苏教版数学高一必修5 1.1正弦定理 学案(2)
苏教版数学必修五同步讲义:1.1正弦定理(2)
1.1 正弦定理(2)1.了解正弦定理及其变式的结构特征和功能.2.理解三角形面积公式及解斜三角形.3.掌握把实际问题转化成解三角形问题., [学生用书P3])1.三角形中常用的结论 (1)A +B =π-C ,A +B 2=π2-C2.(2)在三角形中,大边对大角,反之亦然.(3)任意两边之和大于第三边,任意两边之差小于第三边. 2.三角形面积公式(1)S =12ah a =12bh b =12ch c (h a ,h b ,h c 分别表示a ,b ,c 边上的高).(2)S =12ab sin C =12bc sin A =12ac sin B .1.在△ABC 中,A =30°,AB =2,BC =1,则△ABC 的面积为________. 解析:由BC sin A =ABsin C ,知sin C =1,则C =90°,所以B =60°,从而S △ABC =12AB ·BC ·sin B =32.★答案★:322.若△ABC 中,cos A =13,cos B =14,则cos C =________.解析:由cos A =13得sin A =223;由cos B =14得sin B =154.所以cos C =cos[π-(A +B )]=-cos(A +B )=-()cos A cos B -sin A sin B=-⎝⎛⎭⎫13×14-223×154=230-112.★答案★:230-1123.若△ABC 的面积为3,BC =2,C =60°,则边AB 的长度等于________. 解析:由于S △ABC =3,BC =2,C =60°, 所以3=12×2·AC ·32,所以AC =2,所以△ABC 为正三角形, 所以AB =2. ★答案★:2三角形面积公式的应用[学生用书P4]在△ABC 中,已知B =30°,AB =23,AC =2.求△ABC 的面积. 【解】 由正弦定理,得sin C =AB ·sin B AC =32,又AB ·sin B <AC <AB ,故该三角形有两解:C =60°或120°,所以当C =60°时,A =90°, S △ABC =12AB ·AC =23;当C =120°时,A =30°, S △ABC =12AB ·AC ·sin A = 3.所以△ABC 的面积为23或 3.把本例中的B =30°改为B =45°,AB =2 3 改为AB =3,其他条件不变,求△ABC 的面积.解:由正弦定理c sin C =bsin B ,得AB sin C =AC sin B ,则sin C =64, 又AC >AB ,故该三角形有一解,且C 为锐角,cos C =104,由sin A =sin[π-(B +C )]=sin(B +C )=sin B cos C +cos B sin C =22×104+22×64=5+34,则S △ABC =12AB ·AC ·sin A =12×3×2×5+34=3+154.三角形的面积公式是在解三角形中经常用到的一个公式,其应用关键是根据题目条件选择合适的两边及其夹角.1.在△ABC 中,a =2,A =30°,C =45°,则△ABC 的面积S △ABC 等于________.解析:b =a sin B sin A =2×sin 105°sin 30°=6+2,所以S △ABC =12ab sin C =(6+2)×22=3+1.★答案★:3+1正弦定理在几何图形中的运用[学生用书P4]如图所示,D 是直角三角形ABC 的斜边BC 上的一点,且AB =AD ,记∠CAD=α,∠ABC =β.(1)求证:sin α+cos 2β=0; (2)若AC =3DC ,求β的值.【解】 (1)证明:因为AB =AD ,所以∠ADB =∠ABD =β.又因为α=π2-∠BAD =π2-(π-2β)=2β-π2,所以sin α=sin ⎝⎛⎭⎫2β-π2=-cos 2β, 即sin α+cos 2β=0.(2)在△ADC 中,由正弦定理得DC sin α=ACsin ∠ADC, 即DC sin α=ACsin (π-β), 即DC sin α=3DCsin β,所以sin β=3sin α. 由(1)知sin α=-cos 2β,所以sin β=-3cos 2β=-3(1-2sin 2β), 即23sin 2β-sin β-3=0. 解得sin β=32或-33.因为0<β<π2,所以sin β=32,所以β=π3.(1)先找出α与β之间的关系,再取正弦即得要证明的结论.(2)利用正弦定理先找出三角函数之间的关系,再利用(1)的结论将其化简,最后求得sin β的值,从而求出角β.2.如图,正方形ABCD 的边长为1,延长BA 至E ,使AE =1,连结EC ,ED ,则sin ∠CED =________.解析:由题意得EB =EA +AB =2,则在Rt △EBC 中,EC =EB 2+BC 2=4+1= 5.在△EDC 中,∠EDC =∠EDA +∠ADC =π4+π2=3π4,由正弦定理得sin ∠CED sin ∠EDC =DC EC =15=55, 所以sin ∠CED =55·sin ∠EDC =55·sin 3π4=1010. ★答案★:1010正弦定理的实际应用[学生用书P5]为了求底部不能到达的水塔AB 的高,如图,在地面上引一条基线CD =a ,这条基线延长后不过塔底,若测得∠ACB =α,∠BCD =β,∠BDC =γ,求水塔AB 的高.【解】 在△BCD 中,BC sin γ=a sin ∠CBD =asin (β+γ),所以BC =a sin γsin (β+γ),在Rt △ABC 中,AB =BC ·tan α=a sin γ·tan αsin (β+γ).根据具体问题画出符合题意的示意图,把角、距离在示意图中表示出来,借助图形审题.在三角形中,利用正弦定理解决问题.3.在埃及,有许多金字塔,经过几千年的风化蚀食,有不少已经损坏了.考古人员在研究中测得一座金字塔的三角形横截面如图所示(顶部已经坍塌了),A =50°,B =55°,AB =120 m ,则此金字塔的高约为________米.(sin 50°≈0.766,sin 55°≈0.819,精确到1米)解析:先分别从A ,B 出发延长断边,确定交点C , 则C =180°-A -B =75°,AC =AB sin C ·sin B =120sin 75°×sin 55°≈101.7.设高为h ,则h =AC ·sin A =101.7×sin 50°≈78米.★答案★:781.三角形中的诱导公式sin(A +B )=sin C ,cos(A +B )=-cos C , tan(A +B )=-tan C ,sin A +B 2=cos C2,cos A +B 2=sin C2.2.三角形中边角转化的等价关系 a >b >c ⇔A >B >C ⇔sin A >sin B >sin C . 3.三角形面积公式S =12(a +b +c )r (r 为三角形内切圆半径).在△ABC 中,若C =3B ,求cb 的取值范围.[解] 由正弦定理可知c b =sin 3B sin B =sin B cos 2B +cos B sin 2B sin B =cos 2B +2cos 2B =4cos 2B -1.又因为A +B +C =180°,C =3B , 所以0°<B <45°,22<cos B <1, 所以1<4cos 2B -1<3, 故1<c b<3.即cb的取值范围是(1,3).(1)错因:在解决有关三角形问题时,经常因忽视三角形中的隐含条件而出现解题错误.本题隐含条件0°<4B<180°,即0°<B<45°.(2)防范:①注意隐含条件,记住三角形中的常用结论,理清三角形中基本量的关系,②将要求最值或取值范围的量表示成某一变量的函数(三角函数),从而转化为求函数的值域或最值的问题.1.在△ABC中,B=60°,b=76,a=14,则A=________.解析:由正弦定理得sin A=2 2,所以A=45°或135°,又B=60°,b>a,所以B>A,即A<60°,故A=45°.★答案★:45°2.如图,点A,B,C是圆O上的点,且AB=4,∠ACB=45°,则圆O的面积等于________.解析:因为2R=4sin 45°=42,所以R=2 2.所以S=πR2=8π.★答案★:8π3.在△ABC中,a=2b cos C,则△ABC的形状为________三角形.解析:由已知,可得2R sin A=2·2R sin B·cos C,即sin(B+C)=2sin B cos C,所以sin B cos C-cos B sin C=0,sin(B-C)=0,所以B=C,即△ABC为等腰三角形.★答案★:等腰,[学生用书P71(单独成册)])[A 基础达标]1.在△ABC 中,A ∶B ∶C =4∶1∶1,则a ∶b ∶c 等于________. 解析:由条件知A =2π3,B =C =π6,a ∶b ∶c =sin A ∶sin B ∶sin C =3∶1∶1.★答案★:3∶1∶12.在△ABC 中,已知B =45°,c =22,b =433,则A 的值是________.解析:由正弦定理,得sin C =32,从而C =60°或120°,故A =15°或75°. ★答案★:15°或75°3.在△ABC 中,c b =cos Ccos B ,则此三角形为________三角形.解析:由正弦定理得c b =sin Csin B ,所以sin C sin B =cos C cos B.所以sin B cos C -sin C cos B =0. 所以sin(B -C )=0. 所以B =C .所以△ABC 为等腰三角形. ★答案★:等腰4.△ABC 中,a ,b ,c 分别是内角A ,B ,C 所对的边,且cos 2B +3cos(A +C )+2=0,b =3,则c ∶sin C 等于________.解析:由题意得cos 2B -3cos B +2=0, 即2cos 2B -3cos B +1=0,解得cos B =12或cos B =1(舍去),所以sin B =32,由正弦定理得c sin C =b sin B =332=2. ★答案★:25.如图,△ABC 是半径为R 的⊙O 的内接正三角形,则△ABC 的边长为________,△OBC 的外接圆半径为________.解析:因为ABsin 60°=2R ,所以AB =3R .设△OBC 外接圆半径为x ,BC sin 120°=2x ,x =3R2·32=R .★答案★:3R R6.在△ABC 中,若a =c sin A ,sin C =2sin A sin B ,则△ABC 的形状为________三角形. 解析:由已知,2R sin A =2R sin C sin A , 因为sin A ≠0,所以sin C =1,C =90°,又sin C =2sin A sin B =2sin A cos A , 所以sin 2A =1,2A =90°,A =45°, 即△ABC 为等腰直角三角形. ★答案★:等腰直角7.海上A ,B 两个小岛相距10海里,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,则B 、C 间的距离是________.解析:如图,在△ABC 中,C =180°-(B +A )=45°,由正弦定理,可得BC sin 60°=ABsin 45°,所以BC =32×10=56(海里). ★答案★:5 6 海里8.在△ABC 中,sin A =34,a =10,则边长c 的取值范围是________.解析:因为c sin C =a sin A =403,所以c =403sin C .所以0<c ≤403.★答案★:⎝⎛⎦⎤0,403 9.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知b c =233,A +3C =π.(1)求cos C 的值;(2)若b =33,求△ABC 的面积.解:(1)因为A +B +C =π,A +3C =π, 所以B =2C .又由正弦定理b sin B =csin C ,得b c =sin B sin C ,233=2sin C cos C sin C,化简得,cos C =33. (2)由(1)知B =2C ,所以cos B =cos 2C =2cos 2C -1=2×13-1=-13.又因为C ∈(0,π), 所以sin C =1-cos 2C =1-13=63. 所以sin B =sin 2C =2sin C cos C =2×63×33=223. 因为A +B +C =π.所以sin A =sin(B +C )=sin B cos C +cos B sin C =223×33+⎝⎛⎭⎫-13×63=69. 因为b c =233,b =33,所以c =92.所以△ABC 的面积S =12bc sin A =12×33×92×69=924.10.在△ABC 中,已知2B =A +C ,b =1,求a +c 的范围.解:由已知,B =60°,b =1, 所以△ABC 外接圆半径R =12sin 60°=33.a +c =2R (sin A +sin C ) =2R [sin A +sin(120°-A )] =2×33×3sin(A +30°) =2sin(A +30°). 因为0°<A <120°,所以a +c 的取值范围为(1,2].[B 能力提升]1.已知锐角三角形ABC 中,边a ,b 是方程x 2-23x +2=0的两根,角A 、B 满足2sin(A +B )-3=0,则△ABC 的面积=______.解析:因为a ,b 是方程x 2-23x +2=0的两根,根据根与系数的关系得ab =2,由2sin(A +B )-3=0得sin(A +B )=32.因为△ABC 为锐角三角形,所以A +B =120°,C =60°.所以S △ABC =12ab sin C =12×2sin 60°=32.★答案★:322.如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD =________m.解析:由题意,在△ABC 中,∠BAC =30°,∠ABC =180°-75°=105°,故∠ACB =45°.又AB =600 m ,故由正弦定理得600sin 45°=BCsin 30°,解得BC =300 2 m.在Rt △BCD 中,CD =BC ·tan 30°=3002×33=1006(m). ★答案★:100 63.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,c cos A =b ,则△ABC 的形状为________.解析:因为c cos A =b , 所以sin C cos A =sin B .而sin B =sin(A +C )=sin A cos C +cos A sin C , 所以sin A cos C =0.因为0°<A <180°,所以sin A >0, 所以cos C =0,且0°<C <180°.所以C =90°,即△ABC 是角C 为直角的直角三角形. ★答案★:直角三角形4. (选做题)为保障高考的公平性,高考时每个考点都要安装手机屏蔽仪,要求在考点周围1 km 处不能收到手机信号,检查员抽查青岛市一考点,在考点正西约 3 km 有一条北偏东60°方向的公路,在此处检查员用手机接通电话,以每小时12 km 的速度沿公路行驶,问最长需要多少分钟,检查员开始收不到信号,并至少持续多少时间该考点才算合格?解:如图,考点为A ,检查开始处为B ,设公路上C 、D 两点到考点的距离为1 km.在△ABC 中,AB =3,AC =1,∠ABC =30°, 由正弦定理,得sin ∠ACB =sin 30°AC ·AB =32, 所以∠ACB =120°(∠ACB =60°不合题意),所以∠BAC =30°,所以BC =AC =1, 在△ACD 中,AC =AD ,∠ACD =60°, 所以△ACD 为等边三角形,所以CD =1. 因为BC12×60=5(min),所以在BC 上需5 min ,CD 上需5 min.最长需要5 min 检查员开始收不到信号,并至少持续5 min 才算合格.。
2018版高中数学苏教版必修5学案:1.1 正弦定理(二)
[学习目标] 1.熟记并能应用正弦定理的有关变形公式解决三角形中的问题.2.能根据条件,判断三角形解的个数.3.能利用正弦定理、三角变换、三角形面积公式解决较为复杂的三角形问题.4.能应用正弦定理解决简单的实际问题.知识点一 对三角形解的个数的判断已知三角形的两角和任意一边,求另两边和另一角,此时有唯一解,三角形被唯一确定.已知两边和其中一边的对角,求其他的边和角,此时可能出现一解、两解或无解的情况,三角形不能被唯一确定,现以已知a 、b 和A 解三角形为例,从两个角度予以说明: (1)代数角度由正弦定理得sin B =b sin A a,①若b sin A a >1,则满足条件的三角形个数为0,即无解.②若b sin A a =1,则满足条件的三角形个数为1,即一解.③若b sin A a <1,则满足条件的三角形个数为1或2.(2)几何角度知识点二 三角形面积公式 任意三角形的面积公式:(1)S △ABC =12bc sin A =12ac sin B =12ab sin C ,即任意三角形的面积等于任意两边与它们夹角的正弦的乘积的一半.(2)S △ABC =12ah ,其中a 为△ABC 的一边长,而h 为该边上的高的长.(3)S △ABC =12r (a +b +c )=12rl ,其中r ,l 分别为△ABC 的内切圆半径及△ABC 的周长.(4)S △ABC =p (p -a )(p -b )(p -c )(其中p =a +b +c2).题型一 三角形解的个数的判断例1 已知下列各三角形中的两边及其一边的对角,判断三角形是否有解,有解的作出解答. (1)a =10,b =20,A =80°; (2)a =23,b =6,A =30°.解 (1)a =10,b =20,a <b ,A =80°<90°, 讨论如下:∵b sin A =20sin 80°>20sin 60°=103, ∴a <b sin A ,∴本题无解.(2)a =23,b =6,a <b ,A =30°<90°,∵b sin A =6sin 30°=3,a >b sin A , ∴b sin A <a <b ,∴本题有两解.由正弦定理得sin B =b sin A a =6sin 30°23=32,又∵B ∈(0,π),∴B 1=60°,B 2=120°.当B 1=60°时,C 1=90°,c 1=a sin C 1sin A =23sin 90°sin 30°=43;当B 2=120°时,C 2=30°,c 2=a sin C 2sin A =23sin 30°sin 30°=2 3. ∴B 1=60°时,C 1=90°,c 1=43;B 2=120°时,C 2=30°,c 2=2 3.反思与感悟 已知三角形两边和其中一边的对角时,利用正弦定理求出另一边对角的正弦值后,需利用三角形中“大边对大角”来判断此角是锐角、直角还是钝角,从而确定三角形有两解还是只有一解.也可以用几何法来判断,即比较已知角的对边与另一边和该角正弦值乘积的大小来确定解的个数.跟踪训练1 (1)满足a =4,b =3,A =45°的△ABC 的个数为 .(2)△ABC 中,a =x ,b =2,B =45°.若该三角形有两解,则x 的取值范围是 . 答案 (1)1 (2)2<x <2 2解析 (1)因为A =45°<90°,a =4>3=b ,所以△ABC 的个数为1个. (2)由a sin B <b <a ,得22x <2<x ,∴2<x <2 2. 题型二 三角形的面积例2 在△ABC 中,若a =2,C =π4,cos B 2=255,求△ABC 的面积S .解 ∵cos B 2=255,∴cos B =2cos 2B 2-1=35.∴B ∈(0,π2),∴sin B =45.∵C =π4,∴sin A =sin(B +C )=sin B cos C +cos B sin C =7210.∵a sin A =c sin C ,∴c =a sin C sin A =27210×22=107. ∴S =12ac sin B =12×2×107×45=87.反思与感悟 求三角形的面积关键在于选择适当的公式,因此,要认真分析题中的条件,结合正弦定理,同时注意三角形内角和定理及三角恒等变换等知识的应用.跟踪训练2 (1)在△ABC 中,若a =32,cos C =13,S △ABC =43,则b = .(2)在△ABC 中,AB =3,AC =1,B =30°,则△ABC 的面积等于 . 答案 (1)23 (2)32或34解析 (1)∵cos C =13,∴C ∈(0,π2),∴sin C =1-(13)2=223,又S △ABC =12ab sin C =12·32·b ·223=43,∴b =2 3.(2)由正弦定理得sin C =AB ·sin B AC =3×121=32,又∵C ∈(0,π),∴C =60°或120°,∴A =90°或30°, ∴S △ABC =12AB ·AC ·sin A =32或34.题型三 正弦定理在生活中的应用例3 一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔64海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为 海里/时. 答案 8 6 解析 如图所示,在△PMN 中,PM sin 45°=MNsin 120°,∴MN =64×3222=326,∴v =MN4=86(海里/时).反思与感悟 运用正弦定理解决实际问题时,通常都根据题意,从实际问题中抽象出一个或几个三角形,然后通过解这些三角形,得出实际问题的解.跟踪训练3 一船以每小时15 km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60°,行驶4 h 后,船到达C 处,看到这个灯塔在北偏东15°,这时船与灯塔的距离为 km. 答案 30 2解析 如图,由已知条件,得AC =60 km ,∠BAC =30°, ∠ACB =90°+15°=105°, ∠B =45°.由正弦定理得BC =AC sin ∠BAC sin B=302(km).题型四 正弦定理和三角变换的综合应用例4 在△ABC 中,AB =c ,BC =a ,AC =b ,若c =2+6,C =30°,求a +b 的取值范围. 解 由正弦定理得c sin C =a sin A =b sin B =a +b sin A +sin B ,∵c =2+6,C =30°,∴a +b sin A +sin B =2+6sin 30°,∴a +b =2(2+6)(sin A +sin B ). ∵A +B =180°-30°=150°. ∴sin B =sin(150°-A )=sin150°2cos 150°-2A 2+cos 150°2sin 150°-2A 2,① sin A =sin150°2cos 150°-2A 2-cos 150°2sin 150°-2A 2,②由①②得sin A +sin B =sin A +sin(150°-A ) =2sin 75°cos(75°-A ), ∴a +b =2(2+6)(sin A +sin B ) =2(2+6)×2sin 75°cos(75°-A ) =2(2+6)×2×6+24cos(75°-A )=(2+6)2cos (75°-A ). 当A =75°时,(a +b )max =8+4 3. ∵A +B =150°,∴0°<A <150°,-150°<-A <0°. ∴-75°<75°-A <75°, ∴cos(75°-A )∈(6-24,1],∴a +b >(2+6)2×6-24=2+6,∴2+6<a +b ≤8+4 3.综上所述,a +b ∈(2+6,8+4 3 ].反思与感悟 (1)求某个式子的取值范围,可以将其转化为一个角的三角函数,再求范围.注意不要因为忽略相应自变量的取值范围而导致错误.(2)三角形的内角和为180°为三角变换在三角形中的应用提供了一些特殊的式子,如sin A =sin(B +C ),cos A =-cos (B +C )等,解题中应注意应用.跟踪训练4 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a +b a =sin B sin B -sin A ,且cos(A -B )+cos C =1-cos 2C .试确定△ABC 的形状. 解 由正弦定理a +b a =sin B sin B -sin A =bb -a ,∴b 2-a 2=ab ,①∵cos(A -B )+cos C =1-cos 2C ,∴cos(A -B )-cos(A +B )=1-(1-2sin 2C ),∴(cos A cos B +sin A sin B )-(cos A cos B -sin A sin B )=1-1+2sin 2C , ∴2sin A sin B =2sin 2C , ∴c 2=ab .②①②结合得b 2-a 2=c 2,∴△ABC 是以B 为直角的直角三角形.1.在△ABC 中,A =π3,BC =3,AB =6,则角C = .答案 π4解析 由正弦定理BC sin A =ABsin C 得sin C =AB ·sin ABC =6×323=22, ∴C =π4或3π4.又∵AB <BC , ∴C <A ,∴C =π4.2.已知△ABC 中,b =43,c =2,C =30°,则满足条件的三角形有 个. 答案 0解析 由正弦定理和已知条件得43sin B =2sin 30°,∴sin B =3>1,∴此三角形无解.3.根据下列条件,判断三角形解的情况,其中正确的是 . ①a =8,b =16,A =30°,有两解; ②a =18,b =20,A =60°,有一解; ③a =5,b =2,A =90°,无解; ④a =30,b =25,A =150°,有一解. 答案 ④解析 对①,a =b sin A ,故有一解;对②,b sin A <a <b ,故有两解; 对③,a >b sin A ,故有一解; 对④,A 为钝角,且a >b ,故有一解.4.在△ABC 中,AB =c ,BC =a ,AC =b ,若b =1,c =3,C =2π3,则a = .答案 1解析 由正弦定理b sin B =c sin C 得1sin B =3sin C .∵sin C =sin2π3=32,∴sin B =12. ∵C =2π3,∴B 为锐角,∴B =π6,A =π6,故a =b =1.故填1.5.在△ABC 中,lg(sin A +sin C )=2lg sin B -lg(sin C -sin A ),则此三角形的形状是 三角形. 答案 直角解析 ∵lg(sin A +sin C )=lg sin 2Bsin C -sin A ,∴sin 2C -sin 2A =sin 2B , 结合正弦定理得c 2=a 2+b 2, ∴△ABC 为直角三角形.6.在△ABC 中,AB =3,D 为BC 的中点,AD =1,∠BAD =30°,则△ABC 的面积S △ABC = . 答案32解析 ∵AB =3,AD =1,∠BAD =30°, ∴S △ABD =12·3·1·sin 30°=34,又D 是BC 边中点, ∴S △ABC =2S △ABD =32.1.已知两边和其中一边的对角,求第三边和其他两个角,这时三角形解的情况:可能无解,也可能一解或两解.首先求出另一边的对角的正弦值,当正弦值大于1或小于0时,这时三角形解的情况为无解;当正弦值大于0小于1时,再根据已知的两边的大小情况来确定该角有一个值或者两个值.2.判断三角形的形状,最终目的是判断三角形是不是特殊三角形,当所给条件含有边和角时,应利用正弦定理将条件统一为“边”之间的关系式或“角”之间的关系式.。
高中数学 1.1 正弦定理教案 苏教版必修5
课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。
2、了解我国书法发展的历史。
3、掌握基本笔画的书写特点。
重点:基本笔画的书写。
难点:运笔的技法。
教学过程:一、了解书法的发展史及字体的分类:1、介绍我国书法的发展的历史。
2、介绍基本书体:颜、柳、赵、欧体,分类出示范本,边欣赏边讲解。
二、讲解书写的基本知识和要求:1、书写姿势:做到“三个一”:一拳、一尺、一寸(师及时指正)2、了解钢笔的性能:笔头富有弹性;选择出水顺畅的钢笔;及时地清洗钢笔;选择易溶解的钢笔墨水,一般要固定使用,不能参合使用。
换用墨水时,要清洗干净;不能将钢笔摔到地上,以免笔头折断。
三、基本笔画书写1、基本笔画包括:横、撇、竖、捺、点等。
2、教师边书写边讲解。
3、学生练习,教师指导。
(姿势正确)4、运笔的技法:起笔按,后稍提笔,在运笔的过程中要求做到平稳、流畅,末尾处回锋收笔或轻轻提笔,一个笔画的书写要求一气呵成。
在运笔中靠指力的轻重达到笔画粗细变化的效果,以求字的美观、大气。
5、学生练习,教师指导。
(发现问题及时指正)四、作业:完成一张基本笔画的练习。
板书设计:写字基本知识、一拳、一尺、一寸我的思考:通过导入让学生了解我国悠久的历史文化,激发学生学习兴趣。
这是书写的起步,让学生了解书写工具及保养的基本常识。
基本笔画书写是整个字书写的基础,必须认真书写。
课后反思:学生书写的姿势还有待进一步提高,要加强训练,基本笔画也要加强训练。
课题:书写练习1课型:新授课教学目标:1、教会学生正确书写“杏花春雨江南”6个字。
2、使学生理解“杏花春雨江南”的意思,并用钢笔写出符合要求的的字。
重点:正确书写6个字。
难点:注意字的结构和笔画的书写。
教学过程:一、小结课堂内容,评价上次作业。
二、讲解新课:1、检查学生书写姿势和执笔动作(要求做到“三个一”)。
2、书写方法是:写一个字看一眼黑板。
(老师读,学生读,加深理解。
高中数学苏教版必修5学案:1.1.2 正弦定理(2) Word版含解析
第2课时正弦定理(2)1.利用正弦定理判断三角形的形状,计算三角形的面积.(重点) 2.正弦定理与三角恒等变换的综合应用.(难点)3.利用正弦定理解题时,忽略隐含条件而致误.(易错点)[基础·初探]教材整理正弦定理的应用阅读教材P9~P12,完成下列问题.1.正弦定理的深化与变形(1)asin A=bsin B=csin C=________=________.(2)a=________,b=________,c=________.(3)ab=________,ac=________,bc=________.(4)a∶b∶c=________:________:________.【答案】(1)2Ra+b+csin A+sin B+sin C(2)2R sin A2R sin B2R sin C(3)sin Asin Bsin Asin Csin Bsin C(4)sin A sin B sinC2.三角形面积公式S△ABC=________=________=________.【答案】12ab sin C12bc sin A12ac sin B判断(正确的打“√”,错误的打“×”)(1)在有些三角形中,a =sin A ,b =sin B ,c =sin C .( ) (2)在△ABC 中,asin A =b +c sin B +sin C.( )(3)在△ABC 中,a =2,b =1,C =30°,则S △ABC =1.( )【解析】 由正弦定理a sin A =b sin B =c sin C 可知(1),(2)正确;又S △ABC =12×2×1×sin 30°=12,故(3)错误.【答案】 (1)√ (2)√ (3)×[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问1:_________________________________________________ 解惑:_________________________________________________ 疑问2:_________________________________________________ 解惑:_________________________________________________ 疑问3:_________________________________________________ 解惑:_________________________________________________ 疑问4:_________________________________________________ 解惑:_________________________________________________[小组合作型]在△c ,且B =30°,c =23,b =2,求△ABC 的面积S .【精彩点拨】 先求C ,再求A ,最后利用S △ABC =12bc sin A 求解. 【自主解答】 由正弦定理得sin C =c sin B b =23sin 30°2=32.又∵c >b ,∴C=60°或C=120°.当C=60°时,A=90°,∴S=12bc sin A=23;当C=120°时,A=30°,∴S=12bc sin A=3,∴△ABC的面积S为23或3.求三角形的面积,要充分挖掘题目中的条件,转化为求两边或两边之积及其夹角正弦的问题,要注意方程思想在解题中的应用.另外也要注意三个内角的取值范围,以避免由三角函数值求角时出现增根错误.[再练一题]1.在△ABC中,cos A=-513,cos B=35.(1)求sin C的值;(2)设BC=5,求△ABC的面积.【导学号:91730004】【解】(1)在△ABC中,0<A<π,0<B<π,A+B+C=π,由cos A=-513,得sin A=1213,由cos B=35,得sin B=45,∴sin C=sin(A+B)=sin A cos B+cos A sin B=1213×35+⎝⎛⎭⎪⎫-513×45=1665.(2)在△ABC中,由正弦定理得,AC=BC×sin Bsin A=5×451213=133,∴S△ABC=12×BC×AC×sin C=12×5×133×1665=83.在△ABC 中,已知a 2tan B =b 2tan A ,试判断△ABC 的形状. 【精彩点拨】 根据正弦定理可以把问题转化为角的问题,借助三角恒等变换知识化简得到角与角的等量关系,再进一步判断.【自主解答】 由已知得a 2sin B cos B =b 2sin Acos A . 由正弦定理得sin 2 A sin B cos B =sin 2 B sin Acos A , 即sin A cos A =sin B cos B ,亦即sin 2A =sin 2B . ∴2A =2B 或2A =π-2B , ∴A =B 或A =π2-B ,∴△ABC 为等腰三角形或直角三角形或等腰直角三角形.根据边角关系判断三角形形状的途径根据所给条件确定三角形的形状,主要有两种途径: (1)化边为角;(2)化角为边,并常用正弦定理实施边、角转换.[再练一题]2.在△ABC 中,若sin A =2sin B cos C ,且sin 2A =sin 2B +sin 2C ,试判断△ABC 的形状.【解】 法一:在△ABC 中,根据正弦定理:a sin A =b sin B =csin C =2R . ∵sin 2A =sin 2B +sin 2C ,∴⎝ ⎛⎭⎪⎫a 2R 2=⎝ ⎛⎭⎪⎫b 2R 2+⎝ ⎛⎭⎪⎫c 2R 2,即a 2=b 2+c 2. ∴A =90°,∴B +C =90°.由sin A =2sin B cos C ,得sin 90°=2sin B cos(90°-B ),∴sin 2B =12,∵B 是锐角,∴sin B =22,∴B =45°,C =45°. ∴△ABC 是等腰直角三角形. 法二:在△ABC 中,根据正弦定理: sin A =a 2R ,sin B =b 2R ,sin C =c 2R . ∵sin 2A =sin 2B +sin 2C ,∴a 2=b 2+c 2,∴△ABC 是直角三角形且A =90°. ∵A =180°-(B +C ),sin A =2sin B cos C , ∴sin(B +C )=2sin B cos C , ∴sin B cos C -cos B sin C =0,即sin(B -C )=0,∴B -C =0,即B =C , ∴△ABC 是等腰直角三角形.[探究共研型]图1-1-1【提示】 如图,在B 侧选一条基线BC ,测得BC =a ,∠ABC =α,∠ACB =β,则由正弦定理可知 AB sin β=BCsin (α+β),即AB=BC sin βsin(α+β).探究2你能画出下列各角吗?(1)南偏西30°;(2)仰角30°,俯角45°.【提示】如图1-1-2,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C和D.现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A的仰角为θ,求塔高AB.图1-1-2【精彩点拨】先求出∠CBD,利用正弦定理求BC,再在△ABC中,求AB.【自主解答】在△BCD中,∠BCD=α,∠BDC=β,∴∠CBD=180°-(α+β),∴BCsin β=ssin[180°-(α+β)],即BCsin β=ssin(α+β),∴BC=sin βsin(α+β)·s.在△ABC中,由于∠ABC=90°,∴ABBC=tan θ,∴AB=BC·tan θ=sin β·tan θsin(α+β)·s.解决实际测量问题的过程一般要充分理解题意,正确作出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解.[再练一题]3.一货轮在海上由西向东航行,在A处望见灯塔C在货轮的东北方向,0.5 h后在B处望见灯塔C在货轮的北偏东30°方向.若货轮的速度为30 n mile/h,当货轮航行到D处望见灯塔C在货轮的西北方向时,求A,D两处的距离.【解】如图所示,在△ABC中,∠A=45°,∠ABC=90°+30°=120°,∴∠ACB=180°-45°-120°=15°,AB=30×0.5=15(n mile).由正弦定理,得AC sin∠ABC =ABsin∠ACB,∴AC=AB sin∠ABCsin∠ACB=15×sin 120°sin 15°=32+62×15(n mile).在△ACD中,∵∠A=∠D=45°,∴△ACD是等腰直角三角形,∴AD=2AC=15(3+3)(n mile).∴A,D两处之间的距离是15(3+3)n mile. 答:A,D两处的距离为15(3+3)n mile.[构建·体系]1.在△ABC中,AB=3,BC=1,B=30°,则△ABC的面积S△ABC=________.【解析】S△ABC =12×AB×BC×sin B=12×3×1×12=34.【答案】3 42.在△ABC中,若acos A=bcos B=ccos C,则△ABC是________三角形.【解析】由正弦定理asin A=bsin B=csin C=2R可知a=2R sin A,b=2R sin B,c=2R sin C.由acos A=bcos B=ccos C可知tan A=tan B=tan C,即A=B=C,∴△ABC为等边三角形.【答案】等边3.如图1-1-3所示,设A,B两点在河的两岸,一测量者在A的同侧,在A 所在的河岸边选定一点C,测出AC的距离为50 m,∠ACB=45°,∠CAB=105°,则A,B两点的距离为________ m.【导学号:91730005】图1-1-3【解析】 由题意可知∠ABC =180°-105°-45°=30°,由正弦定理,得AB =AC ·sin ∠ACB sin ∠ABC=50×2212=502(m).【答案】 50 24.在△ABC 中,2a sin A -b sin B -csin C =________. 【解析】 由正弦定理可知a sin A =b sin B =csin C , 故2a sin A -b sin B -csin C =0. 【答案】 05.如图1-1-4,A ,B 是海平面上的两个点,相距800 m .在A 点测得山顶C 的仰角为30°,∠BAD =105°,又在B 点测得∠ABD =45°,其中D 是点C到水平面的垂足.求山高CD .图1-1-4【解】 在△ABD 中,由正弦定理,得 AD =AB sin ∠ABD sin ∠ADB =800sin 45°sin (180°-105°-45°)=8002,在Rt △ACD 中,CD =AD ·tan 30°=8002×33=80063(m). 答:山高CD 为80063 m.我还有这些不足:(1)_________________________________________________(2)_________________________________________________ 我的课下提升方案:(1)_________________________________________________(2)_________________________________________________学业分层测评(二)(建议用时:45分钟)[学业达标]一、填空题1.已知△ABC的面积为3且b=2,c=2,则A=______.【解析】∵S△ABC =12bc sin A,b=2,c=2,∴12×2×2sin A=3,∴sin A=3 2.又A∈(0,π),∴A=π3或2π3.【答案】π3或2π32.海上有A,B两个小岛相距10 n mile,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,则B,C间的距离是________ n mile.【解析】如图所示,易知C =45°,由正弦定理得AB sin C =BC sin A , ∴BC =AB sin Asin C =5 6. 【答案】 5 63.(2016·苏州高二检测)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,B =π6,C =π4,则△ABC 的面积为________.【导学号:91730006】【解析】 由正弦定理知,b sin B =c sin C ,结合条件得c =b sin Csin B =2 2. 又sin A =sin(π-B -C )=sin(B +C )=sin B cos C +cos B sin C =6+24, 所以△ABC 的面积S =12bc sin A =3+1. 【答案】3+14.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若B =2A ,a =1,b =3,则c =________.【解析】 由正弦定理得a sin A =bsin B ,∵B =2A ,a =1,b =3, ∴1sin A =32sin A cos A .∵A 为三角形的内角,∴sin A ≠0,∴cos A =32. 又0<A <π,∴A =π6,∴B =2A =π3.∴C =π-A -B =π2,即△ABC 为直角三角形, 由勾股定理得c =12+(3)2=2. 【答案】 25.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若3a =2b ,则2sin 2 B -sin 2 Asin 2A的值为________.【解析】 由正弦定理得,原式=2b 2-a 2a 2=2⎝ ⎛⎭⎪⎫b a 2-1=2×⎝ ⎛⎭⎪⎫322-1=72.【答案】 726.(2016·泰州高二检测)在△ABC 中,a =2b cos C ,则这个三角形一定是________三角形.【解析】 由a =2b cos C 可知 sin A =2sin B cos C , ∴sin(B +C )=2sin B cos C ,∴sin B cos C +cos B sin C =2sin B cos C , ∴sin(B -C )=0, ∴B =C ,∴b =c , ∴△ABC 为等腰三角形. 【答案】 等腰7.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin B ·cos C +c sin B cos A =12b ,且a >b ,则B =________.【解析】 根据正弦定理将边化角后约去sin B ,得sin(A +C )=12,所以sin B =12,又a >b ,所以A >B ,所以B =π6.【答案】 π68.在△ABC 中,B =60°,最大边与最小边之比为(3+1)∶2,则最大角为________.【解析】 设最小角为α,则最大角为120°-α, ∴sin (120°-α)sin α=3+12,∴2sin(120°-α)=(3+1)sin α, ∴sin α=cos α,∴α=45°,∴最大角为120°-45°=75°. 【答案】 75° 二、解答题9.一船以每小时15 km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60°,行驶4 h 后,船到达C 处,看到这个灯塔在北偏东15°,求这时船与灯塔的距离.【解】 如图所示,在△ABC 中,∠BAC =30°,∠ACB =105°,∴∠ABC =45°,AC =60.根据正弦定理, 得BC =AC sin ∠BAC sin ∠ABC=60sin 30°sin 45°=302(km).10.在△ABC 中,∠A 的平分线交BC 于D ,用正弦定理证明:AB AC =BDDC . 【证明】 如图,由题意可知,∠1=∠2,∠3+∠4=180°,在△ABD 中,由正弦定理得 AB sin ∠3=BDsin ∠1,① 在△ADC 中,由正弦定理得 AC sin ∠4=DCsin ∠2,②又sin ∠1=sin ∠2,sin ∠3=sin ∠4, 故①②得AB AC =BD DC. [能力提升]1.在△ABC 中,a cos B =bcos A ,则△ABC 的形状一定是________. 【解析】 在△ABC 中,∵a cos B =bcos A ,∴a cos A =b cos B ,由正弦定理, 得2R sin A cos A =2R sin B cos B , ∴sin 2A =sin 2B ,∴2A =2B 或2A +2B =180°, ∴A =B 或A +B =90°.故△ABC 为等腰三角形或直角三角形或等腰直角三角形. 【答案】 等腰或直角三角形或等腰直角三角形2.(2016·南京高二检测)在锐角三角形ABC 中,A =2B ,a ,b ,c 所对的角分别为A ,B ,C ,则ab 的取值范围为________.【解析】 在锐角三角形ABC 中,A ,B ,C 均小于90°, 即⎩⎨⎧B <90°,2B <90°,180°-3B <90°,∴30°<B <45°.由正弦定理知:a b =sin A sin B =sin 2Bsin B =2cos B ∈(2,3), 故ab 的取值范围是(2,3). 【答案】 (2,3)3.△ABC 中,A =π3,BC =3,则△ABC 的周长为________(用B 表示).【导学号:91730007】【解析】 在△ABC 中,A +B +C =π可知C =2π3-B . 由正弦定理得3sin π3=AB sin ⎝ ⎛⎭⎪⎫2π3-B =ACsin B ,∴AB =23sin ⎝ ⎛⎭⎪⎫2π3-B ,AC =23sin B ,∴△ABC 的周长为AB +AC +BC =23·⎣⎢⎡⎦⎥⎤sin B +sin ⎝ ⎛⎭⎪⎫2π3-B +3=3+6sin ⎝ ⎛⎭⎪⎫B +π6.【答案】 3+6sin ⎝ ⎛⎭⎪⎫B +π64.(2016·如东高二检测)在△ABC 中,a =3,b =26,B =2A . (1)求cos A 的值; (2)求c 的值.【解】 (1)因为a =3,b =26,B =2A , 所以在△ABC 中,由正弦定理得3sin A =26sin 2A, 所以2sin A cos A sin A =263,故cos A =63.(2)由(1)知cos A =63,所以sin A =1-cos 2 A =33. 又B =2A ,所以cos B =2cos 2 A -1=13, 所以sin B =1-cos 2 B =223. 在△ABC 中,sin C =sin(A +B ) =sin A cos B +cos A sin B =539, 所以c =a sin Csin A =5.。
高中数学必修5新教学案:1.1.1正弦定理
必修5 1.1.1 正弦定理(学案)【知识要点】1.正弦定理2.正弦定理的变形 【学习要求】1.理解正弦定理的推导过程,会初步应用正弦定理解斜三角形. 2.通过应用提高分析问题、解决问题的能力.【预习提纲】(根据以下提纲,预习教材第 1 页~第 4 页)1. 在任意三角形中有大边对大角,小边对小角的边角关系.我们如何得到边与角的准确量化表示呢?(1) (1)在RT ABC ∆中,C ∠是最大的角,所对的斜边c 是最大的边,依据正弦函数定义得:c = .(2)在锐角ABC ∆中,设边AB 上的高是CD ,根据三角函数定义得:sin aA= . (3)在钝角ABC ∆中,C ∠是最大的角,所对的斜边c 是最大的边,过点A 作AE 垂直于BC 交BC 于E 点,AE = .,即sin sin c bC B=; 同理可得:sin a C = ,故.sin sin sin a b cA B C==2. 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等, 即A as i n= = . 结合提示完成以下几种方法,帮助大家开拓一下眼界! 法一:(等面积法)在任意斜△ABC 当中, S △ABC =A bcB acC ab sin 21sin 21sin 21==. 两边同除以abc 21即得:Aasin = = .法二:(外接圆法) 如图所示,∠A=∠D, ∴==R CD 2 . 同理2R = = . 可将正弦定理推广为:A a sin =B b sin =Ccsin =2R (R 为△ABC外接圆半径). 法三:(向量法)过A 作单位向量j垂直于AC , 由 AB= + .两边同乘以单位向量j 得j •AB= .即j •AC +j •CB =j •AB .∴ = . ∴A c C a sin sin = . ∴Aasin = . 同理,若过C 作j垂直于CB 得:C c sin = ∴A a sin =B b sin =Ccsin . 3. 定理及其变形 :(1)sinA:sinB:sinC=______; (2)A a sin =B b sin =C csin =CB A c b a sin sin sin ++++= ; a=______,;b=______ ;c=_______;(4)sinA=_______;sinB=________;sinC=________. 4.思考:观察公式特点,思考正弦定理可以解决的问题: (1) ; (2) .5. 时解和中,已知在A b a ABC ,∆三角形的情况: 有三种,我们分情况给予讨论(1) 当A 为锐角(2) 当A 为直角或钝角也可利用正弦定理sin B=aAb sin 进行讨论: 如果sin B>l ,则问题无解; 如果sin B=l ,则问题有一解;如果求出sin B<l ,则可得B 的两个值,但要通过“三角形内角和定理’’或“大边对大角” 等三角形有关性质进行判断.【基础练习】1.在△ABC 中,k CcB b A a ===sin sin sin ,则k 为( ) . ()A 2R ()B R ()C 4R ()D R 21(R 为△ABC 外接圆半径)2.在ABC ∆中,已知08,60,75a B C ===,则b 等于( ).()A ()B ()C ()D 32.33.(2008年北京) 已知ABC ∆中, 060a b B ===,则A 等于( ).()A 0135 ()B 090 ()C 045 ()D 030.4. 在△ABC 中,sinA >sinB 则角 A ,B 的大小关系为: .5. 在ABC ∆中,a:b:c=1:3:5,CA BA sin sin sin sin 2+-的值为___ __.【典型例题】例1 已知在,0.32,8.81,9.420===∆B A c ABC 中,解三角形.【变式练习】已知在B b a C A c ABC 和求中,,,30,45,100===∆例2 (1)在C A a c B b ABC ,,1,60,30和求中,已知===∆(2)C B b a A c ABC ,,2,45,60和求中,===∆【变式练习】在,28,40,200cm b A cm a ABC ===∆中,解三角形(角度精确到01).例3 不解三角形,判断下列三角形解的个数. (l)a=5,b=4 ,A=120 (2)a =9,b=l0,A= 60 (3)c=50,b=72,C= 135例4 已知△ABC 中,bsin B=csin c ,且试判断三角形的形状.例5 已知△ABC 的面积为1,tanB=21,tanC=-2,求△ABC 的边长以及△ABC 外接圆的面积.1.在△ABC 中,下列等式中总能成立的是 ( ) . (A )acos C= ccos A (B )bsinC= csin A (C )absin C=bcsin B (D )aslnC=csin A .2.在△ABC 中,已知a=18,b=20,A=150,则这个三角形解的情况是 ( ) . (A )有一个解 (B )有两个解 (C )无解 (D )不能确定3.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知A=60,a=3,b=1,则c 等于( ) .(A ) 1 (B ) 2 (C )3-1 (D ) 3.4.在△ABC 中,已知(b+c):(c+a ):(a+b) = 4:5:6,则 sin A :sin B :sin C 等于 ( ) . (A ) 6:5:4 (B ) 7:5:3 (C ) 3:5:7 (D ) 4:5:6. 二、填空题5.在△ABC 中,A= 45,B=60,则ba ba +-=______ _ . 6.在△ABC 中,a=x ,b=2,B=45 ,若三角形有两解,则x 的取值范围为__ __. 7.在△ABC 中,已知a ,b ,c 分别为内角A 、B 、C 的对边,若b=2a ,B=A+60,则A=____ . 三、解答题8. 在C a b B A cm c ABC ,,56,34,200和求中,===∆9.在△ABC 中,若a=23,A=30,讨论当b 为何值时(或在什么范围内),三角形有一解,有两解或无解?10.已知方程2x 一(bcos A)x+acos B=0的两根之积等于两根之和,且a 、b 为△ABC 的两边,A 、B 为两内角,试判定这个三角形的形状.1.(2007年北京)△ABC 中,若,1,150,31tan 0===BC C A ,则=AB .2.(2007年全国)在△ABC 中,已知内角3π=A ,边32=BC ,设内角,xB =,周长为.y (1)求函数)(x f y =的解析式和定义域; (2)求)(x f y =的最大值.必修5 1.1.1 正弦定理(教案)【教学目标】1.理解正弦定理的推导过程,会初步应用正弦定理解斜三角形. 2.通过应用提高分析问题、解决问题的能力. 【重点】理解正弦定理的及应用. 【难点】正弦定理的熟练变形运用.【预习提纲】(根据以下提纲,预习教材第 1 页~第 4 页)2. 在任意三角形中有大边对大角,小边对小角的边角关系.我们如何得到边与角的准确量化表示呢?(1) 在RT ABC ∆中,C ∠是最大的角,所对的斜边c 是最大的边,依据正弦函数定义得:.sin sin sin a b cc A B C=== (2)在锐角ABC ∆中,设边AB 上的高是CD ,根据三角函数定义得:.sin sin sin a b cA B C== (3)在钝角ABC ∆中,C ∠是最大的角,所对的斜边c 是最大的边,过点A 作AE 垂直于BC 交BC 于E 点,sin sin()AE AB B AC C π==-,即sin sin c bC B=; 同理可得:sin sin a b C B =,故.sin sin sin a b cA B C==2. 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等, 即A a s i n =B b sin =Cc sin 了解以下几种方法帮助大家开拓一下眼界! 法一:(等积法)在任意斜△ABC 当中, S △ABC =A bcB acC ab sin 21sin 21sin 21==. 两边同除以abc 21即得:A a sin =B b sin =Ccsin .法二:(外接圆法)如图所示,∠A=∠D,∴==R CD 2DaA a sin sin =.同理B b sin =2R ,Ccsin =2R . 可将正弦定理推广为:A a sin =B b sin =Ccsin =2R (R 为△ABC 外接圆半径). 法三:(向量法)过A 作单位向量j垂直于AC , 由 AB =AC +CB.两边同乘以单位向量j 得j •(AC+CB )=j •AB .则j •AC +j •CB =j •AB .∴|j |•|AC |cos90︒+|j |•|CB |cos(90︒-C)=| j |•|AB|cos(90︒-A) .∴A c C a sin sin = . ∴A a sin =Ccsin . 同理,若过C 作j垂直于CB 得:C c sin =B b sin ∴A a sin =B b sin =Ccsin .3. 定理及其变形 :(1)sinA:sinB:sinC=__::a b c ____; (2)A a sin =B b sin =C csin =CB A c b a sin sin sin ++++= 2R ;a=__2sin R A ____,;b=_2sin R B _____ ;c=_2sin R C ______;sinA=__2a R _____;sinB=___2b R _____;sinC=____2c R____. 4.思考:观察公式特点,思考正弦定理可以解决的问题: (1)_已知两角和任意一边,求其他两边和一角; (2)已知两边和其中一边的对角,求其他的边和两角. 5. 时解和中,已知在A b a ABC ,∆三角形的情况: 有三种,我们分情况给予讨论(3) 当A 为锐角(4) 当A 为直角或钝角也可利用正弦定理sin B=aAb sin 进行讨论: 如果sin B>l ,则问题无解; 如果sin B=l ,则问题有一解;如果求出sin B<l ,则可得B 的两个值,但要通过“三角形内角和定理’’或“大边对大角” 等三角形有关性质进行判断. 【基础练习】 1.在△ABC 中,k CcB b A a ===sin sin sin ,则k 为( A ) . ()A 2R ()B R ()C 4R ()D R 21(R 为△ABC 外接圆半径)2.在ABC ∆中,已知08,60,75a B C ===,则b 等于( C ).()A ()B ()C ()D 32.33.(2008年北京) 已知ABC ∆中, 060a b B ===,则A 等于( C ).()A 0135 ()B 090 ()C 045 ()D 030.4. 在△ABC 中,sinA >sinB 则角 A ,B 的大小关系为: A>B .5. 在ABC ∆中,a:b:c=1:3:5,C A B A sin sin sin sin 2+-的值为___16-__.【典型例题】例1 已知在,0.32,8.81,9.420===∆B A c ABC 中,解三角形.【审题要津】已知两角A,B ,据三角形内角和求得第三角C ,即知两角和任意一边,由正弦定理求解三角形.解:根据三角形内角和定理,02.66180=--=B A C .根据正弦定理, )(1.800.32sin 8.81sin 9.42sin sin 00cm A B a b ≈==. 根据正弦定理, )(1.740.32sin 2.66sin 9.42sin sin 0cm A C a c ≈==. 【方法总结】已知两角和任意一边,求解三角形时,注意结合三角形的内角和定理求出已知边的对角;应用正弦定理时注意边与角的对应性.【变式练习】已知在B b a C A c ABC 和求中,,,30,45,100===∆解:根据三角形内角和定理,0105180=--=C A B .根据正弦定理, ))(26(530sin 105sin 10sin sin 0cm C B c b +===.根据正弦定理, )(21030sin 45sin 10sin sin 0cm C A c a ===. 例2 (1)在C A a c B b ABC ,,1,60,30和求中,已知===∆(2)C B b a A c ABC ,,2,45,60和求中,===∆【审题要津】已知两边和其中一边的对角,由正弦定理先求对角,再求第三角.解:(1)根据正弦定理, ,21360sin 1sin sin 0===b B c CB C b c <∴< .300=∴C根据三角形内角和定理,090180=--=B C A .(2) 根据正弦定理, ,23245sin 6sin sin 0===aAc C060=∴>∴>C B C b c 或0120=C .当060=C 时,根据三角形内角和定理,;7518000=--=A C B 当0120=C 时,根据三角形内角和定理,.1518000=--=A C B【方法总结】应用正弦定理时注意边与角的对应性;注意由C sin 求角C 时,讨论角C 为锐角或钝角的情况.【变式练习】在,28,40,200cm b A cm a ABC ===∆中,解三角形(角度精确到01).解:根据正弦定理, .8999.02040sin 28sin sin 0≈==a A b B 因为,18000<<B 所以,640≈B 或.1160≈B(1)当064≈B 时,076180=--=B A C ,)cm (3040sin 76sin 20sin sin 0≈==A C a c . (2) 当0116≈B 时,024180=--=B A C ,).cm (1340sin 24sin 20sin sin 0≈==A C a c 例3 不解三角形,判断下列三角形解的个数. (l)a=5,b=4 ,A=120(2)a =9,b=l0,A=60 (4)c=50,b=72,C=135【审题要津】已知两边及其中一边的对角的三角形不一定确定,在上述例题中通过求解可以判定解的个数,还可以通过“三角形内角和定理’’或“大边对大角等三角形有关性 质进行判断,也可利用数形结合的办法不求解就能判定三角形解的个数. 解:(1)因为A= 120是钝角,且a=5>b=4 , 所以此三角形只有一解. (2)b a A b A b <<∴<==sin ,97535sin ,由图可知该三角形有两解.(3)因为C=135,c=50 <b=72,所以如下图知此三角形无解.【方法总结】时解和中,已知在A b a ABC ,∆三角形的情况: 有三种,我们分情况给予讨论(5) 当A 为锐角(6) 当A 为直角或钝角也可利用正弦定理sin B=aAb sin 进行讨论: 如果sin B>l ,则问题无解; 如果sin B=l ,则问题有一解;如果求出sin B<l ,则可得B 的两个值,但要通过“三角形内角和定理’’或“大边对大角” 等三角形有关性质进行判断.例4 已知△ABC 中,bsin B=csin c ,且试判断三角形的形状.【审题要津】从正弦定理的形式可以看出定理能进行边与角的转化,这里条件中有角也有边,转化为相同的形式便于进一步探究.解:根据正弦定理将C B A 222sin sin sin +=可化为222c b a +=,由勾股定理逆定理得△ABC 为直角三角形,且.900=∠A 又因为,sin sin C B c b =所以bsin B=csin c 可化为,b c c b =即c b c b ==即,22,故该三角形为等腰直角三角形.【方法总结】三角形的形状常有等腰、等边、直角等特殊的三角形,判定中将角化为边或将边化为角是常用的思路.例4 已知△ABC 的面积为1,tanB=21,tanC=-2,求△ABC 的边长以及△ABC 外接圆的面积. 【审题要津】从正弦定理的形式可以看出定理反映了三角形的边与对角的正弦的比值的关系,这里给出角B,C 的正切,利用同角的基本关系式进行转化. 解:.552cos ,55sin ,20,21tan ==∴<∠<=B B B B π 又.55cos ,552sin ,2,2tan -==∴<∠<-=C C C C ππ.53sin cos cos sin )sin(sin =+=+=∴C B C B C B A .53sin sin ,sin sin b B A b a B b A a ==∴= ,15525321sin 212=∙∙==∴∆b C ab S ABC 解得,315=b 于是.3=a 又由正弦定理知: ,3152sin sin ==A C a c 外接圆的直径.635,335sin 2=∴==R A a R 故△ABC 外接圆的面积为.12252ππ==R S 【方法总结】学习本节时要综合运用同角三角函数关系式,正弦定理和三角形的面积公式进行计算,加强知识间的联系.1.在△ABC 中,下列等式中总能成立的是 ( D ) .(A )acos C= ccos A (B )bsinC= csin A(C )absin C=bcsin B (D )aslnC=csin A .2.在△ABC 中,已知a=18,b=20,A=150,则这个三角形解的情况是 ( C ) .(A )有一个解 (B )有两个解 (C )无解 (D )不能确定3.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知A= 60,a=3,b=1,则c 等于(B ) .(A ) 1 (B ) 2 (C ) 3-1 (D ) 3.4.在△ABC 中,已知(b+c):(c+a ):(a+b) = 4:5:6,则 sin A :sin B :sin C 等于 ( B ) .(A ) 6:5:4 (B ) 7:5:3 (C ) 3:5:7 (D ) 4:5:6.二、填空题5.在△ABC 中,A= 45,B= 60,则b a b a +-=______562-_ . 6.在△ABC 中,a=x ,b=2,B= 45 ,若三角形有两解,则x 的取值范围为__222<<x __.7.在△ABC 中,已知a ,b ,c 分别为内角A 、B 、C 的对边,若b=2a ,B=A+60,则A=__33__ .三、解答题8. 在C a b B A cm c ABC ,,56,34,2000和求中,===∆解:根据三角形内角和定理,0090180=--=B A C . 根据正弦定理, )(56sin 2090sin 56sin 20sin sin 00cm C B c b ===. 根据正弦定理, )(34sin 2090sin 34sin 20sin sin 000cm C A c a ===. 9.在△ABC 中,若a=23,A= 30,讨论当b 为何值时(或在什么范围内),三角形有一解,有两解或无解?解:由上图知:当,30sin ,sin b a b b a A b <<<<即该三角形有两解,故3432<<b 时,该三角形有两解.当,sin b a a A b >=或该三角形有一解,故32034<<=b b 或时,该三角形有两解.当,sin a A b >即,34>b 该三角形有两解.10.已知方程2x 一(bcos A)x+acos B=0的两根之积等于两根之和,且a 、b 为△ABC 的两边,A 、B 为两内角,试判定这个三角形的形状.解:设方程的两根为,,21x x 由韦达定理得,cos ,cos 2121B b x x A b x x ==+由题意得,cos cos B a A b =由正弦定理得,cos sin 2cos sin 2B A R A B R =在△ABC 中,,,0,0ππππ<-<-<<<<B A B A,0=-∴B A 故△ABC 为等腰三角形.1.(2007年北京)△ABC 中,若,1,150,31tan 0===BC C A ,则AB 210 . 2.(2007年全国)在△ABC 中,已知内角3π=A ,边32=BC ,设内角,x B =,周长为.y (1)求函数)(x f y =的解析式和定义域;(2)求)(x f y =的最大值.解:(1) △ABC 的内角和π=++CB A , 由3π=A ,0,0>>C B 得320π<<B . 应用正弦定理得,sin 4sin sin x B ABC AC =∙= ).32sin(4sin sin x C A BC AB -=∙=π 因为,BC AB AC y ++= 所以)320(32)32sin(4sin 4ππ<<+-+=x x x y .(2)因为32)32sin(4sin 4+-+=x x y π ),6566(32)6sin(34ππππ<+<+-=x x 所以,当26ππ=+x ,即3π=x 时,取得最大值.36。
苏教版高中数学必修五《正弦定理》教案2
1.1 正弦定理教学目标:(1)掌握正弦定理及其证明,会初步运用正弦定理解斜三角形,培养数学应用意识;(2)在问题解决中,培养学生的自主学习和自主探索能力;(3)提供适当的问题情境,激发学生的学习热情,培养学生学习数学的兴趣,在合作学习中,学会学习,学会交流,相互评价,提高学生的合作意识与交流能力。
教学重点:正弦定理及其证明过程 教学难点:正弦定理的推导与证明教学过程: 一.问题情境引言:从金字塔的建造到尼罗河两岸的土地丈量,从大禹治水到都江堰的修建,从天文观测到精密仪器的制造,人们都离不开对几何图形的测量,设计和计算。
测量河流两岸码头之间的距离,确定待建隧道的长度,确定卫星的角度与高度等等问题,都可以转化为求三角形的边与角的问题,这就需要我们进一步探索三角形的边角关系。
探索1:在Rt △ABC ,C=900,那么边角之间有哪些关系?sinA=c a ,sinB=c b,sinC=cc =1,……即c=A a sin ,c=B b sin ,c=Ccsin , ∴A a sin =B b sin =Cc sin 探索2:在任意三角形里, A a sin =B b sin =Ccsin 还成立吗? (几何画板演示) 二.学生活动 数学实验:分组一:对于锐角三角形验证结论是否成立?c b a DBA C分组二:对于钝角三角形验证结论是否成立?数学猜想:A a sin =B b sin =Ccsin ; 三.建构数学:数学证明: 证法一:证明二:(等积法)在任意斜△ABC 当中S △ABC =A bc B ac C ab sin 21sin 21sin 21== 两边同除以abc 21即得:A a sin =B b sin =Ccsin 正弦定理:在任一个三角形中,各边和它所对角的正弦比相等, 即A a sin =B b sin =Ccsin =2R (R 为△ABC 外接圆半径)a bcOBCADb ac DA BC b ac 过程:sinB=AD c ,sinC=sin (1800-C )=ADb,得csinB=bsinC ,得b sinB =c sinC 同理可得:a sinA =csinC 所以a sinA =b sinB =c sinC所以a sinA =b sinB =c sinC同理可得:a sinA =csinC得b sinB =csinC 得csinB=bsinC ,sinB=AD c ,sinC=AD b,过程:cba DDBACBC证明三:(外接圆法) 如图所示,∠A=∠D ∴R CD DaA a 2sin sin === 同理B b sin =2R ,Ccsin =2R 证明四:(向量法)探索3:观察正弦定理的结构,看它有什么特点?你能用语言把它叙述出来吗?定理中的正弦改成余弦,结论还成立吗?正弦定理结构和谐、对称,体现了数学的和谐美与对称美; 若改成余弦,除正三角形外,其余三角形都不成立。
高中数学 1.1 正弦定理(第2课时)教案 苏教版必修5
第2课时正弦定理(2)(教师用书独具)●三维目标1.知识与技能(1)学会利用正弦定理解决有关平面几何问题以及判断三角形的形状,掌握化归与转化的数学思想;(2)能熟练运用正弦定理解斜三角形.2.过程与方法通过解斜三角形进一步巩固正弦定理,让学生总结本节课的内容.3.情感、态度与价值观(1)培养学生在方程思想指导下处理解斜三角形问题的运算能力;(2)培养学生合情推理探索数学规律的数学思维能力.●重点、难点重点:利用正弦定理判断三角形形状.难点:灵活利用正弦定理以及三角恒等变换公式.教学时要抓住知识的切入点,从学生原有的认知水平和所需的知识特点入手,引导学生结合三角形中的边角关系,不断地观察、比较、分析,总结判断三角形形状的方法,揭示其中的规律.(教师用书独具)●教学建议本节内容安排在学生学习了正弦定理之后,是对正弦定理的应用和深化.因此,建议本节课采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的应用”为基本探究内容,以周围世界和生活实际为参照对象,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的深入探讨.让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新.●教学流程结合所提问题,引导学生在复习正弦定理内容的基础上探究正弦定理的各种变形形式.⇒引导学生结合已学三角形面积公式探究已知两边夹角时三角形的面积公式.⇒错误!⇒错误!⇒错误!⇒错误!⇒错误!(对应学生用书第4页)在正弦定理的表达式中,asin A=bsin B=csin C,其中比值的几何意义是什么?探索并证明你的结论.【提示】比值是△ABC外接圆的直径,可先对直角三角形探索,并推广到一般三角形,其证明过程如下:若△ABC 为锐角三角形,如图所示,连结BD .∵A 与D 对应,∴A =D ,∴a sin A =b sin ∠ABC =c sin ∠ACB =asin D. 又∵a sin D =2R sin ∠DBC,∠DBC =90°,∴asin D =2R 1,∴a sin A =b sin ∠ABC =c sin ∠ACB=2R .若△ABC 为钝角三角形,不妨设B >90°,如图所示,连结BD .∵A 与D 对应,∴A =D ,∴a sin A =b sin ∠ABC =c sin ∠ACB =asin D.又∵a sin D =2R sin ∠DBC ,∠DBC =90°,∴a sin D =2R 1,∴a sin A =b sin ∠ABC =c sin ∠ACB=2R .正弦定理经常变形如下,以便于边角互化. (1)a sin A =b sin B =csin C=2R ; (2)a =2R sin A ,b =2R sin B ,c =2R sin C ;(3)a b =sin A sin B ,a c =sin A sin C ,b c =sin B sin C; (4)a ∶b ∶c =sin A ∶sin B ∶sin C ;(5)a sin A =b sin B =c sin C =a +b +c sin A +sin B +sin C.1.在△ABC 中,已知BC =a ,高AD =h ,如何计算△ABC 的面积S? 【提示】 S =12ah .2.在△ABC 中,已知BC =a ,AC =b ,角C 已知,你能否求出△ABC 的面积? 【提示】 ∵h =AD =b sin C , ∴S △ABC =12ah =12ab sin C .S △ABC =12ab sin C =12bc sin A =12ca sin B .(对应学生用书第4页)在△ABC中,A=120°,AB=5,BC =7,求△ABC的面积.【思路探究】 画图,由图形可知,不能直接利用面积公式,应由正弦定理求出sin C ,从而求出sin B .【自主解答】 由正弦定理,得7sin 120°=5sin C ,∴sin C =5314,且C 为锐角,∴cos C =1114,∴sin B =sin (180°-120°-C )=sin (60°-C ) =sin 60°·cos C -cos 60°·sin C =3314.∴S △ABC =12AB ·BC ·sin B=12×5×7×3314=1534. 即△ABC 的面积为154 3.1.由于A >90°,所以B ,C 均为锐角,应避免对角C 分类讨论.2.利用两边一夹角公式求△ABC 的面积,应注意已知条件是否符合公式要求,即两边及它们的夹角,否则不能乱用.△ABC 中,B =30°,AB =23,AC =2,则△ABC 的面积是________. 【解析】 由正弦定理,得sin C =AB sin B AC =32. ∴C =60°或C =120°. 当C =60°时,A =90°, ∴S △ABC =12AB ·AC ·sin A =23;当C =120°时,A =30°, ∴S △ABC =12AB ·AC ·sin A = 3.故△ABC 的面积是23或 3. 【答案】 23或 3在△ABC 中,A 、B 、C 的对边分别为a 、b 、c ,若b =a cos C ,试判定△ABC 的形状.【思路探究】 利用正弦定理的变形,将边化为角,再利用三角形内角和定理及三角恒等变换进行转化.【自主解答】 ∵b =a cos C , 由正弦定理得sin B =sin A ·cos C . ∵B =π-(A +C ),∴sin(A +C )=sin A ·cos C .即sin A cos C +cos A sin C =sin A ·cos C , ∴cos A sin C =0. ∵A 、C ∈(0,π), ∴cos A =0,A =π2,∴△ABC 为直角三角形.1.确定三角形的形状主要有两条途径:(1)化边为角;(2)化角为边.2.确定三角形形状的思想方法:先将条件中的边角关系由正弦定理统一为角角或边边关系,再由三角变形或代数变形分解因式,判定形状.在变形过程中要注意等式两端的公因式不要约掉,应移项提取公因式,否则会有漏掉一种解的可能.若将条件“b=a cos C”换为“b cos A=a cos B”,试判断△ABC的形状.【解】∵b cos A=a cos B,∴sin B cos A=sin A cos B,∴sin(A-B)=0,∴A-B=0,∴A=B,∴△ABC为等腰三角形.台风中心位于某城市正东方向300 km 处,并以40 km/h的速度向西北方向移动,距离台风中心250 km的范围内将会受其影响.如果台风风速不变,那么该城市在多长时间后开始受到台风的影响?这种影响将持续多长时间?(精确到0.1 h)【思路探究】本题实质上是三角形中已知两边和其中一边所对的角,解三角形问题.【自主解答】如图所示,该城市位于点A,台风中心点B在点A的正东方向300 km处,以40 km/h的速度向西北方向移动.设经过t1小时,该城市受到影响,经过t2小时,台风刚好离开,城市受影响的时间为t小时.则在△ABC 1中,AB =300 km ,AC 1=250 km ,AC 2=250 km ,BC 1=40t 2 km ,B =45°, 由正弦定理得AC 1sin B =AB sin ∠AC 1B =BC 1sin ∠C 1AB ,即sin ∠AC 1B =AB sin B AC 1=352≈0.8485, ∴∠AC 1B ≈58.05°,∠AC 2B ≈121.95°.当∠AC 1B ≈58.05°时,∠C 1AB =180°-(B +∠AC 1B )≈76.95°,BC 1=AC 1sin ∠C 1ABsin B≈344.42(km),此时t 2=BC 140≈8.6(h).同理,当∠AC 2B ≈121.95°时,BC 2≈79.83(km),t 1≈2.0(h).t =t 2-t 1≈8.6-2.0=6.6(h).答:约2小时后该城市开始受到台风影响,持续时间约为6.6 h.1.解决正弦定理的实际应用问题的关键是根据题意将已知量置于可解的三角形中,通过正弦定理与其他知识解三角形后,根据实际问题得出结论.2.以三角形为数学模型求解实际问题时,要正确使用仰角,俯角,方位角,方向角等概念,依此得出相应的三角形内角的大小.甲船在A点发现乙船在北偏东60°的B点处,测得乙船以每小时a海里的速度向正北行驶.已知甲船的速度是每小时3a海里,则甲船应如何航行才能最快地与乙船相遇?【解】如图所示,设这两船最快在C点相遇,在△ABC中,B=120°,AB为定值,AC,BC分别是甲船与乙船在相同时间内的行程,由已知条件有AC∶BC=3a∶a=3∶1,由正弦定理得sin ∠CAB=BCAC sin B=13sin 120°=12,又0°<∠CAB<60°,∴∠CAB=30°.故甲船的航向是北偏东60°-∠CAB=60°-30°=30°.故甲船向北偏东30°的方向航行,才能最快地与乙船相遇.(对应学生用书第5页)判断三角形形状时忽略隐含条件而致误在△ABC中,(a2+b2)sin(A-B)=(a2-b2)·sin(A+B),试判断△ABC的形状.【错解】由已知得a2[sin(A-B)-sin(A+B)]=b2[-sin(A+B)-sin(A-B)],所以2a2cos A sin B=2b2cos B sin A.由正弦定理,得sin A sin B(sin A cos A-sin B cos B)=0,所以sin 2A=sin 2B.所以2A=2B,即A=B.所以△ABC为等腰三角形.【错因分析】解题过程中忽略角的范围这一限制条件,约分时应指出sin A≠0,sinB ≠0.同时由sin 2A =sin 2B 及角2A,2B 的范围应得出两种情况:2A =2B 或2A +2B =π.出现上述错误的主要原因就是三角函数的知识掌握得不扎实.【防范措施】 在进行有关三角形内角的三角恒等变换时,先讨论角的范围,然后在所求范围内,由三角恒等式讨论角的关系.【正解】 由(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ), 得a 2[sin(A +B )-sin(A -B )]=b 2[sin(A +B )+sin(A -B )], 所以2a 2sin B cos A =2b 2sin A cos B .由正弦定理得sin 2A cos A sinB =sin 2B sin A cos B . 因为A ,B ∈(0,π),所以sin A >0,sin B >0, 所以sin A cos A =sin B cos B ,即sin 2A =sin 2B . 因为0<2A <2π,0<2B <2π,所以2A =2B 或2A +2B =π,所以A =B 或A +B =π2,所以△ABC 为等腰三角形或直角三角形.1.基础知识: (1)三角形面积公式; (2)正弦定理的深化及变化. 2.基本技能: (1)求三角形的面积; (2)判断三角形形状;(3)正弦定理的综合应用与实际应用.3.思想方法:(1)转化与化归思想;(2)数学建模;(3)公式法求面积.(对应学生用书第6页)1.△ABC 中,a =5,b =3,C =120°,则sin A ∶sin B =________. 【解析】 sin A ∶sin B =a 2R ∶b2R=a ∶b =5∶3. 【答案】 5∶32.已知△ABC 中,AB =6,A =30°,B =120°,则△ABC 的面积为________. 【解析】 由BC sin A =ABsin C ,得BC =6,∴S △ABC =12AB ·BC ·sin B =9 3.【答案】 9 33.在相距2千米的A ,B 两点处测量目标C ,若∠CAB =75°,∠CBA =60°,则A ,C 两点之间的距离是________千米.【解析】 如图所示,∠C =180°-60°-75°=45°.由正弦定理AC sin B =ABsin C得AC =AB ·sin Bsin C =2×3222= 6. 【答案】64.在△ABC 中,已知a ,b ,c 分别是角A 、B 、C 的对边,若a b =cos Bcos A,试判断△ABC的形状.【解】 由正弦定理得a b =sin Asin B,所以,a b =cos B cos A ⇒sin A sin B =cos B cos A⇒sin A cos A=sin B cos B ⇒sin 2A =sin 2B ⇒2A =2B 或2A =π-2B ⇒A =B 或A +B =π2,∴△ABC 是等腰三角形或直角三角形.(对应学生用书第80页)一、填空题1.(2013·岳阳高二检测)在△ABC 中,sin A ∶sin B ∶sin C =3∶2∶4,则A 、B 、C 分别所对边a ∶b ∶c =________.【解析】 a ∶b ∶c =sin A ∶sin B ∶sin C =3∶2∶4. 【答案】 3∶2∶42.(2013·无锡检测)△ABC 的内角A 、B 、C 的对边长分别为a 、b 、c ,∠A =60°,AC =23,S △ABC =92,则AB =________.【解析】 ∵S △ABC =12AB ·AC sin A =12AB ×23×32=32AB ,∴32AB =92,∴AB =3. 【答案】 33.(2013·南通检测)在三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin A cosC =sin B ,则ac=________.【解析】 ∵2sin A cos C =sin(A +C )=sin A cos C +cos A sin C ∴sin A cos C -cos A sin C =0,∴sin(A -C )=0.∴A =C ,∴ac=1. 【答案】 14.在△ABC 中,若a cos A 2=b cos B 2=ccos C 2,则△ABC 一定是________三角形.【解析】 ∵a cos A 2=b cos B 2=ccos C 2, ∴sin A cos A 2=sin B cos B 2=sin Ccos C 2, ∴sin A 2=sin B 2=sin C 2.∵0°<A 2,B 2,C2<90°,∴A 2=B 2=C2,∴A =B =C ,∴△ABC 为等边三角形. 【答案】 等边5.在△ABC 中,a =15,b =10,A =60°,则cos B =________. 【解析】 ∵a sin A =bsin B,∴sin B =b sin A a =33. ∵b <a ,∴B <A ,∴B 为锐角,∴cos B =63. 【答案】636.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,m =(a 2,b 2),n =(tan A ,tan B ),且m ∥n ,那么△ABC 一定是________三角形.【解析】 ∵m ∥n ,∴a 2tan B =b 2tan A , ∴sin 2A tanB =sin 2B tan A , ∴sin A cos B =sin Bcos A,∴sin 2A =sin 2B ∴A =B 或A +B =π2,∴△ABC 是等腰或直角三角形.【答案】 等腰或直角7.(2013·德州高二检测)△ABC 中,B =60°,最大边与最小边之比为(3+1)∶2,则最大角为________.【解析】 设最小角为α,则最大角为120°-α, ∴sin120°-αsin α=3+12,∴2sin(120°-α)=(3+1)sin α, ∴sin α=cos α,∴α=45°, ∴最大角为120°-45°=75°. 【答案】 75°8.在△ABC 中,A =π3,BC =3,则AC +AB 的取值范围是________.【解析】 根据正弦定理,得AC =BC sin B sin A =23sin B ,AB =BC sin C sin A=23sin C ,∴AC +AB =23(sin B +sin C ) =23[sin B +sin(2π3-B )]=23(sin B +32cos B +12sin B ) =6sin(B +π6).∵0<B <2π3,∴π6<B +π6<5π6, ∴12<sin(B +π6)≤1, ∴3<6sin(B +π6)≤6.∴AC +AB 的取值范围是(3,6]. 【答案】 (3,6] 二、解答题9.(2013·如皋检测)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,B =π3,cos A=45,b = 3. (1)求sin C 的值; (2)求△ABC 的面积.【解】 (1)∵cos A =45,∴sin A =35,∴sin C =sin(A +B )=35×12+45×32=110(3+43).(2)由正弦定理a sin A =bsin B ,∴a =b sin Asin B =3×3532=65,∴S =12ab sin C =12×65×3×3+4310=93+3650.10.在△ABC 中,若sin A =2sin B cos C ,且sin 2A =sin 2B +sin 2C ,试判断三角形的形状.【解】 ∵A 、B 、C 是三角形的内角, ∴A =π-(B +C ), ∴sin A =sin(B +C ) =sin B cos C +cos B sin C =2sin B cos C .∴sin B cos C -cos B sin C =0, ∴sin(B -C )=0.又∵0<B <π,0<C <π, ∴-π<B -C <π,∴B =C . 又∵sin 2A =sin 2B +sin 2C ,且a =2R sin A ,b =2R sin B ,c =2R sin C , (R 为△ABC 外接圆的半径) 可得a 2=b 2+c 2,∴A 是直角, ∴△ABC 是等腰直角三角形.11.在△ABC 中,若C =3B ,求cb的取值范围. 【解】 由正弦定理可知c b =sin C sin B =sin 3B sin B =sin B cos 2B +cos B sin 2B sin B=cos 2B +2cos 2B =4cos 2B -1. 又因为A +B +C =180°,C =3B , 故0°<B <45°,22<cos B <1,所以12<cos 2B <1,所以1<4cos 2B -1<3, 故1<c b<3.即c b的取值范围是(1,3).(教师用书独具)在△ABC 中,求证a -c cos Bb -c cos A =sin Bsin A.【思路探究】 由正弦定理把等式左边统一为角的三角函数,通过三角变换证明. 【证明】 由正弦定理a sin A =b sin B =csin C =2R ,得a =2R sin A ,b =2R sin B ,c =2R sin C . 左边=2R sin A -2R sin C ·cos B 2R sin B -2R sin C ·cos A=sin A -sin C ·cos Bsin B -sin C ·cos A=sin B +C -sin C ·cos Bsin A +C -sin C ·cos A=sin B ·cos C +cos B ·sin C -sin C ·cos Bsin A ·cos C +cos A ·sin C -sin C ·cos A=sin B ·cos C sin A ·cos C =sin Bsin A=右边.所以a -c cos Bb -c cos A =sin Bsin A.如图所示,D 是直角三角形ABC 的斜边BC 上的一点,且AB =AD ,记∠CAD =α,∠ABC =β.(1)求证sin α+cos 2β=0; (2)若AC =3DC ,求β的值.【解】 (1)证明:因为AB =AD ,所以∠ADB =∠ABD =β. 又因为α=π2-∠BAD =π2-(π-2β)=2β-π2,所以sin α=sin(2β-π2)=-cos 2β,即sin α+cos 2β=0. (2)在△ADC 中,由正弦定理得 DC sin α=ACsin ∠ADC , 即DC sin α=ACsin π-β,即DCsin α=3DCsin β,所以sin β=3sin α.由(1)知sin α=-cos 2β,所以sin β=-3cos 2β=-3(1-2sin 2β), 即23sin 2β-sin β-3=0. 解得sin β=32或sin β=-33. 因为0<β<π2,所以sin β=32,所以β=π3.拓展三角形中的几个隐含条件1.A +B +C =π. 2.sinA +B2=cos C 2,cos A +B 2=sin C 2. 3.sin(A +B )=sin C ,cos(A +B )=-cos C .4.任意两边之和大于第三边,任意两边之差小于第三边.5.在△ABC 中,sin A >sin B ⇔A >B ⇔a >b ;A >B ⇔cos A <cos B .。
高中数学新苏教版精品教案《苏教版高中数学必修5 1.1.1 正弦定理》2
“正弦定理”教学设计顺昌一中张晨曦一、教学内容解析《正弦定理》是高中课程数学必修5第一章第一节内容,教学安排二个课时,本节为第一课时内容。
学生在初中已经学习了直角三角形的边角关系。
教师带领学生从已有知识出发,通过对实际问题的探索,构建数学模型,利用观察-猜想-验证-发现正弦定理,并从理论上加以证实,最后进行简单的应用。
课本按照从简原则和最近发展区原则,采用“作高法”证明了正弦定理。
教学过程中,为了发展学生思维,再引导学生从向量,作外接圆,三角形面积计算等角度找到证明的途径,让学生感受数学知识相互紧密联系的特点。
正弦定理是研究任意三角形边角之间关系的重要开端;用正弦定理解三角形,是典型的用代数的方法来解决的几何问题的类型;正弦定理作为三角形中的一个定理,在日常生活和工业生产中的应用又十分广泛。
因此,正弦定理的地位体现在它的基础性,作用体现在它的工具性。
二、学生学情分析正弦定理是学生在已经系统学习了平面几何,解直角三角形,三角函数,平面向量等知识基础上进行的。
虽然对于学生来说,有一定观察、分析、解决问题的能力,但正弦定理的发现,探索、证明还是有一定的难度,教师恰当引导调动学生学习主动性,注重前后知识间的联系,激起学生学习新知的兴趣和欲望,发现并探索正弦定理。
三、教学目标定位1、掌握正弦定理的内容及其证明方法;能用正弦定理解决一些简单的三角度量问题;2、让学生从已有的几何知识出发,探究在任意三角形中,边与其对角的关系,引导学生通过观察、猜想、推导,由特殊到一般归纳出正弦定理,培养学生合情推理探索数学规律的数学思想能力。
3、通过参与、思考、交流,体验正弦定理的发现及探索过程,逐步学生培养探索精神和创新意识。
教学重点:正弦定理的探索与发现。
教学难点:正弦定理证明及简单应用。
四、教学策略“数学教学是数学活动的教学”,“数学活动是思维的活动”,新课标也在倡导独立自主,合作交流,积极主动,勇于探索的学习方式。
基于这种理念的指导,在教法上采用探究发现式课堂教学模式,在学法上以学生独立自主和合作交流为前提,在教师的启发引导下,以“正弦定理的发现”为基本探究内容,结合现代多媒体教学手段,通过观猜想—验证--发现--证明--应用等环节逐步得到深化,体验数学知识的内在联系,增强学生由特殊到一般的数学思维能力,逐步培养学生探索精神和创新意识。
江苏省2019年高一数学苏教版必修5《1.1正弦定理》学案1
1.1 正弦定理教学目标:1、掌握正弦定理及其证明,能够运用正弦定理解决一些简单的三角形度量问题;2、通过三角形的边长和角度关系的探索,培养学生的自主学习和自主探索能力;教学重点、难点:正弦定理及其证明过程.教学过程:一、问题情境1、在Rt ABC ∆中,设90C =,那么边角之间有哪些关系?2、 在Rt ABC ∆中,我们得到sin sin sin a b c A B C ==,对于任意三角形,这个结论还成立吗?3、你能证明这个结论吗?.4、这个式子中包含哪几个式子?每个式子中有几个量?它可以解决斜三角型中的哪些类型的问题?5、一个三角形的两角和边分别是30和45,若45角所对边的长为8,那么30角所对边的长是 .三、数学运用例1在△ABC 中,10,45,3000===a C A ,求B ,,b c例2、在ABC ∆中:(1)已知16a =,26b =,30A =,求B ,C ,c ;(2)已知30a =,26b =,30A =,求B ,C ,c ;课后练习1.△ABC 中,6,3ππ==B A,a =则c = .b =2.△ABC 中,3π=A,a =sin b B= . 3.△ABC 中,a =1b =,3π=A ,则B =4.在ABC ∆中: (1)已知75,45,32A B c ===C ,b ;(2)已知30,120,12A B b ===,求a ,c .四、要点归纳与方法小结1、正弦定理:2、正弦定理可以用于解决已知 和 求另两角和一边的问题.3、在ABC ∆中,则a >b ⇔ ⇔ 。
苏教版必修5 11.1.2正弦定理(2) 教案
11.1 正弦定理(2)一、课题:正弦定理(2)二、教学目标:1.掌握正弦定理和三角形面积公式,并能运用这两组公式求解斜三角形, 解决实际问题;2.熟记正弦定理2sin sin sin a b cR A B C===(R 为ABC ∆的外接圆的半 径)及其变形形式。
三、教学重点:正弦定理和三角形面积公式及其应用。
四、教学难点:应用正弦定理和三角形面积公式解题。
五、教学过程: (一)复习:1.正弦定理:在一个三角形中各边和它所对角的正弦比相等,即:2sin sin sin a b cR A B C===(R 为ABC ∆的外接圆的半径); 2.三角形面积公式:111sin sin sin 222ABC S bc A ac B ab C ∆===.(二)新课讲解:1.正弦定理的变形形式: ①2sin ,2sin ,2sin a R A b R B c R C ===;②sin ,sin ,sin 222a b c A B C R R R===;③sin sin sin ::::A B C a b c =.2.利用正弦定理和三角形内角和定理,可解决以下两类斜三角形问题: (1)两角和任意一边,求其它两边和一角;(2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角。
一般地,已知两边和其中一边的对角解斜三角形,有两解或一解(见图示)。
A b a sin = b a A b <<sin b a ≥ b a >一解 两解 一解 一解 3.正弦定理,可以用来判断三角形的形状,其主要功能是实现三角形边角关系的转化: 例如,判定三角形的形状时,经常把,,a b c 分别用2sin ,2sin ,2sin R A R B R C 来替代。
4.例题分析:例1 在ABC ∆中,1 A B > 2 sin sin A B >的 ( ) A .1只能推出2 B .2只能推出1C .1、2可互相推出D .1、2不可互相推出解:在ABC A B ∆>中,2sin 2sin sin sin a b R A R B A B ⇔>⇔>⇔>,因此,选C .B 2 aC A B 1 b a b a C ABa BA C b说明:正弦定理可以用于解决ABC ∆中,角与边的相互转化问题。
高一数学必修5正弦定理 苏教版 教案
高一数学必修5正弦定理【教学目的】1.探究并证明正弦定理,了解数学理论的发现发展过程;2.理解并掌握正弦定理,能初步运用正弦定理解斜三角形。
【教学重点】正弦定理的证明和解三角形 【教学难点】 正弦定理的证明 【教学过程】 一.定理引入:三角形中的边角关系:A+B+C=π;A>B 则a>b;a+b>c; 直角三角形中A+B=90°;勾股定理;c a A =sin ,c b B =sin ,1sin =C CcB b A a sin sin sin ==⇒ 在非直角三角形ABC 中有这样的关系吗?几何画板验证 二.定理证明:方法1,转化为直角三角形中的边角关系 方法2,面积公式法 方法3,外接圆法 方法4,向量法 三.定理直接应用:1.在△ABC 中,(b+c):(c+a):(a+b)=4:5:6,则=C B A sin :sin :sin 7:5:32.在△ABC 中,A:B:C=4:1:1,则a:b:c= ( D ) A 4:1:1 B 2:1:1 C 2:1:1 D 3:1:1 四.解斜三角形:正弦定理可以解决三角形中两类问题:①已知两边和其中一边的对角,求另一边的对角,进而可求其他的边和角;②已知两角和一边,求另一角和其他边。
例1 在△ABC 中,已知c=10,A=45°,C=30°求边 a,b 和角B. B=105°a =b =例2 已知a=16,b=316,A=30°,求角B ,C 和边c. 60,90,32B Cc =︒=︒=或120,30,16B C c =︒=︒= 例3 已知a=30,b=26,A=30°,求角B ,C 和边c. 例4 已知b=40,c=20,C=45°,求角A ,B 和边a. 无解 五.练习与拓展:练习:P9 1 2 3 P10 练习3 作业:P11习题 1 2补充 在△ABC 中,a:b:c=4:5:6,则(2sinA-sinB):sinC= 拓展:P12 10 1.1正弦定理(2) 【教学目的】1.利用正弦定理,解决三角形中的有关问题;2.利用正弦定理,解决实际生活中的有关问题。
高中数学1.1正弦定理学案2苏教版必修5
§1.1 正弦定理 (2)一、学习目标:1. 熟练掌握正弦定理及其变式的结构特征和作用;2. 探究三角形的面积公式;3.能根据条件判断三角形的形状;4.能根据条件判断某些三角形解的个数。
二、学法指导1.利用正弦定理可以将三角形中的边角关系互化,同时要注意互补角的正弦值相等这一关系的应用;2.利用正弦定理判定三角形形状,常运用变形形式,结合三角函数有关公式,得出角的大小或边的关系。
三、课前预习1.正弦定理:____________________===________3. 正弦定理的几个变形:设△ABC 的外接圆的半径为R ,则有 a sinA =b sinB =c sinC= .①a b = ,a c = ,bc = .②a ∶b ∶c = ③a sinA =b sinB =c sinC=④a = ,b = ,c =⑤sinA = ,sinB = ,sinC = .⑥A<B ⇔ ⇔ ⇔ . 3.在解三角形时,常用的结论(1)sin(A+B)= ,sin(A+C)= ,sin(B+C)= , ( 2 ) 三角形的面积公式:______________________________________________四、课堂探究题型3三角形形状的判断例3 在△ABC 中,已知2a tanB =2b tanA ,试判断△ABC 的形状.规律归纳判断三角形形状的思路通常有以下两种:(1)化边为角;(2)化角为边.对条件实施转化时,考查角的关系,主要有:(1)两角是否相等?(2)三个角相等?(3)有无直角、钝角?考查边的关系,主要有:(1)两边是否相等?(2)三边是否相等?题型4正弦定理与其他知识的综合应用例4 在△ABC 中,tanA =14,tanB =35.(1)求C 的大小;(2)若△ABC 最大边的边长为17,求最小边的边长.规律归纳在三角形中考查三角函数式的变换,是近年来高考的热点,它是在新的载体上进行的三角变换,因此作为三角形问题,必然要用到三角形的内角和定理和正弦定理及三角形的有关性质进行边角转化,有利于发现解决问题的思路.另外做三角变换,常见的变换方法和公式都是适用的.题型5例5 判断下列三角形解的情况: (1)已知060,12,11===B c b (2)已知0110,3,7===A b a (3)已知045,9,6===B c b五、结论:三角形解的个数一般地,已知两边和其中一边的对角解斜三角形(已知a , b 和A ),用正弦定理求B 时的各种情况:⑴若A 为锐角时: sin sin ()sin (, )³()a b A a b A b A a b a b <=<<⎧⎪⎪⎨⎪⎪⎩无解一解直角二解一锐一钝一解锐角,如下图所示:已知边a,b和∠A有两个解仅有一个解无解CH=bsinA<a<ba=CH=bsinAa<CH=bsinA⑵若A为直角或钝角时:⎩⎨⎧>≤一解无解baba1.在ABC∆中,若,60,3︒==Aa那么ABC∆的外接圆的周长为________2.在ABC∆中,若3,600==aA,则_______sinsinsin=++++CBAcba3.在ABC∆中,______,coscos的形状为则ABCBCbc∆=4.在△ABC中,若acosA=bcosB,判断△ABC的形状.5.已知△ABC中,tanA=25,tanB=37,且最长边长为2,求:(1)C的大小;(2)最短边的长.6.ABC∆中,ABBA22sintansintan⋅=⋅,那么ABC∆一定是_______7.ABC∆中,A为锐角,2lgsinlg1lglg-==+Acb,则ABC∆形状为_____七、反思总结1.理论上正弦定理可解决两类问题:(1)两角和任意一边,求其它两边和一角;(2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角.2.判断三角形的形状的方法。
高一数学苏教版必修5《1.1正弦定理》教案2
多媒体
专用教室
教学过程设计
教
学
二次备课
一、复习回顾
、正弦定理:
正弦定理的变形形式
();;
()
()
、正弦定理可以解哪两类三角形问题
二、例题
【例】根据下列条件,判断△的形状
() ,
() ,
解题小结:
练习:.△中, ,则三角形为.
回忆公式
基础练习:
、
在△中,
已知 ,则
、在△中,已知 ,则
.在△中,角、均为锐角且>,则△是.
教学过程设计
教
学
二次备课
【例】在△中, 是∠的平分线,用正弦定理证明:
练习:在△中,∠的外角平分线交的延长线与,用正弦定理证明:
三、巩固练习
.在△中, , ,则
.若△中, ,则△
是三角形
四、课堂小结
、比值的意义:
、正弦定理的变形形式
() ;
() ;
()
课外作业
教学小结
备课时间
年月日
上课时间
第周周月日
班级节次
课题
正弦定理()
总课时数
第节
教学目标
.会熟练应用正弦定理解斜三角形,培养数学应用意识;
.初步掌握正弦定理的变形形式,并会应用
教学重难点
.会熟练应用正弦定理解斜三角形,培养数学应用意识;
.初步掌握正弦定Hale Waihona Puke 的变形形式,并会应用教学参考
教材、教参
授课方法
合作探究、讲练结合
苏教版高中数学必修五1.1正弦定理(二)
§1.1 正弦定理(二)课时目标1.熟记正弦定理的有关变形公式;2.能够运用正弦定理进行简单的推理与证明.1.正弦定理:a sin A =b sin B =csin C=2R 的常见变形:(1)sin A ∶sin B ∶sin C =________;(2)a sin A =b sin B =c sin C =a +b +c sin A +sin B +sin C=______; (3)a =__________,b =________,c =____________;(4)sin A =__________,sin B =__________,sin C =__________.2.三角形面积公式:S =____________=____________=____________.一、填空题1.在△ABC 中,已知(b +c )∶(c +a )∶(a +b )=4∶5∶6,则sin A ∶sin B ∶sin C 等于________.2.在△ABC 中,若a cos A =b cos B =ccos C,则△ABC 的形状是________.3.在△ABC 中,sin A =34,a =10,则边长c 的取值范围是________.4.在△ABC 中,a =2b cos C ,则这个三角形一定是________三角形.5.如图,点A ,B ,C 是圆O 上的点,且AB =4,∠ACB =45°,则圆O 的面积等于________.6.已知三角形面积为14,外接圆面积为π,则这个三角形的三边之积为________.7.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________.8.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知A =60°,a =3,b =1,则c =________.9.在单位圆上有三点A ,B ,C ,设△ABC 三边长分别为a ,b ,c ,则a sin A +b 2sin B +2csin C=________.10.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +csin A +sin B +sin C=________,c =________.二、解答题11.在△ABC 中,求证:a -c cos B b -c cos A =sin Bsin A.12.在△ABC 中,已知a 2tan B =b 2tan A ,试判断△ABC 的形状.能力提升13.在△ABC 中,B =60°,最大边与最小边之比为(3+1)∶2,则最大角为________.14.在△ABC 中,a ,b ,c 分别是三个内角A ,B ,C 的对边,若a =2,C =π4,cos B 2=255,求△ABC 的面积S .§1.1 正弦定理(二)答案知识梳理1.(1)a∶b∶c (2)2R (3)2R sin A 2R sin B 2R sin C (4)a2Rb2Rc2R2.12ab sin C12bc sin A12ca sin B作业设计1.7∶5∶3解析∵(b+c)∶(c+a)∶(a+b)=4∶5∶6,∴b+c4=c+a5=a+b6.令b+c4=c+a5=a+b6=k(k>0),则⎩⎪⎨⎪⎧b +c =4k c +a =5k a +b =6k,解得⎩⎪⎨⎪⎧a =72k b =52kc =32k.∴sin A ∶sin B ∶sin C =a ∶b ∶c =7∶5∶3. 2.等边三角形解析 由正弦定理知:sin A cos A =sin B cos B =sin Ccos C,∴tan A =tan B =tan C ,∴A =B =C.3.⎝⎛⎦⎥⎤0,403解析 ∵c sin C =a sin A =403,∴c =403sin C .∴0<c ≤403.4.等腰解析 由a =2b cos C 得,sin A =2sin B cos C , ∴sin (B +C)=2sin B cos C ,∴sin B cos C +cos B sin C =2sin B cos C , ∴sin (B -C)=0,∴B =C. 5.8π解析 ∵2R =4sin 45°=42,∴R =2 2.∴S =πR 2=8π.6.1解析 设三角形外接圆半径为R ,则由πR 2=π,得R =1,由S △=12ab sin C =abc 4R =abc 4=14,∴abc =1. 7.2 3解析 ∵cos C =13,∴sin C =223,∴12ab sin C =43,∴b =2 3.8.2解析 由正弦定理a sin A =b sin B ,得3sin 60°=1sin B ,∴sin B =12,故B =30°或150°.由a>b ,得A>B ,∴B =30°,故C =90°,由勾股定理得c =2. 9.7解析 ∵△ABC 的外接圆直径为2R =2,∴a sin A =b sin B =c sin C =2R =2, ∴a sin A +b 2sin B +2c sin C =2+1+4=7. 10.12 6解析 a +b +c sin A +sin B +sin C =a sin A =6332=12.∵S △ABC =12ab sin C =12×63×12sin C =183,∴sin C =12,∴c sin C =asin A=12,∴c =6.11.证明 因为在△ABC 中,a sin A =b sin B =csin C=2R ,所以左边=2R sin A -2R sin C cos B 2R sin B -2R sin C cos A =sin (B +C )-sin C cos B sin (A +C )-sin C cos A =sin B cos C sin A cos C =sin Bsin A=右边.所以等式成立,即a -c cos B b -c cos A =sin Bsin A.12.解 设三角形外接圆半径为R ,则a 2tan B =b 2tan A ⇔a 2sin B cos B =b 2sin A cos A ⇔4R 2sin 2 A sin B cos B =4R 2sin 2B sin A cos A ⇔sin A cos A =sin B cos B ⇔sin 2A =sin 2B ⇔2A =2B 或2A +2B =π⇔A =B 或A +B =π2.∴△ABC 为等腰三角形或直角三角形. 13.75°解析 设C 为最大角,则A 为最小角,则A +C =120°, ∴sin C sin A =sin ()120°-A sin A=sin 120° cos A -cos 120°sin A sin A=32tan A +12=3+12=32+12, ∴tan A =1,A =45°,C =75°.14.解 cos B =2cos 2B2-1=35,故B 为锐角,sin B =45.所以sin A =sin (π-B -C)=sin ⎝ ⎛⎭⎪⎫3π4-B =7210.由正弦定理得c =a sin C sin A =107,所以S △ABC =12ac sin B =12×2×107×45=87.。
高一数学《正弦定理》学案(苏教版必修5)
2012高一数学 正弦定理学案一、学习目标:1. 掌握正弦定理及其证明,能够运用正弦定理解决一些简单的三角形度量问题;2. 提供适当的问题情境,激发学生的学习热情,培养学生学习数学的兴趣.二、教学过程:1、复习旧知:三角形函数定义2、问题情境从金字塔的建造到尼罗河两岸的土地丈量,从大禹治水到都江堰的修建,从天文观测到精密仪器的制造,人们都离不开对几何图形的测量、设计和计算.测量河流两岸两码头之间的距离,确定待建隧道的长度,确定卫星的角度与高度等等,所有这些问题,都可以转化为求三角形的边或角的问题,这就需要我们进一步探索三角形中的边角关系.探索1 我们前面学习过直角三角形中的边角关系,在Rt ABC ∆中,设90C =,那么边角之间有哪些关系?探索2 在Rt ABC ∆中,我们得到sin sin sin a b c A B C==,对于任意三角形,这个结论还成立吗?3、学生活动把学生分成两组,一组验证结论对于锐角三角形是否成立,另一组验证结论对于钝角三角形是否成立.学生通过画三角形、测量长度及角度,再进行计算,得出结论成立.教师再通过几何画板软件进行验证(如图1).对于验证的结果不成立的情况,指出这是由于测量的误差或者计算的错误造成的.引出课题——正弦定理.四、问题解决:探索3 这个结论对于任意三角形可以证明是成立的.不妨设C 为最大角,若C 为直角,我们已经证明结论成立,如何证明C 为锐角、钝角时结论成立?师生共同活动,注意启发、引导学生作辅助线,将锐角、钝角三角形转化为直角三角形,进而探索证明过程.探索4 充分挖掘三角形中的等量关系,可以探索出不同的证明方法,我们知道向量也是解决问题的重要工具,因此能否从向量的角度来证明这个结论呢?这里运用向量的数量积将向量等式转化为数量等式,我们运用不同的方法证明了三角形中的一个重要定理.探索 5 这个式子中包含哪几个式子?每个式子中有几个量?它可以解决斜三角型中的哪些类型的问题?正弦定理可以解决两类三角形问题:(1)(2)五、数学运用例题 在ABC ∆中:(1)已知16a =,26b =,30A =,求B ,C ,c ;(2)已知30a =,26b =,30A =,求B ,C ,c ;(3)已知25a =,11b =,30B =,解这个三角形.学生思考:已知三角形的两边和其中一边的对角,为什么分别会出现两解、一解和无解的情况呢?六、.课堂练习:1.(口答)一个三角形的两角和边分别是30和45,若45角所对边的长为8,那么30角所对边的长是 .2. 在ABC ∆中:(1)已知75,45,32A B c ===,求C ,b ;(2)已知30,120,12A B b ===,求a ,c .3.根据下列条件解三角形:(1)40b =,20c =,25C =(2)15a =,20b =,108A =七、课堂小结八、课后作业1、在ABC ∆中,已知8b c +=,30B ∠=︒,45C ∠=︒,则b = ,c = .2、在ABC ∆中,如果30A ∠=︒,120B ∠=︒,12b =,那么a = ,ABC ∆的面积是 .3、在ABC ∆中,30bc =,ABC S ∆=,则A ∠= . 4、在△ABC 中,已知∠B=045,334b 22==,c ,则∠A 的值是 5、△ABC 中6=a ,36=b ,A=030,则边c =6、在△ABC 中,已知2=a ,22=b ,∠A=030,则∠B=7、在△ABC 中,B a b 222sin 4=,则∠A= ____8、在三角形ABC 中,a 、b 、c 所对的角分别为A 、B 、C ,且A c C bB a sin sin sin ==,则△ABC 是 三角形。
苏教版数学高二- 必修5教案 1.1.1正弦定理(2)
解: ∴ 由 得
由 得
例2(已知两边和其中一边的对角的问题)
在
解:∵ , 为锐角,
∴
(只有一解)
例3
解:
,
(有两解,要提醒学生不要漏解)
四、矫正反馈
1.在 中,三个内角之比 ,那么 等于____
2.在 中, ,则此三角形的最大边长为_____
五、迁移应用
在 中,已知 ,如果利用正弦定理解三角形有两解,则的取值范围是_____
课外作业
课本10页1、2
教学反思
1
教学
目标
1.通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容和推导过程;
2.能解决一些简单的三角形度量问题(会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题);能够运用正弦定理解决一些与测量和几何计算有关的实际问题;
重点
难点
重点:正弦定理的探索和证明及其基本应用。
难点:已知两边和其中一边的对角解三角形时判断解的个数。
教学过程
一、问题情境
在直角三角形中的边角关系是怎样的?这种关系在任意三角形中也成立吗?
二、互动探究
1.正弦定理的推导
(1)在直角三角形中: , ,
即 , , ∴ = =
能否推广到斜三角形?
(2)斜三角形中
证明一:(等积法,利用三角形的面积转换)在任意斜△ 中,先作出三边上的高 、 、 ,则 , , .所以 ,每项同除以 即得: .
证明二:(外接圆法)如图所示,∠ =∠∴Leabharlann 同理 ,证明三:(向量法)
正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即
2.正弦定理的作用:
(1)已知两角与任一边,求其他两边和一角
苏教版高中数学必修五正弦定理教案(2)
听课随笔第2课时正弦定理【学习导航】知识网络正弦定理→测量问题中的应用学习要求1.正弦定理的教学要达到“记熟公式”和“运算正确”这两个目标;2.学会用计算器,计算三角形中数据。
【课堂互动】自学评价1.正弦定理:在△ABC 中,===C cB b A a sin sin sin R 2, 变形:(1)A R a sin 2=,_____________,________________.(2)RaA 2sin =,______________,________________.2.三角形的面积公式:(1)C ab s sin 21==_________=_________(2)s=C B A R sin sin sin 22(3)Rabcs 4=【精典范例】 【例1】 如图,某登山队在山脚A处测得山顶B的仰角为35°,沿倾斜角为20°的斜坡前进1000m后到达D处,又测得山顶的仰角为65°,求山的高度BC(精确到1m).分析:要求BC,只要求AB,为此考虑 解△ABD. 【解】【例2】在埃及,有许多金字塔形的王陵,经过几千年的风化蚀食,有不少已经损坏了,考古人员在研究中测得一座金字塔的横截面如图(顶部已经坍塌了),∠A=050,∠B=055,AB=120m ,如何求得它的高? (819.055sin ,766.050sin 0≈≈) 分析:本题可以转化成:(1)解三角形,确定顶点C ;(2)求三角形的高。
【解】【例3】一座拦水坝的横断面为梯形,如图所示,求拦水坝的横断面面积。
(请用计算器解答,精确到1.0) 【解】注:本题也可以构造直角三角形来解,过C 作CE ⊥AB 于E ,过D 作DF ⊥AB 于F 即可。
【例4】已知a 、b 、c 是△ABC 中∠A 、 ∠B 、∠C 的对边,S 是△ABC 的面积,若a =4,b =5,S =35,求c 的长度。
听课随笔 【师生互动】 学生质疑教师释疑【解】追踪训练一1.海上有A 、B 两个小岛相距10海里,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,则B 、C 间的距离是 ( )A.103海里B.3610海里 C. 52海里 D.56海里2.有一长为1公里的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则坡底要伸长( )A. 1公里B. sin10°公里C. cos10°公里D. cos20°公里 3.如图:在斜度一定的山坡上的一点A 测得山顶上一建筑物顶端C 对于山坡的斜度为15︒,向山顶前进100m 后,又从点B 测得斜度为45︒,假设建筑物高50m ,求此山对于地平面的斜度θ 【解】【选修延伸】 【例5】在湖面上高h 处,测得云彩仰角为α,而湖中云彩影的俯角为β,求云彩高. 【解】追踪训练二1.一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°, 另一灯塔在船的南偏西75°,则这只船的速度是每小时 ( )A.5海里B.53海里C.10海里D.103海里2.某人站在山顶向下看一列车队向山脚驶来,他看见第一辆车与第二辆车的俯角差等于他看见第二辆车与第三辆车的俯角差,则第一辆车与第二辆车的距离1d 与第二辆车与第三辆车的距离d 2之间的关系为 ( ) A. 21d d > B. 21d d = C. 21d d < D. 不能确定大小。
苏教版高中数学必修五清江一体化教学案正弦定理(1)
[课题] 1.1.1正弦定理(2)[知识摘记]1.正弦定理:在△ABC 中,===Cc B b A a sin sin sin , 变形:(1)A R a sin 2=,b = ,c = ,(2)Ra A 2sin =,sin B = ,sin C = 2.三角形的面积公式: (1)C ab s sin 21== = (2)s=C B A R sin sin sin 22 (3)Rabc s 4= [例题解析]例1.如图,某登山队在山脚A 处测得山顶B 的仰角为35o ,沿倾斜角为20o 的斜坡前进1000m后到达D 处,又测得山顶的仰角为65o ,求山的高度BC(精确到1m).例2.在ABC V 中,已知cos cos cos a b c A B C ==,试判断ABC V 的形状。
例3.在ABC V 中,AD 是BAC ∠的角平分线,用正弦定理证明AB BD AC DC =[练习与反思]课后练习第2题、第3题.[课外作业]1.在△ABC 中,若C B A cos sin 2sin ⋅=,C B A 222sin sin sin +=,则△ABC 的形状是2.在△ABC 中,已知∠B=045,334b 22==,c ,则∠A 的值是3.在△ABC 中,A=450,B=600,则=+-ba b a 4.在△ABC 中,c a b +=2,则1cos cos cos cos sin sin 3A C A C A C +-+=5.已知 A 、B 、C 是一条直路上的三点,且AB=BC=1km ,从A 点看塔M 在北450东,B 点看塔M 在正东方向,在C 点看塔M 在南600东,求塔M 到这段路的最短距离。
6.在ABC V 中,A ∠的外角平分线交BC 的延长线于D ,用正弦定理证明AB BD AC DC =7.在△ABC 中,已知cos 2(2π-A)+cosA=45,且b+c=3a ,求cos 2C B -8.(选作)在△ABC 中,a ab +=A B B sin sin sin -且cos2C+cosC=1-cos(A -B),试判别其形状。
高中数学 1.1正弦定理学案 苏教版必修5
§1.1 正弦定理 学习目标 1. 掌握正弦定理的内容; 2. 掌握正弦定理的证明方法; 3. 会运用正弦定理解斜三角形的两类基本问题.学习过程一、课前准备试验:固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动.思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系?显然,边AB 的长度随着其对角∠C 的大小的增大而 .能否用一个等式把这种关系精确地表示出来?二、新课导学※ 学习探究探究1:在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系. 如图,在Rt ∆ABC 中,设BC =a ,AC =b ,AB =c ,根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1c C c==, 从而在直角三角形ABC 中,sin sin sin a b c A B C==.探究2:那么对于任意的三角形,以上关系式是否仍然成立?可分为锐角三角形和钝角三角形两种情况:当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD =sin sin a B b A =,则sin sin a b A B=, 同理可得sin sin c b C B=, 从而sin sin a b A B =sin c C=.类似可推出,当∆ABC 是钝角三角形时,以上关系式仍然成立.请你试试导.新知:正弦定理在一个三角形中,各边和它所对角的 的比相等,即sin sin a b A B =sin c C=.试试:(1)在ABC ∆中,一定成立的等式是( ).A .sin sin a A bB = B .cos cos a A b B =C . sin sin a B b A =D .cos cos a B b A =(2)已知△ABC 中,a =4,b =8,∠A =30°,则∠B 等于 .[理解定理](1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =, ,sin c k C =;(2)sin sin a b A B =sin c C =等价于 ,sin sin c b C B =,sin a A =sin c C. (3)正弦定理的基本作用为: ①已知三角形的任意两角及其一边可以求其他边,如sin sin b A a B=;b = . ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值, 如sin sin a A B b=;sin C = . (4)一般地,已知三角形的某些边和角,求其它的边和角的过程叫作解三角形.※ 典型例题例1. 在ABC ∆中,已知45A =,60B =,42a =cm ,解三角形.变式:在ABC ∆中,已知45B =,60C =,12a =cm ,解三角形.例2. 在45,2,,ABC c A a b B C ∆===中,求和.变式:在60,1,,ABC b B c a A C ∆==中,求和.三、总结提升※ 学习小结1. 正弦定理:sin sin a b A B =sin c C= 2. 正弦定理的证明方法:①三角函数的定义,还有 ②等积法,③外接圆法,④向量法.3.应用正弦定理解三角形:①已知两角和一边;②已知两边和其中一边的对角.※ 知识拓展 a b =2c R ==,其中2R 为外接圆直径.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 在ABC ∆中,若cos cos A b B a=,则ABC ∆是( ). A .等腰三角形 B .等腰三角形或直角三角形C .直角三角形D .等边三角形2. 已知△ABC 中,A ∶B ∶C =1∶1∶4,则a ∶b ∶c 等于( ).A .1∶1∶4B .1∶1∶2C .1∶1D .2∶23. 在△ABC 中,若sin sin A B >,则A 与B 的大小关系为( ).A. A B >B. A B <C. A ≥BD. A 、B 的大小关系不能确定4. 已知∆ABC 中,sin :sin :sin 1:2:3A B C =,则::a b c = .5. 已知∆ABC 中,∠A 60=︒,a =sin sin sin a b c A B C++++= .1. 已知△ABC 中,AB =6,∠A =30°,∠B =120︒,解此三角形.2. 已知△ABC 中,sin A ∶sin B ∶sin C =k ∶(k +1)∶2k (k ≠0),求实数k 的取值范围为.§1.2 余弦定理1. 掌握余弦定理的两种表示形式;2. 证明余弦定理的向量方法;3. 运用余弦定理解决两类基本的解三角形问题.一、课前准备复习1:在一个三角形中,各 和它所对角的 的 相等,即 = = .复习2:在△ABC 中,已知10c =,A =45︒,C =30︒,解此三角形.思考:已知两边及夹角,如何解此三角形呢?二、新课导学※ 探究新知问题:在ABC ∆中,AB 、BC 、CA 的长分别为c 、a 、b .∵AC = ,∴AC AC •=同理可得: 2222cos a b c bc A =+-,2222cos c a b ab C =+-.新知:余弦定理:三角形中任何一边的 等于其他两边的 的和减去这两边与它们的夹角的的积的两倍.思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角?从余弦定理,又可得到以下推论:222cos 2b c a A bc+-=, , .[理解定理](1)若C =90︒,则cos C = ,这时222c a b =+由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例.(2)余弦定理及其推论的基本作用为:①已知三角形的任意两边及它们的夹角就可以求出第三边;②已知三角形的三条边就可以求出其它角.试试:(1)△ABC 中,a =2c =,150B =,求b .(2)△ABC 中,2a =,b ,1c ,求A .※ 典型例题例1. 在△ABC 中,已知a b =,45B =,求,A C 和c .变式:在△ABC 中,若AB ,AC =5,且cos C =910,则BC =________.例2. 在△ABC中,已知三边长3b=,c=,求三角形的最大内角.a=,4变式:在∆ABC中,若222=++,求角A.a b c bc三、总结提升※学习小结1. 余弦定理是任何三角形中边角之间存在的共同规律,勾股定理是余弦定理的特例;2. 余弦定理的应用范围:①已知三边,求三角;②已知两边及它们的夹角,求第三边.※知识拓展在△ABC中,若222+=,则角C是直角;a b c若222+<,则角C是钝角;a b c222是锐角.※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 已知a c=2,B=150°,则边b的长为().A. B. C.2D.2. 已知三角形的三边长分别为3、5、7,则最大角为().A.60B.75C.120D.1503. 已知锐角三角形的边长分别为2、3、x,则x的取值范围是().A x<B x<5C.2<x D.5<x<54. 在△ABC中,|AB|=3,|AC|=2,AB与AC的夹角为60°,则|AB-AC|=________.5. 在△ABC中,已知三边a、b、c满足222b ac ab+-=,则∠C等于.1. 在△ABC中,已知a=7,b=8,cos C=1314,求最大角的余弦值.2. 在△ABC中,AB=5,BC=7,AC=8,求AB BC⋅的值.§1.3 正弦定理和余弦定理(练习)1. 进一步熟悉正、余弦定理内容;2. 掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形.一、课前准备复习1:在解三角形时已知三边求角,用 定理;已知两边和夹角,求第三边,用 定理;已知两角和一边,用 定理.复习2:在△ABC 中,已知 A =6π,a =,b =二、新课导学※ 学习探究探究:在△ABC 中,已知下列条件,解三角形.① A =6π,a =25,b =;② A =6π,a ,b =③ A =6π,a =50,b =.思考:解的个数情况为何会发生变化?新知:用如下图示分析解的情况(A为锐角时).已知边a,b和∠A有两个解仅有一个解无解CH=bsinA<a<ba=CH=bsinAa<CH=bsinA试试:1. 用图示分析(A为直角时)解的情况?2.用图示分析(A为钝角时)解的情况?※典型例题例1. 在∆ABC中,已知80a=,100b=,45A∠=︒,试判断此三角形的解的情况.变式:在∆ABC中,若1a=,12c=,40C∠=︒,则符合题意的b的值有_____个.例2. 在∆ABC 中,60A =︒,1b =,2c =,求sin sin sin a b c A B C++++的值.变式:在∆ABC 中,若55a =,16b =,且1sin 2ab C =C .三、总结提升※ 学习小结1. 已知三角形两边及其夹角(用余弦定理解决);2. 已知三角形三边问题(用余弦定理解决);3. 已知三角形两角和一边问题(用正弦定理解决);4. 已知三角形两边和其中一边的对角问题(既可用正弦定理,也可用余弦定理,可能有一解、两解和无解三种情况).※ 知识拓展在∆ABC 中,已知,,a b A ,讨论三角形解的情况 :①当A 为钝角或直角时,必须a b >才能有且只有一解;否则无解;②当A 为锐角时,如果a ≥b ,那么只有一解;如果a b <,那么可以分下面三种情况来讨论:(1)若sin a b A >,则有两解;(2)若sin a b A =,则只有一解;※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 已知a 、b 为△ABC 的边,A 、B 分别是a 、b 的对角,且sin 2sin 3A B =,则a b b +的值=( ). A. 13 B. 23 C. 43 D. 532. 已知在△ABC 中,sin A ∶sin B ∶sin C =3∶5∶7,那么这个三角形的最大角是( ).A .135°B .90°C .120°D .150°3. 如果将直角三角形三边增加同样的长度,则新三角形形状为( ).A .锐角三角形B .直角三角形C .钝角三角形D .由增加长度决定4. 在△ABC 中,sin A :sin B :sin C =4:5:6,则cos B = .5. 已知△ABC 中,cos cos b C c B =,试判断△ABC 的形状 .1. 在∆ABC 中,a xcm =,2b cm =,45B ∠=︒,如果利用正弦定理解三角形有两解,求x 的取值范围.2. 在∆ABC 中,其三边分别为a 、b 、c ,且满足2221sin 24a b c ab C +-=,求角C .§1.3应用举例—①测量距离学习目标能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题学习过程一、课前准备复习1:在△ABC中,∠C=60°,a+b=232+,c=22,则∠A为.复习2:在△ABC中,sin A=sin sincos cosB CB C++,判断三角形的形状.二、新课导学※典型例题例1. 如图,设A、B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是55m,∠BAC=51︒,∠ACB=75︒. 求A、B两点的距离(精确到0.1m).提问1:∆ABC中,根据已知的边和对应角,运用哪个定理比较适当?提问2:运用该定理解题还需要那些边和角呢?分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题题目条件告诉了边AB的对角,AC为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC的对角,应用正弦定理算出AB边.新知1:基线在测量上,根据测量需要适当确定的叫基线.例2. 如图,A、B两点都在河的对岸(不可到达),设计一种测量A、B两点间距离的方法.分析:这是例1的变式题,研究的是两个的点之间的距离测量问题.首先需要构造三角形,所以需要确定C、D两点.根据正弦定理中已知三角形的任意两个内角与一边既可求出另两边的方法,分别求出AC和BC,再利用余弦定理可以计算出AB的距离.变式:若在河岸选取相距40米的C、D两点,测得∠BCA=60°,∠ACD=30°,∠CDB=45°,∠BDA =60°.练:两灯塔A 、B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东30°,灯塔B 在观察站C 南偏东60°,则A 、B 之间的距离为多少?三、总结提升※ 学习小结1. 解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型;(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解.2.基线的选取:测量过程中,要根据需要选取合适的基线长度,使测量具有较高的精确度.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 水平地面上有一个球,现用如下方法测量球的大小,用锐角45︒的等腰直角三角板的斜边紧靠球面,P 为切点,一条直角边AC 紧靠地面,并使三角板与地面垂直,如果测得PA =5cm ,则球的半径等于( ).A .5cm B .C .1)cmD .6cm2. 台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B 在A 的正东40千米处,B 城市处于危险区内的时间为( ).A .0.5小时B .1小时C .1.5小时D .2小时3. 在ABC ∆中,已知2222()sin()()sin()a b A B a b A B +-=-+,则ABC ∆的形状( ).A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形4.在ABC ∆中,已知4a =,6b =,120C =,则sin A 的值是 .5. 一船以每小时15km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60,行驶4h 后,船到达C 处,看到这个灯塔在北偏东15,这时船与灯塔的距离为 km .1. 的C 、D 两点,并测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°,A 、B 、C 、D 在同一个平面,求两目标A 、B 间的距离.2. 某船在海面A 处测得灯塔C 与A 相距且在北偏东30︒方向;测得灯塔B 与A相距75︒方向. 船由A 向正北方向航行到D 处,测得灯塔B 在南偏西60︒方向. 这时灯塔C 与D 相距多少海里?§1.3应用举例—②测量高度1. 能够运用正弦定理、余弦定理等知识和方法解决一些有关底部不可到达的物体高度测量的问题;2. 测量中的有关名称.一、课前准备复习1:在∆ABC中,cos5cos3A bB a==,则∆ABC的形状是怎样?复习2:在∆ABC中,a、b、c分别为∠A、∠B、∠C的对边,若::a b c求A:B:C 的值.二、新课导学※学习探究新知:坡度、仰角、俯角、方位角方位角---从指北方向顺时针转到目标方向线的水平转角;坡度---沿余坡向上的方向与水平方向的夹角;仰角与俯角---视线与水平线的夹角当视线在水平线之上时,称为仰角;当视线在水平线之下时,称为俯角.探究:AB是底部B不可到达的一个建筑物,A为建筑物的最高点,设计一种测量建筑物高度AB的方法.分析:选择基线HG,使H、G、B三点共线,要求AB,先求AE在ACE∆中,可测得角,关键求AC在ACD∆中,可测得角,线段,又有α故可求得AC※典型例题例1. 如图,在山顶铁塔上B处测得地面上一点A的俯角α=5440'︒,在塔底C处测得A处的俯角β=501'︒. 已知铁塔BC部分的高为27.3 m,求出山高CD(精确到1 m)例2. 如图,一辆汽车在一条水平的公路上向正东行驶,到A处时测得公路南侧远处一山顶D在东偏南15︒的方向上,行驶5km后到达B处,测得此山顶在东偏南25︒的方向上,仰角为8︒,求此山的高度CD.问题1:欲求出CD,思考在哪个三角形中研究比较适合呢?问题2:在∆BCD中,已知BD或BC都可求出CD,根据条件,易计算出哪条边的长?变式:某人在山顶观察到地面上有相距2500米的A、B两个目标,测得目标A在南偏西57°,俯角是60°,测得目标B在南偏东78°,俯角是45°,试求山高.三、总结提升※学习小结利用正弦定理和余弦定理来解题时,要学会审题及根据题意画方位图,要懂得从所给的背景资料中进行加工、抽取主要因素,进行适当的简化.※知识拓展在湖面上高h处,测得云之仰角为α,湖中云之影的俯角为β,则云高为sin() sin() hαβαβ+-.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 在∆ABC 中,下列关系中一定成立的是( ).A .sin a b A >B .sin a b A =C .sin a b A <D .sin a b A ≥2. 在ABC 中,AB =3,BC AC =4,则边AC 上的高为( ).A B C .32D . 3. D 、C 、B 在地面同一直线上,DC =100米,从D 、C 两地测得A 的仰角分别为30和45,则A 点离地面的高AB 等于( )米.A .100B .C .501)D .501)4. 在地面上C 点,测得一塔塔顶A 和塔基B 的仰角分别是60︒和30︒,已知塔基B 高出地面20m ,则塔身AB 的高为_________m .5. 在∆ABC 中,b =2a =,且三角形有两解,则A 的取值范围是 .1. 为测某塔AB 的高度,在一幢与塔AB 相距20m 的楼的楼顶处测得塔顶A 的仰角为30°,测得塔基B 的俯角为45°,则塔AB 的高度为多少m ?2. 在平地上有A 、B 两点,A 在山的正东,B 在山的东南,且在A 的南25°西300米的地方,在A 侧山顶的仰角是30°,求山高.§1.3应用举例—③测量角度 学习目标 能够运用正弦定理、余弦定理等知识和方法解决一些有关计算角度的实际问题.学习过程一、课前准备复习1:在ABC △中,已知2c =,3C π=,且1sin 32ab C =,求a b ,.复习2:设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,且A =60,3c =,求a c 的值.二、新课导学※ 典型例题例1. 如图,一艘海轮从A 出发,沿北偏东75︒的方向航行67.5 n mile 后到达海岛B ,然后从B 出发,沿北偏东32︒的方向航行54.0 n mile 后达到海岛C.如果下次航行直接从A 出发到达C ,此船应该沿怎样的方向航行,需要航行多少距离?(角度精确到0.1︒,距离精确到0.01n mile)分析:首先由三角形的内角和定理求出角∠ABC,然后用余弦定理算出AC边,再根据正弦定理算出AC边和AB边的夹角∠CAB.例2. 某巡逻艇在A处发现北偏东45︒相距9海里的C处有一艘走私船,正沿南偏东75︒的方向以10海里/小时的速度向我海岸行驶,巡逻艇立即以14海里/小时的速度沿着直线方向追去,问巡逻艇应该沿什么方向去追?需要多少时间才追赶上该走私船?※动手试试练1. 甲、乙两船同时从B点出发,甲船以每小时10(3+1)km的速度向正东航行,乙船以每小时20km 的速度沿南60°东的方向航行,1小时后甲、乙两船分别到达A 、C 两点,求A 、C 两点的距离,以及在A 点观察C 点的方向角.练2. 某渔轮在A 处测得在北45°的C 处有一鱼群,离渔轮9海里,并发现鱼群正沿南75°东的方向以每小时10海里的速度游去,渔轮立即以每小时14海里的速度沿着直线方向追捕,问渔轮应沿什么方向,需几小时才能追上鱼群?三、总结提升※ 学习小结1. 已知量与未知量全部集中在一个三角形中,依次利用正弦定理或余弦定理解之.;2.已知量与未知量涉及两个或几个三角形,这时需要选择条件足够的三角形优先研究,再逐步在其余的三角形中求出问题的解.※ 知识拓展已知∆ABC 的三边长均为有理数,A =3θ,B =2θ,则cos5θ是有理数,还是无理数? 因为5C πθ=-,由余弦定理知222cos 2a b c C ab+-=为有理数, 所以cos5cos(5)cos C θπθ=--=-为有理数.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为( ).A .α>βB .α=βC .α+β=90D .α+β=1802. 已知两线段2a =,b =若以a 、b 为边作三角形,则边a 所对的角A 的取值范围是( ).A .(,)63ππB .(0,]6π C .(0,)2π D .(0,]4π3. 关于x 的方程2sin 2sin sin 0A x B x C ++=有相等实根,且A 、B 、C 是∆的三个内角,则三角形的三边a b c 、、满足( ).A .b ac =B .a bc =C .c ab =D .2b ac =4. △ABC 中,已知a :b :c ,则此三角形中最大角的度数为 .5. 在三角形中,已知:A ,a ,b 给出下列说法:(1)若A ≥90°,且a ≤b ,则此三角形不存在(2)若A ≥90°,则此三角形最多有一解(3)若A <90°,且a =b sin A ,则此三角形为直角三角形,且B =90°(4)当A <90°,a <b 时三角形一定存在(5)当A <90°,且b sin A <a <b 时,三角形有两解其中正确说法的序号是 .1. 我舰在敌岛A 南偏西50︒相距12海里的B 处,发现敌舰正由岛沿北偏西10︒的方向以10海里/小时的速度航行.问我舰需以多大速度、沿什么方向航行才能用2小时追上敌舰?§1.3应用举例—④解三角形1. 能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题;2. 掌握三角形的面积公式的简单推导和应用;3. 能证明三角形中的简单的恒等式.一、课前准备复习1:在∆ABC 中(1)若1,120a b B ===︒,则A 等于 .(2)若a =2b =,150C =︒,则c = _____.复习2:在ABC ∆中,a =2b =,150C =︒,则高BD = ,三角形面积= .二、新课导学※ 学习探究探究:在∆ABC 中,边BC 上的高分别记为h a ,那么它如何用已知边和角表示?h a =b sin C =c sin B根据以前学过的三角形面积公式S =12ah , 代入可以推导出下面的三角形面积公式,S =12ab sin C ,或S = ,同理S = .新知:三角形的面积等于三角形的任意两边以及它们夹角的正弦之积的一半.※典型例题例1. 在∆ABC中,根据下列条件,求三角形的面积S(精确到0.1cm2):(1)已知a=14.8cm,c=23.5cm,B=148.5︒;(2)已知B=62.7︒,C=65.8︒,b=3.16cm;(3)已知三边的长分别为a=41.4cm,b=27.3cm,c=38.7cm.变式:在某市进行城市环境建设中,要把一个三角形的区域改造成室内公园,经过测量得到这个三角形区域的三条边长分别为68m,88m,127m,这个区域的面积是多少?(精确到0.1cm2)例2. 在∆ABC中,求证:(1)222222sin sinsina b A Bc C++=;(2)2a+2b+2c=2(bc cos A+ca cos B+ab cos C).小结:证明三角形中恒等式方法:应用正弦定理或余弦定理,“边”化“角”或“角”化“边”.※动手试试练1. 在∆ABC中,已知28a cm=,33c cm=,45B=,则∆ABC的面积是.练2. 在∆ABC中,求证:22(cos cos)c a B b A a b-=-.三、总结提升※学习小结1. 三角形面积公式:S=12ab sin C= = .2. 证明三角形中的简单的恒等式方法:应用正弦定理或余弦定理,“边”化“角”或“角”化“边”.※知识拓展三角形面积S=,这里1()2p a b c=++,这就是著名的海伦公式.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 在ABC ∆中,2,60a b C ︒===,则ABC S ∆=( ).A. B. C. D. 32 2. 三角形两边之差为2,夹角的正弦值为35,面积为92,那么这个三角形的两边长分别是( ).A. 3和5B. 4和6C. 6和8D. 5和73. 在ABC ∆中,若2cos sin sin B A C ⋅=,则ABC ∆一定是( )三角形.A. 等腰B. 直角C. 等边D. 等腰直角4. ABC ∆三边长分别为3,4,6,它的较大锐角的平分线分三角形的面积比是 .5. 已知三角形的三边的长分别为54a cm =,61b cm =,71c cm =,则∆ABC 的面积是 .2. 已知在∆ABC 中,∠B =30︒,b =6,c a 及∆ABC 的面积S .2. 在△ABC 中,若sin sin sin (cos cos )A B C A B +=⋅+,试判断△ABC 的形状.§1.3应用举例(练习)1.能够运用正弦定理、余弦定理等知识和方法解决一些有关测量的实际问题;2.三角形的面积及有关恒等式.一、课前准备复习1:解三角形应用题的关键:将实际问题转化为解三角形问题来解决.复习2:基本解题思路是:①分析此题属于哪种类型(距离、高度、角度);②依题意画出示意图,把已知量和未知量标在图中;③确定用哪个定理转化,哪个定理求解;④进行作答,并注意近似计算的要求.二、新课导学※典型例题例1. 某观测站C在目标A的南偏西25方向,从A出发有一条南偏东35走向的公路,在C 处测得与C相距31km的公路上有一人正沿着此公路向A走去,走20km到达D,此时测得CD距离为21km,求此人在D处距A还有多远?例2. 在某点B处测得建筑物AE的顶端A的仰角为θ,沿BE方向前进30m,至点C处测得顶端A的仰角为2θ,再继续前进至D点,测得顶端A的仰角为4θ,求θ的大小和建筑物AE的高.例3. 如图,在四边形ABCD中,AC平分∠DAB,∠ABC=60°,AC=7,AD=6,S△ADC求AB的长.B C※动手试试练1. 为测某塔AB的高度,在一幢与塔AB相距20m的楼的楼顶处测得塔顶A的仰角为30°,测得塔基B的俯角为45°,则塔AB的高度为多少m?练2. 两灯塔A、B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东30°,灯塔B在观察站C南偏东60°,则A、B之间的距离为多少?三、总结提升※学习小结1. 解三角形应用题的基本思路,方法;2.应用举例中测量问题的强化.※知识拓展秦九韶“三斜求积”公式:S=※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 某人向正东方向走x km 后,向右转150,然后朝新方向走3km ,结果他离出发点恰好km ,则x 等于( ).A B . C D .32.在200米的山上顶,测得山下一塔顶与塔底的俯角分别为30,60,则塔高为( )米.A .2003BC .4003D3. 在∆ABC 中,60A ∠=︒,16AC =,面积为BC 的长度为( ).A .25B .51C .D .494. 从200米高的山顶A 处测得地面上某两个景点B 、C 的俯角分别是30º和45º,且∠BAC =45º,则这两个景点B 、C 之间的距离 .5. 一货轮航行到M 处,测得灯塔S 在货轮的北偏东15°相距20里处,随后货轮按北偏西30°的方向航行,半小时后,又测得灯塔在货轮的北偏东45︒,则货轮的速度 .1. 3.5米长的棒斜靠在石堤旁,棒的一端在离堤足1.2米地面上,另一端在沿堤上2.8米的地方,求堤对地面的倾斜角.2. 已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m 1-),n =(cos A ,sin A ). 若m ⊥n ,且a cos B +b cos A =c sin C ,求角B .第一章 解三角形(复习)能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题.一、课前准备复习1: 正弦定理和余弦定理(1)用正弦定理:①知两角及一边解三角形;②知两边及其中一边所对的角解三角形(要讨论解的个数).(2)用余弦定理:①知三边求三角;②知道两边及这两边的夹角解三角形.复习2:应用举例① 距离问题,②高度问题,③ 角度问题,④计算问题.练:有一长为2公里的斜坡,它的倾斜角为30°,现要将倾斜角改为45°,且高度不变. 则斜坡长变为___ .二、新课导学※ 典型例题例1. 在ABC ∆中tan()1A B +=,且最长边为1,tan tan A B >,1tan 2B =,求角C 的大小及△ABC 最短边的长.例2. 如图,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30,相距10海里C处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往B处救援(角度精确到1)?例3. 在∆ABC中,设tan2,tanA c bB b-=求A的值.北2010AB••C※ 动手试试练1. 如图,某海轮以60 n mile/h 的速度航行,在A 点测得海面上油井P 在南偏东60°,向北航行40 min 后到达B 点,测得油井P 在南偏东30°,海轮改为北偏东60°的航向再行驶80 min 到达C 点,求P 、C 间的距离.练2. 在△ABC 中,b =10,A =30°,问a 取何值时,此三角形有一个解?两个解?无解?三、总结提升※ 学习小结1. 应用正、余弦定理解三角形;2. 利用正、余弦定理解决实际问题(测量距离、高度、角度等);3.在现实生活中灵活运用正、余弦定理解决问题. (边角转化).※ 知识拓展设在ABC ∆中,已知三边a ,b ,c ,那么用已知边表示外接圆半径R 的公式是R =※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 已知△ABC 中,AB =6,∠A =30°,∠B =120︒,则△ABC 的面积为( ).A .9B .18C .9D .2.在△ABC 中,若222c a b ab =++,则∠C =( ).A . 60°B . 90°C .150°D .120°3. 在∆ABC 中,80a =,100b =,A =30°,则B 的解的个数是( ).A .0个B .1个C .2个D .不确定的4. 在△ABC 中,a =b =1cos 3C =,则ABC S =△_______ 5. 在∆ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,若2222sin a b c bc A =+-,则A =___ ____.1. 已知A 、B 、C 为ABC ∆的三内角,且其对边分别为a 、b 、c ,若1cos cos sin sin 2B C B C -=. (1)求A ;(2)若4a b c =+=,求ABC ∆的面积.2. 在△ABC 中,,,a b c 分别为角A 、B 、C 的对边,22285bc a c b -=-,a =3, △ABC 的面积为6,(1)求角A 的正弦值; (2)求边b 、c .§2.1数列的概念与简单表示法(1) 学习目标 1. 理解数列及其有关概念,了解数列和函数之间的关系;2. 了解数列的通项公式,并会用通项公式写出数列的任意一项;3. 对于比较简单的数列,会根据其前几项写出它的个通项公式.学习过程一、课前准备(预习教材P 28 ~ P 30 ,找出疑惑之处)复习1:函数,当x 依次取1,2,3,…时,其函数值有什么特点?复习2:函数y =7x +9,当x 依次取1,2,3,…时,其函数值有什么特点?二、新课导学※ 学习探究探究任务:数列的概念⒈ 数列的定义: 的一列数叫做数列.⒉ 数列的项:数列中的 都叫做这个数列的项.反思:⑴ 如果组成两个数列的数相同而排列次序不同,那么它们是相同的数列?⑵ 同一个数在数列中可以重复出现吗?3. 数列的一般形式:123,,,,,n a a a a ,或简记为{}n a ,其中n a 是数列的第 项.4. 数列的通项公式:如果数列{}n a 的第n 项与n 之间的关系可以用 来表示,那么 就叫做这个数列的通项公式.反思:。
苏教版高中数学必修五学案:1.1正弦定理(2)
2018高一数学导学案21.1 正弦定理(2) 【学习目标】应用正弦定理确定三角形解的情况;能利用正弦定理求三角形的面积及解决其他一些综合问题。
【学习要求】请同学们预习课本第9页,完成下面的问题回答和练习 1.正弦定理:在△ABC 中,===Cc B b A a sin sin sin R 2, 变形:(1)A R a sin 2=,_____________,________________.(2)R a A 2sin =, ______________,________________.2.三角形的面积公式:C ab s sin 21==_________=_________ 【例1】 如图,某登山队在山脚A处测得山顶B的仰角为35°,沿倾斜角为20°的斜坡前进1000m后到达D处,又测得山顶的仰角为65°,求山的高度BC(精确到1m)..【解】例1.证明C ab S ABC sin 21=∆,并运用此结论解决下面问题:(1)在ABC ∆中,已知2=a ,3=b ,︒=150C ,求ABC S ∆;(2)在ABC ∆中,已知10,c =45,A =︒30,C =︒求b 和ABC S ∆;变式:已知a 、b 、c 是△ABC 中∠A 、∠B 、∠C 的对边,S 是△ABC 的面积,若a =4,b =5,S =35,求c 的长度。
【解】问题导练】1.海上有A 、B 两个小岛相距10海里,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,则B 、C 间的距离是2.如图,为了测得河的宽度,在一岸边选定两点A 和B ,望对岸的标记物C 测得,120,75,45m AB CBA CAB ==∠=∠︒︒求河的宽度(精确到0.01m )。
~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~3.在ABC ∆中,若=b 8, c =5, ABC S ∆=10,则A= 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时 正弦定理(2)学习目标:1.利用正弦定理判断三角形的形状,计算三角形的面积.(重点) 2.正弦定理与三角恒等变换的综合应用.(难点) 3.利用正弦定理解题时,忽略隐含条件而致误.(易错点) 情景导入:问题1:对于任意的三角形若已知两边及夹角怎样求三角形的面积?问题2:正弦定理还有哪些等价的变形形式?一、自主学习[基础·初探]教材整理 正弦定理的应用 阅读教材P 9~P 12,完成下列问题. 1.正弦定理的深化与变形(1)a sin A =b sin B =csin C =2R =a +b +c sin A +sin B +sin C . (2)a =2R sin A ,b =2R sin B ,c =2R sin C . (3)a b =sin A sin B ,a c =sin A sin C ,b c =sin B sin C . (4)a ∶b ∶c =sin A ∶sin B ∶sin C . 2.三角形面积公式S △ABC =12ab sin C =12bc sin A =12ac sin B .判断(正确的打“√”,错误的打“×”)(1)在有些三角形中,a =sin A ,b =sin B ,c =sin C .( ) (2)在△ABC 中,asin A =b +c sin B +sin C.( )(3)在△ABC 中,a =2,b =1,C =30°,则S △ABC =1.( )【解析】 由正弦定理a sin A =b sin B =c sin C 可知(1),(2)正确;又S △ABC =12×2×1×sin 30°=12,故(3)错误.【答案】 (1)√(2)√ (3)× 二、合作探究探究一:求三角形的面积[小组合作型]在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且B =30°,c =23,b =2,求△ABC 的面积S .【精彩点拨】 先求C ,再求A ,最后利用S △ABC =12bc sin A 求解.【自主解答】 由正弦定理得sin C =c sin B b =23sin 30°2=32.又∵c >b ,∴C =60°或C=120°.当C =60°时,A =90°,∴S =12bc sin A =23;当C =120°时,A =30°,∴S =12bc sin A=3,∴△ABC 的面积S 为23或 3.求三角形的面积,要充分挖掘题目中的条件,转化为求两边或两边之积及其夹角正弦的问题,要注意方程思想在解题中的应用.另外也要注意三个内角的取值范围,以避免由三角函数值求角时出现增根错误.[再练一题]1.在△ABC 中,cos A =-513,cos B =35. (1)求sin C 的值;(2)设BC =5,求△ABC 的面积.【解】 (1)在△ABC 中,0<A <π,0<B <π, A +B +C =π,由cos A =-513,得sin A =1213,由cos B =35,得sin B =45,∴sin C =sin(A +B )=sin A cos B +cos A sin B =1213×35+⎝⎛⎭⎫-513×45=1665. (2)在△ABC 中,由正弦定理得, AC =BC ×sin Bsin A =5×451213=133,∴S △ABC=12×BC ×AC ×sin C =12×5×133×1665=83.探究二:利用正弦定理判断三角形的形状在△ABC 中,已知a 2tan B =b 2tan A ,试判断△ABC 的形状.【精彩点拨】 根据正弦定理可以把问题转化为角的问题,借助三角恒等变换知识化简得到角与角的等量关系,再进一步判断.【自主解答】 由已知得a 2sin B cos B =b 2sin Acos A .由正弦定理得sin 2 A sin B cos B =sin 2 B sin Acos A ,即sin A cos A =sin B cos B ,亦即sin 2A =sin 2B . ∴2A =2B 或2A =π-2B , ∴A =B 或A =π2-B ,∴△ABC 为等腰三角形或直角三角形或等腰直角三角形.根据边角关系判断三角形形状的途径根据所给条件确定三角形的形状,主要有两种途径: (1)化边为角;(2)化角为边,并常用正弦定理实施边、角转换. [再练一题]2.在△ABC 中,若sin A =2sin B cos C ,且sin 2A =sin 2B +sin 2C ,试判断△ABC 的形状. 【解】 法一 在△ABC 中,根据正弦定理:a sin A =b sin B =c sin C =2R .∵sin 2A =sin 2B +sin 2C ,∴⎝⎛⎭⎫a 2R 2=⎝⎛⎭⎫b 2R 2+⎝⎛⎭⎫c 2R 2,即a 2=b 2+c 2. ∴A =90°,∴B +C =90°.由sin A =2sin B cos C ,得sin 90°=2sin B cos(90°-B ), ∴sin 2B =12,∵B 是锐角,∴sin B =22,∴B =45°,C =45°. ∴△ABC 是等腰直角三角形. 法二 在△ABC 中,根据正弦定理: sin A =a 2R ,sin B =b 2R ,sin C =c2R .∵sin 2A =sin 2B +sin 2C ,∴a 2=b 2+c 2,∴△ABC 是直角三角形且A =90°. ∵A =180°-(B +C ),sin A =2sin B cos C , ∴sin(B +C )=2sin B cos C , ∴sin B cos C -cos B sin C =0,即sin(B -C )=0,∴B -C =0,即B =C , ∴△ABC 是等腰直角三角形. 探究三:正弦定理在生产实际中的应用[探究共研型]探究1 如图1-1-1,如何测量河两侧A ,B 两点间的距离?图1-1-1【提示】 如图,在B 侧选一条基线BC ,测得BC =a ,∠ABC =α,∠ACB =β,则由正弦定理可知 AB sin β=BC sin (α+β),即AB =BC sin βsin (α+β).探究2 你能画出下列各角吗? (1)南偏西30°;(2)仰角30°,俯角45°. 【提示】如图1-1-2,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 和D .现测得∠BCD =α,∠BDC =β,CD =s ,并在点C 测得塔顶A 的仰角为θ,求塔高AB .图1-1-2【精彩点拨】 先求出∠CBD ,利用正弦定理求BC ,再在△ABC 中,求AB . 【自主解答】 在△BCD 中,∠BCD =α,∠BDC =β, ∴∠CBD =180°-(α+β), ∴BC sin β=ssin[180°-(α+β)], 即BC sin β=ssin (α+β), ∴BC =sin βsin (α+β)·s .在△ABC 中,由于∠ABC =90°,∴ABBC =tan θ,∴AB =BC ·tan θ=sin β·tan θsin (α+β)·s .解决实际测量问题的过程一般要充分理解题意,正确作出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解.[再练一题]3.一货轮在海上由西向东航行,在A 处望见灯塔C 在货轮的东北方向,0.5 h 后在B 处望见灯塔C 在货轮的北偏东30°方向.若货轮的速度为30 n mile/h ,当货轮航行到D 处望见灯塔C 在货轮的西北方向时,求A ,D 两处的距离.【解】 如图所示,在△ABC 中,A =45°,∠ABC =90°+30°=120°, ∴∠ACB =180°-45°-120°=15°,AB =30×0.5=15(n mile). 由正弦定理,得 AC sin ∠ABC =ABsin ∠ACB,∴AC =AB sin ∠ABC sin ∠ACB =15×sin 120°sin 15°=32+62×15(n mile). 在△ACD 中,∵A =D =45°, ∴△ACD 是等腰直角三角形, ∴AD =2AC =15(3+3)(n mile). ∴A ,D 两处之间的距离是15(3+3)n mile. 答 A ,D 两处的距离为15(3+3)n mile. 三、课堂检测1.在△ABC 中,AB =3,BC =1,B =30°,则△ABC 的面积S △ABC = . 【解析】 S △ABC =12×AB ×BC ×sin B =12×3×1×12=34.【答案】342.在△ABC 中,若a cos A =b cos B =ccos C,则△ABC 是 三角形.【解析】 由正弦定理a sin A =b sin B =csin C =2R 可知a =2R sin A ,b =2R sin B ,c =2R sinC .由a cos A =b cos B =c cos C可知 tan A =tan B =tan C , 即A =B =C ,∴△ABC为等边三角形.【答案】等边3.如图1-1-3所示,设A,B两点在河的两岸,一测量者在A的同侧,在A所在的河岸边选定一点C,测出AC的距离为50 m,∠ACB=45°,∠CAB=105°,则A,B两点的距离为m.图1-1-3【解析】由题意可知∠ABC=180°-105°-45°=30°,由正弦定理,得AB=AC·sin∠ACBsin∠ABC=50×2212=502(m).【答案】50 24.在△ABC中,2asin A-bsin B-csin C=.【解析】由正弦定理可知asin A=bsin B=csin C,故2asin A-bsin B-csin C=0.【答案】05.如图1-1-4,A,B是海平面上的两个点,相距800 m.在A点测得山顶C的仰角为30°,∠BAD=105°,又在B点测得∠ABD=45°,其中D是点C到水平面的垂足.求山高CD.图1-1-4【解】在△ABD中,由正弦定理,得AD=AB sin∠ABDsin∠ADB=800sin 45°sin(180°-105°-45°)=8002,在Rt△ACD中,CD =AD ·tan 30°=8002×33=80063(m). 答 山高CD 为80063m.四、课堂小结判断三角形的形状,应围绕三角形的边角关系进行思考,主要看其是否是正三角形、等腰三角形、直角三角形、锐角三角形、钝角三角形,要注意“等腰直角三角形”与“等腰三角形或直角三角形”不是同一概念。