框图知识正确地画出程序框图教学过程:一、复习准备:1. 写出算法:给定一个正整数n,判定n是否偶数.2. 用二分法设计一个求方程320x-=的近似根的算法.二、讲授新课:1. 教学程序框图的认识:①讨论:如何形象直观的表示算法?→图形方法.教师给出一个流程图(上面1题),学生说说理解的算法步骤.②定义程序框图:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形.③④阅读教材P5的程序框图. →讨论:输入35后,框图的运行流程,讨论:最大的I值.2. 教学算法的基本逻辑结构:①讨论:P5的程序框图,感觉上可以如何大致分块?流程再现出一些什么结构特征?→教师指出:顺序结构、条件结构、循环结构.②试用一般的框图表示三种逻辑结构. (见下图)③出示例3:已知一个三角形的三边分别为4,5,6,利用海伦公式设计一个算法,求出它的面积,并画出算法的程序框图. (学生用自然语言表示算法→师生共写程序框图→讨论:结构特征)④出示例4:任意给定3个正实数,设计一个算法,判断分别以这3个数为三边边长的三角形是否存在.画出这个算法的程序框图. (学生分析算法→写出程序框图→试验结果→讨论结构)⑤出示例5:设计一个计算1+2+3+…+1000的值的算法,并画出程序框图. (学生分析算法→写出程序框图→给出另一种循环结构的框图→对比两种循环结构)3. 小结:程序框图的基本知识;三种基本逻辑结构;画程序框图要注意:流程线的前头;判断框后边的流程线应根据情况标注“是”或“否”;循环结构中要设计合理的计数或累加变量等.三、巩固练习:1.练习:把复习准备题②的算法写成框图. 2. 作业:P12 A组1、2题.第三课时 1.1.2 程序框图(二)教学要求:更进一步理解算法,掌握算法的三个基本逻辑结构. 掌握画程序框图的基本规则,能正确画出程序框图.学会灵活、正确地画程序框图.教学重点:灵活、正确地画程序框图.教学难点:运用程序框图解决实际问题.教学过程:一、复习准备:1.2.顺序结构条件结构循环结构程序框图结构说明按照语句的先后顺序,从上而下依次执行这些语句. 不具备控制流程的作用. 是任何一个算法都离不开的基本结构根据某种条件是否满足来选择程序的走向.当条件满足时,运行“是”的分支,不满足时,运行“否”的分支.从某处开始,按照一定的条件,反复执行某一处理步骤的情况. 用来处理一些反复进行操作的问题二、讲授新课:1. 教学程序框图①出示例1:任意给定3个正实数,判断其是否构成三角形,若构成三角形,则根据海伦公式计算其面积. 画出解答此问题算法的程序框图.(学生试写→共同订正→对比教材P7 例3、4 →试验结果)②设计一个计算2+4+6+…+100的值的算法,并画出程序框图.(学生试写→共同订正→对比教材P9 例5 →另一种循环结构)③循环语句的两种类型:当型和直到型.当型循环语句先对条件判断,根据结果决定是否执行循环体;直到型循环语句先执行一次循环体,再对一些条件进行判断,决定是否继续执行循环体. 两种循环语句的语句结构及框图如右.说明:“循环体”是由语句组成的程序段,能够完成一项工作.注意两种循环语句的区别及循环内部改变循环的条件.④练习:用两种循环结构,写出求100所有正约数的算法程序框图.2. 教学“鸡兔同笼”趣题:①“鸡兔同笼”,我国古代著名数学趣题之一,大约在1500年以前,《孙子算经》中记载了这个有趣的问题,书中描述为:今有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?②学生分析其数学解法. (“站立法”,命令所有的兔子都站起来;或用二元一次方程组解答.)③欣赏古代解法:“砍足法”,假如砍去每只鸡、每只兔一半的脚,则“独脚鸡”,“双脚兔”. 则脚的总数47只;与总头数35的差,就是兔子的只数,即47-35=12(只).鸡35-12=23(只).④试用算法的程序框图解答此经典问题. (算法:鸡的头数为x,则兔的头数为35-x,结合循环语句与条件语句,判断鸡兔脚数2x+4(35-x)是否等于94.)三、巩固练习:1. 练习:100个和尚吃100个馒头,大和尚一人吃3个,小和尚3人吃一个,求大、小和尚各多少个?分析其算法,写出程序框图. 2. 作业:教材P12 A组1题.第一课时 1.2.1 输入语句、输出语句和赋值语句教学要求:正确理解输入语句、输出语句、赋值语句的结构. 让学生充分地感知、体验应用计算机解决数学问题的方法;并能初步操作、模仿. 通过实例使学生理解3种基本的算法语句(输入语句、输出语句和赋值语句)的表示方法、结构和用法,能用这三种基本的算法语句表示算法,进一步体会算法的基本思想. 教学重点:会用输入语句、输出语句、赋值语句.教学难点:正确理解输入语句、输出语句、赋值语句的作用.教学过程:一、新课导入:1. 提问:学习了哪些算法的表示形式?(自然语言或程序框图描述)算法中的三种基本的逻辑结构?(顺序结构、条件结构和循环结构)2. 导入:我们用自然语言或程序框图描述的算法,计算机是无法“看得懂,听得见”的. 因此还需要将算法用计算机能够理解的程序设计语言翻译成计算机程序. 程序设计语言有很多种. 如BASIC,Foxbase,C语言,C++,J++,VB,VC,JB 等.各种程序设计语言中都包含下列基本的算法语句:输入语句、输出语句、赋值语句条件语句和循环语句.今天,我们一起用类BASIC语言学习输入语句、输出语句、赋值语句. 基本上对应于算法中的顺序结构.二、讲授新课:1. 教学三种语句的格式及功能:①出示例1:编写程序,计算一个学生数学、语文、英语三门课的平均成绩.(分析算法→框图表示→教师给出程序,学生试说说对各语句的理解.)①出示例2:用描点法作函数y=x3+3x2-24x+30的图象时,需要求出自变量和函数的一组对应值. 编写程序,分别计算当x=-5,-4,-3,-2,-1,0,1,2,3,4,5时的函数值②出示例3:给一个变量重复赋值. (程序见P16)③出示例4:交换两个变量A和B的值,并输出交换前后的值.(教法:先分析算法→画出框图→编写程序→分析各语句→变式→小结:先写算法,再编程)3. 小结:输入、输出和赋值语句的格式;赋值“=”及表达式;编写简单程序解决数学问题.三、巩固练习:1. 练习:教材P16 1、2题 2. 作业:P16 3、4题.第二课时 1.2.2 条件语句教学要求:正确理解条件语句的概念,并掌握其结构. 会应用条件语句编写程序. 教学重点:条件语句的步骤、结构及功能.教学难点:会编写程序中的条件语句.教学过程:一、复习准备:1. 提问:算法的三种逻辑结构?条件结构的框图模式?2. 提问:输入语句、输出语句和赋值语句的格式与功能?3. 一次招生考试中,测试三门课程,如果三门课程的总成绩在200分及以上,则被录取. 请对解决此问题的算法分析,画出程序框图. (变题:…总成绩在200分以下,则不被录取)二、讲授新课:1. 教学条件语句的格式与功能:①分析:复习题③中的两种条件结构的框图模式?②给出复习题③的程序,试读懂程序,说说新的语句的结构及含义.③条件语句的一般有两种:IF—THEN语句;IF—THEN—ELSE语句. 语句格式及框图如下.分析语句执行流程,并说明:①“条件”是由一个关系表达式或逻辑表达式构成,其一般形式为“<表达式><关系运算符><表达式>”,常用的运算符有“>”(大于)、“<”(小于)、“>=”(大于或等于)、“<=”(小于或等于),“<>”(不等于). 关系表达式的结果可取两个值,以“真”或“假”来表示,“真”表示条件满足,“假”则条件不满足. ②“语句”是由程序语言中所有语句构成的程序段,即可以是语句组. ③条件语句可以嵌套,即条件语句的THEN 或ELSE后面还可以跟条件语句,嵌套时注意内外分层,避免逻辑混乱.2. 教学典型例题:②出示例5:编写程序,输入一元二次方程ax2+bx+c=0的系数,输出它的实数根.(算法分析→画程序框图→编写程序→给出系数的一组值,分析框图与程序各步结果)注意:解方程之前,先由判别式的符号判断方程根的情况. 函数SQR()的功能及格式.②讨论:例5程序中为何要用到条件语句?条件语句一般用在什么情况下?答:一般用在需要对条件进行判断的算法设计中,如判断一个数的正负,确定两个数的大小等问题,还有求分段函数的函数值等,往往要用条件语句,有时甚至要用到条件语句的嵌套③练习:编写程序,使得任意输入的2个实数从小到大排列.④出示例6:编写程序,使得任意输入的3个实数从小到大排列.(讨论:先用什么语句?→用具体的数值给a、b、c,分析计算机如何排列这些数?→写出程序→画出框图→说说算法→变式:如果是4个实数呢?3. 小结:条件语句的格式与功能及对应框图. 编程的一般步骤:①算法分析:根据提供的问题,利用数学及相关学科的知识,设计出解决问题的算法. ②画程序框图:依据算法分析,画出程序框图. ③写出程序:根据程序框图中的算法步骤,逐步写出相应的程序语句.三、巩固练习: 1. 练习:教材P22 1、2题.2. 试编写程序进行印刷品邮资的计算. (前100g 0.7元,以后每100g 0.4元)3. 作业:P22 3、4题.第三课时 1.2.3 循环语句教学要求:正确理解循环语句的概念,并掌握其结构. 会应用循环语句编写程序. 教学重点:两种循环语句的表示方法、结构和用法,用循环语句表示算法.教学难点:理解循环语句的表示方法、结构和用法,会编写程序中的循环语句. 教学过程:一、复习准备:1. 设计一个计算1+2+3+……+10的算法,并画出程序框图.2. 循环结构有哪两种模式?有何区别?相应框图如何表示?答:当型(while 型)和直到型(until 型). 当型循环语句先对条件判断,根据结果决定是否执行循环体,可能一次也不执行循环体,也称为“前测试型”循环;直到型循环语句先执行一次循环体,再对一些条件进行判断,决定是否继续执行循环体.二、讲授新课:1. 教学两种循环语句的格式与功能:① 给出复习题①的两种循环语句的程序,试读懂程序,说说新的语句的结构及含义.② 两种循环语句的语句结构及框图如下.说明:“循环体”是由语句组成的程序段,能够完成一项工作. 当使用WHIL 语句时,循环内部应当有改变循环的条件,否则会产生无限循环. 学习时注意两种循环语句的区别.③ 讨论:两种循环语句的区别?当型循环先判断后执行,直到型循环先执行后判断,则:在WHILE 语句中,是当条件满足时执行循环体;在UNTIL 语句中,先执行循环体,再当条件不满足时再执行循环体.2. 教学例题:① 出示例:编写程序,计算1+2+3+……+99+100的值.(分析:实现累加的算法 → 分别用两种循环语句编写 → 变题:计算20以内偶数的积.② 给出下列一段程序,试读懂程序,说说各语句的作用,分析程序的功能. (见教材P24)(读,找疑问 → 说各语句 → 分析功能)③ 练习:用描点法作函数y =x 3+3x 2-24x +30的图象时,需要求出自变量和函数的一组对应值. 编写程序,分别计算当x =-5,-4,-3,-2,-1,0,1,2,3,4,5时的函数值. ④ 分析右边所给出程序:当n=10时,结果是多少?程序INPUT “n=”;ni =1 a =0 WHILE i <= n a = a +(i +1)/i i = i+1WENDPRINT “…”;aEND实现功能?3. 小结:① 循环语句的两种不同形式:WHILE 语句和UNTIL 语句(还可补充了For 语句),掌握它们的一般格式.② 在用WHILE 语句和UNTIL 语句编写程序解决问题时,一定要注意它们的格式及条件的表述方法. WHILE 语句中是当条件满足时执行循环体,而UNTIL 语句中是当条件不满足时执行循环体.③ 循环语句主要用来实现算法中的循环结构,在处理一些需要反复执行的运算任务. 如累加求和,累乘求积等问题中常用到.三、巩固练习: 1. 练习:教材P24 1题.2. 编写程序,实现输出1000以内能被3和5整除的所有整数. (算术运算:5 MOD 3 =2)3. 作业:P24 2、3题.第一课时 1.3.1 算法案例---辗转相除法与更相减损术教学要求:理解辗转相除法与更相减损术中蕴含的数学原理,并能根据这些原理进行算法分析; 基本能根据算法语句与程序框图的知识设计出辗转相除法与更相减损术完整的程序框图并写出它们的算法程序.教学重点:理解辗转相除法与更相减损术求最大公约数的方法.教学难点:把辗转相除法与更相减损术的方法转换成程序框图与程序语言. 教学过程:一、复习准备:1. 回顾算法的三种表述:自然语言、程序框图(三种逻辑结构)、程序语言(五种基本语句).2. 提问:①小学学过的求两个数最大公约数的方法?(先用两个公有的质因数连续去除,一直除到所得的商是互质数为止,然后把所有的除数连乘起来.)口算出36和64的最大公约数. ②除了用这种方法外还有没有其它方法?6436128=⨯+,36∴和28的最大公约数就是64和36的最大公约数,反复进行这个步骤,直至842=⨯,得出4即是36和64的最大公约数.二、讲授新课:1. 教学辗转相除法:例1:求两个正数1424和801的最大公约数.分析:可以利用除法将大数化小,然后逐步找出两数的最大公约数. (适用于两数较大时)①以上我们求最大公约数的方法就是辗转相除法,也叫欧几里德算法,它是由欧几里德在公元前300年左右首先提出的. 利用辗转相除法求最大公约数的步骤如下:(1)用较大的数m 除以较小的数n 得到一个商0S 和一个余数0R ;(2)若0R =0,则n 为m ,n 的最大公约数;若0R ≠0,则用除数n 除以余数0R 得到一个商1S 和一个余数1R ;(3)若1R =0,则1R 为m ,n 的最大公约数;若1R ≠0,则用除数0R 除以余数1R 得到一个商2S 和一个余数2R ;……依次计算直至n R =0,此时所得到的1n R -即为所求的最大公约数.②由上述步骤可以看出,辗转相除法中的除法是一个反复执行的步骤,且执行次数由余数是否等于0来决定,所以我们可以把它看成一个循环体,它的程序框图如右图:(师生共析,写出辗转相除法完整的程序框图和程序语言)练习:求两个正数8251和2146的最大公约数. (乘法格式、除法格式)2. 教学更相减损术:我国早期也有求最大公约数问题的算法,就是更相减损术. 在《九章算术》中有更相减损术求最大公约数的步骤:可半者半之,不可半者,副置分母•子之数,以少减多,更相减损,求其等也,以等数约之.翻译为:(1)任意给出两个正数;判断它们是否都是偶数. 若是,用2约简;若不是,执行第二步.(2)以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数. 继续这个操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数.例2:用更相减损术求91和49的最大公约数.分析:更相减损术是利用减法将大数化小,直到所得数相等时,这个数(等数)就是所求的最大公约数. (反思:辗转相除法与更相减损术是否存在相通的地方) 练习:用更相减损术求72和168的最大公约数.3. 小结:辗转相除法与更相减损术及比较①都是求最大公约数的方法,辗转相除法以除法为主,更相减损术以减法为主,计算次数上辗转相除法计算次数相对较少;②结果上,辗转相除法体现结果是以相除余数为0得到,而更相减损术则以减数与差相等而得到.三、巩固练习:1、练习:教材P35第1题 2、作业:教材P38第1题 第二课时 1.3.2 算法案例---秦九韶算法教学要求:了解秦九韶算法的计算过程,并理解利用秦九韶算法可以减少计算次数、提高计算效率的实质;理解数学算法与计算机算法的区别,理解计算机对数学的辅助作用.教学重点:秦九韶算法的特点及其程序设计.教学难点:秦九韶算法的先进性理解及其程序设计.教学过程:一、复习准备:1. 分别用辗转相除法和更相减损术求出两个正数623和1513的最大公约数.2. 设计一个求多项式5432()254367f x x x x x x =--+-+当5x =时的值的算法. (学生自己提出一般的解决方案:将5x =代入多项式进行计算即可)提问:上述算法在计算时共用了多少次乘法运算?多少次加法运算?此方案有何优缺点?(上述算法一共做了5+4+3+2+1=15次乘法运算,5次加法运算. 优点是简单、易懂;缺点是不通用,不能解决任意多项式的求值问题,而且计算效率不高.)二、讲授新课:1. 教学秦九韶算法:① 提问:在计算x 的幂值时,可以利用前面的计算结果,以减少计算量,即先计算2x ,然后依次计算2x x ⋅,2()x x x ⋅⋅,2(())x x x x ⋅⋅⋅的值,这样计算上述多项式的值,一共需要多少次乘法,多少次加法?(上述算法一共做了4次乘法运算,5次加法运算)② 结论:第二种做法与第一种做法相比,乘法的运算次数减少了,因而能提高运算效率,而且对于计算机来说,做一次乘法所需的运算时间比做一次加法要长得多,因此第二种做法能更快地得到结果.③ 更有效的一种算法是:将多项式变形为:5432()254367f x x x x x x =--+-+=,依次计算2555⨯-=,55421⨯-=,2153108⨯+=,10856534⨯-=,534572677⨯+=故(5)2677f =. ――这种算法就是“秦九韶算法”. (注意变形,强调格式) ④ 练习:用秦九韶算法求多项式432()2351f x x x x x =+-++当4x =时的值. (学生板书→师生共评→教师提问:上述算法共需多少次乘法运算?多少次加法运算?)⑤ 如何用秦九韶算法完成一般多项式1110()n n n n f x a x a x a x a --=++++的求值问题?改写:11101210()(()))n n n n n n n f x a x a x a x a a x a x a x a x a ----=++++=+++++. 首先计算最内层括号内一次多项式的值,即11n n v a x a -=+,然后由内向外逐层计算一次多项式的值,即212n v v x a -=+,323n v v x a -=+,,10n n v v x a -=+. ⑥ 结论:秦九韶算法将求n 次多项式的值转化为求n 个一次多项式的值,整个过程只需n 次乘法运算和n 次加法运算;观察上述n 个一次式,可发出k v 的计算要用到1k v -的值,若令0n v a =,可得到下列递推公式:01,(1,2,,)n k k n k v a v v x a k n --=⎧⎨=+=⎩.这是一个反复执行的步骤,因此可用循环结构来实现.⑦ 练习:用秦九韶算法求多项式5432()52 3.5 2.6 1.70.8f x x x x x x =++-+-当5x =时的值并画出程序框图.2. 小结:秦九韶算法的特点及其程序设计三、巩固练习:1、练习:教材P35第2题 2、作业:教材P36第2题 第三课时 1.3.3 算法案例---进位制教学要求:了解各种进位制与十进制之间转换的规律,会利用各种进位制与十进制之间的联系进行各种进位制之间的转换;学习各种进位制转换成十进制的计算方法,研究十进制转换为各种进位制的除k 去余法,并理解其中的数学规律. 教学重点:各种进位制之间的互化.教学难点:除k 取余法的理解以及各进位制之间转换的程序框图及其程序的设计.教学过程:一、复习准备:1. 试用秦九韶算法求多项式52()42f x x x =-+当3x =时的值,分析此过程共需多少次乘法运算?多少次加法运算?2. 提问:生活中我们常见的数字都是十进制的,但是并不是生活中的每一种数字都是十进制的.比如时间和角度的单位用六十进位制,电子计算机用的是二进制,旧式的秤是十六进制的,计算一打数值时是12进制的......那么什么是进位制?不同的进位制之间又有什么联系呢?二、讲授新课:1. 教学进位制的概念:① 进位制是人们为了计数和运算方便而约定的记数系统,“满几进一”就是几进制,几进制的基数就是几. 如:“满十进一”就是十进制,“满二进一”就是二进制. 同一个数可以用不同的进位制来表示,比如:十进数57,可以用二进制表示为111001,也可以用八进制表示为71、用十六进制表示为39,它们所代表的数值都是一样的. 表示各种进位制数一般在数字右下脚加注来表示,如上例中:(2)(8)(16)1110017139==② 一般地,任意一个k 进制数都可以表示成不同位上数字与基数的幂的乘积之和的形式,即1110()1...(0,n n n n k n n n n a a a a a k a a a k a k a ka k a k ----<<≤<=⨯+⨯+⨯+⨯.如:把(2)110011化为十进制数,(2)110011=1⨯25+1⨯24+0⨯23+0⨯22+1⨯21+1⨯20=32+16+2+1=51.把八进制数(8)7348化为十进制数,3210(8)7348783848883816=⨯+⨯+⨯+⨯=.2. 教学进位制之间的互化:①例1:把二进制数(2)1001101化为十进制数.(学生板书→教师点评→师生共同总结将非十进制转为十进制数的方法) 分析此过程的算法过程,编写过程的程序语言. 见P34②练习:将(5)2341、(3)121转化成十进制数.③例2、把89化为二进制数.分析:根据进位制的定义,二进制就是“满二进一”,可以用2连续去除89或所得商,然后取余数. (教师板书)上述方法也可以推广为把十进制化为k 进制数的算法,这种算法成为除k 取余法. ④练习:用除k 取余法将89化为四进制数、六进制数.⑤例3、把二进制数(2)11011.101化为十进制数.解:4(211-=⨯. (小数也可利用上述方法化进行不同进位制之间的互化. )变式:化为八进制→方法:进制互化3. 小结:进位制的定义;进位制之间的互化.三、巩固练习:1、练习:教材P35第3题 2、作业:教材P38第3题 第四课时 1.3.4 生活中的算法实例教学要求:通过生活实例进一步了解算法思想.教学重点:生活实例的算法分析.教学难点:算法思想的理解.教学过程:一、复习准备:1. 前面学习了哪几种算法案例?每种算法的作用及操作方法是怎样的?2. 算法思想在我们的生活中无处不在,如何利用我们所学习的知识解决生活中的实际问题?二、讲授新课:1. 霍奇森算法:提问:同学们经常会面对一个共同的问题,就是有时有太多的事情要做. 例如,你可能要面临好几门课的作业的最后期限,你如何合理安排以确保每门课的作业都能如期完成?如果根本不可能全部按期完成,你该怎么办?(霍奇森算法可以。
高中数学 第一章 算法初步 1.1.2-1.1.3 第1课时 程序框图、顺序结构学业分层测评 新人教
2018版高中数学第一章算法初步1.1.2-1.1.3 第1课时程序框图、顺序结构学业分层测评新人教B版必修3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高中数学第一章算法初步1.1.2-1.1.3 第1课时程序框图、顺序结构学业分层测评新人教B版必修3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高中数学第一章算法初步1.1.2-1.1.3 第1课时程序框图、顺序结构学业分层测评新人教B版必修3的全部内容。
1.1.2-1。
1。
3 第1课时程序框图、顺序结构(建议用时:45分钟)[学业达标]一、选择题1.算法的三种基本结构是()A。
顺序结构、流程结构、循环结构B。
顺序结构、条件分枝结构、循环结构C.顺序结构、条件分枝结构、嵌套结构D.顺序结构、嵌套结构、流程结构【解析】由算法的特征及结构知B正确。
【答案】B2.如图1.1。
6程序框图的运行结果是()图1。
16A.错误!B.错误!C。
-错误! D.-1【解析】因为a=2,b=4,所以S=错误!-错误!=错误!-错误!=-错误!,故选C。
【答案】C3。
程序框图符号“”可用于( )A。
输出a=10 B.赋值a=10C.判断a=10D.输入a=1【解析】图形符号“错误!"是处理框,它的功能是赋值、计算,不是输出、判断和输入的,故选B.【答案】B二、填空题4。
如图1。
1。
7程序框图中,若R=8,运行结果也是8,则程序框图中应填入的内容是________。
图117【解析】因为R=8,所以b=错误!=2.又a=8,因此a=4b.【答案】a=4b5.阅读程序框图如图1.1.8所示,若输入x=3,则输出y的值为________。
高中数学第一章算法初步1.1算法与程序框图1.1.2第1课时程序框图、顺序结构课件新人教A版必修3
答案:x=log232
归纳升华 顺序结构的应用方法
1.求用顺序结构表示的程序框图执行的结果时,只 需按顺序逐步执行即可.
2.已知程序框图运行的结果求程序框图中某步时, 可以根据结果逐步逆推得出答案.
解析:由于算法设计时要求返回执行的结果,故必须 要有输出框,对于变量的赋值可通过处理框完成,故算法 设计时不一定要有输入框,因此 B 错;一个判断框产生 的结果是唯一的,故 C 错;程序框图就是流程图,所以 D 错.故选 A.
答案:A
类型 2 用顺序结构表示算法 [典例 2] 已知点 P0(x0,y0)和直线 l:Ax+By+C=0, 写出求点 P0 到直线 l 的距离 d 的算法,并画出程序框图. 解:用数学语言描述算法: 第一步,输入点的横、纵坐标 x0,y0,输入直线方程的系数, 即常数 A,B,C.
第一章 算法初步
1.1 算法与程序框图 1.1.2 程序框图与算法的基本逻辑结构
第 1 课时 程序框图、顺序结构
[学习目标] 1.了解程序框图的构成(难点). 2.理解 顺序结构,会用顺序结构表示算法(重点).
1.程序框图 (1)定义:程序框图又称流程图,是一种用程序框、 流程线及文字说明来表示算法的图形.
A.处理框 B.输出框 C.起止框 D.判断框
答案:D
3.程序框图中矩形框的功能是( ) A.表示一个算法的起始和结束 B.表示一个算法输入和输出的信息 C.赋值、计算 D.判断某一条件是否成立 解析:矩形框即处理框,具有赋值、计算的功能.
答案:C
4.如图所示的程序框图,若输出的结果是 3,则输 入的 m=________.
人教版高中数学必修三课件:1.1.1 算法的概念
考点类析
例2 写出解方程x2-2x-3=0的一个算法.
解:方法一,算法如下: 第一步,将等号左边因式分解,得(x-3)(x+1)=0①; 第二步,由①式得x-3=0或x+1=0; 第三步,解x-3=0得x=3,解x+1=0得x=-1,即x=3或x=-1.
考点类析
例2 写出解方程x2-2x-3=0的一个算法. 解:方法二,算法如下: 第一步,移项,得x2-2x=3①; 第二步,①式等号两边同时加1并配方,得(x-1)2=4②; 第三步,②式等号两边同时开方,得x-1=±2③; 第四步,解③式得x=3或x=-1.
预习探究
(4)不唯一性:求解某一个问题的算法不一定只有唯一的一个,也可以有不同 的算法,这些算法有繁简、优劣之分. (5)普遍性:很多具体的问题,都可以通过设计合理的算法去解决.
预习探究
知识点三
算法的设计要求
设计算法的要求主要有以下几点: (1)写出的算法必须能解决一类问题,并且能够重复使用; (2)要使算法尽量简单、步骤尽量少; (3)要保证算法的各个步骤有效,计算机能够执行,且在有限步骤后能得到结果.
备课素材
累加、累乘问题的算法 解决一个问题的算法一般不是唯一的,不同的算法有优劣之别,保证得到正 确的结果是对每个算法的最基本的要求.另外,还要求算法的每个步骤都要 易于实现、易于理解,效率要高,通用性要好等.
备课素材
备课素材
[例2] 求1×3×5×7×9×11的值,写出其算法.
解:算法如下:
备课素材
[小结]
知识 1.算法的概念; 2.算法的特性; 3.算法的设计
方法
易错
1.根据具体的问题进行判断,是 给出问题,在书写步骤时,不能
2017-2018学年高中数学必修三(人教B版)课件:1.1算法与程序框图1.1.2、1.1.3 第3课时
[解析] 算法步骤: 第一步:把计数变量 n 的初值设为 1.
数 学 必 修 ③ · 人 教 B 版
第二步:输入一个成绩 x,判断 x 与 9.90 的大小:若 x>9.90,则执行下一步; 若 x≤9.90,则输出 x,并执行下一步.
返回导航
第一章 算法初步
第三步:使计数变量n的值增加1.
第四步:判断计数变量n的值与成绩个数8的大小,
数 学 必 修 ③ · 人 教 B 版
返回导航
第一章 算法初步
[解析] 根据已知中男生平均分用变量 M 表示,女生平均分用变量 W 表示, 可得题图中空白的判断框表示男生分数,又由男生的成绩用正数,故题图中空白 的判断框为“T>0?”.统计结束后,M 为正数,而 W 为负数(女生成绩和的相 M-W 反数),故题图中空白的处理框为 A= . 50
数 学 必 修 ③ · 人 教 B 版
返回导航
第一章 算法初步
[解析] 输入 N=19, 第一次循环,19 不能被 3 整除,N=19-1=18,18>3; 18 第二次循环,18 能被 3 整除,N= =6,6>3; 3 6 第三次循环,6 能被 3 整除,N= =2,2<3,满足循环条件,退出循环,输出 3 N=2.
数 学 必 修 ③ · 人 教 B 版
故选 C.
返回导航
第一章 算法初步
3. 执行如图所示的程序框图, 输出的结 果为 导学号 95064096 ( B ) A.(-2,2) B.(-4,0) C.(-4,-4) D.(0,-8)
数 学 必 修 ③ · 人 教 B 版
返回导航
第一章 算法初步
[解析] 运行程序:x=1,y=1,k=0,s=1-1=0,t=1+1=2,x=0,y
第1章 1.1.1 算法的概念 教师配套用书课件(共30张ppt)
明目标、知重点 填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
探要点、究所然
明目标、知重点
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
探要点、究所然
1.1.1
探究点二:算法的步骤设计
思考3 要判断整数89是否为质数,按照例1的思路需用2~88逐一去除89求余数,需要 87个步骤,这些步骤基本是重复操作,如何改进这个算法,减少算法的步骤呢?
答 (1)用i表示2~88中的任意一个整数,并从2开始取数;
探要点、究所然
当堂测、查疑缺
探要点、究所然
1.1.1
探究点二:算法的步骤设计
例2 写出用“二分法”求方程x2-2=0(x>0)的近似解的算法.
解 第一步,令f(x)=x2-2,给定精确度d.
第二步,确定区间[a,b],满足f(a)f(b)<0. a+b 第三步,取区间中点m= . 2
第四步,若f(a)f(m)<0,则含零点的区间为[a,m];否则,含零点的区间为[m,b].将新得 到的含零点的区间仍记为[a,b].
主目录
探要点、究所然
当堂测、查疑缺
探要点、究所然
1.1.1
[情境导学]
赵本山和宋丹丹的小品《钟点工》中有这样一个问题:宋丹丹:要把
大象装入冰箱,总共分几步?哈哈哈哈,三步.第一步,把冰箱门打开;第二步, 把大象装进去;第三步,把冰箱门带上.
高中数学第一章算法初步1.1算法与程序框图1.1.2第2课时条件结构aa高一数学_1
归纳升华 凡先由条件作出判断,然后再决定进行哪一个步骤 的问题,在画框图时,必须用到条件结构,求分段函数的 函数值的框图的画法,如果是分两段的函数,只需引入一 个判断框,如果是分三段的函数,需引入两个判断框,四 段的函数需引入三个判断框,依此类推.
12/13/2021
[迁移探究 1] (改变问法)典例❹中条件不变,你能够 用分段函数表示该程序框图吗?
C.f(x)=xx22+-11,,xx><00, D.f(x)=2x
解析:分段函数求值需用到条件结构.
答案:C
12/13/2021
4.判断给出的整数 n 是否是偶数,设计程序框图时
所含有的基本逻辑结构是( )
A.顺序结构
B.条件结构
C.顺序结构、条件结构 D.以上都不正确
解析:任何程序框图中都有顺序结构.当 n 能被 2
整除时,n 是偶数;否则,n 不是偶数,所以必须用条件
结构来解决. 答案:C
12/13/2021
5.如图所给的程序框图描述的算法的运行结果是 y =________.
答案:-5
12/13/2021
类型 1 对条件结构的理解 [典例 1] 给出以下四个问题: ①输入一个数 x,输出它的相反数; ②求面积为 6 的正方形的周长; ③求三个数 a,b,c 中的最大数; ④求函数 f(x)=xx-+12,,xx≥<00,的函数值.
12/13/2021
2.条件结构不同于顺序结构的特征是含有( )源自A.处理框B.判断框
C.输入、输出框 D.起止框
解析:由于顺序结构中不含判断框,而条件结构中必
须含有判断框,故选 B.
答案:B
12/13/2021
最新人教版高中数学必修三电子课本名师优秀教案
人教版高中数学必修三电子课本篇一:人教版高一数学必修三课本教材word版第一章算法初步第一章算法初步第一节算法与程序框图 1.1.1 算法概念:实际上,算法对我们来说并不陌生(回顾二元一次方程组我们可以归纳出以下步骤: 第一步,???×2,第三步,?,?×2,得得?x?2y??1??2x?y?1? ?的求解过程,5x?1?第二步,解?,第四步,解?,得得x?y?115 355y?3 ??x?????y???1535第五步,得到方程组的解为思考,能写出求解一般的二元一次方程组的步骤吗, 对于一般的二元一次方程组?a1x?b1y?c1??a2x?b2y?c2? ?其中a1b2?a2b1?0,可以写出类似的求解步骤:得第一步,?×b2,?×b1,第二步,解?第三步,?×a1,?×a2 第四步,解?(a1b2?a2b1)x?b2c1?b1c2 ?得x?b2c1?b1c2a1b2?a2b1得(a1b2?a2b1)y?a1c2?a2c1 ?y?2a1c2?a2c1a1b2?a2b1得第五步,得到方程组的解为得??x????y???b2c1?b1c2a1b2?a2b1a1c2?a2c1a1b2?a2b1上述步骤构成了解二元一次方程组的一个算法,我们可以进一步根据这一算法编制计算机程序,让计算机来解二元一次方程组。
算法? (algorithm)一词出现于12 世纪,指的是用阿拉伯数字进行算术运算的过程。
在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤。
现在,算法通常可以编成计算机程序,让计算机执行并解决问题( 例1 (1)设计一个算法,判断7 是否为质数(2)设计一个算法,判断35 是否为质数只能被1和自身整除的大于1的正是叫质数算法分析:(1)根据质数的定义,可以这样判断:依次用 26 除7 ,如果它们中有一个能整除7,则7 不是质数。
高中数学第一章算法初步1.1.1算法的概念学案(含解析)新人教版必修3
1.1 算法与程序框图1.1.1算法的概念内容标准学科素养1。
通过回顾解二元一次方程组的方法,了解算法的思想。
2。
了解算法的含义和特征。
3.会用自然语言表述简单的算法。
提升数学运算发展逻辑推理应用数学抽象授课提示:对应学生用书第1页[基础认识]知识点一算法的概念预习教材P2-3,思考并完成以下问题一个大人和两个小孩一起渡河,渡口只有一条小船,每次只能渡1个大人或两个小孩,他们三人都会划船,但都不会游泳.(1)试问他们怎样渡过河去?提示:第一步,两个小孩同船过河去;第二步,一个小孩划船回来;第三步,一个大人划船过河去;第四步,对岸的小孩划船回来;第五步,两个小孩同船渡过河去.(2)设计的过河方法有什么特点?提示:由于船小,不能同时坐三个人,这样就需要遵循这一规则,然后按照一定的步骤一步一步的把三人运到河对岸.知识梳理在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.现在,算法通常可以编成计算机程序,让计算机执行并解决问题.知识点二算法与计算机知识梳理计算机解决任何问题都要依赖于算法.只有将解决问题的过程分解为若干个明确的步骤,即算法,并用计算机能够接受的“语言”准确地描述出来,计算机才能够解决问题.思考:与一般的解决问题的过程相比,算法最重要的特征是什么?提示:最重要的特征是步骤的有序性、明确性和有限性.[自我检测]下列叙述不能称为算法的是()A.从北京到上海先乘汽车到飞机场,再乘飞机到上海B.解方程4x+1=0的过程是先移项再把x的系数化成1C.利用公式S=πr2计算半径为2的圆的面积得π×22D.解方程x2-2x+1=0解析:A、B两选项给出了解决问题的方法和步骤,是算法.C项,利用公式计算也属于算法.D项,只提出问题没有给出解决的方法,不是算法.答案:D授课提示:对应学生用书第2页探究一算法的概念[例1]下列关于算法的说法,正确的个数为()①求解某一类问题的算法是唯一的;②算法必须在有限步操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊;④算法执行后一定产生确定的结果.A.1B.2C.3 D.4[解析]由于算法具有有限性、确定性、输出性等特点,因而②③④正确,而解决某类问题的算法不一定唯一,从而①错.[答案] C方法技巧1。
人教b版数学必修三:1.1.1《算法的概念》导学案(含答案)
第一章算法初步§1.1算法与程序框图1.1.1算法的概念自主学习学习目标通过分析解决具体问题的过程与步骤,体会算法的思想,了解算法的含义,能用自然语言描述解决具体问题的算法.自学导引1.算法可以理解为由基本运算及规定的____________所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题.2.算法具有________、________、________、____________、________等特征.3.算法通常可以编成____________,让计算机执行并解决问题.对点讲练知识点一算法的概念例1下列关于算法的描述正确的是()A.算法与求解一个问题的方法相同B.算法只能解决一个问题,不能重复使用C.算法过程要一步一步执行,每步执行的操作必须确切D.有的算法执行完后,可能无结果点评算法实际上是解决问题的一种程序性方法,它通常指向某一个或一类问题,而解决的过程是程序性和构造性的.算法也可以看成解决问题的特殊的、有效的方法.变式迁移1下列关于算法的说法,正确的有()①求解某一类问题的算法是唯一的;②算法必须在有限步操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊;④算法执行后一定产生确定的结果.A.1个B.2个C.3个D.4个知识点二直接法设计算法例2写出求1+2+3+4+5+6值的一个算法.点评方法一是最原始的方法,最为繁琐,步骤较多,当加数较大时,比如1+2+3+…+10 000,再用这种方法是不可取的;方法二与方法三都是比较简单的算法,但比较而言,方法二最为简单,且易于在计算机上执行操作.因此,当我们考虑算法设计时,要刻意去发展有条理的表达能力,提高逻辑思维能力,从而简单地解决问题.变式迁移2写出解方程x2-x-6=0的一个算法.知识点三 选择执行的算法例3 函数y =⎩⎪⎨⎪⎧ -x +1 (x >0)0 (x =0),x +1 (x <0)写出给定自变量x 求函数值的算法.点评 这是分段函数算法的一个模型,算法设计的关键是根据x 的范围选择相应的解析式,即相应的步骤,设计算法时,一定要考虑到x 的所有可能情况及各种情况下算法的执行情况.变式迁移3 设计一个算法,对任意三个整数a 、b 、c ,求出其中的最小数.1.算法有以下几个特征(1)概括性:写出的算法必须能解决一类问题,并能重复使用.(2)逻辑性:即顺序性和正确性.算法从初始步骤开始,分为若干明确的步骤,前一步是后一步的前提,只有执行完前一步才能执行下一步,并且每一步都准确无误,才能解决问题.(3)有穷性:算法的步骤序列是有限的,一个算法必须总是在执行有穷步之后结束,且每一步都可在有穷时间内完成.(4)不唯一性:求解某个问题的算法不是唯一的,对一个问题可以有不同的算法.2.算法设计要求(1)写出的算法必须能解决一类问题,并且能重复使用.(2)要使算法尽量简单,步骤尽量少.(3)算法过程要能一步一步执行,每一步都准确无误,且在有限步后能得出结果.课时作业一、选择题1.我们已学过的算法有求解一元二次方程的求根公式,加减消元法求二元一次方程组的解,二分法求出函数的零点等,对算法的描述有:①对一类问题都有效;②算法可执行的步骤必须是有限的;③算法可以一步一步地进行,每一步都有确切的含义;④是一种通法,只要按部就班地做,总能得到结果.以上算法的描述正确的个数为( )A .1个B .2个C .3个D .4个2.下列四种叙述中能称为算法的是( )A .解方程时需要验根B .在野外做饭叫野炊C .做米饭时需要刷锅、淘米、添水、加热这些步骤D .以上都不是算法3.计算下列各式中S 的值,能设计算法求解的是( )①S =12+14+18+…+12100 ②S =12+14+18+…+12100+… ③S =12+14+18+…+12n (n ≥1且n ∈N ) A .①② B .①③ C .②③ D .①②③4.关于一元二次方程x 2-5x +6=0的求根问题,下列说法正确的是( )A .只能设计一种算法B .可以设计两种算法C .不能设计算法D .不能根据解题过程设计算法5.对于算法:第一步,输入n .第二步,判断n 是否等于2,若n =2,则n 满足条件;若n >2,则执行第三步.第三步,依次从2到n -1检验能不能整除n ,若不能整除n ,则执行第四步;若能整除n ,则执行第一步.第四步,输出n .满足条件的n 是( )A .质数B .奇数C .偶数D .约数二、填空题6.以下有六个步骤:①拨号;②等拨号音;③提起话筒(或免提功能);④开始通话或挂机(线路不通);⑤等复话方信号;⑥结束通话.试写出打一个本地电话的算法_____________________________________________.(只写编号)7.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99.以下是求他的总分和平均成绩的一个算法,在横线上填入算法中缺的两个步骤.第一步,取A =89,B =96,C =99.第二步,__________________________.第三步,__________________________.第四步,输出计算的结果.8.下面给出了一个问题的算法:第一步,输入a.第二步,若a≥4,则执行第三步,否则执行第四步.第三步,输出2a-1.第四步,输出a2-2a+3.问题:(1)这个算法解决的问题是___________________________________________________.(2)当输入的a值为________时,输出的数值最小.三、解答题9.求1×3×5×7×9×11的值,写出其算法.10.设计算法,求方程5x+2y=22的正整数解.第一章算法初步§1.1算法与程序框图1.1.1算法的概念自学导引1.运算顺序2.概括性逻辑性有穷性不唯一性普遍性3.计算机程序对点讲练例1C[算法与求解一个问题的方法既有区别又有联系,故A不对;算法能重复使用,故B不对;每个算法执行后必须有结果,故D不对;由算法的有序性和确定性可知C 正确.]变式迁移1C[解决某一类问题的算法不唯一,第①个说法错误,②③④正确,故选C.]例2解方法一S1计算1+2得到3.S2将S1中的运算结果3与3相加得到6.S3将S2中的运算结果6与4相加得到10.S 4 将S 3中的运算结果10与5相加得到15.S 5 将S 4中的运算结果15与6相加得到21.S 6 输出运算结果.方法二S 1 取n =6.S 2 计算n (n +1)2. S 3 输出运算结果.方法三S 1 将原式变形为(1+6)+(2+5)+(3+4)=3×7.S 2 计算3×7.S 3 输出运算结果.变式迁移2 解 第一步,计算方程的判别式并判断符号Δ=1+4×6=25>0;第二步,将a =1,b =-1,c =-6代入求根公式x =-b±b 2-4ac 2a,得x 1=-2,x 2=3; 第三步,输出方程的两个根.例3 解 算法如下:第一步,输入x ;第二步,若x >0,则令y =-x +1后执行第五步,否则执行第三步;第三步,若x =0,则令y =0后执行第五步,否则执行第四步;第四步,令y =x +1;第五步,输出y 的值.变式迁移3 解 算法步骤如下:第一步,假定数a 为三个数中的最小数.第二步,将b 与a 比较,如果b <a ,则令a =b ,否则a 值不变.第三步,将c 与a 比较,如果c <a ,则令a =c ,否则a 值不变.第四步,a 就是a 、b 、c 中的最小数.课时作业1.D [题中对算法的几种描述分别对应算法的概括性、有穷性、逻辑性和普遍性.]2.C3.B [由算法的步骤是有限的,所以②不能设计算法求解.]4.B [算法具有不唯一性,对于一个问题,我们可以设计不同的算法.]5.A [此题首先要理解质数,只能被1和自身整除的大于1的整数叫质数.2是最小的质数,这个算法通过对2到n -1一一验证,看是否有其他约数,来判断其是否为质数.]6.③②①⑤④⑥7.计算总分D =A +B +C 计算平均成绩E =D 38.(1)求分段函数f(a)=⎩⎪⎨⎪⎧2a -1, a ≥4,a 2-2a +3, a<4的函数值问题 (2)1 9.解 方法一第一步,先求1×3,得到结果3;第二步,将第一步所得结果3再乘以5,得到结果15;第三步,再将15乘以7,得到结果105;第四步,再将105乘以9,得到结果945;第五步,再将945乘以11,得到10 395,即是最后结果.方法二第一步,S =1;第二步,I =3;第三步,S =S ×I ;第四步,I =I +2;第五步,如果I 不大于11,返回重新执行第三步、第四步及第五步,否则,输出S 的值就是所求的结果,结束.10.解 第一步,将x =1代入原方程,得y =172,这组解不是方程的正整数解; 第二步,将x =2代入原方程,得y =6,这组解是方程的正整数解;第三步,将x =3代入原方程,得y =72,这组解不是方程的正整数解; 第四步,将x =4代入原方程,得y =1,这组解是方程的正整数解;第五步,方程的正整数解有两组:⎩⎪⎨⎪⎧ x =2,y =6或⎩⎪⎨⎪⎧x =4,y =1.。
高一数学人教版必修3导学案第一章1.1算法与程序框图
第一章算法初步1.1 算法与程序框图1.算法的概念算法通常是指按照一定规则解决___________的明确和有限的步骤.算法具有确定性、有效性、有限性的特征.2.程序框图程序框图又称流程图,是一种用___________、___________及___________来表示算法的图形.程序框图是人们用来描述算法步骤的形象化的方法.在程序框图中,一个或几个程序框的组合表示算法中的一个步骤;带有方向箭头的流程线将程序框连接起来,表示算法步骤的执行顺序.另外,程序框内还要有必要的文字说明.构成程序框图的图形符号、名称及其功能如下表:说明:一个完整的程序框图一定会包含终端框(用于表示一个算法的开始和结束),处理框(赋值、计算,算法中处理数据需要的算式、公式等)和流程线.3.算法的三种基本逻辑结构通常一个算法只能由三种基本逻辑结构构成,这三种基本逻辑结构分别是:顺序结构、条件结构和循环结构.(1)顺序结构顺序结构是由若干个___________的步骤组成的.这是任何一个算法都离不开的基本结构.顺序结构可以用程序框图表示为(2)条件结构在一个算法中,经常会遇到一些条件的判断,算法的流程根据___________有不同的流向.条件结构就是处理这种过程的结构.条件结构对应的程序框图如图所示:(1)(2)注意:①无论条件是否成立,图(1)中只能执行“步骤A”框或“步骤B”框,但不可以既执行“步骤A”又执行“步骤B”,也不可以“步骤A”和“步骤B”都不执行;“步骤A”和“步骤B”中可以有一个是空的,如图(2)所示.②在利用条件结构画程序框图时,必须清楚判断的条件是什么,条件判断后分别对应着什么样的结果.(3)循环结构在一些算法中,要求___________同一操作的结构称为循环结构.即从算法某处开始,按照一定的条件反复执行某些步骤.反复执行的步骤称为循环体.循环结构有两种形式:直到型循环结构和当型循环结构.①直到型循环结构直到型循环结构可以用程序框图表示为:这个循环结构有如下特征:在执行了一次循环体后,对条件进行判断,如果条件不满足,就继续执行循环体,直到条件满足时终止循环.②当型循环结构当型循环结构可以用程序框图表示为:这个循环结构有如下特征:在每次执行循环体前,先对控制循环的条件进行判断,当条件满足时,执行循环体,否则终止循环.4.程序框图的画法在用自然语言表述一个算法后,可以画出程序框图,用顺序结构、条件结构和循环结构来表示这个算法.这样表示的算法清楚、简练,便于阅读和交流.设计一个算法的程序框图通常要经过以下步骤:第一步,用自然语言表述算法步骤.第二步,确定每一个算法步骤所包含的逻辑结构,并用相应的程序框图表示,得到该步骤的程序框图.第三步,将所有步骤的程序框图用流程线连接起来,并加上终端框,得到表示整个算法的程序框图.注意:流程线不要忘记画箭头,因为它是反映流程执行先后次序的,若不画出箭头,则难以判断各框的执行顺序.参考答案:1.某一类问题2.程序框流程线文字说明3.(1)依次执行(2)条件是否成立(3)反复执行重难点分析1.算法的概念常见的设计算法的问题有解方程(组)问题、直接应用数学公式求解的问题、筛选问题、实际生活问题等,设计算法时要注意:(1)认真分析问题,联系解决此问题的一般数学方法;(2)综合考虑此类问题中可能涉及的各种情况;(3)将解决问题的过程划分为若干个步骤.【例1】已知直角三角形两直角边长为a,b,求斜边长c的一个算法分下列三步:①计算c;②输入直角三角形两直角边长a,b的值;③输出斜边长c的值;其中正确的顺序是A.①②③B.②③①C.①③②D.②①③【答案】D【解析】由算法规则得:第一步:输入直角三角形两直角边长a,b的值,第二步:计算c=三步:输出斜边长c的值;这样,就是求斜边长c的一个算法.故选D.【名师点睛】算法是解决某一类问题的精确描述,这就要求我们在写算法时应简练、清晰,并善于分析任何可能出现的情况,体现出思维的严密性和完整性.【例2】下列关于算法的理解正确的是A.算法等同于解法B.任何问题都可以运用算法解决C.按照算法一步步执行,在有限步之后,总能得出结果D.解决某一个具体问题时,算法不同,结果也不同【答案】C2.顺序结构与顺序结构相关的问题一般是利用公式求解问题.在使用顺序结构书写程序框图时,(1)要注意各种框图符号的正确使用;(2)要先赋值,再运算,最后输出结果.【例3】将两个数a=2017,b=2018交换,使得a=2018,b=2017,下面语句正确一组是A.B.C.D.【答案】B【解析】先把b的值赋给中间变量c,这样c=2018,再把a的值赋给变量b,这样b=2017,把c的值赋给变量a,这样a=2018.故选B.【例4】已知函数f(x)=x2–3x+2,请设计一个算法,画出算法的程序框图,求f(3)+f(–1)的值.【答案】答案详见解析.【解析】算法如下:第一步:x=3;第二步:y1=x2–3x+2;第三步:x=–1;第四步:y2=x2–3x+2;第五步:y=y1+y2;第六步:输出y1,y2,y.程序框图如图:【名师点睛】画顺序结构的程序框图问题,不仅要遵循程序框图的画图原则,而且要看要求的量需要根据哪些条件求解,需要的条件必须先输入,或将已知的条件全部输入,求出未知的量.3.条件结构凡是需要先根据条件作出判断,然后再决定进行哪一个步骤的问题,在画程序框图时,必须引入判断框,采用条件结构,有时会需要多个判断框,至于判断框内的内容是没有固定顺序的.【例5】一算法的程序框图如图所示,若输出的12y ,则输入的x可能为A.–1 B.1 C.1或5 D.–1或1 【答案】B【名师点睛】(1)对于求分段函数的函数值的程序框图画法:如果是分两段的函数,只需引入一个判断框;如果是分三段的函数,需要引入两个判断框;依此类推.至于判断框内的内容是没有顺序的.(2)判断框内的内容可以不唯一,但判断框内的内容一经改变,其相应的处理框等内容均要有所改变.【例6】阅读程序框图,如果输出的函数值在区间1142⎡⎤⎢⎥⎣⎦,内,则输入的实数x的取值范围是A.(–∞,–2] B.[–2,–1]C.[–1,2] D.[2,+∞)【答案】B【解析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算分段函数f(x)=[]()()222222x xx⎧∈-⎪⎨∈-∞-+∞⎪⎩,,,,,的函数值.又∵输出的函数值在区间1142⎡⎤⎢⎥⎣⎦,内,∴11242x<<,解得x∈[–2,–1].故选B.4.循环结构如果算法问题中涉及的运算进行了许多次重复的操作,且先后参与运算的数之间有相同的变化规律,就可以引入变量(我们称之为循环变量),构成循环结构.循环结构中常用的几个变量:①计数变量:即计数器,用来记录执行循环体的次数,如1n n=+.=+,1i i②累加变量:即累加器,用来计算数据之和,如S S i=+.③累乘变量:即累乘器,用来计算数据之积,如P P i=*.在程序框图中,一般要根据实际情况先给这些变量赋初始值.一般情况下,计数变量的初始值为1,累加变量的初始值为0,累乘变量的初始值为1.【例7】阅读如图的程序框图.若输入n=5,则输出k的值为A.2 B.3C.4 D.5【答案】B【解析】经过第一次循环得到的结果为n=16,k=1,经过第二次循环得到的结果为n=49,k=2,经过第三次循环得到的结果为n=148,k=3,经过第四次循环得到的结果为n=445,满足判断框中的条件,退出循环,执行“是”,输出的k为3.故选B.【例8】已知流程图如图所示,该程序运行后,为使输出的b值为16,则循环体的判断框内①处应填A.2 B.3 C.4 D.5【答案】B基础题:1.算法的计算规则以及相应的计算步骤必须是唯一确定的,既不能含糊其辞,也不能有多种可能.这里指的是算法的A.有序性B.明确性C.可行性D.不确定性2.程序框图中,表示处理框的是A.B.C.D.3.下面对算法描述正确的一项是A.同一问题的算法不同,结果必然不同B.算法只能用图形方式来表示C.同一问题可以有不同的算法D.算法只能用自然语言来描述4.下列各式中S的值不可以用算法求解的是A.S=1+2+3+4 B.S=1+2+3+4+…C.S=1+12+13+…+1100D.S=12+22+32+…+10025.“=”在基本算法语句中叫A.赋值号B.等号C.输入语句D.输出语句6.下列程序框中,出口可以有两个流向的是A.终止框B.输入输出框C.处理框D.判断框7.如果输入n=2,那么执行如图中算法的结果是A.输出3 B.输出4C.输出5 D.程序出错,输不出任何结果能力题:8.关于下面两个程序框图,说法正确的是A.(1)和(2)都是顺序结构B.(1)和(2)都是条件分支结构C.(1)是当型循环结构,(2)是直到型循环结构D.(1)是直到型循环结构,(2)是当型循环结构9.阅读程序框图,如果输出的函数值在区间[1,3]上,则输入的实数x的取值范围是A.{x∈R|0≤x≤log23} B.{x∈R|–2≤x≤2}C.{x∈R|0≤x≤log23,或x=2} D.{x∈R|–2≤x≤log23,或x=2}10.给出30个数:1,2,4,7,11,…,要计算这30个数的和,现已给出了该问题的程序框图如图所示,那么框图中判断框①处和执行框②处应分别填入A.i≤30?;p=p+i–1 B.i≤31?;p=p+i+1C.i≤31?;p=p+i D.i≤30?;p=p+i11.若执行如图所示的程序框图,输出S的值为3,则判断框中应填入的条件是A.k<6?B.k<7?C.k<8?D.k<9?12.阅读程序框图,运行相应的程序,则输出s的值为A.3 B.1C.0 D.–1高考真题:13.(2017新课标Ⅰ卷文科、理科)下面程序框图是为了求出满足3n−2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1000和n=n+1 B.A>1000和n=n+2C.A≤1000和n=n+1 D.A≤1000和n=n+214.(2017新课标Ⅱ卷文科、理科)执行下面的程序框图,如果输入的1a=-,则输出的S=A.2 B.3C.4 D.515.(2017新课标Ⅲ卷文科、理科)执行下面的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为A.5 B.4C.3 D.216.(2017北京卷文科、理科)执行如图所示的程序框图,输出的s值为A.2 B.3 2C.53D.8517.(2017山东卷文科)执行下面的程序框图,当输入的x的值为4时,输出的y的值为2,则空白判断框中的条件可能为A.3x>B.4x>C.4x≤D.5x≤18.(2017天津卷理科)阅读下面的程序框图,运行相应的程序,若输入N的值为24,则输出N的值为A.0 B.1C.2 D.319.(2017江苏卷)下图是一个算法流程图,若输入x的值为116,则输出y的值是__________.参考答案:1.【答案】B【解析】算法的计算规则以及相应的计算步骤必须是唯一确定的,既不能含糊其辞,也不能有多种可能,这里指的是算法的明确性.故选B.2.【答案】A【解析】A,是处理框,B是输入、输出框,C是判断框,D是终端框,故选A.5.【答案】A【解析】“=”在基本算法语句中叫赋值号.功能是先计算出赋值号右边表达式的值,然后把这个值赋给赋值号左边的变量,使该变量的值等于表达式的值.故选A.6.【答案】D【解析】终止框表示程序结束,故没有出口,输入输出框,处理框均有一个出口,判断框出口可以有两个流向.故选D.7.【答案】C【解析】第一步:输入n=2,第二步:n=2+1=3,第三步:n=3+2=5,第四步:输出5.故选C.10.【答案】D【解析】由于要计算30个数的和,故循环要执行30次,由于循环变量的初值为1,步长为1,故终值应为30.即①中应填写i≤30;又由第1个数是1;第2个数比第1个数大1即1+1=2;第3个数比第2个数大2即2+2=4;第4个数比第3个数大3即4+3=7;…故②中应填写p=p+i.故选D.11.【答案】C【解析】根据程序框图,运行结果如下:k=2,S=1,第一次循环:S=log23,k=3;第二次循环:S=log23•log34,k=4;第三次循环:S=log23•log34•log45,k=5;第四次循环:S=log23•log34•log45•log56,k=6;第五次循环:S=log23•log34•log45•log56•log67,k=7;第六次循环:S=log23•log34•log45•log56•log67•log78=log28=38,k=8.故如果输出S=3,那么只能进行六次循环,故判断框内应填入的条件是:“k<8?”.故选C.12.【答案】C【解析】s=1×(3–1)+1=3,i=2,不满足i>4,执行循环,s=3×(3–2)+1=4,i=3,不满足i>4,执行循环,s=4×(3–3)+1=1,i=4,不满足i>4,执行循环,s =1×(3–4)+1=0,i =5,满足i >4,退出循环,所以输出s 为0.故选C . 13.【答案】D【解析】由题意,因为321000n n ->,且框图中在“否”时输出,所以判定框内不能输入1000A >,故填1000A ≤,又要求n 为偶数且初始值为0,所以矩形框内填2n n =+,故选D .15.【答案】D【解析】阅读程序框图,程序运行如下:首先初始化数值:1,100,0t M S ===,然后进入循环体: 此时应满足t N ≤,执行循环语句:100,10,1210MS S M M t t =+==-=-=+=; 此时应满足t N ≤,执行循环语句:90,1,1310MS S M M t t =+==-==+=; 此时满足91S <,可以跳出循环,则输入的正整数N 的最小值为2. 16.【答案】C【解析】0k =时,03<成立,第一次进入循环:111,21k s +===; 13<成立,第二次进入循环:2132,22k s +===;23<成立,第三次进入循环:3k=,3152332s+==;33<不成立,输出53s=.故选C.19.【答案】2-【解析】由题意得212log216y=+=-,故答案为:2-.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1.1 算法的概念预习课本P3~6,思考并完成以下问题 (1)在数学中算法是如何定义的?(2)算法有哪四种描述方式?(3)设计算法的两个要求是什么?[新知初探]1.算法 (1)概念:说法①:由基本运算及规定的运算顺序所构成的完整的解题步骤. 说法②:按照要求设计好的有限的确切的计算序列. (2)作用:这样的步骤或序列能够解决一类问题. 2.算法的描述方式 方式⎩⎪⎨⎪⎧自然语言数学语言形式语言算法语言框图3.设计算法的两个要求(1)写出的算法,必须能解决一类问题,并且能重复使用.(2)算法过程要能一步一步执行,每一步执行的操作,必须确切,不能含混不清,而且经过有限步后能得出结果.[小试身手]1.下列叙述不能称为算法的是( )A .从北京到上海先乘汽车到飞机场,再乘飞机到上海B .解方程4x +1=0的过程是先移项再把x 的系数化成1C .利用公式S =πr 2计算半径为2的圆的面积得π×22D .解方程x 2-2x +1=0 答案:D2.算法的有限性是指( ) A .算法必须包含输出B .算法中每个操作步骤都是可执行的C .算法的步骤必须有限D .以上说法均不正确 答案:C3.以下有六个步骤:①拨号;②等拨号音;③提起话筒(或免提功能);④开始通话或挂机(线路不通);⑤等复话方信号;⑥结束通话.写出一个打本地电话的算法________(只写序号).解析:按照打本地电话的基本操作流程来写,应是③②①⑤④⑥. 答案:③②①⑤④⑥ 4.给出一个问题的算法 S1 输入a .S2 若a ≥4,则执行S3;否则执行S4. S3 y =2a . S4 y =a 2. S5 输出y .当输入的值a =5时,则输出的y 值为________. 解析:所给问题是求函数值问题.已知函数解析式为y =⎩⎪⎨⎪⎧2a ,a ≥4,a 2,a <4,所以当a =5时,y =10.答案:10算法概念的理解[典例] A .描述算法可以有不同的方式,可用形式语言也可用其它语言B .算法可以看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列只能解决当前问题C .算法过程要一步一步执行,每一步执行的操作必须确切,不能含混不清,而且经过有限步或无限步后能得出结果D .算法要求按部就班地做,每一步可以有不同的结果[解析] 算法可以看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或计算序列能够解决一类问题.算法过程要求一步一步执行,每一步执行的操作,必须确切,只能有唯一结果,而且经过有限步后,必须有结果输出后终止,描述算法可以有不同的语言形式,如自然语言、框图语言及形式语言等.[答案] A有关算法概念的解题策略(1)判断题应根据算法的特点进行求解;(2)步骤要有限,前后有顺序,步步都明确.特别注意能在有限步内求解某一类问题,其中的每个步骤必须是明确可行的,不能模棱两可,对同一个问题可设计不同的算法.[活学活用]下列各式中S 值不可以用算法求解的是( ) A .S =1+2+3+4B .S =12+22+32+…+1002C .S =1+12+…+110 000D .S =1+2+3+4+…解析:选D 由算法的有限性知,D 不正确,而A 、B 、C 都可以通过有限步骤操作,输出确定结果.算法的设计[典例] [解] 圆台如图所示,算法如下: S1 令r 1=2,r 2=4,h =4. S2 计算l =r 2-r 12+h 2.S3 计算S 表=πr 21+πr 22+π(r 1+r 2)l . S4 输出运算结果.设计具体问题的算法的一般步骤(1)分析问题,找出解决问题的一般数学方法; (2)借助有关变量或参数对算法加以表述; (3)将解决问题的过程划分为若干步骤;(4)用简练的语言将这个步骤表示出来.[活学活用]已知函数f(x)=x2,g(x)=2x-log2x(x≠0).(1)写出求g(f(x))的值的一个算法;(2)若输入x=-2,则g(f(x))输出的结果是什么?解:(1)S1 输入x的值(x≠0).S2 计算y=x2的值.S3 计算z=2y-log2y的值.S4 输出z的值.(2)当x=-2时,由上面的算法可知y=4,z=24-log24=14,故输出的结果为14.算法在实际生活中的应用[典例] 汇款额不超过100元,收取1元手续费,超过100元但不超过5 000元,按汇款额的1%收取手续费,超过5 000元的一律收取50元手续费.试写出汇款额为x元时,计算银行手续费的一个算法.[解] 算法步骤如下:S1 输入自变量x的值;S2 判断x的范围,若x≤100,则y=1,若100<x≤5 000,则y=x×0.01,若5 000<x≤1 000 000,则y=50;S3 输出函数值y.实际生活问题算法设计的步骤(1)弄清已知,明确要求;(2)建立过程模型;(3)根据过程模型设计算法步骤,在写算法时应简练、清晰地表达,要善于分析任何可能出现的情况,体现出思维的严密性和完善性.[活学活用]一位商人有9枚银元,其中有1枚略轻的是假银元,你能用天平(无砝码)将假银元找出来吗?解:S1 把银元分成3组,每组3枚;S2 将其中两组分别放在天平两边,如果左右不平衡,则假银元就在轻的那一组;如果左右平衡,则假银元就在未称的第3组;S3 从含有假银元的那一组中任取两枚银元放在天平两边,如果左右不平衡,则轻的那一边就是假银元;如果两边平衡,则未称的那一枚就是假银元.[层级一 学业水平达标]1.计算下列各式中S 的值,能设计算法求解的是( ) ①S =12+14+18+ (12100)②S =12+14+18+…+12100+…;③S =12+14+18+…+12n (n ≥1且n ∈N +).A .①②B .①③C .②③D .①②③解析:选B 因为算法的步骤是有限的,所以②不能设计算法求解. 2.结合下面的算法: S1 输入x .S2 判断x 是否小于0,若是,则输出x +2,否则执行S3. S3 输出x -1.当输入的x 的值为-1时,输出的结果为( ) A .-2 B .0 C .1D .3解析:选C 根据x 值与0的关系,选择执行不同的步骤,当x 的值为-1时,应执行x +2这一步骤,所以输出的结果应为1,故选C.3.给出下列算法: S1 输入x 的值.S2 当x >4时,计算y =x +2;否则执行下一步. S3 计算y =4-x . S4 输出y .当输入x =0时,输出y =________________. 解析:0<4,执行S3,y =4-0=2. 答案:24.用高斯消去法计算二元一次方程组⎩⎪⎨⎪⎧3x -2y =6,x -y =4的解.解:S1 计算D =3×(-1)-1×(-2)=-1. S2 D =-1≠0,则x =6×-1-4×-2-1=-2,y =4×3-6×1-1=-6.S3 输出x ,y 的值.[层级二 应试能力达标]1.下列对算法的理解不正确的是( ) A .算法只能用自然语言来描述 B .算法可以用图形方式来描述C .算法一般是“机械的”,有时要进行大量重复的计算,它的优点是可以解决一类问题D .设计算法要本着简单、方便、可操作的原则 解析:选A 由算法的概念和描述方式知,A 不正确.2.对于一般的二元一次方程组⎩⎪⎨⎪⎧a 1x +b 1y =c 1,a 2x +b 2y =c 2,在写解此方程组的算法时需要我们注意的是( )A .a 1≠0B .a 2≠0C .a 1b 2-a 2b 1≠0D .a 1b 1-a 2b 2≠0解析:选C 应用高斯消去法解方程组其实质是利用加减消元法.首先要将两方程y 的系数化为相同即b 1b 2,此时x 的系数分别为a 1b 2和a 2b 1两式相减得(a 1b 2-a 2b 1)x =c 1b 2-c 2b 1,要得出x 的值,则需注意a 1b 2-a 2b 1≠0.3.阅读下面的算法: S1 输入两个实数a ,b .S2 若a <b ,则交换a ,b 的值,否则执行第三步. S3 输出a .这个算法输出的是( ) A .a ,b 中的较大数 B .a ,b 中的较小数 C .原来的a 的值D .原来的b 的值解析:选A 第二步中,若a <b ,则交换a ,b 的值,那么a 是a ,b 中的较大数;若a <b 不成立,即a ≥b ,那么a 也是a ,b 中的较大数.4.对于算法: S1 输入n .S2 判断n 是否等于2,若n =2,则n 满足条件;若n >2,则执行S3.S3 依次从2到(n -1)检验能不能整除n ,若不能整除n ,则执行S4;若能整除n ,则执行S1.S4 输出n .满足条件的n 是( ) A .质数 B .奇数 C .偶数D .约数解析:选A 从题目的条件可以看出,输出的n 没有约数,因此是质数. 5.给出算法步骤如下: S1 输入x 的值;S2 当x <0时,计算y =x +1,否则执行S3; S3 计算y =-x 2; S4 输出y .当输入x 的值为-2,3时,输出y 的结果分别是______.解析:由算法步骤可知,其算法功能是已知函数y =⎩⎪⎨⎪⎧x +1,x <0,-x 2,x ≥0,当输入x 的值时,求对应的y 值.因为-2<0,所以对应函数解析式为y =x +1,因此y =-2+1=-1;当x =3时,则对应函数解析式为y =-x 2,因此y =-32=-9.答案:-1,-96.使用配方法解方程x 2-4x +3=0的算法的步骤是________(填序号). ①配方得(x -2)2=1; ②移项得x 2-4x =-3; ③解得x =1或x =3; ④开方得x -2=±1.解析:使用配方法的步骤应按移项、配方、开方、得解的顺序进行. 答案:②①④③7.已知直角三角形两条直角边长分别为a ,b (a >b ),写出求两直角边所对的最大角θ的余弦值的算法如下:S1 输入两直角边长a ,b 的值; S2 计算c =a 2+b 2的值; S3 ________________________; S4 输出cos θ.将算法补充完整,横线处应填________________.解析:根据题意知,直角三角形两直角边a ,b (a >b )所对最大角θ的余弦值为bc,所以应填“计算cos θ=b c的值”.答案:计算cos θ=b c的值8.某居民区的物业部门每月向居民收取卫生费,计费方法是:3人或3人以下的住户,每户收取5元;超过3人的住户,每超出1人加收1.2元.设计一个算法,根据输入的人数,计算应收取的卫生费.解:设某户有x 人,根据题意,应收取的卫生费y 是x 的分段函数,即y =⎩⎪⎨⎪⎧5, x ≤3,1.2x +1.4,x >3.算法如下: S1 输入人数x .S2 如果x ≤3,则y =5;如果x >3,则y =1.2x +1.4. S3 输出应收卫生费y .9.已知直线l 1:3x -y +12=0和直线l 2:3x +2y -6=0,求直线l 1与l 2及y 轴所围成的三角形面积,写出解决本题的一个算法.解:S1 解方程组⎩⎪⎨⎪⎧3x -y +12=0,3x +2y -6=0,得直线l 1,l 2的交点P (-2,6).S2 在方程3x -y +12=0中令x =0,得y =12,从而得到A (0,12). S3 在方程3x +2y -6=0中令x =0,得y =3,得到B (0,3); S4 求出△ABP 的底边长|AB |=12-3=9; S5 求出△ABP 的底边AB 上的高h =2; S6 根据三角形的面积公式计算S =12|AB |·h =12×9×2=9.。