结构方程模型最简单易懂的教程共35页

合集下载

结构方程模型讲课文档

结构方程模型讲课文档
现在二十页,总共六十八页。
模型修正
• 模型的修正主要包括: • (1) 依据理论或有关假设 ,提出一个或数个合理的先验模型;
• (2) 检查潜变量与指标间的关系 ,建立测量方程模型; • (3) 若模型含多个因子 ,可以循序渐进地 ,每次只检验
含两个因子的模型 ,确立测量模型部分合理后 ,最后再 将所有因子合并成预设的先验模型 ,作总体检验;
(3)与因素分析类同,SEM容许潜伏变项(如:社经地位)由多个观察指标变项(如:父母职业、收入)
构成,并可同时估计指标变项的信度及效度(reliability and validity);
(4)SEM可采用比传统方法更有弹性的测量模型(measurement model),如某一指标变 项/题目从属于两潜伏因子;在传统方法,项目多依附单一因子; (5)研究者可构划出潜伏变项间的关系,并估计整个模式是否与数据拟合。
传统上先计算外向题目的总分(或者平均分)和自信题目的总分(或 者平均分),再计算两个总分(或者平均分)的相关,这种计算所得的 两个潜变量(外向和自信)的关系,不一定恰当,但是结构方程模型能 提供更佳的答案(如典型相关分析等)。
x1
x2
自信
x3
x4
y1
外向
y2
y3
y4
现在五页,总共六十八页。
模型举例
现在十页,总共六十八页。
5、结构方程模型中的变量
潜变量 显变量
内生变量
外源变量
变量
指标
自变量
因变量
现在十一页,总共六十八页。
潜变量:不可以直接观察的变量,或叫因子。如自 信、成就等。 显变量:可以直接观察的变量,如收入、成绩等。
因子荷载
现在十二页,总共六十八页。

结构方程模型讲义

结构方程模型讲义
名 这样,一个新变量被插入到原有的数据集中并存储为新的文件名。 但是,这个变量的所有值都是0
为新变量赋值
例:使这个新变量代表变量A和变量B的和 点击Transformation菜单上的Compute选项打开Compute对话框 选中并用鼠标将新变量拖入Compute对话框中的灰色字符区 点击“=”键 选中并用鼠标将变量A拖入Compute对话框中的灰色字符区 点击“+”键 选中并用鼠标将变量B拖入Compute对话框中的灰色字符区 点OK看到PSF窗口 点击File菜单上save选项保存
处理缺失值
删除含缺失值的观测对象,或者填充缺失值。 如何删除含缺失值的对象?
Listwise deletion(成列删除,即删除所有含缺失值 的观测对象)
Pairwise deletion(成对删除,即计算两个变量的相 关系数时,只使用两个变量都有数据的那些样本)
处理缺失值
删除含缺失值的观测对象,或者填充缺失值。 如何填补缺失值?
协方差和相关系数
CoXv,YEXEX YEY
CoXv,Y
rX,Y DX • DY
协方差的大小依赖于随机变量X和Y的单位。 相关系数的取值范围[-1,1]
科学的最高目标
1)把握因(cause)果(effect)关系 2)把握因果关系的最有力手段 3)科学也探索用相关方法考察因果关系 4)统计分析技术按因果探索而发展。 5)SEM是探索因果关系的一种相关研究方法☺
Factor Loading 三个因子与各变量之间的相关系数,称为因子
载荷量(loading) 系数绝对值越大,与相应因子的相关强度越强。
因子旋转
因子旋转:用一个正交阵右乘已经得到的因子载荷阵(由线性代 数可知,一次正交变化对应坐标系的一次旋转),使旋转后的因 子载荷阵结构简化。

结构方程模型

结构方程模型

• (6)当模型与数据拟合时 ,说明数据并不排斥模 式 ,不能说数据可以确认模式 ,也不能证明某一理 论基础; • (7) 用同一样本数据 ,以相同数目的待估参数和 不同的组合形式可以产生许多不同模型 ,这些等同 模型哪一个更适合于研究问题 ,应按照模式表达的 意义从专业角度来鉴别; • (8)) SEM 不能验证变量间的因果关系。同其他 统计方法一样 ,当模型与样本拟合时 ,只能说该模 型是可供考虑的模型 ,是目前为止尚未被否定的模 型。只有经严格的实验设计控制其他变量的影响 , 才能探讨主要变量的因果效应。绝不能因为使用 了 SEM 便说证明模型正确。严格地说 ,尽管 SEM 不能证明因果关系 ,但它的生命力在于能寻找变量 间最可能的因果关系。
3、结构方程模型的结构
4、结构方程模型的优点 5、结构方程模型中的变量 6、结构方程模型常用图标
1、什么是结构方程模型
结构方程模型( Structural Equation Model)是基于变量 的协方差矩阵来分析变量之间关系的一种统计方法。所以,有 时候也叫协方差结构分析。 我们的课程只考虑线性结构方程模型。
• ③SEM 对样本容量的要求较高 ,也要求模 型必须满足识别条件并且它不能处理真正 的分类变量。
五、应用实例
应用场合
CALIS过程简介
• proc calis语句是必须的,且此语句还可添 加一些选项,这些选项主要包括: • (1)数据集选项,如DATA= 使用的数据 集的名字;INRAM= 使用已存在的并被分 析过的模型;OUTRAM= 将模型的说明存 入输出数据集,备以后INRAM调用。 • (2)数据处理选项,如EDF= 在没有使用 原始数据且未指定样本数N时为模型指定自 由度;NOBS= 指定样本数N。

结构方程模型精讲

结构方程模型精讲

SEM包含了许多不同的统计技术
SEM融合了因子分析和路径分析两种统计技 术,可允许同时考虑许多内生变量、外生变量 与内生变量的测量误差,及潜在变量的指标变 量,可评估变量的信度、效度与误差值、整体 模型的干扰因素等。
SEM重视多重统计指标的运用
SEM所处理的是整体模型契合度的程度,关注整体模 型的比较,因而模型参考的指标是多元的,研究者必 须参考多种不同的指标,才能对模型的是陪读做整体 的判断,个别参数显著与否并不是SEM的重点。
模型的本质;验证式模型分析,利用研究者搜 集的实证资料来确认假设的潜在变量间的关系, 以及潜在变量与指标的一致性程度。
即比较研究者所提假设模型的协方差矩阵与实 际搜集数据导出的协方差矩阵之间的差异。
因子分析存在的限制
所测项目只能被分配给一个因子,并只有一个 因子载荷量,如果测验题项与两个或两个以上 的因子有关时,因子分析就无法处理。
整体模型是陪读检验就是检验总体的协方差矩阵(Σ 矩阵),与假设模型隐含的变量间的协方差矩阵(Σ (θ)矩阵)的差异。因为我们无法得知总体方差与协方 差,因而用样本数据得到的参数估计代替总体参数, 即用样本协方差矩阵S矩阵代替总体的Σ矩阵。
因子间关系必须是全有(多因素斜交)或全无 (多因素直交),即因子间不是完全无关就是 完全相关。
因子分析中假设误差项不相关,但在行为及社 会科学领域中,许多测验的题项与题项之间的 误差来源是相似的,也即误差间具有相关关系。
结构方程模型相对存在以下优点:
可检验个别测验题项的测量误差,并将测量误差从题项 的变异量中抽离出来,使因子载荷量具有较高精确度。
SEM可同时处理测量与分析问题
SEM是一种将测量与分析整合为一的计量研究技术, 它可以同时估计模型中的测量指标、潜在变量,不仅 可以估计测量过程中指标变量的测量误差,也可以评 估测量的信度与效度。

结构方程模型精讲共35页

结构方程模型精讲共35页

6、法律的基础有两个,而且只有两个……公平和实用。——伯克 7、有两种和平的暴力,那就是法律和礼节。——歌德
8、法律就是秩序,有好的法律才有好的秩序。——亚里士多德 9、上帝把法律和公平凑合在一起,可是人类却把它拆开。——查·科尔顿 10、一切法律都是无用的,因为好人用不着它们,而坏人又不会因为它们而变得规矩起来。——德谟耶克斯
结构方程模型精讲
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富ห้องสมุดไป่ตู้的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非

结构方程模型

结构方程模型
结构方程模型 课件
(Structural Equation Modeling,SEM) –
结构方程模型 结构方程模型是一门基于统计分析技术的研究方法学,它主要用于解决社会科学研 究中的多变量问题, 用来处理复杂的多变量研究数据的探究与分析。 在社会科学及经济、 市场、管理等研究领域,有时需处理多个原因、多个结果的关系,或者会碰到不可直接 观测的变量(即潜变量),这些都是传统的统计方法不能很好解决的问题。 SEM 能够对 抽象的概念进行估计与检定,而且能够同时进行潜在变量的估计与复杂自变量 /因变量 预测模型的参数估计。 结构方程模型是一种非常通用的、主要的线形统计建模技术,广泛应用于心理学、经济 学、社会学、行为科学等领域的研究。实际上,它是计量经济学、计量社会学与计量心理学 等领域的统计分析方法的综合。多元回归、因子分析和通径分析等方法都只是结构方程模型 中的一种特例。 结构方程模型是利用联立方程组求解,它没有很严格的假定限制条件,同时允许自变量 和因变量存在测量误差。在许多科学领域的研究中,有些变量并不能直接测量。实际上,这 些变量基本上是人们为了理解和研究某类目的而建立的假设概念,对于它们并不存在直接测 量的操作方法。人们可以找到一些可观察的变量作为这些潜在变量的“标识”,然而这些潜 在变量的观察标识总是包含了大量的测量误差。在统计分析中,即使是对那些可以测量的变 量,也总是不断受到测量误差问题的侵扰。自变量测量误差的发生会导致常规回归模型参数 估计产生偏差。虽然传统的因子分析允许对潜在变量设立多元标识,也可处理测量误差,但 是,它不能分析因子之间的关系。只有结构方程模型即能够使研究人员在分析中处理测量误 差,又可分析潜在变量之间的结构关系。
线性回归分析: 线性回归是比线性相关更复杂的方法,它在模型中定义了因变量和自变量。但它只 能提供变量间的直接效应而不能显示可能存在的间接效应。而且会因为共线性的原因, 导致出现单项指标与总体出现负相关等无法解释的数据分析结果。 结构方程模型分析: 结构方程模型是一种建立、估计和检验因果关系模型的方法。模型中既包含有可观 测的显在变量, 也可能包含无法直接观测的潜在变量。 结构方程模型可以替代多重回归、 通径分析、因子分析、协方差分析等方法,清晰分析单项指标对总体的作用和单项指标 间的相互关系。

结构方程模型最简单易懂的教程

结构方程模型最简单易懂的教程

Ma模型修正
Q4在A的负荷很小 (LX = 0.05),但在其他因子 的修正指数(MI)也不高
不从属A,也不归属其他因子
Q8在B的负荷不高(0.28),但在A的MI是41.4 ,可能归属A
因子间相关很高 (0.40 至 0.54)
模型拟合相当好: (1209) =194.57,RMSEA=
(1)模型建构(model specification)
一、观测变量(即指标,通常是题目)与潜 变量(即因子,通常是概念)的关系;
二、各潜变量间的相互关系(指定那些因子 间相关或直接效应);
例子:员工工作满意度的测量
例子:员工工作满意度的测量
理论假设,概念模型的提出:
Locke(1976)研究指出,有多种因素影响到工作满意度,下列几个因素最 为重要:
——外源潜变量(如工作自主权等)组成的向量;
——内生潜变量(如工作满意度等)组成的向量;
—x —外源指标与外源变量之间的关系(如两个工作自主权指标与工作自主
权的关系),是外源指标在外源潜变量上的因子负荷矩阵;
—y —内生指标与内生变量之间的关系(如四个工作满意度指标与工作满意
度的关系),是内生指标在内生潜变量上的因子负荷矩阵;
传统的统计分析方法不能妥善处理这些潜变量,而 结构方程模型则能同时处理潜变量及其指标。
回归分析与结构方程模型
一个回归分析和结构方程比较的例子: 假如有五道题目来测量外向型性格,还有四道题
目来测量自信。研究自信与外向型性格的关系。 假如是你,你将怎样来进行研究? 回归分析的做法:先分别计算外向题目的总分( 或平均分)和自信题目的总分(或平均分),在 计算两个总分的相关。 这样的计算所得的两个潜变量(性格与自信)的 关系,恰当吗?

结构方程模型课件

结构方程模型课件

传统的统计建模分析方法不能有效处理潜变量,
而结构方程模型能同时处理潜ห้องสมุดไป่ตู้量和显变量(指
标)。传统的线性回归分析不允许有多个因变量
存在测量误差,假设自变量是没有误差的,结构
结构方程模型
3
3.结构方程的基本原理?
一、结构方程模型的原理 结构方程模型的基本思路是:
首先,根据已有理论和知识,经推理和假设形成一个关于一组变量之 间相互关系的模型;
(4)内生变量:是指那些在模型或系统中,受模型或系统中其
它变量包括外生变量和内生变量影响的变量,即在路径图中,有箭头
指向它的变量。它们也可以影响其它变量。
结构方程模型
6
3.结构方程的基本原理?
结构方程模型在形式上是反映隐变量和显变量 关系的一组方程,一般来讲由两类矩阵方程构成:
(1)测量方程(Measurement Equation)
二、结构方程模型的结构 结构方程模型的结构示意图如下所示:
结构方程模型
5
3.结构方程的基本原理?
首先了解几个概念:
(1)观测变量:可直接测量的变量,通常是指标
(2)潜变量:潜变量亦称隐变量,是无法直接观测并测量的变 量。潜变量需要通过设计若干指标间接加以测量。
(3)外生变量 :是指那些在模型或系统中,只起解释变量作用 的变量。它们在模型或系统中,只影响其他变量,而不受其他变量的 影响。在路径图中,只有指向其他变量的箭头,没有箭头指向它的变 量均为外生变量。
(2)特定的方法可能需要很大的样本含量;
(3)需要满足多变量正态分布的假设;
(4) 很少用于预测的应用;
(5)完全掌握结构方程需要基础知识、练习和努 力;
(6)很多问题还没有很结构方好程模的型 答案和可以遵循的指

结构方程模型入门(纯干货!)

结构方程模型入门(纯干货!)

结构方程模型入门(纯干货!)一、结构方程模型的概念结构方程模型(Structural Equation Model,简称SEM)是基于变量的协方差矩阵来分析变量之间关系的一种统计方法,因此也称为协方差结构分析。

结构方程模型属于多变量统计分析,整合了因素分析与路径分析两种统计方法,同时可检验模型中的显变量(测量题目)、潜变量(测量题目表示的含义)和误差变量直接按的关系,从而活动自变量对因变量影响的直接效果、间接效果和总效果。

结构方程模型基本上是一种验证性的分析方法,因此通常需要有理论或者经验法则的支持,根据理论才能构建假设的模型图。

在构建模型图之后,检验模型的拟合度,观察模型是否可用,同时还需要检验各个路径是否达到显著,以确定自变量对因变量的影响是否显著。

目前,结构方程模型的分析软件较多,如Lisrel、EQS、Amos、Mplus、Smartpls等等,其中AMOS的使用率甚高,因此我们重点了解一下使用AMOS软件进行结构方程模型分析的过程。

二、结构方程模型的相关概念在构建模型假设图,我们首先需要了解一些有关的基本概念1、显变量显变量有多种称呼,如“观察变量”、“测量变量”、“显性变量”、“观测变量”等等。

从这些称呼中可以看到,显变量的主要含义就是:变量是实际测量的内容,也就是我们问卷上面的题目。

在Amos中,显变量使用长方形表示。

2、潜变量潜变量也叫潜在变量,是无法直接测量,但是可以通过多个题目进行表示的变量。

在Amos中,潜变量使用椭圆表示。

在使用的过程中,我们可以通过这样的方式区分显变量和潜变量:在数据文件中有具体值的变量就是显变量,没有具体值但可通过多个题目表示的则是潜变量。

3、误差变量误差变量是不具有实际测量的变量,但必不可少。

在调查中,显变量不可能百分之百的解释潜变量,总会存在误差,这反映在结构方程模型中就是误差变量,每一个显变量都会有误差变量。

在Amos中,误差变量使用圆形进行表示(与潜变量类似)。

结构方程模型初级介绍

结构方程模型初级介绍

--
3.66 22.02
4.78
VAR 9
0.40
被解释的部分。
潜变量间的关系,即结构模型,是研究的兴趣重点, 所以整个分析也称结构方程模型。
三、建模过程
• (1)模型建构(model specification) • (2)模型拟合(model fitting) • (3)模型评价(model assessment) • (4)模型修正(model modification)
结构方程模型
Structural Equation Models
目录
• 一、为何要用结构方程模型? • 二、模型原理简介 • 三、模型建模 • 四、例子:员工流失动因模型
一、为何要用结构方程模型?
• 很多社会、心理研究中所涉及到的变量,都不能准 确、直接地测量,这种变量称为潜变量,如工作自 主权、工作满意度等。
探索性因子分析)、t检验、方差分析、比较各 组因子均值、交互作用模型、实验设计
结构化模型基本概念
计量回归分析研究的是显变量之间的关系,并且是直接效应的 关系。
在社会科学以及经济、市场、管理等研究领域,有时要处理多 个原因、多个结果的关系,或者会碰到不可直接观测的变量 (定义为潜变量,如智力、学习动机等),变量间的间接效应, 这些都是传统的多元回归分析统计方法不好解决的问题。
– 缺点:权重设计,需要相当的技巧,通常的方法,如 AHP,模糊综合评判等方法缺少信度与效度
• 针对4):没有办法解决
结构方程模型(SEM)的优点
• 同时处理多个因变量 • 容许自变量和因变量含测量误差--传统方法(如
回归)假设自变量没有误差
• 同时估计因子结构和因子关系 • 容许更大弹性的测量模型 • 估计整个模型的拟合程度[用以比较不同模型] • SEM包括:回归分析、因子分析(验证性因子分析、

结构方程模型讲义

结构方程模型讲义
如满意度模型下页30感知质量??2中国耐用消费品满意度指数框图总体感知质量x5自定义感知质量x6可靠性感知质量x7服务感知质量x8与理想之距离x14总体满意度x11与其他品牌距离x13与期望之距离x12总体预期质量x1中国耐用消费品顾客满意度指数模型预期质量??1顾客满意度??4顾客忠诚度??5感知价值??3品牌形象??6可靠性预期质量x3品牌总体印象x17品牌特征显著度x18价格质量比x9再购可能性x15质量价格比x10价格承受度x16总体预期质量1自定义预期质量x2服务预期x431感知质量??2中国耐用消费品满意度指数框图总体感知质量x5自定义感知质量x6可靠性感知质量x7服务感知质量x8与理想之距离x14总体满意度x11与其他品牌距离x13与期望之距离x12总体预期质量x1中国耐用消费品顾客满意度指数模型注意
结构方程模型讲义 Structural Equation Modeling
吴喜之 2009.3
1
Structural Equations with Latent Variables (Hardcover) by Kenneth A. Bollen (Author) "Readers of this book are likely to have diverse backgrounds in statistics..." (more) Key Phrases: subjective occupational prestige, component fit measures, subjective socioeconomic status, New York, Sociological Methodology, San Francisco (more...) 4.7 out of 5 stars See all reviews (6 customer reviews) List Price: $153.95 Price: $123.16 & this item ships for FREE with Super Saver Shipping. Details You Save: $30.79 (20%) Structural Equation Modeling: Concepts, Issues, and Applications (Paperback) by Rick Hoyle (Editor) "Structural equation modeling (SEM) is a comprehensive statistical approach to testing hypotheses about relations among observed and latent variables..." (more) Key Phrases: Monte Carlo, Performance Difficulty, Somatic Elements (more...)

结构方程模型简介PPT培训资料

结构方程模型简介PPT培训资料

23.10.2020
3
模型设定 模型识别 模型估计 模型评价 模型修正
23.10.2020
4
步骤
模型设定:2个基本假设
理论依据是增加或者删除连线的依据, 用最少的因果路径或者相关关系来刻划 在理论上可行的模型
线性关系
23.10.2020
5
模型设定:2种变量
潜在变量和显示变量
潜在变量——不可直接衡量的 显示变量(测量变量)——问卷中直接测量的
结构方程模型简介
23.10.2020
1
ningxing
概念
结构方程模型是一种通用的线性统计建 模技术。它主要是利用联立方程组求解, 但是没有严格的假设限定条件,同时允 许自变量和因变量存在测量误差。
23.10.2020
2
假设
与其他分析方法相同的假设条件包括: (1) 观察变量是相互独立的; (2) 随机抽样; (3) 线性相关
很好,但是这些指标都不是统计值,因此没有 统计检验来确认两个模型之间的差异是否显著。 在应用时,先估计每个模型,将它们按其中一 个指标进行比较,然后选择其中值最小的模型。
23.10.2020 26
模型修正
改变测量模型,增加新的结构参数 设定某些误差项相关 限制某些结构参数
23.10.2020 27
似然比较检验:通过两个模型拟合优度 的卡方检验值的差值和自由度的差值得 到的新的卡方值和自由度
结果显著:模型中的变化并不是改善
23.10.2020 25
模型比较:非嵌套模型
阿凯克信指数 AIC 一致性阿凯克信指数CAIC 期望交叉证实指数 ECVI 这些值的数值越小,就说明模型简约并拟合的
恰好识别——当一个模型中的参数都是识别
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结构方程模型最简单易懂的教程
16、自己选择的路、跪着也要把它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更 辉煌。
18、敢于向黑暗宣战的人,心里必须 充满光 明。 19、学习的关键--重复。
20、懦弱的人只会裹足不前,莽撞的 人只能 引为烧 身,只 有真正 勇敢的 人才能 所向披 靡。
31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
ቤተ መጻሕፍቲ ባይዱ
相关文档
最新文档