北京市西城重点中学2017年4月 人教版数学九年级上册第二十一章 一元二次方程 教材分析及相关练习无答案
人教版初中数学九年级上册第二十一章:一元二次方程(全章教案)
第二十一章一元二次方程本章的主要内容包括:一元二次方程及其有关概念,一元二次方程的解法(配方法、公式法、因式分解法),一元二次方程根与系数的关系,运用一元二次方程分析和解决实际问题.其中解一元二次方程的基本思路和具体解法是本章的重点内容.方程是科学研究中重要的数学思想方法,也是后续内容学习的基础和工具,本章是对一元一次方程知识的延续和深化,同时为二次函数的学习做好准备.联系一元二次方程和函数的基本知识,继续探索实际问题中的数量关系及其变化规律,让学生进一步体会“方程是刻画现实世界的一个有效的数学模型”.本章是中考考查的重点内容,主要考查一元二次方程的解及其解法、一元二次方程根与系数的关系、建立一元二次方程模型解决实际问题.【本章重点】一元二次方程的解法及应用.【本章难点】1.一元二次方程根与系数的关系的应用.2.利用一元二次方程解决实际问题.【本章思想方法】1.体会和掌握转化法,如:在解一元二次方程时,利用转化法将一元二次方程转化为一元一次方程.2.掌握建模思想,如:在利用一元二次方程解决实际问题时,根据题意建立适当的一元二次方程,将实际问题转化为数学模型.21.1一元二次方程1课时21.2解一元二次方程4课时21.3实际问题与一元二次方程1课时21.1一元二次方程一、基本目标【知识与技能】1.理解一元二次方程及相关概念.2.掌握一元二次方程的一般形式.3.了解一元二次方程根的概念,会检验一个数是不是一元二次方程的解.【过程与方法】从实际问题中建立方程模型,体会一元二次方程的概念.【情感态度与价值观】通过从实际问题中抽象出方程模型来认识一元二次方程,培养学生良好的研究问题的习惯,使学生逐步提高自己的数学素养.二、重难点目标【教学重点】1.一元二次方程的概念及其一般形式.2.判断一个数是不是一元二次方程的解.【教学难点】能准确判断一元二次方程的二次项、二次项系数、一次项、一次项系数及常数项.环节1自学提纲,生成问题【5 min阅读】阅读教材P1~P4的内容,完成下面练习.【3 min反馈】1.解决下列问题:问题1:如图,有一块矩形铁皮,长100 cm,宽50 cm,在它的四角各切去一个同样大小的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600 cm2,那么铁皮各角应切去多大的正方形?【解析】设切去的正方形的边长为x cm,则盒底的长为__(100-2x)_cm__,宽为__(50-2x)_cm__.列方程,得__(100-2x )(50-2x )=3600__, 化简,整理,得__x 2-75x +350=0__.①问题2:要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?【解析】全部比赛的场数为__4×7=28(场)__.设应邀请x 个队参赛,每个队要与其他__(x -1)__个队各赛一场.因为甲队对乙队的比赛和乙队对甲队的比赛是同一场比赛,所以全部比赛共__12x (x -1)__场.列方程,得__12x (x -1)=28__.化简、整理,得 __x 2-x -56=0__.②归纳总结:方程①②的共同特点是:方程的两边都是__整式__,只含有__一个__未知数,并且未知数的最高次数是__2__.2.一元二次方程的定义:等号两边都是__整式__,只含有__一__个未知数(一元),并且未知数的最高次数是__2__(二次)的方程,叫做一元二次方程.3.一元二次方程的一般形式是__ax 2+bx +c =0(a ≠0)__.其中__ax 2__是二次项,__a __是二次项系数,__bx __是一次项,__b __是一次项系数,__c __是常数项.环节2 合作探究,解决问题 【活动1】 小组讨论(师生互学)【例1】判断下列方程,哪些是一元二次方程? (1)x 3-2x 2+5=0; (2)x 2=1;(3)5x 2-2x -14=x 2-2x +35;(4)2(x +1)2=3(x +1); (5)x 2-2x =x 2+1; (6)ax 2+bx +c =0.【互动探索】(引发学生思考)要判断一个方程是一元二次方程,那么它应该满足哪些条件?【解答】(2)(3)(4)是一元二次方程.【互动总结】(学生总结,老师点评)判断一个方程是不是一元二次方程,首先看方程等号两边是不是整式,然后移项,使方程的右边为0,再观察左边是否只有一个未知数,且未知数的最高次数是否为2.【例2】将方程2x ⎝⎛⎭⎫12-x +2=5(x -1)化成一元二次方程的一般形式,并指出各项系数. 【互动探索】(引发学生思考)一元二次方程的一般形式是怎样的?【解答】去括号,得x-2x2+2=5x-5.移项,合并同类项,得一元二次方程的一般形式:2x2+4x-7=0.其中二次项系数是2,一次项系数是4,常数项是-7.【互动总结】(学生总结,老师点评)将一元二次方程化成一般形式时,通常要将二次项化负为正,化分为整.【例3】下面哪些数是方程2x2+10x+12=0的解?-4,-3,-2,-1,0,1,2,3,4.【互动探索】(引发学生思考)你能类比判断一个数是一元一次方程的解的方法判断一元二次方程的解吗?【解答】将上面的这些数代入后,只有-2和-3满足等式,所以x=-2或x=-3是一元二次方程2x2+10x+12=0的解.【互动总结】(学生总结,老师点评)要判断一个数是否是方程的解,只要把这个数代入等式,看等式两边是否相等即可.若相等,则这个数是方程的解,若不相等,则这个数不是方程的解.【活动2】巩固练习(学生独学)1.下列方程是一元二次方程的是(D)A.ax2+bx+c=0 B.3x2-2x=3(x2-2)C.x3-2x-4=0 D.(x-1)2+1=02.已知x=2是一元二次方程x2-2mx+4=0的一个解,则m的值为(A)A.2B.0C.0或2D.0或-2【教师点拨】将x=2代入x2-2mx+4=0得,4-4m+4=0.再解关于m的一元一次方程即可得出m的值.3.把一元二次方程(x+1)(1-x)=2x化成二次项系数大于0的一般式是__x2+2x-1=0__,其中二次项系数是__1__,一次项系数是__2__,常数项是__-1__.【活动3】拓展延伸(学生对学)【例4】求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.【互动探索】(引发学生思考)已知关于x的方程,且含有字母系数,要证明该方程是一元二次方程,则该方程的二次项系数必须满足什么条件?【证明】m2-8m+17=m2-8m+42+1=(m-4)2+1.∵(m-4)2≥0,∴(m-4)2+1>0,即(m-4)2+1≠0,∴不论m取何值,该方程都是一元二次方程.【互动总结】(学生总结,老师点评)要证明不论m 取何值,该方程都是一元二次方程,只需证明二次项系数恒不为0,即m 2-8m +17≠0.环节3 课堂小结,当堂达标 (学生总结,老师点评)1.一元二次方程⎩⎪⎨⎪⎧必须满足的三要素⎩⎪⎨⎪⎧ 是整式方程只有一个未知数未知数的最高次数是2一般形式:ax 2+bx +c =0(a ≠0)2.判断一个数是否是一元二次方程解的方法:将这个数分别代入方程的左右两边,如果“左边=右边”,则这个数是方程的解;如果“左边≠右边”,则这个数不是方程的解.请完成本课时对应练习!21.2解一元二次方程21.2.1配方法(第1课时)一、基本目标【知识与技能】1.理解一元二次方程“降次”转化的数学思想,并能应用它解决一些具体问题.2.理解并掌握直接开方法、配方法解一元二次方程的方法.【过程与方法】1.通过根据平方根的意义解形如x2=n(n≥0)的方程,迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.2.通过把一元二次方程转化为形如(x-a)2=b的过程解一元二次方程.【情感态度与价值观】通过对一元二次方程解法的探索,体会“降次”的基本思想,培养学生良好的研究问题的习惯,使学生逐步提高自己的数学素养.二、重难点目标【教学重点】掌握直接开平方法和配方法解一元二次方程.【教学难点】把一元二次方程转化为形如(x-a)2=b的形式.环节1自学提纲,生成问题【5 min阅读】阅读教材P5~P9的内容,完成下面练习.【3 min反馈】1.一般地,对于方程x2=p:(1)当p>0时,根据平方根的意义,方程有两个不等的实数根,x1=__p__,x2=__-p __.(2)当p=0时,方程有两个相等的实数根x1=x2=__0__;(3)当p<0时,方程__无实数根__.2.用直接开平方法解下列方程:(1)(3x +1)2=9; x 1=23,x 2=-43.(2)y 2+2y +1=25. y 1=4,y 2=-6. 3.(1)x 2+6x +__9__=(x +__3__)2; (2)x 2-x +__14__=(x -__12__)2;(3)4x 2+4x +__1__=(2x + __1__)2.4.一般地,如果一个一元二次方程通过配方转化成(x +n )2=p 的形式,那么就有:(1)当p >0时,根据平方根的意义,方程有两个不等的实数根,x 1=,x 2=;(2)当p =0时,方程有两个相等的实数根x 1=x 2=__-n __; (3)当p <0时,方程__无实数根__. 环节2 合作探究,解决问题 【活动1】 小组讨论(师生互学) 【例1】用配方法解下列关于x 的方程: (1)2x 2-4x -8=0; (2)2x 2+3x -2=0.【互动探索】(引发学生思考)用配方法解一元二次方程的实质和关键点是什么? 【解答】(1)移项,得2x 2-4x =8. 二次项系数化为1,得x 2-2x =4.配方,得x 2-2x +12=4+12,即(x -1)2=5. 由此可得x -1=±5, ∴x 1=1+5,x 2=1- 5. (2)移项,得2x 2+3x =2.二次项系数化为1,得x 2+32x =1.配方,得⎝⎛⎭⎫x +342=2516. 由此可得x +34=±54,∴x 1=12,x 2=-2.【互动总结】(学生总结,老师点评)用配方法解一元二次方程的实质就是对一元二次方程进行变形,转化为开平方所需要的形式,配方法的一般步骤可简记为:一移,二化,三配,四开.【活动2】 巩固练习(学生独学)1.若x 2-4x +p =(x +q )2,则p 、q 的值分别是( B ) A .p =4,q =2 B .p =4,q =-2 C .p =-4,q =2D .p =-4,q =-22.用直接开平方法或配方法解下列方程: (1)3(x -1)2-6=0 ; (2)x 2-4x +4=5; (3)9x 2+6x +1=4; (4)36x 2-1=0; (5)4x 2=81; (6)x 2+2x +1=4. (1)x 1=1+2,x 2=1- 2. (2)x 1=2+5,x 2=2- 5. (3)x 1=-1,x 2=13.(4)x 1=16,x 2=-16.(5)x 1=92,x 2=-92.(6)x 1=1,x 2=-3.【活动3】 拓展延伸(学生对学)【例2】如果x 2-4x +y 2+6y +z +2+13=0,求(xy )z 的值.【互动探索】(引发学生思考)一个数的平方是正数还是负数?一个数的算术平方根是正数还是负数?几个非负数相加的和是正数还是负数?【解答】由已知方程,得x 2-4x +4+y 2+6y +9+z +2=0, 即(x -2)2+(y +3)2+z +2=0, ∴x =2,y =-3,z =-2. ∴(xy )z =[2×(-3)]-2=136.【互动总结】(学生总结,老师点评)若几个非负数相加等于0,则这几个数都等于0. 环节3 课堂小结,当堂达标 (学生总结,老师点评)用配方法解一元二次方程的一般步骤: 一移项→二化简→三配方→四开方请完成本课时对应练习!21.2.2 公式法(第2课时)一、基本目标 【知识与技能】1.理解一元二次方程求根公式的推导过程,了解公式法的概念. 2.会熟练运用公式法解一元二次方程. 【过程与方法】复习具体数字的一元二次方程配方法的解题过程,引入ax 2+bx +c =0(a ≠0)的求根公式的推导,并应用公式法解一元二次方程.【情感态度与价值观】在一元二次方程求根公式的推导过程中,激发学生兴趣,了解解决问题多样性. 二、重难点目标 【教学重点】求根公式的推导及用公式法解一元二次方程. 【教学难点】一元二次方程求根公式的推导.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P9~P12的内容,完成下面练习. 【3 min 反馈】1.用配方法解下列方程: (1)x 2-5x =0; x 1=0,x 2=5. (2)2x 2-4x -1=0. x 1=1+62,x 2=1-62. 2.如果这个一元二次方程是一般形式ax 2+bx +c =0(a ≠0),你能否用上面配方法的步骤求出它的两根? x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac2a.【教师点拨】因为前面解具体数字的一元二次方程已做得很多,我们现在不妨把a 、b 、c 也当成一个具体数字,根据上面的解题步骤就可以一直推下去.3.一元二次方程ax 2+bx +c =0(a ≠0)的根由方程的系数a 、b 、c 而定.(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c =0.当b 2-4ac ≥0时,将a 、b 、c 代入式子x =-b ±b 2-4ac2a就得到方程的根.(2)这个式子叫做一元二次方程的__求根公式__. (3)利用求根公式解一元二次方程的方法叫__公式法__.(4)由求根公式可知,一元二次方程最多有__2__个实数根,也可能__没有__实数根. (5)一般地,式子b 2-4ac 叫做方程ax 2+bx +c =0(a ≠0)的根的判别式,通常用希腊字母Δ表示,即Δ=__b 2-4ac __.当Δ__>__0时,方程ax 2+bx +c =0(a ≠0)有两个不相等的实数根;当Δ__=__0时,方程ax 2+bx +c =0(a ≠0)有两个相等的实数根;当Δ__<__0时,方程ax 2+bx +c =0(a ≠0)没有实数根.4.不解方程,判断方程根的情况. (1)16x 2+8x =-3; (2)9x 2+6x +1=0; (3)2x 2-9x +8=0; (4)x 2-7x -18=0.解:(1)没有实数根. (2)有两个相等的实数根. (3)有两个不相等的实数根. (4)有两个不相等的实数根.【教师点拨】将方程化为一般形式,再用判别式进行判断. 环节2 合作探究,解决问题 【活动1】 小组讨论(师生互学) 【例1】用公式法解下列方程: (1)2x 2+1=3x ; (2)2x (x -1)-7x =2.【互动探索】(引发学生思考)用公式法解一元二次方程的步骤是怎样的? 【解答】(1)原方程整理,得2x 2-3x +1=0. 其中a =2,b =-3,c =1,则Δ=b 2-4ac =(-3)2-4×2×1=1>0. ∴x =-b ±b 2-4ac 2a =-(-3)±12×2,即x 1=12,x 2=1.(2)原方程整理,得2x 2-9x -2=0. 其中a =2,b =-9,c =-2,则Δ=b 2-4ac =(-9)2-4×2×(-2)=97>0. ∴x =-b ±b 2-4ac 2a =-(-9)±972×2,即x 1=9+974,x 2=9-974.【互动总结】(学生总结,老师点评)用公式法解一元二次方程的一般步骤:(1)把方程化为一般形式,确定a 、b 、c 的值;(2)求出Δ=b 2-4ac 的值;(3)当Δ>0时,方程有两个不相等的实数根,即x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac2a ;当Δ=0时,方程有两个相等的实数根,即x 1=x 2=-b2a;当Δ<0时,方程没有实数根.【活动2】 巩固练习(学生独学)1.方程x 2-4x +4=0的根的情况是( B ) A .有两个不相等的实数根 B .有两个相等的实数根 C .有一个实数根 D .没有实数根2.如果方程5x 2-4x =m 没有实数根,那么m 的取值范围是__m <-45__.3.用公式法解下列方程:(1)2x 2-6x -1=0; (2)2x 2-2x +1=0; (3)5x +2=3x 2.解:(1)x 1=3+112,x 2=3-112.(2)方程没有实数根. (3)x 1=2,x 2=-13.【活动3】 拓展延伸(学生对学)【例2】已知a 、b 、c 分别是三角形的三边,试判断方程(a +b )x 2+2cx +(a +b )=0的根的情况.【互动探索】(引发学生思考)三角形的三边满足什么关系?是怎样根据一元二次方程的系数判断根的情况?【解答】∵a 、b 、c 分别是三角形的三边,∴a +b >0,c +a +b >0,c -a -b <0,∴Δ=(2c )2-4(a +b )·(a +b )=4(c +a +b )(c -a -b )<0,故原方程没有实数根.【互动总结】(学生总结,老师点评)解答本题的关键是掌握三角形三边的关系,即两边之和大于第三边,以及运用根的判别式Δ=b 2-4ac 判断方程的根的情况.环节3 课堂小结,当堂达标 (学生总结,老师点评)1.一元二次方程根的情况⎩⎪⎨⎪⎧Δ>0⇔方程有两个不相等的实数根Δ=0⇔方程有两个相等的实数根Δ<0⇔方程没有实数根2.当Δ≥0时,方程ax 2+bx +c =0(a ≠0)的实数根为x =-b ±b 2-4ac2a.请完成本课时对应练习!21.2.3因式分解法(第3课时)一、基本目标【知识与技能】1.掌握用因式分解法解一元二次方程.2.能根据具体一元二次方程的特征,灵活选择方程的解法.【过程与方法】通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法——因式分解法解一元二次方程,并应用因式分解法解决一些具体问题.【情感态度与价值观】了解因式分解法是一元二次方程解法中应用较为广泛的简便方法,它避免了复杂的计算,提高了解题速度和准确程度,培养学生的应用意识和创新能力.二、重难点目标【教学重点】运用因式分解法解一元二次方程.【教学难点】选择适当的方法解一元二次方程.环节1自学提纲,生成问题【5 min阅读】阅读教材P12~P14的内容,完成下面练习.【3 min反馈】1.将下列各题因式分解:am+bm+cm=__m(a+b+c)__;a2-b2=__(a+b)(a-b)__;a2+2ab+b2=__(a+b)2__;x2+5x+6=__(x+2)(x+3)__;3x2-14x+8=__(x-4)(3x-2)__.2.按要求解下列方程:(1)2x2+x=0(用配方法);(2)3x2+6x-24=0(用公式法).解:(1)x 1=0,x 2=-12. (2)x 1=2,x 2=-4.3.对于一元二次方程,先将方程右边化为0,然后对方程左边进行因式分解,使方程化为两个一次式的乘积的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做__因式分解法__.4.如果ab =0,那么a =0或b =0,这是因式分解法的根据.即:如果(x +1)(x -1)=0,那么x +1=0或 __x -1=0__,即x =-1或__x =1__.环节2 合作探究,解决问题 【活动1】 小组讨论(师生对学) 【例1】用因式分解法解下列方程: (1)x 2-3x -10=0; (2)5x 2-2x -14=x 2-2x +34;(3)3x (2x +1)=4x +2; (4)(x -4)2=(5-2x )2.【互动探索】(引发学生思考)用因式分解法解一元二次方程的一般步骤是什么? 【解答】(1)因式分解,得(x +2)(x -5)=0. ∴x +2=0或x -5=0, ∴x 1=-2,x 2=5.(2)移项、合并同类项,得4x 2-1=0. 因式分解,得(2x +1)(2x -1)=0. ∴2x +1=0或2x -1=0, ∴x 1=-12,x 2=12.(3)原方程可变形为3x (2x +1)-2(2x +1)=0. 因式分解,得(2x +1)(3x -2)=0. ∴2x +1=0或3x -2=0, ∴x 1=-12,x 2=23.(4)移项,得(x -4)2-(5-2x )2=0. 因式分解,得(1-x )(3x -9)=0, ∴1-x =0或3x -9=0, ∴x 1=1,x 2=3.【互动总结】(学生总结,老师点评)用因式分解法解一元二次方程的步骤:(1)将一元二次方程化成一般形式,即方程右边为0;(2)将方程左边进行因式分解,将一元二次方程转化成两个一元一次方程;(3)对两个一元一次方程分别求解.【活动2】 巩固练习(学生独学) 1.解方程: (1)x 2-3x -10=0; (2)3x (x +2)=5(x +2); (3)(3x +1)2-5=0; (4)x 2-6x +9=(2-3x )2. 解:(1)x 1=5,x 2=-2. (2)x 1=-2,x 2=53.(3)x 1=-1+53,x 2=5-13.(4)x 1=-12,x 2=54.2.三角形两边的长是3和4,第三边的长是方程x 2-12x +35=0的根,求该三角形的周长.解:解x 2-12x +35=0,得x 1=5,x 2=7.∵3+4=7,∴x =5,故该三角形的周长=3+4+5=12. 【活动3】 拓展延伸(学生对学) 【例2】已知9a 2-4b 2=0,求代数式a b -b a -a 2+b 2ab的值. 【互动探索】(引发学生思考)a 、b 的值能求出来吗?a 、b 之间有怎样的关系?怎样将a 、b 的值与已知代数式联系起来.【解答】原式=a 2-b 2-a 2-b 2ab =-2ba .∵9a 2-4b 2=0, ∴(3a +2b )(3a -2b )=0, 即3a +2b =0或3a -2b =0, ∴a =-23b 或a =23b .当a =-23b 时,原式=-2b-23b =3;当a =23b 时,原式=-3.【互动总结】(学生总结,老师点评)要求a b -b a -a 2+b 2ab 的值,首先要对它进行化简,然后从已知条件入手,求出a 与b 的关系后代入,但也可以直接代入,因计算量比较大,容易发生错误.本题注意不要漏解.环节3课堂小结,当堂达标(学生总结,老师点评)用因式分解法解一元二次方程的一般步骤:先将方程一边化为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.请完成本课时对应练习!*21.2.4一元二次方程的根与系数的关系(第4课时)一、基本目标【知识与技能】掌握一元二次方程的根与系数的关系.【过程与方法】利用求根公式得到一元二次方程的根,推导出根与系数的关系,体现了数学推理的严密性与严谨性.【情感态度与价值观】通过公式的引入,培养学生寻求简便方法的探索精神及创新意识,培养学生观察思考、归纳概括的能力.二、重难点目标【教学重点】理解一元二次方程的根与系数的关系.【教学难点】利用一元二次方程根与系数的关系解决问题.环节1自学提纲,生成问题【5 min阅读】阅读教材P15~P16的内容,完成下面练习.【3 min反馈】1.解下列方程,并填写表格:方程x1x2x1+x2x1·x2x2-2x=00220x2+3x-4=0-41-3-4x2-5x+6=0235 6(1)用语言描述你发现的规律:__一元二次方程的两根之和为一次项系数的相反数;两根之积为常数项__.(2)关于x的方程x2+px+q=0的两根为x1、x2,请用式子表示x1、x2与p、q的关系:__x1+x2=-p,x1x2=q__.2.解下列方程,并填写表格:(1)用语言描述你发现的规律:__两根之和为一次项系数与二次项系数之比的相反数,两根之积为常数项与二次项系数之比__.(2)关于x 的方程ax 2+bx +c =0(a ≠0)的两根为x 1、x 2,请用式子表示x 1、x 2与a 、b 、c 的关系:__x 1+x 2=-b a ,x 1x 2=ca__.3.求下列方程的两根之和与两根之积. (1)x 2-6x -15=0; (2)5x -1=4x 2; (3)x 2=4; (4)2x 2=3x .解:(1)x 1+x 2=6,x 1x 2=-15. (2)x 1+x 2=54,x 1x 2=14.(3)x 1+x 2=0,x 1x 2=-4. (4)x 1+x 2=32,x 1x 2=0.环节2 合作探究,解决问题 【活动1】 小组讨论(师生互学)【例1】x 1、x 2是方程2x 2-3x -5=0的两个根,不解方程,求下列代数式的值: (1)x 1+x 2 ; (2)1x 1+1x 2;(3)x 21+x 22; (4)x 21+3x 22-3x 2.【互动探索】(引发学生思考)根据一元二次方程的根与系数的关系可考虑将所求代数式转化为两根之和与两根之积的关系.【解答】(1)x 1+x 2=32,(2)∵x 1x 2=-52,∴1x 1+1x 2=x 1+x 2x 1x 2=-35.(3)x 21+x 22=(x 1+x 2)2-2x 1x 2=294. (4)x 21+3x 22-3x 2=(x 21 +x 22 ) +(2x 22 -3x 2 )=1214. 【互动总结】(学生总结,老师点评)解答这类问题一般先将求值式进行变形,使其含有两根的和与两根的积,再求出方程的两根的和与两根的积,整体代入即可求解.【活动2】 巩固练习(学生独学)1.不解方程,求下列方程的两根和与两根积. (1)x 2-5x -3=0; (2)9x +2=x 2; (3)6x 2-3x +2=0; (4)3x 2+x +1=0. 解:(1)x 1+x 2=5,x 1x 2=-3. (2)x 1+x 2=9,x 1x 2=-2. (3)方程无解. (4)方程无解.2.已知方程x 2-3x +m =0的一个根为1,求另一根及m 的值. 解:另一根为2,m =2.【教师点拨】本题有两种解法:一种是根据根的定义,将x =1代入方程先求m ,再求另一个根;另一种是利用根与系数的关系解答.3.若一元二次方程x 2+ax +2=0的两根满足:x 21 +x 22 =12,求a 的值.解:a =±4.【教师点拨】由x 21 + x 22 =(x 1+x 2)2-2x 1x 2=12,再整体代入方程的两根之和与两根之积得到答案.【活动3】 拓展延伸(学生对学)【例2】已知关于x 的方程x 2-(k +1)x +14k 2+1=0,且方程两实根的积为5,求k 的值.【互动探索】(引发学生思考)一元二次方程有根的条件是什么?一元二次方程两实根的积与什么有关?【解答】∵方程两实根的积为5,∴ ⎩⎨⎧Δ=[-(k +1)]2-4⎝⎛⎭⎫14k 2+1≥0,x 1x 2=14k 2+1=5,∴k ≥32,k =±4.故当k =4时,方程两实根的积为5.【互动总结】(学生总结,老师点评)根据一元二次方程两实根满足的条件,求待定字母的值,务必要注意方程有两实根的条件,即所求的值应满足Δ≥0.环节3 课堂小结,当堂达标 (学生总结,老师点评)一元二次方程ax 2+bx +c =0(a ≠0)的两根x 1、x 2和系数的关系如下: x 1+x 2=-b a ,x 1x 2=ca.请完成本课时对应练习!。
人教版初中九年级数学上册第二十一章《一元二次方程》知识点复习(含答案解析)(1)
一、选择题1.方程22(1)10m x -+-=是关于x 的一元二次方程,则m 的取值范围是( ) A .m≠±lB .m≥-l 且m≠1C .m≥-lD .m >-1且m≠1D 解析:D【分析】根据一元二次方程的定义及二次根式有意义的条件求解可得.【详解】∵方程22(1)10m x -+-=是关于x 的一元二次方程,∴210m -≠,解得1m ≠±,10m +≥,解得:1m ≥-,∴1m >-且1m ≠,故选:D .【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.某小区2018年屋顶绿化面积为22000m ,计划2020年屋顶绿化面积要达到22880m .设该小区2018年至2020年屋顶绿化面积的年平均增长率为x ,则可列方程为( )A .2000(12)2880x +=B .2000(1)2880x ⨯+=C .220002000(1)2000(1)2880x x ++++=D .22000(1)2880x +=D解析:D【分析】一般用增长后的量=增长前的量×(1+增长率),如果设绿化面积的年平均增长率为x ,根据题意即可列出方程.【详解】解:设平均增长率为x ,根据题意可列出方程为:2000(1+x )2=2880.故选:D .【点睛】此题考查了由实际问题抽象出一元二次方程,即一元二次方程解答有关平均增长率问题.对于平均增长率问题,在理解的基础上,可归结为a (1+x )2=b (a <b );平均降低率问题,在理解的基础上,可归结为a (1-x )2=b (a >b ).3.若用配方法解方程24121x x +=,通常要在此方程两边同时加上一个“适当”的数,则下面变形恰当的是( )A .2221212412122x x ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭⎝⎭B .22241212112x x ++=+C .2412919x x ++=+D .241212112x x ++=+C解析:C【分析】 把原方程变形为2(2)621x x +⨯=,将2x 看成未知数,方程两边都加上一次项系数一半的平方即可.【详解】解:方程24121x x +=变形为2(2)621x x +⨯=, 2(2)62+91+9x x +⨯=∴2412919x x ++=+故选:C【点睛】本题考查了解一元二次方程的应用,关键是能正确配方.4.若整数a 使得关于x 的一元二次方程()2210a x -+=有两个实数根,并且使得关于y 的分式 方程32133ay y y y -+=--有整数解,则符合条件的整数a 的个数为( ) A .2B .3C .4D .5B 解析:B【分析】对于关于x 的一元二次方程()2210a x -+=有两个实数根,利用判别式的意义得到a-2≠0且2a+3≥0且△=2-4(a-2)≥0,解不等式组得到整数a 为:-1,0,1,3,4,5;接着解分式方程得到y=61a -,而y≠3,则61a -≠3,解得a≠3,从而得到当a=-1,0,4时,分式方程有整数解,然后求符合条件的所有a 的个数.【详解】解:∵整数a 使得关于x 的一元二次方程()2210a x -+=有两个实数根, ∴a-2≠0且2a+3≥0且△=2-4(a-2)≥0, ∴31122a -≤≤且a≠2, ∴整数a 为:-1,0,1,3,4,5;去分母得3-ay+3-y=-2y ,解得y=61a -,而y≠3,则61a -≠3,解得a≠3, 当a=-1,0,4时,分式方程有整数解,∴符合条件的所有a 的个数是3.故选:B .【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.5.如图,在矩形ABCD 中,AB =a (a <2),BC =2.以点D 为圆心,CD 的长为半径画弧,交AD 于点E ,交BD 于点F .下列哪条线段的长度是方程2240x ax +-=的一个根( )A .线段AE 的长B .线段BF 的长C .线段BD 的长D .线段DF 的长B解析:B【分析】 根据勾股定理求出BF ,利用求根公式解方程,比较即可.【详解】解:∵四边形ABCD 是矩形∴CD=AB=a在Rt △BCD 中,由勾股定理得,2224BD BC CD a =++∴24a a +, 解方程2240x ax +-=得2224164x a a a a -±+=±=-+ ∴线段BF 的长是方程2240x ax +-=的一个根.故选:B .【点睛】本题考查的是勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.6.已知2x 2+x ﹣1=0的两根为x 1、x 2,则x 1•x 2的值为( )A .1B .﹣1C .12D .12-D 解析:D【分析】直接利用根与系数的关系解答.【详解】解:∵2x 2+x ﹣1=0的两根为x 1、x 2,∴x 1•x 2=12=﹣12. 故选:D .【点睛】 此题主要考查了根与系数的关系,一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系为:x 1+x 2=-b a ,x 1•x 2=c a. 7.有1人患了流感,经过两轮传染后共有81人患流感,则每轮传染中平均一个人传染了( )人.A .40B .10C .9D .8D解析:D【分析】设每轮传染中平均一个人传染了x 人,则一轮传染后共有(1+x )人被传染,两轮传染后共有[(1+x )+x(1+x)]人被传染,由题意列方程计算即可.【详解】解:设每轮传染中平均一个人传染了x 人,由题意,得:(1+x )+x(1+x)=81,即x 2+2x ﹣80=0,解得:x 1=8,x 2=﹣10(不符合题意,舍去),故每轮传染中平均一个人传染了8人,故选:D .【点睛】本题考查了一元二次方程的应用,解一元二次方程,理解题意,正确列出方程是解答的关键.8.已知a 、b 、m 、n 为互不相等的实数,且(a +m )( a +n )=2,(b +m )( b +n )=2,则ab ﹣mn 的值为( )A .4B .1C .﹣2D .﹣1C 解析:C【分析】先把已知条件变形得到a 2+ (m +n ) a +mn ﹣2=0,b 2+( m +n ) b +mn ﹣2=0,则可把a 、b 看作方程x 2+( m +n ) x +mn ﹣2=0的两实数根,利用根与系数的关系得到ab =mn ﹣2,从而得到ab ﹣mn 的值.【详解】解:∵(a +m )( a +n )=2,(b +m )( b +n )=2,∴a 2+( m +n )a +mn ﹣2=0,b 2+( m +n )b +mn ﹣2=0,而a 、b 、m 、n 为互不相等的实数,∴可以把a 、b 看作方程x 2+(m +n )x +mn ﹣2=0的两个实数根,∴ab =mn ﹣2,∴ab ﹣mn =﹣2.故选:C .【点睛】本题考查一元二次方程根与系数的关系及整式的乘法,理解代数思想,把“a 、b 看作方程x 2+(m +n )x +mn ﹣2=0的两实数根”是解题关键.9.实数,m n 分别满足方程2199910m m ++=和219990n n ++=,且1mn ≠,求代数式41mn m n++的值( ) A .5-B .5C .10319-D .10319A 解析:A【分析】 由219990n n ++=可得211199910n n⋅+⋅+=,进而可得1,m n 是方程2199910x x ++=的两个根,然后根据一元二次方程的根与系数的关系可求解.【详解】 解:由219990n n ++=可得211199910n n ⋅+⋅+=, ∴1,m n是方程2199910x x ++=的两个根, ∴19911,1919m m n n +=-⋅=, ∴4119914451919mn m m m n n n ++=+⋅+=-+⨯=-; 故选A .【点睛】本题主要考查一元二次方程根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题的关键.10.若()()2222230xy x y ++--=,则22x y +的值是( ) A .3B .-1C .3或1D .3或-1A 解析:A【分析】用22a x y =+,解出关于a 的方程,取正值即为22x y +的值是.【详解】解:令22a x y =+,则(2)30a a --=,即2230a a --=,即(3)(1)0a a ,解得13a =,21a =-,又因为220a x y =+>,所以3a =故22x y +的值是3,故选:A .【点睛】本题考查解一元二次方程,掌握换元思想可以使做题简单,但需注意220a x y =+>. 二、填空题11.若关于x 的一元二次方程210(0)ax bx a +-=≠有一根为2020x =,则一元二次方程2(1)(1)1a x b x +++=必有一根为________.x=2019【分析】对于一元二次方程设t=x+1得到at2+bt=1利用at2+bt-1=0有一个根为t=2020得到x+1=2020从而可判断一元二次方程a (x-1)2+b (x-1)-1=0必有一解析:x=2019【分析】对于一元二次方程2(1)(1)1a x b x +++=,设t=x+1得到at 2+bt=1,利用at 2+bt-1=0有一个根为t=2020得到x+1=2020,从而可判断一元二次方程a (x-1)2+b (x-1)-1=0必有一根为x=2019.【详解】解:对于一元二次方程2(1)(1)1a x b x +++=,设t=x+1,所以at 2+bt=1,即at 2+bt-1=0,而关于x 的一元二次方程ax 2+bx-1=0(a≠0)有一根为x=2020,所以at 2+bt-1=0有一个根为t=2020,则x+1=2020,解得x=2019,所以2(1)(1)1a x b x +++=必有一根为x=2019.故答案为:x=2019.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12.对于任意实数a ,b ,定义:22a b a ab b =++◆.若方程()250x -=◆的两根记为m 、n ,则22m n +=______.6【分析】根据新定义可得出mn 为方程x2+2x ﹣1=0的两个根利用根与系数的关系可得出m+n=﹣2mn=﹣1将其代入m2+n2=(m+n )2﹣2mn 中即可得出结论【详解】解:∵(x ◆2)﹣5=x2+解析:6【分析】根据新定义可得出m 、n 为方程x 2+2x ﹣1=0的两个根,利用根与系数的关系可得出m+n=﹣2、mn=﹣1,将其代入m 2+n 2=(m+n )2﹣2mn 中即可得出结论.【详解】解:∵(x ◆2)﹣5=x 2+2x+4﹣5,∴m 、n 为方程x 2+2x ﹣1=0的两个根,∴m+n=﹣2,mn=﹣1,∴m 2+n 2=(m+n )2﹣2mn=6.故答案为6.【点睛】 本题考查了根与系数的关系,牢记两根之和等于﹣b a 、两根之积等于c a是解题的关键. 13.将一元二次方程(32)(1)83x x x -+=-化成一般形式是_____.【分析】先计算多项式乘以多项式并移项再合并同类项即可【详解】故答案为:【点睛】此题考查一元二次方程的一般形式掌握多项式乘以多项式合并同类项计算法则是解题的关键解析:23710x x -+=【分析】先计算多项式乘以多项式,并移项,再合并同类项即可.【详解】(32)(1)83x x x -+=-23322830x x x x +---+=23710x x -+=故答案为:23710x x -+=.【点睛】此题考查一元二次方程的一般形式,掌握多项式乘以多项式,合并同类项计算法则是解题的关键.14.一元二次方程(x +1)(x ﹣3)=3x +4化为一般形式可得_________.x2﹣5x ﹣7=0【分析】利用多项式乘多项式的法则展开再利用等式的性质进行移项合并进行计算【详解】(x +1)(x ﹣3)=3x +4x2﹣2x ﹣3=3x +4x2﹣5x ﹣7=0故答案是:x2﹣5x ﹣7=0解析:x 2﹣5x ﹣7=0 .【分析】利用多项式乘多项式的法则展开,再利用等式的性质进行移项、合并,进行计算.【详解】(x +1)(x ﹣3)=3x +4,x 2﹣2x ﹣3=3x +4,x 2﹣5x ﹣7=0.故答案是:x 2﹣5x ﹣7=0.【点睛】本题考查一元二次方程的变形,属于基础题型.15.已知()0n n ≠是一元二次方程240x mx n ++=的一个根,则m n +的值为______.【分析】根据一元二次方程的解的定义把代入得到继而可得的值【详解】∵是关于x 的一元二次方程的一个根∴即∵∴即故答案为:【点睛】本题考查了一元二次方程的解的定义因式分解的应用注意:能使一元二次方程左右两解析:4-【分析】根据一元二次方程的解的定义把x n =代入240x mx n ++=得到240n mn n ++=,继而可得m n +的值.【详解】∵n 是关于x 的一元二次方程240x mx n ++=的一个根,∴240n mn n ++=,即()40n n m ++=,∵0n ≠,∴4n m ++,即4m n +=-,故答案为:4-.【点睛】本题考查了一元二次方程的解的定义、因式分解的应用.注意:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.16.有一人患了流感,经过两轮传染后共有81人患了流感,若每轮传染中平均每个人传染的人数相同,那么第三轮过后,共有______人患有流感.729【分析】设每轮传染中平均每人传染了x 人根据经过两轮传染后共有81人患了流感可求出x 进而求出第三轮过后共有多少人感染【详解】设每轮传染中平均每个人传染的人数为x 人由题意可列得解得(舍去)即每轮传解析:729【分析】设每轮传染中平均每人传染了x 人,根据经过两轮传染后共有81人患了流感,可求出x ,进而求出第三轮过后,共有多少人感染.【详解】设每轮传染中平均每个人传染的人数为x 人,由题意可列得,()1181x x x +++=,解得18x =,210x =-(舍去),即每轮传染中平均每个人传染的人数为8人,经过三轮传染后患上流感的人数为:81881729+⨯=(人).故答案为:729.【点睛】本题考查理解题意的能力,先求出每轮传染中平均每人传染了多少人,然后求出三轮过后,共有多少人患病.17.若m 是方程210x x +-=的根,则2222018m m ++的值为__________2020【分析】根据m 是方程的根得代入求值【详解】解:∵m 是方程的根∴即原式故答案是:2020【点睛】本题考查一元二次方程的根解题的关键是掌握一元二次方程根的定义解析:2020【分析】根据m 是方程210x x +-=的根,得21m m +=,代入求值.【详解】解:∵m 是方程210x x +-=的根,∴210m m +-=,即21m m +=,原式()222018220182020m m =++=+=.故答案是:2020.【点睛】本题考查一元二次方程的根,解题的关键是掌握一元二次方程根的定义.18.已知关于x 的方程2x m =有两个相等的实数根,则m =________.0【分析】先将方程化成一般式然后再运用根的判别式求解即可【详解】解:∵关于的方程有两个相等的实数根∴关于的方程有两个相等的实数根∴△=02-4m=0解得m=0故答案为0【点睛】本题主要考查了一元二次解析:0【分析】先将方程化成一般式,然后再运用根的判别式求解即可.【详解】解:∵关于x 的方程2x m =有两个相等的实数根,∴关于x 的方程20x m -=有两个相等的实数根,∴△=02-4m=0,解得m=0.故答案为0.【点睛】本题主要考查了一元二次方程根的判别式,掌握“当△=0时,方程有两个相等的实数根”是解答本题的关键.19.“新冠肺炎”防治取得战略性成果.若有一个人患了“新冠肺炎”,经过两轮传染后共有16个人患了“新冠肺炎”,则每轮传染中平均一个人传染了______人.3【分析】设每轮传染中平均一个人传染了人则第一轮共有人患病第二轮后患病人数有人从而列方程再解方程可得答案【详解】解:设每轮传染中平均一个人传染了人则:或或经检验:不符合题意舍去取答:每轮传染中平均一解析:3【分析】设每轮传染中平均一个人传染了x 人,则第一轮共有()1x +人患病,第二轮后患病人数有()21x +人,从而列方程,再解方程可得答案.【详解】解:设每轮传染中平均一个人传染了x 人,则:()1+116,x x x ++=()2116,x ∴+=14x ∴+=或14,x +=- 3x ∴=或5,x =-经检验:5x =-不符合题意,舍去,取 3.x =答:每轮传染中平均一个人传染了3人.故答案为:3.【点睛】本题考查的是一元二次方程的应用,掌握一元二次方程的应用中的传播问题是解题的关键.20.当x=______时,−4x 2−4x+1有最大值.【分析】先根据完全平方公式将原式配方进而利用非负数的性质求出即可【详解】解:∵-4x2-4x+1=-(4x2+4x-1)=-(2x+1)2+2-(2x+1)2≤0∴当x=-时4x2-4x+1有最大值 解析:12- 【分析】先根据完全平方公式将原式配方,进而利用非负数的性质求出即可.【详解】解:∵-4x 2-4x+1=-(4x 2+4x-1)=-(2x+1)2+2,-(2x+1)2≤0,∴当x=-12时,4x 2-4x+1有最大值是2. 故答案为:-12. 【点睛】此题主要考查了配方法的应用以及非负数的性质,正确配方得出是解题关键.三、解答题21.若a 为方程2(16x =的一个正根,b 为方程22113y y -+=的一个负根,求+a b 的值.解析:a+b= 5【分析】先求出2(16x =的根4x ,由a 为方程2(16x =的一个正根,得4a =+,再求22113y y -+=的根=1y ±b 为方程22113y y -+=的一个负根,得1b =+a b 即可.【详解】2(16x -=,4x -=±,4x ,a为方程2(16x =的一个正根,4a =+,22113y y -+=,()2113y -=,1y -==1y ±b 为方程22113y y -+=的一个负根,1b =415a b +=+=.【点睛】本题考查一元二次方程的解法,会比较方程根的正负与大小,掌握一元二次方程的解法是解题关键.22.解方程:(1)x 2+10x +9=0;(2)x 2=14.解析:(1)121,9x x =-=-;(2)1222,22x x == 【分析】(1)运用因式分解法求解即可(2)运用公式法求解即可.【详解】解:(1)∵x 2+10x +9=0,∴(x +1)(x +9)=0,则x +1=0或x +9=0,解得x 1=﹣1,x 2=﹣9;(2)x 2=14整理,得:x 2﹣14=0, ∵a =1,b c =﹣14, ∴△2﹣4×1×(﹣14)=4>0,则x =22,即x 1=22,x 2=22-. 【点睛】此题考查了一元二次方程的解法,熟练掌握一元二次方程的解法是解答此题的关键. 23.某地区2018年投入教育经费2000万元,2020年投入教育经费2420万元(1)求2018年至2020年该地区投入教育经费的年平均增长率;(2)按照义务教育法规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产总值的增长情况,该地区到2022年需投入教育经费2900万元,如果按(1)中教育经费投入的增长率,到2022年该地区投入的教育经费是否能达到2900万元?请说明理由.解析:(1)10%;(2)可以,理由见解析【分析】(1)设年平均增长率是x ,列式()2200012420x +=,求出结果;(2)利用(1)中算出的增长率算出2022年的教育经费,看是否超过2900万元.【详解】解:(1)设年平均增长率是x , ()2200012420x +=1 1.1x +=±10.1x =,2 2.1x =-(舍去),答:年平均增长率是10%;(2)2022年的教育经费是()2242010.12928.2⨯+=(万元), 2928.22900>,答:教育经费可以达到2900万元.【点睛】本题考查一元二次方程的应用,解题的关键是掌握增长率问题的列式方法.24.用配方法解方程:22450x x +-=.解析:121,122x x =-+=-- 【分析】 利用完全平方公式进行配方解一元二次方程即可得.【详解】22450x x +-=,2245x x +=,2522x x +=, 252112x x ++=+, ()2712x +=,12x +=±,1x =-±,即121,122x x =-+=--. 【点睛】 本题考查了利用配方法解一元二次方程,熟练掌握配方法是解题关键.25.回答下列问题.(1(2|1-. (3)计算:102(1)-++. (4)解方程:2(1)90x +-=.解析:(13;(21+;(3)44)12x =,24x =-. 【分析】 (1)利用用二次根式的性质化成最简二次根式,再合并同类二次根式即可;(2)根据二次根式的乘除法则以及绝对值的性质计算,再合并同类二次根式即可;(3)根据零指数幂,负整数指数幂以及完全平方公式计算,再合并同类二次根式即可;(4)移项,利用直接开平方法即可求解.【详解】(13 3=+3 =;(2|11)=-1=1=;(3)102(1)-++121=+-4=-(4)2(1)90x+-=,移项得:2(1)9x+=,∴13x+=或13x+=-,12x=,24x=-.【点睛】本题考查了解一元二次方程-直接开平方法,二次根式的混合运算,掌握运算法则是解答本题的关键.26.(12.(2)解一元二次方程:x2﹣4x﹣5=0.解析:(1)2;(2)125, 1.x x==-【分析】(1)根据二次根式的混合运算法则计算即可;(2)根据因式分解的方法解方程即可.解:(1|2|3+23=2 (2)x 2﹣4x ﹣5=0,(x ﹣5)(x +1)=0,∴x ﹣5=0或x +1=0,∴x 1=5,x 2=﹣1.【点睛】本题考查二次根式的混合运算以及解一元二次方程的方法,属于基础题 。
初三数学上册(人教版)第二十一章一元二次方程21.7知识点总结含同步练习及答案
描述:例题:初三数学上册(人教版)知识点总结含同步练习题及答案第二十一章 一元二次方程 21.7 公共根(补充)一、学习任务1. 理解公共根的概念,已知几个方程有公共根会求方程的系数.二、知识清单公共根三、知识讲解1.公共根解一元二次方程公共根问题的一般步骤:① 设公共根为 ,则 同时满足这两个一元二次方程;② 用加减法消去 的项,求出公共根或公共根的有关表达式;③ 把共公根代入原方程中的任何一个方程,就可以求出字母系数的值或字母系数之间的关系式.四、课后作业m m m 2若两个关于 的方程 与 只有一个公共的实数根,求 的值.解:设方程的公共的实数根为 ,则两式相减得解得将 带入方程得 .x +x +a =0x 2+ax +1=0x 2a m {+m +a =0,m 2+am +1=0.m 2(a −1)m +1−a =0.m =1.m =1a =−2答案:1. 试求满足方程 与 有公共根的所有的 值及所有公共根和所有相异根.不妨设两个方程的公共根为 ,则有两式相减可得即当 时,两个方程均为此时有公共根 和 ,无相异实根.当 时,,两个方程为所以 的根为 ,.的根为 ,.此时公共根为 ,相异根为 和 .−kx −7=0x 2−6x −(k +1)=0x 2k x 0{−k −7=0,x 02x 0−6−(k +1)=0.x 02x 0⋯⋯①⋯⋯②(6−k )+(k +1)−7=0,x 0(6−k )(−1)=0.x 0k =6−6x −7=0,x 27−1=1x 0k =−6+6x −7=0,−6x +5=0.x 2x 2+6x −7=0x 2=−7x 1=1x 2−6x +5=0x 2=5x 1=1x 21−75答案:2. 为何值时,使得一元二次方程 , 有相同的根,并求两个方程的相同根.不妨设 是这两个方程相同的根,由方程根的定义有① ②有即所以 或 .当 时,两个方程都变为解得k +kx −1=0x 2+x +(k −2)=0x 2a {+ka −1=0,a 2+a +(k −2)=0.a 2⋯⋯①⋯⋯②−ka −1−a −(k −2)=0,(k −1)(a −1)=0.k =1a =1k =1+x −1=0.x2。
2017年人教版九年级上册数学第二十一章 一元二次方程
2017年人教版九年级数学上册第21章:一元二次方程:一、一元二次方程的概念1.只含有______个未知数,并且未知数的最高次数是__________,这样的整式方程叫做一元二次方程.2.一元二次方程的一般形式是________________.二、一元二次方程的解法1.解一元二次方程的基本思想是,主要方法有:直接开平方法、__________、公式法、__________.2.配方法:通过配方把一元二次方程ax 2+bx +c =0(a ≠0,b 2-4ac ≥0)变形为(x +ab 2)²=__________的形式,再利用直接开平方法求解. 3.公式法:一元二次方程ax 2+bx +c =0(a ≠0)当b 2-4ac ≥0时,x =____________.4.用因式分解法解方程的原理是:若a ·b =0,则a =0或__________.三、一元二次方程根的判别式1.一元二次方程根的判别式是__________. 2.(1)b 2-4ac >0⇔一元二次方程ax 2+bx +c =0(a ≠0)有两个__________实数根;(2)b 2-4ac =0⇔一元二次方程ax 2+bx +c =0(a ≠0)有两个__________实数根;(3)b 2-4ac <0⇔一元二次方程ax 2+bx +c =0(a ≠0)__________实数根.四、一元二次方程根与系数的关系1.在使用一元二次方程的根与系数的关系时,要先将一元二次方程化为一般形式.2.若一元二次方程ax 2+bx +c =0(a ≠0)的两个实数根是x 1,x 2,则x 1+x 2=__________,x 1x 2=__________.注意:(1)222121212()2x x x x x x +=+-⋅(2)22121212()()4x x x x x x -=+-⋅; 12x x -=一元二次方程的定义:1.下列方程中是关于x 的一元二次方程的是( ) A .x 2+1x 2=0 B .ax 2+bx +c =0C .(x -1)(x +2)=1 D .3x 2-2xy -5y 2=02.下列方程中,无论取何值,总是关于x 的一元二次方程的是( )A.02=++c bx axB.x x ax -=+221C.0)1()1(222=--+x a x aD.0312=-+=a x x 3.关于x 的一元二次方程(a 2—1)x 2+x —2=0是一元二次方程,则a 满足( )A. a ≠1B. a ≠—1C. a ≠±1D.为任意实数4.一元二次方程12)3)(31(2+=-+x x x 化为一般形式为:,二次项系数为:,一次项系数为:,常数项为:。
北京市北京四中九年级数学上册第二十一章《一元二次方程》测试卷(含答案解析)
一、选择题1.方程22(1)110m x m x -++-=是关于x 的一元二次方程,则m 的取值范围是( ) A .m≠±l B .m≥-l 且m≠1 C .m≥-l D .m >-1且m≠1 2.用配方法解方程2x 4x 70+-=,方程应变形为( )A .2(2)3x +=B .2 (x+2)11=C .2 (2)3?x -= D .2()211x -=3.由于疫情得到缓和,餐饮行业逐渐回暖,某地一家餐厅重新开张,开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元,若设每天的增长率为x ,则x 满足的方程是( ) A .5000(1+x )=6050 B .5000(1+2x )=6050 C .5000(1﹣x )2=6050 D .5000(1+x )2=60504.方程22x x =的解是( ) A .0x = B .2x =C .10x =,22x =D .10x =,22x =5.若整数a 使得关于x 的一元二次方程()222310a x a x -+++=有两个实数根,并且使得关于y 的分式 方程32133ay yy y -+=--有整数解,则符合条件的整数a 的个数为( ) A .2 B .3C .4D .56.在元旦庆祝活动中,参加活动的同学互赠贺卡,共送贺卡42张,则参加活动的同学有( ) A .6人 B .7人 C .8人 D .9人 7.若关于x 的一元二次方程260x x c -+=有两个相等的实数根,则常数c 的值为( ) A .3B .6C .8D .98.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为xcm ,那么x 满足的方程是( )A .x 2+65x-350=0B .x 2+130x-1400=0C .x 2-130x-1400=0D .x 2-65x-350=0 9.关于x 的一元二次方程(a -1)x²-x +a²-1=0的一个根是0,则a 的值为( ) A .1B .-1C .1或-1D .010.已知a 、b 、m 、n 为互不相等的实数,且(a +m )( a +n )=2,(b +m )( b +n )=2,则ab ﹣mn的值为( ) A .4 B .1 C .﹣2 D .﹣1 11.一元二次方程x 2=4x 的解是( )A .x=4B .x=0C .x=0或-4D .x=0或4第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案12.已知m 是方程2210x x --=的一个根,则代数式2242020m m -+的值为( ) A .2022 B .2021C .2020D .201913.已知方程2202030x x +-=的根分别为a 和b ,则代数式2a a 2020a b ++的值为( ) A .0 B .2020C .1D .-202014.若()()2222230x y xy ++--=,则22x y +的值是( )A .3B .-1C .3或1D .3或-1 15.如果2是方程x²−3x+k=0的一个根,则此方程的另一根为( )A .2B .1C .−1D .−2二、填空题16.若二次式236x -的值与2x -的值相等,则x 的值为_______. 17.方程230x -=的解为___________.18.已知关于x 的一元二次方程230x mx +=+的一个根为1,则方程的另一个根为________.19.设a ,b 是方程220190x x +-=的两个实数根,则11a b+=_____. 20.将一元二次方程x 2﹣8x ﹣5=0化成(x +a )2=b (a ,b 为常数)的形式,则b =_____.21.一元二次方程x 2=2x 的解为__________22.已知关于x 的方程2x m =有两个相等的实数根,则m =________.23.已知等腰三角形的边长是方程213360x x -+=的两个根,则这个等腰三角形的周长是______.24.当m ______时,关于x 的一元二次方程2350mx x -+=有两个不相等的实数根. 25.函数()2835my m x -=+-是一次函数,则m =______.26.已知a 、b 、c 满足227a b +=,221b c -=-,2617c a -=-,则a b c ++=_______.三、解答题27.先化简,再求值:(1﹣1a )21a a -,其中a 满足方程a 2﹣a ﹣2=0. 28.(1)计算:()21332273-+--⨯. (2)解一元二次方程:x 2﹣4x ﹣5=0.29.物美商场于今年年初以每件25元的进价购进一批商品.当商品售价为40元时,一月份销售256件.二、三月该商品十分畅销,销售量持续走高.在售价不变的基础上,三月底的销售量达到400件,设二、三这两个月月平均增长率不变. (1)求二、三这两个月的月平均增长率;(2)从四月份起,商场决定采用降价促销的方式回馈顺客,经调查发现,销售单价与月平均销售的关系如下表: 销售单价(元) 34 35 36 37 38 39 40 月平均销售量(件)430425420415410405400若要使利润达到4250元,且尽可能多的提升月平均销售量,则销售单价应定为多少元? 30.如图,在ABC 中,13AB AC ==厘米,10BC =厘米,AD BC ⊥于点D ,动点P 从点A 出发以每秒1厘米的速度在线段AD 上向终点D 运动.设动点运动时间为t 秒.(1)求AD 的长;(2)当PDC △的面积为15平方厘米时,求t 的值;(3)动点M 从点C 出发以每秒2厘米的速度在射线CB 上运动.点M 与点P 同时出发,且当点P 运动到终点D 时,点M 也停止运动.是否存在t ,使得112PMDABCS S =?若存在,请求出t 的值;若不存在,请说明理由.。
九年级数学人教版第二十一章一元二次方程整章知识(同步课本图文结合例题详解)
解:x+5=1或x-1=7,所以x1=-4,x2=8,你的看法如何?
【解析】上述解法是错误的,将 x1、x2 代入原方程等 式两边不相等,因此它们并不是原方程的解.
九年级数学上册第21章一元二次方程
1. 当常数a,b,c满足什么条件时,方程(a-1)x2-bx+c=0 是一元二次方程?这时方程的二次项系数、一次项系数、 常数项分别是什么? 【解析】当a-1≠0,即a ≠1时,方程(a-1)x2-bx+c=0 是一元二次方程,这时方程的二次项系数、一次项系数、 常数项分别是a-1,-b,c.
(2)若x=2是方程 ax2 4x 5 0 的一个根,
你能求出a的值吗? (提示:根的作用:可以使等号成立.)
九年级数学上册第21章一元二次方程
例题
【例2】关于x的方程x2-kx-6=0的一个根为x=3,则实数k的值
为( )
A.1
B . -1
C.2
D.-2
【解析】选A. 将x=3代入方程x2-kx-6=0得32-3k-6=0 ,解得
(1 x)2 100
求得方程的正整数解为 x 9.
九年级数学上册第21章一元二次方程
2.(眉山·中考)一元二次方程的解 2x2 6 0 为
.
【解析】∵一元二次方程 2x2 6 0 , ∴x2=3 ∴x= 3
∴x1= 3 ,x2= 3 答案:x1= 3 ,x2= 3 .
(3)变形得(x+2)2 = 4,所以x1=0 , x2= -4.
九年级数学上册第21章一元二次方程
跟踪训练
解下列方程:
(1)y2=0.49 (2)a2=0.5 (3)3x2 27
【解析】 (1)用直接开平方法解得 y=±0.7,所以y1=0.7, y2= -0.7
人教版九年级数学上册知识点总结:第二十一章一元二次方程
人教版九年级数学上册知识点总结第二十一章一元二次方程21.1 一元二次方程知识点一一元二次方程的定义等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。
注意一下几点:①只含有一个未知数;②未知数的最高次数是2;③是整式方程。
知识点二一元二次方程的一般形式一般形式:ax2 + bx + c = 0(a ≠0).其中,ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。
知识点三一元二次方程的根使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根。
方程的解的定义是解方程过程中验根的依据。
典型例题:1、已知关于x的方程()x21m-+(m-3)-1=0是一元二次方程,求m的值。
21.2 降次——解一元二次方程21.2.1 配方法知识点一直接开平方法解一元二次方程(1)如果方程的一边可以化成含未知数的代数式的平方,另一边是非负数,可以直接开平方。
一般地,对于形如x2=a(a≥0)的方程,根据平方根的定义可解得x1=a,x2=a-.(2)直接开平方法适用于解形如x2=p或(mx+a)2=p(m≠0)形式的方程,如果p≥0,就可以利用直接开平方法。
(3)用直接开平方法求一元二次方程的根,要正确运用平方根的性质,即正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根。
(4)直接开平方法解一元二次方程的步骤是:①移项;②使二次项系数或含有未知数的式子的平方项的系数为1;③两边直接开平方,使原方程变为两个一元二次方程;④解一元一次方程,求出原方程的根。
知识点二配方法解一元二次方程通过配成完全平方形式来解一元二次方程的方法,叫做配方法,配方的目的是降次,把一个一元二次方程转化为两个一元一次方程来解。
配方法的一般步骤可以总结为:一移、二除、三配、四开。
(1)把常数项移到等号的右边;(2)方程两边都除以二次项系数;(3)方程两边都加上一次项系数一半的平方,把左边配成完全平方式;(4)若等号右边为非负数,直接开平方求出方程的解。
九年级数学上册第二十一章一元二次方程基础知识点归纳总结(带答案)
九年级数学上册第二十一章一元二次方程基础知识点归纳总结单选题1、方程3x2+10=2x2+6根的情况是()A.有两个不相等的实数根B.有两个相等的实数根名C.没有实数根D.无法判断答案:C分析:根据一元二次方程根的判别式判断即可.原方程变形为,3x2+10−2x2−6=0,即x2+4=0,则a=1,b=0,c=4,∴Δ=b2−4ac=0−4=−4即Δ<0;故原方程没有实数根.故选C.小提示:本题考查一元二次方程根的判别式,解决本题的关键是找准方程的各系数.2、若关于x的一元二次方程ax2+2x−1=0有两个不相等的实数根,则a的取值范围是()A.a≠0B.a>−1且a≠0C.a≥−1且a≠0D.a>−1答案:B分析:根据一元二次方程的定义和根的判别式得出a≠0,Δ=22-4a×(-1)=4+4a>0,再求出即可.解:∵关于x的一元二次方程ax2+2x-1=0有两个不相等的实数根,∴a≠0,Δ=22-4a×(-1)=4+4a>0,解得:a>-1且a≠0,故选:B.小提示:本题考查了根的判别式,能熟记根的判别式的内容是解此题的关键,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0),当b2-4ac>0时,方程有两个不相等的实数根;当b2-4ac=0时,方程有两个相等的实数根;当b2-4ac<0时,方程没有实数根.3、若关于x的一元二次方程ax2+bx+5=0(a≠0)有一根为2022,则方程a(x+1)2+b(x+1)=−5必有根为()A.2022B.2020C.2019D.2021答案:D分析:设t=x+1,即a(x+1)2+b(x+1)=−5可改写为at2+bt+5=0,由题意关于x的一元二次方程ax2+bx+5=0(a≠0)有一根为x=2022,即at2+bt+5=0有一个根为t=2022,所以x+1=2022,x=2021.由a(x+1)2+b(x+1)=−5得到a(x+1)2+b(x+1)+5=0,对于一元二次方程a(x+1)2+b(x+1)=−5,设t=x+1,所以at2+bt+5=0,而关于x的一元二次方程ax2+bx+5=0(a≠0)有一根为x=2022,所以at2+bt+5=0有一个根为t=2022,则x+1=2022,解得x=2021,所以一元二次方程a(x+1)2+b(x+1)=−5有一根为x=2021.故选:D.小提示:本题考查一元二次方程的解.掌握换元法解题是解答本题的关键.4、用配方法解一元二次方程x210x+11=0,此方程可化为()A.(x-5)2=14B.(x+5)2=14C.(x-5)2=36D.(x+5)2=36答案:A分析:移项后两边都加上一次项系数一半的平方,写成完全平方式即可.x210x+11=0,x2-10x=-11,x2-10x+25=-11+25,即(x-4)2=14,故选:A.小提示:本题考查了运用配方法解一元二次方程,熟练掌握配方法是解题的关键.5、南宋数学家杨辉所著《田亩比类乘除算法》中记载:“直田积八百六十四步,只云阔与长共六十步,问阔及长各几步.”意思是:一块矩形田地的面积是864平方步,它的宽和长共60步,问它的宽和长各多少步?设它的宽为x步,则可列方程为()A.x⋅(60+x)=864B.x⋅(60−2x)=864C.x⋅(30−x)=864D.x⋅(60−x)=864答案:D分析:设它的宽为x步,则长为(60-x)步,根据面积列出方程即可得出结果.解:设它的宽为x步,则长为(60-x)步,∴x(60-x)=864,故选:D.小提示:题目主要考查一元二次方程的应用,理解题意是解题关键.6、已知x=a是一元二次方程x2−2x−3=0的解,则代数式2a2−4a的值为()A.3B.6C.﹣3D.﹣6答案:B分析:把x=a代入一元二次方程x2−2x−3=0,得a2-2a-3=0,再变形,得a2-2a=3,然后方程两边同乘以2,即可求解.解:把x=a代入一元二次方程x2−2x−3=0,得a2-2a-3=0,∴a2-2a=3,∴2a2-4a=6,故选:B.小提示:本题考查一元二次方程的解,代数式求值,熟练掌握方程的解是使方程左右两边相等的未知数值是解题的关键.7、已知关于x 的一元二次方程x 2+mx +3=0有两个实数根x 1=1,x 2=n ,则代数式(m +n )2022的值为( ) A .1B .0C .32022D .72022答案:A分析:直接利用根与系数的关系得出两根之和,进而得出答案.解:∵关于x 的一元二次方程x 2+mx +3=0有两个实数根x 1=1,x 2=n ,∴1+n =-m ,解得:m +n =-1,故(m +n )2022=1.故选:A .小提示:此题主要考查了根与系数的关系,正确得出m +n 的值是解题关键.8、设方程x 2−3x +2=0的两根分别是x 1,x 2,则x 1+x 2的值为( )A .3B .−32C .32D .−2答案:A分析:本题可利用韦达定理,求出该一元二次方程的二次项系数以及一次项系数的值,代入公式求解即可. 由x 2−3x +2=0可知,其二次项系数a =1,一次项系数b =−3,由韦达定理:x 1+x 2 =−b a =−(−3)1=3,故选:A .小提示:本题考查一元二次方程根与系数的关系,求解时可利用常规思路求解一元二次方程,也可以通过韦达定理提升解题效率.9、有一块矩形铁皮,长50cm ,宽30cm ,在它的四个角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒,要制作的无盖方盒的底面积为800cm 2.设切去的正方形的边长为x cm ,可列方程为( )A.4x2=800B.50×30−4x2=800C.(50−x)(30−x)=800D.(50−2x)(30−2x)=800答案:D分析:根据题意求得底面的长为(50−2x),宽为(30−2x),即可求解.设切去的正方形的边长为x cm,则底面的长为(50−2x),宽为(30−2x),则(50−2x)(30−2x)=800故选:D小提示:本题考查了一元二次方程的应用,根据题意列出方程是解题的关键.10、关于x的方程x2−3kx−2=0实数根的情况,下列判断正确的是()A.有两个相等实数根B.有两个不相等实数根C.没有实数根D.有一个实数根答案:B分析:根据根的判别式直接判断即可得出答案.解:对于关于x的方程x2−3kx−2=0,∵Δ=(−3k)2−4×1×(−2)=9k2+8>0,∴此方程有两个不相等的实数根.故选B.小提示:此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.填空题11、某海洋养殖场每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖场第一年的可变成本为2.6万元,第三年的养殖成本为7.146万元,设可变成本平均每年增长的百分率为x,则可列方程为_____.答案:2.6(1+x)2=7.146−4分析:根据题意可求出第三年的可变成本为(7.146-4)万元,再用x表示出第三年的可变成本,即可列出等式,即得出答案.设可变成本平均每年增长的百分率为x,则可列方程为:2.6(1+x)2=7.146−4.所以答案是:2.6(1+x)2=7.146−4.小提示:本题考查由实际问题抽象出一元二次方程.理解题意,找出等量关系,列出等式是解题关键.12、设x1,x2是关于x的方程x2−6x+k=0的两个根,且x1=2x2,则k=______.答案:8分析:根据根与系数的关系得出x1+x2=6、x1⋅x2=k,再根据x1=2x2求得x2=2,代入k的表达式,求解即可.解:x1,x2是关于x的方程x2−6x+k=0的两个根,∴x1+x2=6,x1⋅x2=k,∵x1=2x2,∴2x2+x2=3x2=6,即x2=2,则k=x1⋅x2=2(x2)2=2×4=8,所以答案是:8.小提示:此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.13、如图1,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿AB→BC→CD 向点D运动.设点P的运动路程为x,△AOP的面积为y,y与x的函数关系图象如图2所示,则AD边的长为________.答案:5分析:当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,结合图象可得△AOP面积最大为5,得到AB与BC的积为20;当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为9,得到AB与BC的和为9,构造关于AB的一元二方程可求解.解:由图象与题意知可知,当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,△AOP面积最大为5,∴12AB⋅12BC=5,即AB⋅BC=20.当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为9,∴AB+BC=9.则BC=9−AB,代入AB·BC=20,得AB2−9AB+20=0,解得AB=4或AB=5,∵AB<AD,即AB<BC,∴AB=4,BC=5,∴AD=BC=5.所以答案是:5.小提示:本题主要考查动点问题的函数图象,解题的关键是分析三角形面积随动点运动的变化过程,找到分界点极值,结合图象得到相关线段的具体数值.14、一元二次方程(x−2)(x+7)=0的根是_________.答案:x1=2,x2=−7分析:由两式相乘等于0,则这两个式子均有可能为0即可求解.解:由题意可知:x −2=0或x +7=0,∴x 1=2或x 2=−7,所以答案是:x 1=2或x 2=−7.小提示:本题考查一元二次方程的解法,属于基础题,计算细心即可.15、对于实数m ,n ,先定义一种断运算“⊗”如下:m ⊗n ={m 2+m +n ,当m ≥n 时n 2+m +n ,当m <n 时,若x ⊗(−2)=10,则实数x 的值为___.答案:3分析:根据定义,分x ≥-2和x <-2两种情况进行解方程,得出x 的值.解:当x ≥-2时,x 2+x -2=10,解得:x 1=3,x 2=-4(不合题意,舍去);当x <-2时,(-2)2+x -2=10,解得:x =8(不合题意,舍去);∴x =3.所以答案是:3.小提示:本题考查了解一元二次方程,体现了分类讨论的数学思想,分x ≥-2和x <-2两种情况进行解方程是解题的关键.解答题16、已知长方形硬纸板ABCD 的长BC 为40cm ,宽CD 为30cm ,按如图所示剪掉2个小正方形和2个小长方形(即图中阴影部分),剩余部分恰好能折成一个有盖的长方体盒子,设剪掉的小正方形边长为x cm (纸板的厚度忽略不计)(1)EF= cm,GH= cm;(用含x的代数式表示)(2)若折成的长方体盒子底面M的面积为300cm2,求剪掉的小正方形的边长.答案:(1)(30-2x);(20-x)(2)5cm分析:(1)根据所给出的图形可直接得出EF与GH即可;(2)根据(1)得到EF与GH,结合M的面积列出方程(30-2x)(20-x)=300,求出x的值即可.(1)解:由图示可得:EF=(30-2x)cm,GH=(40÷2-x)cm=(20-x)cm.故答案为(30-2x),(20-x).(2)解:设剪掉的小正方形边长为x cm,x<30由题意可得(30-2x)(20-x)=300解得:x=5或x=30(舍去).答:剪掉的小正方形的边长5cm.小提示:本题主要考查了列代数式、一元二次方程的应用等知识点,根据图示列出一元二次方程是解答本题的关键.17、解方程:(1)x2﹣4x+2=0:(2)(x﹣1)2﹣x+1=0.答案:(1)x1=2+√2,x2=2−√2(2)x1=1,x2=2分析:(1)方程利用配方法求出解即可;(2)方程利分解因式法求出解即可.(1)x2﹣4x+2=0方程整理得:x2-4x=-2,配方得:x2-4x+4=2,即(x-2)2=2,开方得:x-2=±√2解得,x1=2+√2,x2=2−√2;(2)(x﹣1)2﹣x+1=0(x﹣1)2﹣(x-1)=0(x−1)(x−2)=0x−1=0,x−2=0∴x1=1,x2=2小提示:此题考查了解一元二次方程-公式法,以及配方法,熟练掌握各自的解法是解本题的关键.18、解方程:(1)(x−1)2−9=0.(2)x2−2x−5=0.答案:(1)x1=4,x2=−2;(2)x1=1+√6,x2=1−√6.分析:(1)两边开方,即可得出两个一元一次方程,求出方程的解即可;(2)先配方,再开方,即可得出两个一元一次方程,求出方程的解即可.(1)解:(x−1)2−9=0,∴x−1=±3,解得:x1=4,x2=−2;(2)解:x2−2x−5=0,x2−2x=5,x2−2x+1=5+1,(x−1)2=6,∴x−1=±√6,∴x1=1+√6,x2=1−√6.小提示:本题考查了直接开平方法和配方法解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.。
北京市九年级数学上册第二十一章《一元二次方程》阶段测试(含答案解析)
一、选择题1.方程22(1)110m x m x -++-=是关于x 的一元二次方程,则m 的取值范围是( ) A .m≠±lB .m≥-l 且m≠1C .m≥-lD .m >-1且m≠12.27742322x -±+⨯⨯=⨯是下列哪个一元二次方程的根( ) A .22730x x ++= B .22730x x --= C .22730x x +-=D .22730x x -+= 3.下列方程属于一元二次方程的是( )A .222-=x x xB .215x x +=C .220++=ax bx cD .223x x += 4.下列方程中是一元二次方程的是( )A .210x +=B .220x -=C .21x y +=D .211x x+= 5.用配方法解方程2x 4x 70+-=,方程应变形为( )A .2(2)3x +=B .2 (x+2)11=C .2 (2)3?x -=D .2()211x -= 6.将4张长为a 、宽为b (a >b )的长方形纸片按如图的方式拼成一个边长为(a +b )的正方形,图中空白部分的面积之和为S 1,阴影部分的面积之和为S 2.若S 1=53S 2,则a ,b 满足( )A .2a =5bB .2a =3bC .a =3bD .3a =2b7.已知a ,b ,c 分别是三角形的三边长,则关于x 的方程()()220a b x cx a b ++++=根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .有且只有一个实数根D .没有实数根8.下列方程中是关于x 的一元二次方程的是( )A .210x x +=B .ax 2+bx +c =0C .(x ﹣1)(x ﹣2)=0D .3x 2+2=x 2+2(x ﹣1)29.若关于x 的一元二次方程260x x c -+=有两个相等的实数根,则常数c 的值为( ) A .3B .6C .8D .9 10.一元二次方程20x x -=的根是( ) A .10x =,21x =B .11x =,21x =-C .10x =,21x =-D .121x x == 11.关于x 的一元二次方程(a -1)x²-x +a²-1=0的一个根是0,则a 的值为( ) A .1 B .-1 C .1或-1 D .012.方程23x x =的解为( ) A .3x =B .3x =-C .10x =,23x =D .10x =,23x =- 13.下列方程是一元二次方程的是( ) A .20ax bx c ++=B .22(1)x x x -=-C .2325x x y -+=D .2210x += 14.一元二次方程(x ﹣3)2﹣4=0的解是( ) A .x =5 B .x =1 C .x 1=5,x 2=﹣5 D .x 1=1,x 2=5 15.如图,BD 为矩形ABCD 的对角线,将△BCD 沿BD 翻折得到BC D '△,BC '与边AD 交于点E .若AB =x 1,BC =2x 2,DE =3,其中x 1、x 2是关于x 的方程x 2﹣4x+m =0的两个实根,则m 的值是( )A .165B .125C .3D .2二、填空题16.已知x a =是方程2350x x --=的根,则代数式234a a -++的值为________. 17.解方程:268x x +=-解:两边同时加_________,得26x x ++________8=-+________则方程可化为(_______)2=________两边直接开平方得_____________即_________或_____________所以1x =__________,2x =___________.18.将方程2630x x +-=化为()2x h k +=的形式是______.19.若二次式236x -的值与2x -的值相等,则x 的值为_______.20.关于x 的方程()210x k x x -++=有两个相等的实数根,则k =_______. 21.写出有一个根为1的一元二次方程是______.22.若一元二次方程ax 2﹣bx ﹣2016=0有一根为x =﹣1,则a +b =_____.23.用配方法解方程x 2+4x+1=0,则方程可变形为(x+2)2=_____.24.已知x =2是关于x 一元二次方程x 2+kx ﹣6=0的一个根,则另一根是_____. 25.已知等腰三角形的边长是方程213360x x -+=的两个根,则这个等腰三角形的周长是______.26.当x=______时,−4x 2−4x+1有最大值.三、解答题27.(1)用配方法解:221470x x --=;(2)用因式分解法解:()()222332x x -=-.28.解方程:(1) 2890x x --=(2)(x+1)2=6x+629.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件.(1)若每件衬衫降价5元,则每件商品盈利________元,每天可售出________件,商场每天盈利________元;(2)若每件衬衫降价x 元,则每件商品盈利________元,每天可售出________件(用含x 的代数式表示);(3)若商场平均每天盈利2100元,每件衬衫应降价多少元?30.解方程:2x²-4x-3=0.。
人教版数学九年级上册第二十一章 —一元二次方程知识点总结及练习
一元二次方程一 、 基本概念(1)方程定义:含有未知数的等式叫方程。
(2) 方程的解:使方程左右两边相等的未知数的值叫做方程的解。
(3)解方程:求方程的解的过程叫做解方程。
(4)一元二次方程的定义只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程.一般形式为 02=++c bx ax (0≠a ).注:一元二次方程的解也叫一元二次方程的根 考察一元二次方程概念例○1:下列方程不是整式方程的是( ) A 、321=+x B 、07222=++z xy y x C 、21373+=-+x x D 、172=m ○2下列方程不是一元二次方程的是( ) A 、01262=++y y B 、m m 531212-= C 、043611012=+-p p D 、x 2+x-1=x 2○3方程013)2(=+++mx x m m 是关于x 的一元二次方程,则m 的值为( ) A 、2±=m B 、2=m C 、m =-2 D 、2±=m○4一元二次方程0352=-+-x x ,把二次项系数变为正数,且使方程的根不变的是( )A.0352=+-x xB.0352=--x xC.0352=-+x xD.0352=++x x二、一元二次方程的解法 1.直接开方法(1)用直接开平方求一元二次方程的解的方法叫做直接开平方法.如果一个一元二次方程,左边是一个含有未知数的完全平方式,右边是一个非负数,就可以用直接开平方法求解.计算:(1)2x 2-8=0 (2)9x 2-5=3(3)(x+6)2-9=0 (4)3(x-1)2=6 (5)(2x+1)2=(x-1)2 (6)(5-2x )2=9(x+3)22.配方法(1)用配方法解方程是以配方为手段,以直接开平方法为基础的一种解题方法.是中学数学中常用的数学方法.(2)配方的关键步骤是:在方程两边同时加上一次项系数的绝对值一半的平方.理论根据是:222)(2b a b ab a ±=+±(3)配方的结果是使方程的一边化为一个完全平方式,另一边为非负实数,再利用直接开平方法求解. 步骤:(1)移项;(2)化二次项系数为1;(3)方程两边都加上一次项系数的一半的平方; (4)原方程变形为(x+m )2=n 的形式;(5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.练习题1.用适当的数填空:①x 2+6x+ =(x+ )2;② x 2-5x+ =(x - )2; ③x 2+ x+ =(x+ )2;④ x 2-9x+ =(x - )2 2.将二次三项式2x 2-3x-5进行配方,其结果为_________. 3.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.4.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为_______,•所以方程的根为_________.5.若x 2+6x+m 2是一个完全平方式,则m 的值是( ) A .3 B .-3 C .±3 D .以上都不对 6.用配方法将二次三项式a 2-4a+5变形,结果是( ) A .(a-2)2+1 B .(a+2)2-1 C .(a+2)2+1 D .(a-2)2-1 7.把方程x+3=4x 配方,得( ) A .(x-2)2=7 B .(x+2)2=21 C .(x-2)2=1 D .(x+2)2=28.用配方法解方程x 2+4x=10的根为( ) A .2B .-2C .D .9.不论x 、y 为什么实数,代数式x 2+y 2+2x-4y+7的值( )A .总不小于2B .总不小于7C .可为任何实数D .可能为负数10.用配方法解下列方程:(1)3x 2-5x=2. (2)x 2+8x=9(3)x 2+12x-15=0 (4)41x 2-x-4=0(5)6x 2-7x+1=0 (6)4x 2-3x=5211.用配方法求解下列问题(1)求2x 2-7x+2的最小值 ;(2)求-3x 2+5x+1的最大值。
【初三数学】北京市九年级数学上(人教版)第21章一元二次方程测试卷(含答案解析)
人教版九年级上第二十一章一元二次方程单元测试(含答案)一、单选题1.下列方程,是一元二次方程的是()①3x2+x=20,②2x2-3xy+4=0,③x2-1x=4,④x2=0,⑤x2-3x+3=0A.①②B.①④⑤C.①③④D.①②④⑤2.将一元二次方程5x2 -1=4x化成一般形式后,二次项系数、一次项系数和常数项分别为()A.5、-1、4 B.5、4、-1 C.5、-4、-1 D.5、-1、-43.若a是方程的一个解,则的值为A.3 B.C.9 D.4.已知﹣4是关于x的一元二次方程x2+x﹣a=0的一个根,则a的值是()A.12 B.﹣20 C.20 D.﹣125.用配方法解方程x2-2x-5=0时,原方程应变形为()A.(x+1)2=6 B.(x-1)2=6C.(x+2)2=9 D.(x-2)2=96.若关于x的一元二次方程kx2-2x-1=0有两个不相等的实数根,则实数k的取值范围是()A.k>-1 B.k>-1且k≠0C.k<-1 D.k<-1或k=0 7.已知关于x的一元二次方程(x+1)2-m=0有两个实数根,则m的取值范围是()A.m≥34B.m≥2C.m≥1D.m≥08.三角形的两边长分别为3米和6米,第三边的长是方程x2﹣6x+8=0的一个根,则这个三角形的周长为()A.11 B.12 C.11或13 D.139.一元二次方程(x﹣1)(x﹣2)=0的解是()A.x=1B.x=2C.x1=1,x2=2D.x1=﹣1,x2=﹣2 10.若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是()A.x2+3x-2=0 B.x2-3x+2=0 C.x2-3x-2=0 D.x2+3x+2=011.有m支球队参加篮球比赛,共比赛了21场,每两队之间都比赛一场,则下列方程中符合题意的是()A. B.C. D.12.据调查,2011年5月兰州市的房价均价为7600元/m 2,2013年同期将达到8200元/m 2, 假设这两年兰州市房价的平均增长率为x ,根据题意,所列方程为( ) A .27600(1x%)8200+= B .27600(1x%)8200-= C .27600(1x)8200+= D .27600(1x)8200-=二、填空题13.一元二次方程25830x x -+=的一次项系数是____________,常数项是____________. 14.设m 是一元二次方程2270x x +-=的一个根,则2249m m +-=________ 15.已知1x ,2x 是关于x 的一元二次方程2210x x k ++-=的两个实数根,且22121213x x x x +-=,则k 的值为____.16.一种药品经过两次降价,药价从原来每盒60元降至到现在48.6元,设平均每次降价的百分率为x ,则列方程为_____.三、解答题17.用适当的方法解方程。
人教版九年级上册21章一元二次方程团体备课教案
(义务教育课程标准人教版)岑巩县凯本中学数学组集体备课教案九年级 数学 下册2016—2017学年度秋季学期科任教师:王照龙教学班级:九年级第二十一章一元二次方程教材内容本单元教学的主要内容:1.一元二次方程及其有关概念,一元二次方程的解法(开平方法、配方法、公式法、分解因式法),一元二次方程根与系数的关系,运用一元二次方程分析和解决实际问题.2.本单元在教材中的地位和作用:教学目标1.一分析实际问题中的等量关系并求解其中未知数为背景,认识一元二次方程及其有关概念。
2.根据化归思想,抓住“降次”这一基本策略,熟练掌握开平方法、配方法、公式法和分解因式法等一元二次方程的基本解法.3.经历分析和解决问题的过程,体会一元二次方程的教学模型作用,进一步提高在实际问题中运用方程这种重要数学工具的基本能力。
教学重点、难点重点:1.一元二次方程及其有关概念2.一元二次方程的解法(开平方法、配方法、公式法、分解因式法)3.一元二次方程根与系数的关系以及运用一元二次方程分析和解决实际问题。
难点:1.一元二次方程及其有关概念2.一元二次方程的解法(配方法、公式法、分解因式法),3.一元二次方程根与系数的关系以及灵活运用课时安排本章教学时约需课时,具体分配如下22.1 一元二次方程1课时22.2 解一元二次方程 6 课时讲解解一元二次方程的练习题 3 课时22.3 实际问题与一元二次方程 2 课时讲解实际问题与一元二次方程的练习题 2 课时复习小结 2 课时教学时间课题21.1 一元二次方程课型新授教学媒体知识技能1.理解一元二次方程概念是以未知数的个数和次数为标准的.2.掌握一元二次方程的一般形式以及三种特殊形式,能将一个一元二次方程化为一般形式3.理解二次根式的根的概念,会判断一个数是否是一个一元二次方程的根过程方法 1..通过根据实际问题列方程,向学生渗透知识来源于生活.2.通过观察,思考,交流,获得一元二次方程的概念及其一般形式和其它三种特殊形式.3.经历观察,归纳一元二次方程的概念,一元二次方程的根的概念,教学目标情感态度通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.教学重点一元二次方程的概念,一般形式和一元二次方程的根的概念教学难点通过提出问题,建立一元二次方程的数学模型, 再由一元一次方程的概念迁移到一元二次方程的概念.教学过程设计教学时间课题21.2.1配方法(1)课型新授教学媒体知识技能1.理解一元二次方程“降次”的转化思想.2.根据平方根的意义解形如x 2=p (p≥0)的一元二次方程,然后迁移到解(mx+n )2=p (p≥0)型的一元二次方程.3.把一般形式的一元二次方程(二次项系数是1,一次项系数是偶数)与左边是含有未知数的完全平方式右边是非负常数的一元二次方程对比,引入配方法,并掌握.过程方法 1.通过根据实际问题列方程,向学生渗透知识来源于生活.2.通过观察,思考,对比获得一元二次方程的解法-----直接开平方法,配方法教学目标情感态度通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.教学重点 1.运用开平方法解形如(mx+n )2=p (p≥0)的方程;领会降次──转化的数学思想.2用配方法解二次项是1,一次项系数是偶数的一元二次方程教学难点降次思想,配方法教学过程设计教学时间课题21.2.1配方法(2)课型新授教学媒体知识技能 1.进一步理解配方法和配方的目的.2.掌握运用配方法解一元二次方程的步骤.3.会利用配方法熟练灵活地解二次项系数不是1的一元二次方程.过程方法 通过对比用配方法解二次项系数是1的一元二次方程,解二次项系数不是1的一元二次方程,经历从简单到复杂的过程,对配方法全面认识.教学目标情感态度1.通过对配方法的探究活动,培养学生勇于探索的学习精神.2.感受数学的严谨性和数学结论的确定性.3.温故知新,培养学生利用旧知解决问题的能力.教学重点用配方法解一元二次方程教学难点用配方法解二次项系数不是1的一元二次方程,首先方程两边都除以二次项系数,将方程化为二次项系数是1的类型.教学过程设计教学时间课题21.2.2公式法课型新授教学媒体知识技能 1.理解一元二次方程求根公式的推导过程.2.掌握公式结构,知道使用公式前先将方程化为一般形式,通过判别式判断根的情况.3.会利用求根公式解简单数字系数的一元二次方程.过程方法 1.经历从用配方法解数字系数的一元二次方程到解字母系数的一元二次方程,探索求根公式,发展学生合情合理的推理能力,并认识到配方法是理解公式的基础.;2.通过对公式的推导,认识到一元二次方程的求根公式适用于所有的一元二次方程,操作简单.3.提高学生的运算能力,并养成良好的运算习惯.教学目标情感态度 1.感受数学的严谨性和数学结论的确定性.2.提高学生运算能力,使学生获得成功体验,建立学习信心.教学重点求根公式的推导,公式的正确使用教学难点求根公式的推导教学过程设计教学反思教学时间课题21.2.3因式分解法课型新授教学媒体知识技能1.了解因式分解法的概念.2.会用提公因式法和运用乘法公式将整理成一般形式的方程左边因式分解,根据两个因式的积等于0,必有因式为0,从而降次解方程.过程方法 1.经历探索因式分解法解一元二次方程的过程,发展学生合情合理的推理能力.2.体验解决问题方法的多样性,灵活选择解方程的方法.教学目标情感态度积极探索方程不同解法,通过交流发现最优解法,获得成功体验.教学重点会用提公因式法和运用乘法公式将整理成一般形式的方程左边因式分解,从而降次解方程教学难点将整理成一般形式的方程左边因式分解教学过程设计教学时间课题21.2.4一元二次方程的根与系数关系课型新授教学媒体知识技能 1.熟练掌握一元二次方程的根与系数关系.2.灵活运用一元二次方程的根与系数关系解决实际问题.3.提高学生综合运用基础知识分析解决较复杂问题的能力.过程方法学生经历探索,尝试发现韦达定理,感受不完全归纳验证以及演绎证明.教学目标情感态度培养学生观察,分析和综合,判断的能力,激发学生发现规律的积极性,激励学生勇于探索的精神.教学重点一元二次方程的根与系数关系教学难点对根与系数关系的理解和推导教学过程设计的值.αββα+教 学 反 思教学时间课题21.3实际问题与一元二次方程(1)课型新授教学媒体知识技能1.使学生会列出一元二次方程解应用题,初步掌握利用一元二次方程解决生活中的实际问题.2.培养学生的阅读能力.过程方法 1.通过根据实际问题列方程,向学生渗透知识来源于生活.2.通过观察,思考,交流,进一步提高逻辑思维和分析问题解决问题能力.3.经历观察,归纳列一元二次方程的一般步骤教学目标情感态度通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.教学重点建立数学模型,找等量关系,列方程教学难点找等量关系,列方程教学过程设计教学时间课题21.3实际问题与一元二次方程(2)课型新授教学媒体知识技能1.能根据以流感为问题背景,按一定传播速度逐步传播的问题;以封面设计为问题背景,○1○2边衬的宽度问题中的数量关系列出一元二次方程,体会方程刻画现实世界的模型作用.2.培养学生的阅读能力与分析能力.3.能根据具体问题的实际意义,检验结果是否合理.过程方法通过自主探究,独立思考与合作交流,使学生弄清实际问题的背景,挖掘隐藏的数量关系,把有关数量关系分析透彻,找出可以作为列方程依据的主要相等关系,正确的建立一元二次方程.教学目标情感态度在分析解决问题的过程中逐步深入地体会一元二次方程的应用价值.法制渗透《中华人民共和国传染病防治法》教学重点建立数学模型,找等量关系,列方程教学难点找等量关系,列方程教学过程设计教学反思第二十二章《一元二次方程》小结一、本章知识结构框图二、本章知识点概括1、相关概念(1)一元二次方程:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。
人教版九年级数学上册 第二十一章 一元二次方程 21.2 解一元二次方程
初中数学试卷人教版数学九年级上册 第二十一章 一元二次方程 21.2 解一元二次方程一元二次方程根与系数的关系 专题练习题一、填空题1.如果x 1、x 2是一元二次方程02x 6x 2=--的两个实数根,则x 1+x 2=_________.2.一元二次方程03x x 2=--两根的倒数和等于__________.3.关于x 的方程0q px x 2=++的根为21x ,21x 21-=+=,则p=______,q=____.4.若x 1、x 2是方程07x 5x 2=--的两根,那么_______________x x 2221=+,.________)x (x 221=-5.已知方程0k x x 2=+-的两根之比为2,则k 的值为_______.6.已知21x ,x 为方程01x 3x 2=++的两实根,则.__________20x 3x 221=+- 7.方程02x 5x 2=+-与方程06x 2x 2=++的所有实数根的和为___________.8.关于x 的方程01x 2ax 2=++的两个实数根同号,则a 的取值范围是__________.二、选择题9.已知a 、b 是关于x 的一元二次方程01nx x 2=-+的两实数根,则式子ba ab +的值是( ) A.2n 2+ B.2n 2+- C.2n 2- D.2n 2--10.以3和—2为根的一元二次方程是( )A.06x x 2=-+B.06x x 2=++C.06x x 2=--D.06x x 2=+-11.设方程0m x 5x 32=+-的两根分别为21x ,x ,且0x x 621=+,那么m 的值等于( ) A.32-B.—2C.92D.—92 12.点P (a,b )是直线y=—x+5与双曲x 6y =的一个交点,则以a,b 两数为根的一元二次方程是( ) A. 06x 5x 2=+- B. 06x 5x 2=++ C. 06x 5x 2=-- D. 06x 5x 2=-+13.已知0)2m 2()x 1(m x 2=----两根之和等于两根之积,则m 的值为( )A.1B.—1C.2D.—214.设α、β是方程02012x x 2=-+的两个实数根,则βαα++22的值为( )A .2009 B. 2010 C. 2011 D. 2012三、解答题15. 不解方程,求下列方程的两根x 1、x 2的和与积。
初三数学上册(人教版)第二十一章一元二次方程21.3知识点总结含同步练习及答案
描述:例题:初三数学上册(人教版)知识点总结含同步练习题及答案第二十一章 一元二次方程 21.3 实际问题与一元二次方程一、学习任务1. 会分析实际问题中蕴含的数量关系,列出一元二次方程来解决实际问题,并根据具体情况检验根的是否合理.2. 提高分析问题、解决问题的能力.二、知识清单一元二次方程的应用三、知识讲解1.一元二次方程的应用列方程解应用题的一般步骤:第一步:审题,弄清题意.找出等量关系;第二步:设未知数.用 表示所求的数量或有关的未知量;第三步:根据题中等量关系,列出一元二次方程;第四步:解方程,求出未知数的值;第五步:检查结果是否符合题意并写出答语.x 某商场九月份的销售额为 万元,十月份的销售额下降了 ,商场从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了 万元,求这两个月的平均增长率.解:设这两个月的平均增长率为 .由题意得整理,得解方程,得答:这两个月的平均增长率为 .20020%193.6x 200×(1−20%)(1+x =193.6.)2(1+x =1.21.)2=0.1, =−2.1(不合题意,舍去).x1x 210%某中学校园内有一长 米,宽 的长方形空地,现将其建成花园广场,设计图案如图所10080若绿化区的总面积恰好占空地面积高考不提分,赔付1万元,关注快乐学了解详情。
答案:解析:3. 据2007年5月8日《台州晚报》报导,今年"五一"黄金周我市各旅游景点共接待游客约 万人,旅游总收入约 亿元.已知我市2005年"五一"黄金周旅游总收入约 亿元,那么这两年同期旅游总收入的年平均增长率约为 A .B .C .D .C 设这两年同期旅游总收入的年平均增长率约为 ,则根据题意可得: ,解得.3349 6.25()12%16%20%25%x 6.25=9(1+x )2x =20%答案:4. 湛江市2009年平均房价为每平方米 元.连续两年增长后,2011年平均房价达到每平方米 元,设这两年平均房价年平均增长率为 ,根据题意,下面所列方程正确的是 A .B .C .D .D 40005500x ()5500=4000(1+x )25500=4000(1−x )24000=5500(1−x )24000=5500(1+x )2。
人教版九年级数学上册:第二十一章一元二次方程21.2解一元二次方程21.2.3因式分解法(有答案).docx
初中数学试卷桑水出品21.2.3因式分解法预习要点:1.先因式分解,使方程化为两个一次式的等于的形式,再使这两个一次式分别等于,从而实现降次,这种解一元二次方程的方法叫做因式分解法。
2.解一元二次方程的基本思路是:将二次方程化为一次方程,即。
3.(2016•湖州一模)方程x(x−5)=0的根是()A.x=0 B.x=5C.x1=0,x2=5 D.x1=0,x2=−54.(2016•洪泽县一模)一元二次方程x2−2x=0的解是()A.x=2 B.x1=2,x2=0C.x=0 D.x1=2,x2=15.(2016•丹棱县模拟)方程x(x−3)=5(x−3)的解的情况是()A.x=3 B.x=5C.x1=3,x2=5 D.无解6.(2008•江干区模拟)方程(x−3)2=x−3的根是.7.(2016•苏州模拟)方程x(x−2)=−(x−2)的根是.8.x2+(p+q)x+pq型的式子的特点是:二次项的系数是1;常数项是两个数的积pq;一次项是这两个数的和p+q,此类型的式子可以直接因式分解为(x+p)(x+q)。
则一元二次方程x2−4x=12的根是()A.x1=2,x2=−6 B.x1=−2,x2=6C.x1=−2,x2=−6 D.x1=2,x2=6同步小题12道一.选择题1.一元二次方程x(x−1)=0的解是()A.x=0 B.x=1 C.x=0或x=−1 D.x=0或x=12.(2016•咸阳模拟)方程x2−5x=0的解是()A.x1=x2=5 B.x1=x2=0 C.x1=0,x2=5 D.x1=−5,x2=03.(2016•沈河区一模)方程x2=3x的根是()A.3 B.−3或0 C.3或0 D.04.(2016春•招远市期中)已知一个三角形的两边长分别为3和6,第三边的长是方程(x−2)(x−4)=0的根,则这个三角形的周长为()A.13 B.11 C.13或11 D.155.方程x(x−2)+x−2=0的解为()A.x=2 B.x1=2,x2=1 C.x=−1 D.x1=2,x2=−16.(2016•天津)方程x2+x−12=0的两个根为()A.x1=−2,x2=6 B.x1=−6,x2=2 C.x1=−3,x2=4 D.x1=−4,x2=3二.填空题7.(2016•秦淮区二模)已知关于x的一元二次方程3(x−1)(x−m)=0的两个根是1和2,则m的值是.8.(2016•延平区一模)方程x(x−4)=0的解是.9.(2016•富顺县校级模拟)若等腰三角形的两边分别是一元二次方程x2−12x+32=0的两根,则等腰三角形的周长为.10.(2015•盘锦)方程(x+2)(x−3)=x+2的解是.三.解答题11.(1)(2016•山西)2(x−3)2=x2−9.(2)(2016•安徽模拟)解方程:x(x−3)=x−3.(3)x(x−1)+2(x−1)=0;12.(2016•许昌二模)小明同学在解一元二次方程时,他是这样做的:(1)小明的解法从第______步开始出现错误;此题的正确结果是______.(2)用因式分解法解方程:x(2x−1)=3(2x−1)答案:21.2.3因式分解法预习要点:1.乘积 0 02.降次3.【分析】方程利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程x(x−5)=0,可得x=0或x−5=0,解得:x1=0,x2=5.故选C4.【分析】利用因式分解法解方程.【解答】解:x(x−2)=0,x=0或x−2=0,所以x1=0,x2=2.故选B5.【分析】观察方程发现等式的左右两边都有因式x−3,所以我们把x−3看成一个整体,把等号右边的式子移到等号的左边,然后提取公因式后,可化为两式相乘为0的形式,即可求出方程的两个解.【解答】解:x(x−3)=5(x−3),x(x−3)−5(x−3)=0,(x−3)(x−5)=0,∴x−3=0或x−5=0,∴x1=3,x2=5.故选C6.【分析】把(x−3)看作整体,移项,分解因式求解.【解答】解:(x−3)2=x−3,(x−3)2−(x−3)=0,(x−3)(x−3−1)=0,∴x1=3,x2=4.7.【分析】首先移项,进而提取公因式(x−2),分解因式后解方程即可.【解答】解:x(x−2)=−(x−2),移项得:x(x−2)+(x−2)=0,∴(x−2)(x+1)=0,解得:x1=2,x2=−1.答案:x1=2,x2=−1.8.【解答】解:方程整理得:x2−4x−12=0,分解因式得:(x+2)(x−6)=0,解得:x1=−2,x2=6,故选B同步小题12道1.【分析】方程利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程x(x−1)=0,可得x=0或x−1=0,解得:x=0或x=1.故选:D2.【分析】方程利用因式分解法求出解即可.【解答】解:方程分解得:x(x−5)=0,可得x=0或x−5=0,解得:x1=0,x2=5,故选C3.【分析】先把方程化为一般式,再把方程左边因式分解得x(x−3)=0,方程就可转化为两个一元一次方程x=0或x−3=0,然后解一元一次方程即可.【解答】解:∵x2=3x,∴x2−3x=0,∴x(x−3)=0,∴x=0或x=3,故选C4.【分析】利用因式分解法解方程(x−4)(x−2)=0得到x1=4,x2=2,根据三角形三边的关系得到三角形第三边的长为4,然后计算三角形的周长.【解答】解:(x−4)(x−2)=0,x−4=0或x−2=0,所以x1=4,x2=2,因为2+3<6,所以x=2舍去,所以三角形第三边的长为4,所以三角形的周长=3+6+4=13,故选:A5.【分析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:分解因式得:(x−2)(x+1)=0,可得x−2=0或x+1=0,解得:x1=2,x2=−1.故选D6.【分析】将x2+x−12分解因式成(x+4)(x−3),解x+4=0或x−3=0即可得出结论.【解答】解:x2+x−12=(x+4)(x−3)=0,则x+4=0,或x−3=0,解得:x1=−4,x2=3.故选D7.【分析】根据已知方程即可得出m=2,得出答案为即可.【解答】解:∵3(x−1)(x−m)=0,∴x−1=0,x−m=0,∴x1=1,x2=m,∵关于x的一元二次方程3(x −1)(x−m)=0的两个根是1和2,∴m=2,答案:2.8.【分析】根据方程即可得出两个一元一次方程,求出方程的解即可.【解答】解:x(x−4)=0,x=0,x−4=0,x1=0,x2=4,答案:x1=0,x2=4.9.【分析】求出方程的解,根据三角形的三边关系定理得到等腰三角形的三边只能是4,8,8,进一步求出周长即可.【解答】解:∵一元二次方程x2−12x+32=0,∴解方程得:x1=4,x2=8,∵等腰三角形的两边分别是一元二次方程x2−12x+32=0的两根,∴若三角形的腰长为4则4+4=8,构不成三角形,故排除,∴三角形的腰长为8,底边长为4,∴三角形的周长=8+8+4=20,答案:20.10.【分析】先移项,再提取公因式,求出x的值即可.【解答】解:原式可化为(x+2)(x−3)−(x+2)=0,提取公因式得,(x+2)(x−4)=0,故x+2=0或x−4=0,解得x1=−2,x2=4.答案:x1=−2,x2=4.11.解:(1)方程变形得:2(x−3)2−(x+3)(x−3)=0,分解因式得:(x−3)(2x−6−x−3)=0,解得:x1=3,x2=9.(2)x(x−3)=x−3x(x−3)−(x−3)=0,(x−3)(x−1)=0,解得:x1=3,x2=1.(3)x(x−1)+2(x−1)=0,(x−1)(x+2)=0,x−1=0,或x+2=0,x1=1,x2=−2;12.【分析】(1)小明的解法是从第二步出现错误,方程两边不应该同时除以x,按照因式分解法步骤解方程即可;(2)提取公因式(2x−1)可得(2x−1)(x−3)=0,然后解两个一元一次方程即可.解:(1)小明的解法是从第二步出现错误,方程两边不应该同时除以x,3x2−8x(x−2)=0,x(3x−8x+16)=0,x(5x−16)=0,(2)x(2x−1)=3(2x−1),(2x−1)(x−3)=0,2x−1=0或x−3=0,。
(人教版)北京九年级数学上册第二十一章《一元二次方程》经典题(提高培优)
一、选择题1.方程()224(2)0m x x m y -+--=是关于x ,y 的二元一次方程,则m 的值为( ) A .2±B .2-C .2D .4 2.下列方程中,没有实数根的是( ) A .2670x x ++=B .25260x x --=C .22270x x -=D .2220x x -+-= 3.已知三角形的两边长分别为4和6,第三边是方程217700x x -+=的根,则此三角形的周长是( )A .10B .17C .20D .17或20 4.用配方法解下列方程时,配方错误的是( )A .x 2﹣2x ﹣99=0化为(x ﹣1)2=100B .x 2+8x+9=0化为(x+4)2=25C .2x 2﹣7x ﹣4=0化为(x ﹣74)2=8116 D .3x 2﹣4x ﹣2=0化为(x ﹣23)2=109 5.若关于x 的方程kx²+4x-1=0有实数根,则k 的取值范围是( )A .k-4且k≠0B .k≥-4C .k>-4且k≠0D .k>-46.已知一元二次方程2210x x --=的两个根分别是1x ,2x ,则2112x x x -+的值为( ).A .-1B .0C .2D .37.若x=0是关于x 的一元二次方程(a+2)x 2x+a 2+a-6=0的一个根,则a 的值是( )A .a ≠2B .a=2C .a=-3D .a=-3或a=2 8.若m 是方程220x x c --=的一个根,设2(1)p m =-,2q c =+,则p 与q 的大小关系为( )A .p <qB .p =qC .p >qD .与c 的取值有关 9.某商品经过连续两次降价,售价由原来的每件100元降到每件64元,则平均每次降价的百分率为( )A .15%B .40%C .25%D .20% 10.在元旦庆祝活动中,参加活动的同学互赠贺卡,共送贺卡42张,则参加活动的同学有( )A .6人B .7人C .8人D .9人 11.一元二次方程20x x -=的根是( ) A .10x =,21x = B .11x =,21x =-C .10x =,21x =-D .121x x == 12.用一条长40cm 的绳子怎样围成一个面积为75cm 2的矩形?设矩形的一边为x 米,根据题意,可列方程为( )A .x (40-x )=75B .x (20-x )=75C .x (x +40)=75D .x (x +20)=713.方程23x x =的解为( ) A .3x = B .3x =- C .10x =,23x = D .10x =,23x =-14.一元二次方程x 2=4x 的解是( ) A .x=4 B .x=0 C .x=0或-4D .x=0或4第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案15.不解方程,判断方程2x 2+3x ﹣4=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根二、填空题16.填空:(1)214x x ++________2(7)x =+;(2)29x x -+_______=(x-____)2 17.若二次式236x -的值与2x -的值相等,则x 的值为_______.18.一元二次方程22(1)210a x x a +++-=,有一个根为零,则a 的值为________. 19.已知实数a ,b 是方程210x x --=的两根,则11a b+的值为______. 20.有一人患了流感,经过两轮传染后共有81人患了流感,若每轮传染中平均每个人传染的人数相同,那么第三轮过后,共有______人患有流感.21.三角形两边长分别为3和5,第三边满足方程x 2-6x+8=0,则这个三角形的形状是__________.22.对于任意实数a 、b ,定义:a ◆b =a 2+ab +b 2.若方程(x ◆2)﹣5=0的两根记为m 、n ,则(m +2)(n +2)=_____.23.等腰三角形ABC 中,8BC =,AB 、AC 的长是关于x 的方程2100x x m -+=的两根,则m 的值是___.24.已知1x ,2x 是关于x 的一元二次方程260x x a -+=的两个实数根,且221212x x -=,则a =________.25.已知1x ,2x 是方程2250x x --=的两个实数根,则2212123x x x x ++=__________. 26.已知关于x 的方程28m 0x x ++=有一根为2-,则方程的另一根为______ 三、解答题27.如图,有一道长为10m 的墙,计划用总长为54m 的篱笆,靠墙围成由六个小长方形组成的矩形花圃ABCD .若花圃ABCD 面积为272m ,求AB 的长.28.已知关于x 的方程()220x mx m -+=-. (1)求证:不论m 为何值,该方程总有两个不相等的实数根;(2)若方程有一个根是2,求m 的值以及方程的另一个根.29.已知关于x 的方程()2222x kx x k +=--,当k 取何值时,此方程(1)有两个不相等的实数根;(2)没有实数根.30.某地区2018年投入教育经费2000万元,2020年投入教育经费2420万元(1)求2018年至2020年该地区投入教育经费的年平均增长率;(2)按照义务教育法规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产总值的增长情况,该地区到2022年需投入教育经费2900万元,如果按(1)中教育经费投入的增长率,到2022年该地区投入的教育经费是否能达到2900万元?请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十一章一元二次方程教材分析及相关练习一、(一)课程学习目标课标要求理解配方法,能用配方法、公式法、因式分解法解数字系数的一元二次方程;会用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等;*了解一元二次方程的根与系数的关系。
1.联系一元一次方程和函数的基本知识,继续探索实际问题中的数量关系及其变化规律,让学生进一步体会“方程是刻画现实世界的一个有效的数学模型”.2.以分析实际问题中的等量关系并求解其中的未知数为背景,认识一元二次方程及其有关概念.3.根据化归的思想,抓住“降次”这一基本策略,掌握开平方法、配方法、公式法和因式分解法等一元二次方程的基本解法.4.经历分析和解决实际问题的过程,体会一元二次方程的数学模型作用,进一步提高在实际问题中运用方程这种重要数学工具的基本能力.(2016)二、本章知识结构框图三、课时安排本章教学时间约需16课时,具体分配如下(仅供参考): 22.1一元二次方程………………(1课时) 22.2降次——解一元二次方程…(共9课时) 直接开方法…………………(1课时) 配方法………………………(1课时) 公式法………………………(2课时) 因式分解法…………………(2课时) 解法综合课…………………(1课时) 一元二次方程根的判别式……(2课时) 22.3实际问题与一元二次方程…(4课时)数学活动与小结………………………………(2课时) 四、教学建议(一)联系已有的相关知识,如一次方程、方程组,以及函数知识,以求进一步提高学生整体应用数学建模思想的意识和能力.一元二次方程的解法中,渗透“降次”的转化思想,体会不同解法的优缺点与相互的联系,培养学生灵活解一元二次方程的能力与扎实的运算功底.对实际问题的探索不要以繁、难、偏、旧的问题作为学生探究性学习的题材.(二)对于“一元二次方程根的判别式”,教材没有明确给出概念,而是以归纳的形式引导学生探究一元二次方程根的个数与24b ac -的关系;为了教学方便,可以介绍判别式的概念,适当添加习题,使学生理解一元二次方程根的存在情况与系数的关系.(三)对于“一元二次方程根与系数的关系(韦达定理)”,为了后续学习(包括初、高中函数的学习)的方便,可根据学生情况,在教学中安排1~2课时,组织学生进行这方面的简单探究活动。
五、教学中应注意的问题 本章教学重点、难点1.本部分教材的重点是一元二次方程的解法2.一元二次方程的应用是本章的一个难点3.培养学生注意观察一元二次方程的结构特征,正确地选用适当方法解一元二次方程是本章的一个重点,也是一个难点. (一)、一元二次方程的概念1.理解并掌握一元二次方程的意义未知数个数为1,未知数的最高次数为2,整式方程,可化为一般形式; 2.正确识别一元二次方程中的各项及各项的系数(1)让学生明确只有当二次项系数0≠a 时,整式方程02=++c bx ax 才是一元二次方程。
(2)各项的确定(包括各项的系数及各项的未知数). (3)让学生熟练整理方程的过程3.一元二次方程的解的定义与检验一元二次方程的解 4.列出实际问题的一元二次方程 (二)、一元二次方程的解法1.让学生明确一元二次方程是以降次为目的,以配方法、开平方法、公式法、因式分解法等方法为手段,从而把一元二次方程转化为一元一次方程求解;2.要让学生能观察方程系数的特点,熟练地选用配方法、开平方法、公式法、因式分解法等方法解一元二次方程;3.引导学生体会不同解法的相互的联系; 4.值得注意的几个问题:(1)开平方法:对于形如n x =2或)0()(2≠=+a n b ax 的一元二次方程,即一元二次方程的一边是含有未知数的一次式的平方,而另一边是一个非负数,可用开平方法求解. 形如n x =2的方程的解法: 当0>n 时,n x ±=; 当0=n 时,021==x x ; 当0<n 时,方程无实数根。
(2)配方法:通过配方的方法把一元二次方程转化为n m x =+2)(的方程,再运用开平方法求解。
配方法的一般步骤:(不同解题顺序的对比和思考,理解其合理性)①移项:把一元二次方程中含有未知数的项移到方程的左边,常数项移到方程的右边; ②“系数化1”:根据等式的性质把二次项的系数化为1; ③配方:将方程两边分别加上一次项系数一半的平方,把方程变形为n m x =+2)(的形式; ④求解:若0≥n 时,方程的解为n m x ±-=,若0<n 时,方程无实数解。
(3)公式法:一元二次方程)0(02≠=++a c bx ax 的根aac b b x 242-±-=当042>-ac b 时,方程有两个实数根,且这两个实数根不相等;当042=-ac b 时,方程有两个实数根,且这两个实数根相等,写为ab x x 221-==; 当042<-ac b 时,方程无实数根.公式法的一般步骤:①把一元二次方程化为一般式;②确定c b a ,,的值;③代入ac b 42-中计算其值,判断方程是否有实数根;④若042≥-ac b 代入求根公式求值,否则,原方程无实数根。
(因为这样可以减少计算量。
另外,求根公式对于任何一个一元二次方程都适用,其中也包括不完全的一元二次方程。
) (4)因式分解法:(复习十字相乘法)①因式分解法解一元二次方程的依据:如果两个因式的积等于0,那么这两个因式至少有一个为0,即:若0=ab ,则00==b a 或;②因式分解法的一般步骤:将方程化为一元二次方程的一般形式;把方程的左边分解为两个一次因式的积,右边等于0;令每一个因式都为零,得到两个一元一次方程;解出这两个一元一次方程的解可得到原方程的两个解。
(5)选用适当方法解一元二次方程①对于无理系数的一元二次方程,可选用因式分解法,较之别的方法可能要简便的多,只不过应注意二次根式的化简问题。
②方程若含有未知数的因式,选用因式分解较简便,若整理为一般式再解就较为麻烦。
(6)解含有字母系数的方程(1)含有字母系数的方程,注意讨论含未知数最高项系数,以确定方程的类型;(2)对于字母系数的一元二次方程一般用因式分解法解,不能用因式分解的可选用别的方法,此时一定嘱咐学生不要忘记对字母的取值进行讨论。
(三)、根的判别式1.让学生了解一元二次方程根的判别式概念,能用判别式判定根的情况,并会用判别式求一元二次方程中符合题意的参数取值范围。
(1)∆=ac b 42-(2)根的判别式定理及其逆定理:对于一元二次方程02=++c bx ax (0≠a )①当⎩⎨⎧≥∆≠时00a ⇔方程有实数根;(当⎩⎨⎧>∆≠时00a ⇔方程有两个不相等的实数根;当⎩⎨⎧=∆≠时00a ⇔方程有两个相等的实数根;) ②当⎩⎨⎧<∆≠时00a ⇔方程无实数根;从左到右为根的判别式定理;从右到左为根的判别式逆定理。
2.常见的问题类型(1)利用根的判别式定理,不解方程,判别一元二次方程根的情况(2)已知方程中根的情况,如何由根的判别式的逆定理确定参数的取值范围 (3)应用判别式,证明一元二次方程根的情况 ①先计算出判别式(关键步骤); ②用配方法将判别式恒等变形; ③判断判别式的符号; ④总结出结论.例:求证:方程0)4(2)1(222=++-+a ax x a 无实数根。
(4)分类讨论思想的应用:如果方程给出的时未指明是二次方程,后面也未指明两个根,那一定要对方程进行分类讨论,如果二次系数为0,方程有可能是一元一次方程;如果二次项系数不为0,一元二次方程可能会有两个实数根或无实数根。
(5)一元二次方程根的判别式常结合三角形、四边形、不等式(组)等知识综合命题,解答时要在全面分析的前提下,注意合理运用代数式的变形技巧 (6)一元二次方程根的判别式与整数解的综合 (7)判别一次函数与反比例函数图象的交点问题 (四)、一元二次方程的应用1.数字问题:解答这类问题要能正确地用代数式表示出多位数,奇偶数,连续整数等形式。
2.几何问题:这类问题要结合几何图形的性质、特征、定理或法则来寻找等量关系,构建方程,对结果要结合几何知识检验。
3.增长率问题(下降率):在此类问题中,一般有变化前的基数(a ),增长率(x ),变化的次数(n ),变化后的基数(b ),这四者之间的关系可以用公式b x a n =+)1(表示。
4.其它实际问题(都要注意检验解的实际意义,若不符合实际意义,则舍去)。
(五)新题型与代几综合题(1)有100米长的篱笆材料,想围成一矩形仓库,要求面积不小于600平方米,在场地的北面有一堵50米的旧墙,有人用这个篱笆围成一个长40米、宽10米的仓库,但面积只有400平方米,不合要求,问应如何设计矩形的长与宽才能符合要求呢?(2)读诗词解题(列出方程,并估算出周瑜去世时的年龄):大江东去浪淘尽,千古风流数人物,而立之年督东吴,英年早逝两位数,十位恰小个位三,个位平方与寿符,哪位学子算得准,多少年华属周瑜?(36岁)(3)已知:c b a ,,分别是ABC ∆的三边长,当0>m 时,关于x 的一元二次方程02)()(22=--++ax m m x b m x c 有两个相等的实数根,求证:ABC ∆是直角三角形。
(4)已知:c b a ,,分别是ABC ∆的三边长,求证:方程0)(222222=+-++c x a c b x b 没有实数根。
(5)当m 是什么整数时,关于x 的一元二次方程0442=+-x mx 与0544422=--+-m m mx x 的根都是整数?(1=m )(6)已知关于x 的方程02212222=-+-++mx x m x x ,其中m 为实数,(1)当m 为何值时,方程没有实数根?(2)当m 为何值时,方程恰有三个互不相等的实数根?求出这三个实数根。
答案:(1)2-<m (2)21,1±--=x .(六)相关练习(一) 一元二次方程的概念1.一元二次方程的项与各项系数把下列方程化为一元二次方程的一般形式,再写出二次项,一次项,常数项:(1)x x 3252=- )2,3,5(2--x x(2)015622=--x x )2,15,6(2-x x (3)5)2(7)1(3-+=+y y y )9,4,3(2--y y (4) m m m m m m 57)2())((2-=-+-+ )3,0,2(2-m (5)22)3(4)15(-=-a a )5,2,3(2-a a 2.应用一元二次方程的定义求待定系数或其它字母的值(1)m 为何值时,关于x 的方程m x m x m m 4)3()2(2=+--是一元二次方程。
(2-=m )(2)若分式01872=---x x x ,则=x (8=x )3.由方程的根的定义求字母或代数式值(1)关于x 的一元二次方程01)1(22=-++-a x x a 有一个根为0,则=a (1-=a ) (2)已知关于x 的一元二次方程)0(02≠=++a c bx ax 有一个根为1,一个根为1-,则=++c b a ,=+-c b a (0,0)(3)已知c 为实数,并且关于x 的一元二次方程032=+-c x x 的一个根的相反数是方程032=-+c x x 的一个根,求方程032=-+c x x 的根及c 的值。