08硕专英语教材
045108学科教学(英语)
045108学科教学(英语)一、学科专业介绍教育硕士专业学位是具有特定教育职业背景的专业性学位,主要培养面向基础教育教学和管理工作需要的高层次应用型专门人才。
开设教育硕士专业学位,可以为有志于高层次学历研修学习的中小学教师提供系统的新知识学习、掌握本学科的发展与改革前沿动态、获得专业知识与技能的系统培养。
教育硕士专业学位与现行的教育学硕士是两种不同性质的学位,前者是职业性学位,在我国被称为专业学位,后者是学术性学位。
专业学位培养目标和培养方式与学术性学位有所不同。
学术性学位的培养方式以研究型人才培养为主;教育硕士专业学位以课程学习为主,系统学习基础理论与专门知识,强调实践与应用,重视案例教学和教科研能力培养。
师大学外语学院英语学科教学论方向有硕士导师7(6)名,相关师资队伍中有教授4(3)名,副教授12名,具有博士学位的5名。
学术梯队结构合理,力量雄厚,在基础教育教师专业发展与教学技能培训中做出显著贡献;近五年先后培养英语课程与教学论方向的硕士研究生20余人。
近年来,外语学院硕士生导师和教学团队在硕士研究生培养教育工作中取得了丰富的教科研成果:1. 硕士生导师关世持和参与的课题:国家级课题1个;省级课题6个;校级课题2个;出版学术专著与编著4部;发表学术论文22篇,其中国家级核心期刊论文6篇;获得省社会科学优秀成果奖1项、省教育科学和教学成果奖1项。
培养指导研究生10人以上,其中有4人获省高等院校硕士研究生创新科研课题项目立项。
2.硕士生导师蕾达主持和参与的课题:教育部项目1项;省级教改科研项目2项;校级课题2个;编写并出版教材3部;发表学术论文近10篇;获得校级教学成果三等奖1个;培养指导研究生5人。
3.硕士生导师杜秀君主持和参与的课题:省级课题6个;校级课题1个;出版学术专著1部;编写并出版教材1部;发表论文7篇;培养指导研究生5人。
4.硕士生导师王蓉主持和参与的课题:国家级课题的子项目1个;省级课题4个,其中主持完成1个;完成校级课题2个;出版学术专著与编著1部;发表学术论文11篇,其中国家级核心期刊论文2篇;获得省级教学成果一等奖1个;获省级高等学校优秀科研成果三等奖1个;培养指导研究生5人。
教育硕士(英语)(045108)专业学位研究生培养方案
教育硕士(英语)(045108)专业学位研究生培养方案(全日制教育硕士英语学科教学专业学位研究生)Master in Education(学科教学·英语045108)培养方案一.培养目标和要求本专业以本校教育学科和英语教育学科长期以来进行职前和在职英语教师培养的理论研究和实践经验为基础,依托学校其它相关学科和在上海教师教育培养的社会影响力,培养掌握现代英语教育理论、具有较强的英语教育教学实践和研究能力的高素质的中小学英语教师。
具体要求:(一)热爱祖国,拥护中国共产党领导,热爱教师职业和英语教学工作,具有良好的心理素质和教师道德品质,恪守教育职业道德规范。
遵纪守法,积极进取,勇于创新。
(二)掌握英语教育的基本原理和方法,具有良好的教育学和教学论的学识修养和扎实的英语学科专业基础,了解英语教学和研究学科前沿和发展趋势。
(三)能理论结合实践,发挥自身优势,开展创造性的英语教育教学工作。
具有较强的教育实践能力,能胜任英语教学工作,在现代教育理论指导下运用所学理论和教育研究方法,熟练使用现代教育技术,解决英语教学中的实际问题。
(四)熟悉英语基础教育课程改革,掌握英语基础教育课程改革的新理念、新内容和新方法。
二、学习年限采用全日制学习方式,学习年限一般为2年,学习年限最长不超过4年。
三、研究方向与导师简介(一)研究方向:中小学英语教学本研究方向是专门为有志于成为优秀中小学英语教师的研究生而设置。
具体课程类别包括必修课程,其中包括学位公共课、学位基础课和学位专业课;选修课程;实践实习与学位论文;以及补修课程。
必修课程围绕获得学位需要完成的英语基础教育教师所必需掌握的教育教学原理、课程与教学基础理论、中小学教育研究方法、青少年心理发展与教育、英语课程与教材分析、英语教学理论与方法、英语教学设计与案例分析、英语教育测量与评价,着重对各教学环节和要素的设计和实践操控能力等的培养,是本专业学位的主干课程体系。
教育硕士专业学位(学科教学英语)
全日制教育硕士专业学位研究生培养方案与实施细则学科教学(英语)(外文学院2015年7月修订)一、培养目标培养掌握现代教育理论、具有较强的教育教学实践和研究能力的高素质的中小学英语课程专任教师与从事相关工作的教育教学管理人员。
具体要求为:1、拥护中国共产党的领导,热爱教育事业,具有良好的道德品质,遵纪守法,积极进取,勇于创新。
2、具有良好的学识修养和扎实的专业基础,了解学科前沿和发展趋势。
3、具有较强的教育实践能力,能胜任英语教育教学工作,在现代教育观念指导下运用所学理论和方法,熟练使用现代教育技术,解决教育教学中的实际问题;能理论结合实践,发挥自身优势,开展创造性的教育教学工作。
4、熟悉基础教育课程改革,掌握基础教育课程改革的新理念、新内容和新方法。
5、能熟练阅读本专业英语文献。
二、学习年限及课程设置全日制教育硕士(学科教学·英语)学习年限一般为3年;课程设置分为学位基础课,专业必修课,选修课程,实践教学,学术报告四个模块;总学分不少于38学分。
三、实践教学实践教学时间原则上不少于1年。
实践教学包括教育实习、教育见习、微格教学、教育调查、课例分析、班级与课堂管理实务等实践形式,其中到中小学进行实践活动的时间不少于半年。
四、教育方式本专业重视理论与实践相结合,采用课堂参与、小组研讨、案例教学、合作学习等多种方式相结合。
本专业建有稳定的教育实践基地,并聘请了多位校外兼职教育硕士导师。
五、学位论文与学位授予(一)学位论文选题应紧密联系基础教育实践,来源于中小学英语教育教学中的实际问题。
论文形式可以多样化,如调研报告、案例分析、校本课程开发、教材分析、教学案例设计等,字数不少于1.5万字。
(二)修满规定学分,并通过论文答辩者,经学位授予单位学位评定委员会审核,授予教育硕士专业学位,同时获得硕士研究生毕业证书。
六、其它非师范类专业毕业生入学后,应至少补修3门教师教育课程(如教育学,心理学、学科教学论),不计学分。
硕博英语综合教程郭巍听力原文
硕博英语综合教程郭巍听力原文1.引言1.1 介绍硕博英语综合教程郭巍听力原文的背景和意义硕博英语综合教程是一套专门为硕士和博士研究生设计的英语教材,旨在帮助他们提高英语综合能力,提高学术研究水平。
而郭巍听力原文作为该教程的重要组成部分,致力于帮助学生提高听力水平,从而更好地进行学术交流和研究工作。
在如今全球化的学术环境下,英语已经成为学术交流和研究的重要工具,而良好的听力能力是进行学术交流必不可少的一部分。
通过学习硕博英语综合教程郭巍听力原文,学生可以接触到真实的学术讲座、学术讨论和学术报告,从而提高对学术英语的理解能力和听力水平。
这对于学生未来的学术研究工作具有非常重要的意义。
通过学习硕博英语综合教程郭巍听力原文,学生还可以更好地了解国际学术前沿动态,接触到不同领域的学术资讯和观点,拓宽学术视野,从而提升自己的学术水平。
硕博英语综合教程郭巍听力原文的背景和意义是非常重要的,它不仅是帮助学生提高英语综合能力的重要途径,也是培养学生学术交流能力和学术研究水平的重要支持。
1.2 强调听力训练在英语学习中的重要性听力训练在英语学习中的重要性不可忽视。
在学习英语的过程中,听力是非常重要的一个方面,因为它直接关系到语言的输入和理解。
通过不断地进行听力训练,学生们可以提高自己的听力水平,更好地理解并掌握英语。
随着全球化的发展,英语已经成为一种国际通用语言,因此具备良好的听力能力对于学生未来的学习和工作都至关重要。
在日常生活中,我们经常需要通过听力来获取信息,比如听取老师的讲解,听取会议的内容,听取新闻的报道等等。
良好的听力能力不仅对于学术研究有着积极的促进作用,也对于社交和沟通有着重要的影响。
通过提高听力水平,学生们能够更好地融入英语国家的生活和工作环境,为自己的未来发展打下良好的基础。
我们应该认识到听力训练在英语学习中的重要性,并且采取积极的措施来加强听力训练。
硕博英语综合教程郭巍听力原文正是一个非常好的听力训练教材,它通过丰富的听力材料和专业的指导,为学生们提供了一个良好的听力训练平台。
天津外国语学院硕士研究生入学考试参考书目教学教材
1.大学日语专业教材新版
2.国际日语能力测试1级
日语语言学理论与实践
1.《日本语言》徐一平编著高等教育出版社
2.《日本語概説》加藤彰彦等编桜楓社
日本文学
1.《日本文学史》不限版本
2.《日本古典文学作品选读》不限版本
日语教育
1.《外语教学法》不限版本
2.《日本語教育事典》日本語教育学会編 大修館
作者:Karl-Heinz Wüst出版社:外语教学与研究出版社
3.《文学与认识》,作者:王炳钧,出版社:外语教学与研究出版社
基础西班牙语
1.《现代西班牙语》第二、三、四、五册,董燕生外研社
2.《新编西班牙语阅读课本》第一、二、三、四册李多外研社2000
西班牙语翻译理论
与实践
1.《西汉翻译教程》孙家孟等上海外教社1988.5.
日语同声传译
1.《新编汉日翻译教程》高宁上海外语教育出版社社
2.《新编日译汉教程》(新版)陈岩大连理工大学出版社
3.《新编汉日日汉同声传译教程》宋协毅外语教学与研究出版社
汉语
1.《中国文学史》(古代部分、凡高校使用的教材均可参考)
2 .《古汉语通论》郑铁生编写?天津市“十一五”规划教材2004年10月河北教育出版社(第4 - 8章)
3.《德语高级写作》Ralf Glitza外语教学与研究出版社2005
德语教学法
1.Storch, Geunther,2001:Deutsch als Fremdsprache – Eine Didaktik. Fink
德语文学
1.《德国文学史》,作者:余匡复,出版社:上海外语教育出版社
2.《德国文学简史》Geschichte der deutschen Literatur
2008年考研英语真题及解析
18.[A] linked
[B] integrated [C] woven
[D] combined
19.[A] limited
[B] subjected [C] converted [D] directed
20.[A] paradoxical [B] incompatible [C] inevitable [D] continuous
Adeline Alvarez married at 18 and gave birth to a son, but was determined to finish college. “I struggled a lot to get
the college degree. I was living in so much frustration that that was my escape, to go to school, and get ahead and do
[B] fact
[C] need
[D] question
9.[A] attaining
[B] scoring
[C] reaching
[D] calculating
10.[AБайду номын сангаас normal
[B] common
[C] mean
[D] total
11.[A] unconsciously [B] disproportionately[C] indefinitely [D] unaccountably
necessarily that women don’t cope as well. It’s just that they have so much more to cope with,” says Dr. Yehuda. “Their
专业硕士英语教材第九章内容及翻译How to Deal with a Difficult Boss
Bad bosses often have a recognizable modus operandi! Harry Levinson, an American management psychologist, had catalogued problem bosses, from the bully to the indecisive jellyfish to the disapproving perfectionist. If you’re suffering from a bad boss, chances are he or she combines several of these traits and can be dealt with effectively if you use the right strategy. 糟糕的老板都有众所周知的伎俩!美国管理心理学家哈里·莱文森将问题老板做了个分类,从欺压下属的恃强凌弱型到缺乏主见的优柔寡断型,再到求全责备的完美主义型。
如果你正被一个糟糕的老板折磨,那很可能他或她综合了以上特征,只要方法运用得体,他们就能被轻松地应付过去。
The Bully. DURING his first week on the job, a new account manager at a small advertising agency agreed to return some materials to a client. When he mentioned this at a staff meeting, the boss turned beet red, his lips began to quiver and he shouted that the new employee should call his client and confess he didn’t know anything about the advertising business, and would not be returning the materials.欺压下属类。
太原理工大学研究生考试参考书目
2018 年硕士研究生招生自命题考试科目参照书科目参照书科目名称代码《高级英语》(1、 2)张汉熙主编,外语教课与研究第一版社211翻译硕士英语 .《新编简洁英语语言学教程》,戴炜栋、何兆熊主编,上国外教社213 翻译硕士日语 . 新编日语 1-4 册,上国外语教育第一版社,2008;日语综合教程5、6 册,上国外语教育第一版社,2008240 法语 . 《新世纪大学法语》(1、 2、 3 册)外研社,李志清主编241 德语.《新编大学德语》(1 2 3册)外研社,朱建华主编、、242 日语 . 《中日沟通标准日本语》(新版)(初级上、下册,中级上册)人民教育第一版社243 俄语.《俄语》(1 2 3册)外研社,黑龙江大学主编、、244 英语 . 不指定参照书,咨询学院337 工业设计概论(二)《工业设计概论》(第二版)机械工业第一版社,作者:程能林1.《学校体育学》(第二版)潘绍伟于可红主编,高等教育第一版社,2008年 6月346 体育综合2.《运训练学》田麦久主编,高等教育第一版社,2006年7月《适用翻译教程》增订本,冯庆华主编,上国外教社;357英语翻译基础《英汉翻译简洁教程》庄绎传编著,外语教课与研究第一版社359 日语翻译基础汉日翻译教程(重排版),苏琦,商务印书馆2008;日汉翻译教程,陶振孝,高等教育第一版社2007 448 汉语写作与百科知识中国文化读本,叶朗,外研社2008501 建筑设计建筑设计、城市设计、城市景观设计、室内设计类参照书502 历史建筑还原设计历史建筑设计类参照书;城市设计、建筑设计、室内设计类参照书505 艺术专业基础快题设计,各方向依据各自特色分别命题查核本方向的创作及艺术设计能力,要求考生自备颜料、制图尺等画具,考试时间为 5 小时506 设计基础各方向依据各自特色分别命题查核本方向的专业设计能力,要求考生自备颜料、制图尺等画具,考试时间为 5 小时1.《教育学》(第六版)王道俊,郭文安主编,人民教育第一版社(2009-05 第一版)610 专业综合基础2. 《运动生理学》(第二版)邓树勋,王健,乔德才主编,高等教育第一版社(2009-06 第一版)1. 《马克思主义基来源理概论》高等教育第一版社2013 版701 马克思主义基来源理2.《简洁马克思主义史》人民第一版社,庄福龄主编,2004 年1.《高级英语》(1、 2)张汉熙主编,外语教课与研究第一版社702英语综合2.《新编语言学教程》刘润清、文旭主编,北京外研社1. 田自秉:《中国工艺美术史》,北京,2012 年 08 年 01 日,东方第一版社2. 张夫也:《外国工艺美术史》,2003 年 09 月 01 日,中央编译第一版社703设计史论3.王受之:《世界现代设计史》(第 2 版), 2015 年 12 月 01 日,中国青年第一版社4.李砚祖:《艺术设计概论》,2013 年 04 月,湖北长江第一版社、湖北美术第一版社704 数学剖析《数学剖析》华东师大数学系编,高等教育第一版社(第三版)705 物理化学 A 《物理化学》傅献彩主编,高等教育第一版社706 建筑理论综合含中外建筑史、建筑知识综合708 一般物理《大学物理》第三版(上、下),王纪龙编,科学第一版社709 工业设计概论(一)《工业设计概论》(第二版)机械工业第一版社,作者:程能林美术领域:1.中央美术学院人文美术系外国史教研室:《外国美术简史》,北京,2014 年 10 月 01 日,中国青年第一版社;710 艺术史论2.中央美术学院美术史系,中国美术史教研室:《中国美术简史》,北京,2010 年 06 月 01 日,中国青年第一版社;3.彭吉象:《艺术学概论》(第 4 版),北京, 2015 年 05 月 01 日,北京大学第一版社;4.叶朗:《美学原理》,北京,2016 年 1 月,北京大学第一版社。
计算机应用技术硕士学位研究生培养方案
计算机应用技术硕士学位研究生培养方案(专业代码:081203)一.培养目标本专业主要培养计算机应用技术方面的高级专门人才。
本专业授工学硕士学位,硕士研究生培养的目标是:1. 具有坚定正确的政治方向,掌握马克思主义、毛泽东思想和邓小平理论的基本原理,坚持四项基本原则,热爱祖国,遵纪守法,品德良好,具有为实现社会主义现代化而努力奋斗的献身精。
2. 具有严谨的治学态度,良好的学风及实事求是、独立思考、勇于创新的科学精神。
在计算机科学技术及相关领域内,掌握坚实的理论基础和系统深入的学科知识,具有良好的科研和工程实践能力。
3. 具有坚实的计算机科学与技术的基础理论和系统专业知识。
掌握有关计算机软件与理论、计算机系统结构的各种专门知识,熟悉现代计算机软、硬件环境和工具,有娴熟的计算机使用技能。
具有从事科学研究或独立担负专门技术工作的能力,通过与其它学科交叉,能运用计算机技术解决多种研究及应用课题。
4. 掌握一门外国语,能熟练地阅读本学科领域内的外文资料,具备基本的外文论文写作能力。
5. 身体健康。
二. 研究方向1. 计算机网络技术研究计算机网络的体系结构、协议、性能检测、安全性及无线网络等方面的技术,探讨其发展方向及应用前景,开发基于相关技术的应用系统。
2. 数据库与信息集成技术研究数据库理论与技术、分布式异构数据库管理技术、数据仓库技术、数据挖掘技术,重点研究数据库与信息集成技术在MIS、DSS及轻工行业信息系统集成等方面的应用。
3.智能信息及图像处理技术研究重点是生物信息处理、医学信号处理、目标检测及识别等方面的应用技术。
三.学习年限本学科硕士研究生的学习年限一般为三年。
四.培养方式本学科采用山东轻工业学院与山东省计算中心联合培养研究生方式。
课程学习阶段,学生全部在山东轻工业学院学习,教学计划、教材、教学方法、教学模式和管理模式由山东轻工学院和山东省计算中心联合制定。
论文撰写阶段,根据山东轻工业学院和山东省计算中心的课题情况,将学生分为两部分,参加山东轻工业学院的课题设计的学生仍在该院,参加山东省计算中心的课题设计的学生到该中心。
专业硕士英语教材第九章内容及翻译HowtoDealwithaDifficultBoss
Bad bosses often have a recognizable modus operandi! Harry Levinson, an American management psychologist, had catalogued problem bosses, from the bully to the indecisive jellyfish to the disapproving perfectionist. If you’re suffering from a bad boss, chances are he or she combines several of these traits and can be dealt with effectively if you use the right strategy. 糟糕的老板都有众所周知的伎俩!美国管理心理学家哈里·莱文森将问题老板做了个分类,从欺压下属的恃强凌弱型到缺乏主见的优柔寡断型,再到求全责备的完美主义型。
如果你正被一个糟糕的老板折磨,那很可能他或她综合了以上特征,只要方法运用得体,他们就能被轻松地应付过去。
The Bully. DURING his first week on the job, a new account manager at a small advertising agency agreed to return some materials to a client. When he mentioned this at a staff meeting, the boss turned beet red, his lips began to quiver and he shouted that the new employee should call his client and confess he didn’t know anything about the advertising business, and would not be returning the materials.欺压下属类。
(完整word版)专业学位硕士研究生英语教程08
Unit 8Literary WorksPreviewNobody grows old by merely living a number of years. They must have undergone disappointment and despair。
For them, life is truly a box of chocolates except that it is black and bitter:years wrinkle their skin,loneliness is taking away the dim light,and the reality is a horrible truth of vanity。
A clean and well—lighted place thus is the only refuge from the darkness of the world outside。
It is best to be a home,a bar, or a cafe with brandy and coffee served by the young generation。
Part I Text ReadingWarm-upI. Aging issueA trend towards an ever older population is sweeping the world. But far prior to this, some proverbs or sayings have showed their attitudes toward the aged. Guess the meanings of the following proverbs or sayings,and tell whether they are positive,negative or neutral with regard to the aged.1。
专业硕士英语教学大纲
专业硕士英语教学大纲课程名称:专业硕士英语教学课程类型:必修学时安排:36学时(2学分)授课方式:面授课程目标:1.帮助学生提高英语听、说、读、写的综合能力。
2.培养学生在专业领域中运用英语进行交流和研究的能力。
3.培养学生对英语语言文化的理解和跨文化交际能力。
教学内容及进度安排:第一单元:学术英语阅读与写作-学术阅读技巧和策略-文章结构和逻辑关系分析-学术写作基本要素-综述、评论和论文写作第二单元:专业英语听力与口语-专业英语听力训练,包括听取学术演讲、讲座和研讨会等-口语表达技巧和策略,包括学术演讲和讨论技巧-学术报告和演讲实践第三单元:商务英语沟通-商务英语词汇和常用表达-商务英语听力和口语训练,包括商务会议、谈判和演示等-商务信函和报告写作第四单元:跨文化交际与英语社交礼仪-跨文化交际理论和实践-跨文化沟通中的问题与解决策略-英语社交礼仪和常用表达教学方法:1.授课方式:面授讲授2.学生参与:课堂讨论、小组活动和角色扮演等3.多媒体辅助教学:使用投影仪、电脑、录音设备等多媒体设备展示教学资源和案例分析4.课外作业:阅读、听力、写作和口语练习等任务考核方式:1.平时表现:课堂参与、小组讨论和作业完成情况2.期中考试:包括听力、阅读、写作和口语部分3.期末论文:根据学生的研究兴趣和专业背景,撰写一篇与专业相关的英文论文教材与参考书目:主教材:-Academic Writing and Reading Skills,作者:John Smith,出版社:ABC Publishing-Business English Communication,作者:Jane Brown,出版社:XYZ Press 参考书目:-Academic Listening and Speaking,作者:Mary Johnson,出版社:DEF Publishing-Cross-Cultural Communication in Business,作者:David Lee,出版社:GHI Press备注:本教学大纲仅供参考,实际教学中可根据学生的具体情况和教学需求进行适当调整和补充。
陈宏薇《新编汉英翻译教程》作为考研参考教材的院校汇总
华侨大学
四川省 西南交通大学
外语学院 357 英语翻译基础[专业硕士] 外国语学院 357 英语翻译基础[专业学位] 外国语学院 837 写作与翻译 MTI 教育中心 357 英语翻译基础[专业硕士] 外国语学院 873 专业综合 外国语学院 804 专业英语 国际翻译学院 646 综合英语 英语教育学院 801 英语写作与翻译; 高级翻译学院 801 英语写作与翻译; 国际商务英语学院 801 英语写 作与翻译; 英语语言文化学院 801 英语写作与翻 译; 词典学研究中心 801 英语写作与翻译 外国语言文化学院 709 英语写作与翻译 外国语学院 804 英语写作与翻译 外国语学院 841 作文与翻译 外国语学院 620 英语写作与翻译;外国语学院 815 写 作与翻译(教硕)[专业硕士] 外国语学院 357 英语翻译基础[专业硕士]; 外国语学 院 812 翻译与写作 外国语学院 357 英语翻译基础
外国语学院 819 英语写作与翻译(写作与翻译各占一 半) 外国语学院 829 写作翻译(写作与翻译各占一半)
~2~
使用相同教材的院校汇总,对于择校换学校调剂都有帮助「微信公众号:最强笔记」
中南民族大学
三峡大学
湖南科技大学
湖南省
吉首大学 中南林业科技大学
湖南工业大学
中山大学
广东省
广东外大学
天津科技大学
外国语学院 830 英语专业综合
~1~
使用相同教材的院校汇总,对于择校换学校调剂都有帮助「微信公众号:最强笔记」
天津外国语大学
英语学院 801 英语语言文学(翻译及同声传译方 向);高翻学院 801 英语语言文学(翻译及同声传译方 向)
中国民航大学
工程硕士研究生英语综合教程
工程硕士研究生英语综合教程
《工程硕士研究生英语综合教程》是一本为工程硕士研究生英语课程设计的教材,旨在提高学生的英语综合应用能力,特别是阅读、写作和翻译能力。
该教材的特点如下:
1. 内容丰富:教材包含了多个主题,如科技、经济、文化等,有助于拓宽学生的知识面。
2. 实用性强:教材中包含了许多实用的英语表达和句型,有助于提高学生的英语应用能力。
3. 难度适中:教材的难度适中,适合大多数工程硕士研究生的英语水平。
4. 配有练习:教材中配有丰富的练习,包括阅读理解、翻译和写作等,有助于巩固学生的英语基础。
总之,《工程硕士研究生英语综合教程》是一本适合工程硕士研究生学习的英语教材,有助于提高学生的英语综合应用能力。
2008年考研英语真题答案及解析
2008年全国硕士研究生招生考试英语(一)答案详解Section I Use of English一、文章总体分析这是一篇议论文。
文章主要介绍了个别民族群体智商高于人类平均水平。
文章首段第一句话点明了中心论点。
第二段则分析了产生这一现象的原因——进化的结果。
第三段通过“进化”的纽带把高智商与遗传疾病联系起来,说明高智商的人更容易患上一些遗传疾病。
二、试题具体解析1.[A]selected挑选,选拔[B]prepared准备,打算,愿意(做某事)[C]obliged迫使,责成[D]pleased高兴【答案】B【考点】词义辨析【难度系数】0.236【解析】该空的前后语境为“有些群体的人可能比其他群体更加聪明,这是人们一直不敢明说的假说之一。
但是,不管怎么样,Gregory Cochran说出来”。
显然,从语义上应该可以看出Gregory Cochran表述这一观点是一种主动行为,从而排除A和C;而从第一句可以看出他所研究的这一课题也不应该是一个让人高兴的主题,故排除D。
因此答案只有B。
2.[A]unique独一无二的[B]particular特殊的,独特的[C]special特殊的,特别的[D]rare罕见的,珍贵的【答案】D【考点】固定搭配【难度系数】0.160【解析】从文章内容看,显然该空填入的词应该是用来形容Cochran是一个什么样的人的。
从上文我们可以看到,他总是做一些常人不敢做的事情,显然这个词既要表现他这类人很少,同时要表达出作者对Cochran正面评价,突出其优秀性,四个词中只有D能表达这种语义,故答案为D。
本题从另一个角度来说,a rare bird是一固定搭配,指一类人。
其他三个词与bird搭配都不能指人,同样得出答案为D。
3.[A]of[B]with[C]in[D]against【答案】A【考点】介词搭配【难度系数】0.106【解析】independently只能与选项A介词of搭配,意思是“不依赖于,独立于”。
2008年硕士招生专业目录
社会保 障 01社会保障理论 120404 02老年社会保障 03社会救助与社会 福利
文
英、日、 德、俄
民族学 01民族学理论方法 文 030401 02民族政治学 03民族社会学 04民族教育 05周边国家民族研 究
英语、俄 语、日语 、德语 1.民族学原理
2.民族学理论与方 法
第 3 页,共 3 页
文
英语、俄 语、日语 、德语
政治学原理
中外政治思想史
文
英语、德 语
国际关系学
国际关系史
文
英语、德 语
国际关系学
国际关系史
文
英语、德 外交学概论与当代 语 中国外交
国际关系史与当代 中国外交史
第 1 页,共 3 页
社会学 01社会学理论与方 法 030301 02社会心理学 03科学社会学 04中国社会思想与 社会发展 05社会工作与社会 政策 06 文化人类学 人口学 01人口社会学 030302 02特殊人口研究 人类学 01人类学与中国社 会 030303 02都市人类学 02科技人类学
2007年硕士招生专业目录 院系所名称(公章): 专业 研究方向 政治
文
负责人签字: 外语
英语、俄 语、日语 、德语
咨询电话:23501592 考试科目 业务课1 业务课2
政治学原理 中外政治思想史
备注
政治学 01政治学理论与方 理论 法 030201 02中国政治思想与 政治文化 03西方政治思想 04当代中国政府与 政治 05中国农村政治 06政府经济学 07政治学方法论 08人权理论 09周恩来专题研究 10中国现代政治研 究 11民族政策 中外政 01现代政府与政治 治制度 制度理论 030202 02中国政治制度 03比较政治制度 (含美、日、韩、 德和东南亚,按国 别培养) 国际政 01国际关系理论 治 030206 02国际组织与国际 法 03国际安全 国际关 01当代国际关系 系 030207 02国际政治经济 03国际关系史 外交学 01外交理论与实践 030208 02当代中国外交政 策与对外关系 03当代美国外交政 策与对外关系
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地质专业英语教材(研究生用)ContentsI.Early Earth------------------------------------------------------------------------------ 2 II.Water, Melting, and the Deep Earth H2O Cycle------------------------------------ 5 III.Sedimentation and sedimentary rock------------------------------------------------23 IV.Plate Tectonics: A Review and Summary-------------------------------------------28 V.Geochemistry-- Geochemistry of the Continental Mantle-Basalt Rocks------------------------41 VI.Remote Sensing-- Integrated Use of Satellite Images, DEMs, Soil and Substrata Data inStudying Mountainous Land---------------------------------------------------------46 VII Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types--------------------------50I. Early EarthJohn W. Valley, Elements 2(4) (2006) 201-204.The earliest Earth was a strange inhospitable world, yet transitions to a more familiar planet occurred within the first billion years. In spite of sparse preservation of an ambiguous rock record, recent studies refine the nature and timing of key events. This issue reviews current knowledge of the age of the Earth, massive early meteorite impacts, the early atmosphere and hydrosphere, the rock record, and the first life.The surface of the Earth was cruelly inhospitable at the time of its birth about 4.5 billion years ago. Red-hot oceans of magma, massive meteorite strikes, and a dense atmosphere elicit the name “Hadean” for this earliest time period. Clearly such extreme conditions had to subside before continents, oceans, and life could survive on Earth (see cover). So when did the Hadean end? Evidence from rocks has been used to place this boundary at 3.8 Ga (billion years before present), the age of the oldest known water-laid sediments. The fossil record of life begins even later at 3.5 Ga, although low carbon isotope ratios (13C/12C) in carbonaceous matter from Isua, Greenland, suggest that life got its start before 3.8 Ga. Recently, isolated detrital zircons as old as 4.4 Ga from localities in Western Australia have provided evidence that the Hadean was shorter than previously thought. While extreme opinions exist on both sides, a moderate position is that small continent-like land masses existed by 4.4 Ga and oceans hospitable to life existed at 4.2 Ga. In this interpretation, the Hadean was over by 4.2 Ga and possibly earlier. Life may have emerged quickly in the post-Hadean oceans—there is no direct evidence. If life did exist before 3.8 Ga, it was subjected to intense meteorite bombardment and possibly extinction.The age of the Earth has been debated for centuries. Accurate estimates based on the radioactive decay of uranium to lead were first made with improved mass spectrometers following the Second World War. In the second article of this issue, “The Origin of the Earth – What’s New?,” Alex Halliday describes the precise chronology of events that has been established from the many isotope systems now available for determining the age of rocks. A traditional type of geochronometer uses parent–daughter isotope pairs with long half-lives for radioactive decay (i.e. 238U→206Pb, half life of 4468 million years, Myr); this method has established the geological time scale in years before the present. A more recently exploited technique uses isotope pairs with short half-lives (i.e. 26Al→26Mg, half-life of 0.73 Myr), in which the parent isotope is now extinct; ages are measured relative to the formation of the solar system. Thus, we can count forward or backward. This situation leads to the irony that the occurrence of some events is well established during the first 50 million years, but the next 500 Myr period from which no known rocks have been preserved (sometimes called the geological “Dark Ages”) is poorly understood, and the following 4000 Myr of Earth history are increasingly well documented. No single date can be assigned for the formation of the Earth, which accreted over a period of time fromswirling dust, rocks, and planetesimals (~1 km diameter bodies) in the solar nebula. However, the age of the solar system is known with extreme precision from studies of meteorites to be 4.567 Ga. The Earth grew rapidly after this start, and calculations show that it attained most of its mass within 10 million years. Other events within the first 50 Myr include the gravitational settling of iron to form the metal core of the Earth and the formation of the Moon when a planet struck the Earth—a terrestrial impact so violent that both bodies melted and partly vaporized.The Earth continues to grow today, with 106–107 kg of meteorites added each year, including thousands that are fist-size or larger. This is a trace contribution to the mass of the Earth and largely goes unnoticed. In “Impact Processes on the Early Earth,” Christian Koeberl portrays a far more violent early history of meteorite impacts and cratering. During accretion, the mass flux of material added to the Earth was extreme, but it dropped five to ten orders of magnitude during the first 100 Myr and has continued to decline ever since, except during a resurgence called the Late Heavy Bombardment at ~3.85 Ga. While no evidence of impacts during the first billion years is preserved on Earth, largely due to tectonic reworking, nearly 200 younger impacts are known, the oldest being the Vredefort Dome (2023 Ma) in South Africa. Only the ancient surfaces of the Moon and Mars have provided evidence of the earlier ravages.The early atmosphere was thick, hot, and poisonous. Carbonic “greenhouse” gases prevailed, and before 2.3 Ga, levels of oxygen were too low to sustain aerobic life. In “Earth’s Earliest Atmosphere,” Kevin Zahnle traces the evolution from a Hadean atmosphere to more clement conditions that could nourish life. Early on, not only were the oceans vaporized by energetic impacts, so was the silicate surface of the Earth, followed by magmatic “rain” and “hailstones” of rock! However, the faint young Sun was 30% weaker than today, and cooling of Earth’s surface was surprisingly rapid. Calculations suggest that post-Hadean temperatures subsided enough to precipitate steam as ocean water and, depending on poorly known levels of atmospheric insulation, to freeze water. Zahnle argues that the cool early Earth was actually a snowball with pools of water localized around geothermal vents or at impact sites. These changing conditions could have spurred the emergence of life.Rocks at least 2.5 billion years old are found on every continent and are relatively common. However, most of the more ancient rocks have been destroyed or reworked beyond recognition by the Earth’s tectonic processes. Only a handful of small localities are known to be older than 3.6 Ga. In “Antiquity of the Oceans and Continents,” Allen Nutman reviews studies of these key areas, with emphasis on Isua, Greenland, the most diverse early terrane. In spite of moderate metamorphism, ~3.8 Ga rocks from Isua preserve evidence of plate tectonics, oceans, and perhaps life.The only known older rocks are gneisses from Acasta, Canada, at 4.0 Ga. The only record of rocks older than this comes from isolated crystals of the mineral zircon from Western Australia that is as old as 4.4 Ga.Zircons are exceptionally robust and retentive. The most ancient grains were removed from unknown parent rocks, transported as wind-blown dust and river mud, and deposited as detrital grains in sedimentary rocks. They carry chemical clues to their origin in the form of mineral inclusions, trace elements, growth zoning, and isotopes ofuranium, lead, oxygen, and hafnium. The study of these tiny time capsules requires the use of advanced instruments, including large secondary-ion mass spectrometers called ion microprobes, which measure the age (U–Pb) and oxygen isotope ratio in 10–20 µm domains. These characteristics can be correlated with other features in the 100–300 µm crystals. The existence of zircons as old as 4.4 Ga indicates that small amounts of granitic (sensu lato) proto-continent existed at that time. Without such buoyant crust, the zircon-bearing rocks would have sunk into the mantle and been destroyed. High oxygen isotope ratios in some early zircons suggest that liquid water oceans existed at4.2 Ga. Evidence from Ti and Hf has been interpreted as indicating even earlier granites and that plate tectonics was operating, but the uniqueness of these interpretations is debated (Harrison et al. 2006; Valley et al. 2006).The oldest-known fossil evidence for life, along with appropriate geochemical signatures, is found in ~3.5 Ga rocks, but this does not necessarily date the emergence of life. If the first life was at 3.5 Ga, that would suggest that it was delayed by 700 million years after the end of the Hadean. In “The First Billion Years: When Did Life Emerge?” William Schopf discusses the evidence for life found in rocks from the oldest localities. It appears that one-celled organisms were diversified, flourishing, and relatively common by ~3.5 Ga, indicating that the first life came much earlier. If the carbon isotope record in metamorphic rocks is correct, then the emergence of life was before 3.8 Ga. In fact, all of the essential ingredients for life were assembled on Earth as soon as near-surface waters cooled enough for DNA to be stable (~4.2 Ga). If life emerged on Earth or was delivered from space at this time, its main challenge would have been possible annihilation during the Late Heavy Bombardment (~3.85 Ga). Survival chances would have been enhanced if primitive microbes, like archaea, were capable of subsisting underground in the absence of sunlight. Alternatively, the earliest life on Earth may have evolved and become extinct many times before 3.85 Ga, and the present inhabitants of Earth may be descended from the first continuously successful life, but not the first life.Taken together, these articles summarize a new understanding of the first one billion years of history of our planet and portray its evolution from highly energetic to clement. This is a rapidly emerging field of study that will aid interpretation of other planets and the origin of life, inside the solar system and possibly beyond.New words and expressionsHadean 冥古代 detrital zircon 岩屑的锆石 chronology 年代学 Archaea 太古代的 geochronometer 地质年代计 isotope 同位素 secondary-ion mass spectrometers 二次离子质谱仪 uranium 铀 ion microprobe 离子探针 lead 铅 hafnium 铪 Ma 百万年(地质年代单位) Ga =10亿年(地质年代单位)planetesimals 星子的, 星子组成的, 星子假说 小行星体nebula 星云, 云翳 annihilation 歼灭, 灭绝II. Water, Melting, and the Deep Earth H2O CycleMarc M. HirschmannINTRODUCTIONCycling of H2O between the mantle and the exosphere and between different reservoirs in the mantle is one of the critical processes governing Earth’s geodynamical and geochemical evolution. However, the distribution and inventory of H2O in the mantle remains uncertain and the mechanisms of transport between principal mantle reservoirs are not fully known. The total H2O stored in Earth’s mantle is poorly constrained, with estimates from about a quarter the mass of H2O in the world’s oceans to 4 ocean masses (Ringwood 1975, Ahrens 1989, Jambon & Zimmermann 1990, Bolfan-Casanova et al. 2003). The distribution of H2O in the mantle may be heterogeneous on a large scale, but apart from the upper mantle, there is considerable ambiguity regarding concentrations of H2O in Earth’s interior. Narrowing uncertainties in the inventory of H2O in the different portions of the mantle remains among the chief challenges to understanding the global deep H2O cycle. In the mantle H2O may be stored in solid minerals or present as hydrous fluids or melts. Such hydrous fluids are critical agents of mass transfer and mantle differentiation. Cycling of elements between the mantle and the crust is influenced by the loci of melting in basalt source regions (Figure 1), which in turn are strongly affected by H2O (Hirth & Kohlstedt 1996, Ito et al. 1999). Further, deep hydrous melting may play a principal role in redistributing elements between different large-scale reservoirs in the mantle (Bercovici & Karato 2003). The strong effect of H2O on mantle creep strength (Hirth & Kohlstedt 1995, Mei & Kohlstedt 2000) means that the distribution of H2O within a planet governs the style of convective flow in its interior, and this may be the chief factor influencing the distinct tectonic behavior of Earth and Venus (Mackwell et al. 1998, Richards et al. 2002). This distribution is a product of both the capacity of mantle phases to store H2O and the fluxes of H2O between regions of the mantle and between the mantle, the crust, and the exosphere.Here we consider several topics related to the deep water cycle. We begin by reviewing constraints from basalt geochemistry on H2O storage in the mantle. We then discuss recent developments from mineral physics and experimental petrology that constrainH2O storage capacities in the upper mantle, transition zone, and lower mantle and discuss the consequences for the loci of melting and cycling of H2O between mantle reservoirs. The review emphasizes the role of melting in modulating fluxes of H2Oin the mantle, with particular attention to melting in the source regions of oceanic basalts, above the 410 km discontinuity, and in the lower mantle.The key role for H2O melting of the mantle was first recognized for subducting oceanic lithosphere and processes associated with dynamics of the mantle beneath arc volcanoes (e.g., Green & Ringwood 1967). This topic has been investigated intensively for nearly 40 years and has been the subject of recent reviews (Poli & Schmidt 2002, Eiler 2003, van Keken&King 2005). Consequently, the present chapter focuses chieflyon the role of H2O in other regions of the mantle.PRELUDE: H2O STORAGE IN THE MANTLE VIEWED BASALT GEOCHEMISTRYA primary consideration regarding operation of the deep Earth H2O cycle is the inventory of H2Ostorage in the mantle. Geochemical arguments based onK2O/H2O ratios of basalts suggest that the bulk silicate Earth (BSE) contains 500–1900 ppm H2O( Jambon&Zimmermann 1990), corresponding to 1.5–5.5 oceans in the mantle. More detailed studies of basalt geochemistry reveal the H2O concentration may vary significantly between mantle reservoirs (e.g., Dixon et al. 2002). H2O behaves incompatibly during mantle melting and subsequent shallow differentiation processes (e.g., Michael 1995). Effects of degassing can be avoided by studying submarine eruptions of sufficient depth or melt inclusions. Comparison of H2O to other incompatible elements shows that its behavior during melting is similar to La, Ce, or K, with perhaps the greatest similarity to Ce (Michael 1988, Jambon & Zimmermann 1990, Michael 1995). Consequently, establishment of H2O/Ce ratios of undegassed basalts, combined with estimates of Ce in mantle source regions (e.g., Salters & Stracke 2004,Workman & Hart 2005) provides the best estimates of H2O in basalt source regions. Combined with independent determinations of the behavior of Ce during partial melting of peridotite (i.e., Salters & Longhi 1999), similar behavior of H2O and Ce indicates that the H2O partition coefficient during mantle melting H2O, Dperidotite/melt H2O , is 0.007–0.009. Studies of H2O and H2O/Ce in normal mid-ocean ridge basalts (MORBs) indicate the mantle beneath normal ridges has between 50 and 200 ppm H2O (Michael 1988, 1995; Danyushevsky et al. 2000; Dixon et al. 2002; Saal et al. 2002; Simons et al. 2002). The source of normal MORB is a global layer in the shallow oceanic mantle and is characterized by distinctive depletionsin certain trace elements and radiogenic isotopes (e.g., Zindler & Hart 1986) and so this 50–200 ppm is likely to be a good estimate of the concentration of H2O in the upper mantle, apart from mantle wedges above subduction zones and those regions that have been affected by plumes. Geochemical studies of oceanic island basalts (OIBs) and oceanic plateaux (Dixon et al. 1997, 2002; Jamtveit et al. 2001; Hauri 2002; Nichols et al. 2002;Wallace et al. 2002; Seaman et al. 2004) and from MORB that incorporate a component from a plume-associated source (Dixon et al. 2002) suggest H2O concentrations in plume sources ranging from 300–1000 ppm. These studies suggest that the mantle has one or more H2O-rich reservoirs that feed plume-related magmatism. These reservoirs are conventionally assumed to reside in the lower mantle or the core-mantle boundary region.Importantly, the MORB source is the driest of geochemically identifiable mantle reservoirs; all others are more enriched in H2O (Dixon et al. 2002). Estimates for the volume of this relatively dry, depleted source of MORB range from 25% to 90% ( Jacobsen &Wasserburg 1979, Hofmann 1997). The OIB source region, consisting of a range of reservoirs with distinct isotopic characteristics reflecting contributions from recycled and/or primitive materials (Hofmann 1997), could constitute much of the rest of the mantle. It is possible that parts of the mantle are not sampled by any oceanic basalts, but these are generally thought to represent a relatively small volume restricted to the core-mantle boundary (Blichert-Toft & Albarede 1997, Rudnick et al. 2000, Tolstikhin & Hofmann 2005).If all major reservoirs in the mantle are sampled by oceanic basalts, the total mass of H2O in the mantle depends on the relative proportions of MORB and OIB sources, with larger OIB reservoirs corresponding to more total H2O storage. For 25%MORBsource with 50–200 ppm H2O and 75% OIB source with 300–1000 ppm H2 O, the total H2O in the mantle amounts to 1.5 ± 0.8 oceans. For an intermediate case with 75% MORB source and 25% OIB source (Kellogg et al. 1999), total H2O storage equals 0.7 ± 0.4 oceans, and for an extreme dry case, with 90% MORB source and 10% OIB source, storage equals 0.5 ± 0.3 oceans.A critical question is which, if any, of these of possibilities is consistent with mineral physics and petrologic constraints on H2O storage capacity as a function of depth in the mantle. H2O storage capacity is the maximum H2O that a mineral or an assemblage of minerals can accommodate in their structures without saturating in an H2O-rich fluid or hydrous melt (Hirschmann et al. 2005). In the following sections, we discuss some of the constraints on H2O storage capacities in the principal layers of the mantle and their relationship to melting, H2O fluxes between the layers, and between the mantle and the exosphere.THE UPPER MANTLEThe H2O storage capacity of olivine, the principal phase in the upper mantle, is perhapsbetter characterized than that of any other mantle phase, although important uncertainties remain. The pioneering work of Kohlstedt & coworkers (Bai & Kohlstedt 1993, Kohlstedt et al. 1996) showed that olivine storage capacity increases greatly with H2O fugacity and consequently with depth, from 25 ppm at 10 km depth to 1300 ppm at 410 km. Recent reevaluation of analytical techniques for H2O analysis in olivine have lead to an upward revision of these values by a factor of 3 to 3.5 (Bell et al. 2003, Koga et al. 2003), meaning that the storage capacity of olivine at 410 km approaches 0.4 wt.%. This accords with more recent detailed infrared and secondary ion mass spectrometry (SIMS) analyses (Chen et al. 2002, Smyth et al. 2005). Storage capacities for pyroxenes and garnet are less well-known than for olivine, but at low pressure the capacity of pyroxene to store H2O greatly exceeds that of olivine, meaning that it is the principal host of H2O in the upper mantle (Aubaud et al. 2004). This may or may not be the case at greater depth, but if it is, the storage capacity at the base of the upper mantle could approach 1 wt.% (Hirschmann et al. 2005). Importantly, these storage capacities derive from relatively low temperatures (1000◦C–1250◦C), and may not be directly applicable to the actual mantle geotherm.We return to this subject below.Where the upper mantle H2O content exceeds the local storage capacity, hydrous melting results. This occurs in basalt source regions of the shallow mantle (Hirth & Kohlstedt 1996, Asimow et al. 2004, Aubaud et al. 2004) and possibly at the bottom of the upper mantle, if H2O-rich material is advected from the transition zone (Young et al. 1993, Kawamoto et al. 1996, Litasov&Ohtani 2002, Bercovici&Karato 2003). Melting at the top of the upper mantle governs the flux of H2O from the mantle to the exosphere and likely forms dry stiff lithospheric plates (Hirth & Kohlstedt 1996). Melting at the bottom of the upper mantle may govern the flux of H2O to the upper mantle (Bercovici & Karato 2003), thereby modulating its geochemical and rheological properties.EFFECT OF H2O ON MELTING IN BASALT SOURCE REGIONSThe now classic work of Hirth & Kohlstedt (1996) first alerted the Earth science community to the profound influence of small amounts of H2Oon the melting regime beneath oceanic ridges. Subsequent studies have considered the relevance of this critical process to lateral variations in mantle viscosity (Dixon et al. 2004), the origin of the low velocity zone (Karato&Jung 1998), the pattern of flow and melting beneath ridge-centered hotspots (Ito et al. 1999), the major and trace element compositions of MORB (Asimow & Langmuir 2003, Asimow et al. 2004), and the survival of continental and oceanic lithosphere in convecting mantle (Lee et al. 2005). However, as Hirth & Kohlstedt (1996) made clear, their parameterization of the effect of small amounts of H2Oon mantle melting was an estimate based on incomplete experimental constraints.A major difficulty is that direct experimental determinations of the effect of small amounts of H2O on mantle melting are infeasible. The tiny amounts of melt (<0.1 wt.%) generated by 50–200 ppm H2O are difficult or impossible to detect in the laboratory.Instead, we must rely on theoretical or empirical models to understand this critical process. These in turn depend on experimental measurements of the behavior of H2O in partial melts and residual minerals found in peridotite. One key constraint is partitioning of H2O between mantle minerals and partial melts, D mineral/melt H2O. For example, estimates of D mineral/melt H2O provide constraints for several proposed dehydration melting models (Hirth & Kohlstedt 1996, Katz et al. 2003, Aubaud et al. 2004).A widely applied technique for H2O determinations in nominally anhydrous minerals is Fourier transform infrared spectroscopy (FTIR), but FTIR requires doubly polished thin sections of minerals, and in most cases is best performed with crystallographically oriented grain mounts. Thus, it is poorly suited for experimental determinations of D mineral/melt H2O between nominally anhydrous minerals (NAMs) and silicate melts, as such experiments generally yield small (<100 µm) crystals embedded in glass. New developments of low blank SIMS techniques that allow accurate analyses of H2O in NAMs down to 5–10 ppm by weight (Koga et al. 2003) have made experimental determinations more tractable. SIMS determinations of D mineral/melt H2O for mantle minerals (Koga et al. 2003, Aubaud et al. 2004, , Hauri et al. 2004; C. Aubaud, unpublished data) are restricted to a relatively narrow pressure range (chiefly 1–2 GPa), and are summarized in Figure 2. They show D olivine/melt H2O partition coefficients in the range of 0.001–0.003 and D pyroxene/melt H2O partition coefficients in the range of 0.007–0.03. The small amount of data available for garnet shows values of D garnet/melt H2O ranging from 0.002–0.015. Together, these yield D peridotite/melt H2O of 0.009, a value similar to that inferred from H2O/Ce ratios of basalts (see above). Available data do not suggest a strong pressure dependence to the mineral partition coefficients (Figure 2), although they do indicate an important role for pyroxene composition (Aubaud et al. 2004). However, it is important to emphasize that hydrous melting of peridotite beneath oceanic ridges and oceanic islands likely commences at 50–200 km, corresponding to pressures of 2–7 GPa, and so, experimental determinations at higher pressure are needed.A thermodynamic approach to the effect of H2O on mantle melting begins with examining H2O storage capacity in olivine and H2O solubility in silicate melts. Bai & Kohlstedt (1993) and Kohlstedt et al. (1996) showed that the concentration of H2O in olivine is proportional to the fugacity of H2O, C olivine/melt H2O f n H2O, where the exponent, n, is close to unity. On the other hand, at low concentrations, H2O dissolves into melts as hydroxyl according to the reactions similar to O2− (melt) + H2O (fluid) = 2OH−(melt), and the concentration of hydroxyl in silicate liquids is given by C melt OH− f 0.5H2O.With increasing concentration of H2O in silicate melts, molecular H2O species become important, and the effective value of n may be greater than 0.5. The combined relations for hydrous incorporation in olivine and melt yield an expression for the olivine/melt partition coefficient: C olivine/melt H2O f 0.5H2O. This relationship predicts that the mineral/melt partition coefficient of H2O should diminish severely with increasing H2O fugacity, which in turn implies that D olivine/melt H2O should increase with increasing pressure and with increasing H2O concentration (Asimow et al. 2004). However, such pressure or concentration dependences are not evident in the limited available experimental partition coefficient data (Figure 2). They may emerge as the number of partition coefficient determinations increase.A thermodynamic approach to the effect of H2O on mantle melting begins with examining H2O storage capacity in olivine and H2O solubility in silicate melts. Bai & Kohlstedt (1993) and Kohlstedt et al. (1996) showed that the concentration of H2O in olivine is proportional to the fugacity of H2O, C olivine/melt H2O f n H2O, where the exponent, n, is close to unity. On the other hand, at low concentrations, H2O dissolves into melts as hydroxyl according to the reactions similar to O2− (melt) + H2O (fluid) = 2OH−(melt), and the concentration of hydroxyl in silicate liquids is given by C melt OH− f 0.5H2O.With increasing concentration of H2O in silicate melts, molecular H2O species become important, and the effective value of n may be greater than 0.5. The combined relations for hydrous incorporation in olivine and melt yield an expression for the olivine/melt partition coefficient: C olivine/melt H2O f 0.5H2O. This relationship predicts that the mineral/melt partition coefficient of H2O should diminish severely with increasing H2O fugacity, which in turn implies that D olivine/melt H2O should increase with increasing pressure and with increasing H2O concentration (Asimow et al. 2004). However, such pressure or concentration dependences are not evident in the limited available experimental partition coefficient data (Figure 2). They may emerge as the number of partition coefficient determinations increase.The thermodynamic properties of H2O in silicate melts become highly uncertain above 1 GPa owing to the lack of available experimental constraints. Constraints are derived chiefly from solubility experiments at pressures<1 GPa. Based on equilibrium between water-rich fluid and hydrous silicate melt, H2O (melt) H2O (fluid), the chemical potential of H2O in the melt is equated with the known chemical potential of pure H2Oat a given temperature and pressure (e.g., Pitzer&Sterner 1994, Zhang&Duan 2005) and related to the concentration of H2O (or its dissociated species) measured in quenched glass. However, with increasing pressure, increasing mutual solubility of。