10.1.1一元一次方程刘忠

合集下载

北师大数学七年级上册第五章《一元一次方程》全章复习与巩固(基础)

北师大数学七年级上册第五章《一元一次方程》全章复习与巩固(基础)

《一元一次方程》全章复习与巩固(基础)知识讲解【学习目标】1.经历建立方程模型、解方程和运用方程解决实际问题的过程,体会模型思想;2.了解一元一次方程、方程的解等基本概念,会解数字系数的一元一次方程,感受转化思想;3.能运用一元一次方程解决实际问题,能根据实际意义检验方程的合理性.【知识网络】【要点梳理】知识点一、一元一次方程的概念1.方程:含有未知数的等式叫做方程.2.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:(1)一元一次方程变形后总可以化为ax+b=0(a≠0)的形式,它是一元一次方程的标准形式.(2)判断是否为一元一次方程,应看是否满足:①只含有一个未知数,未知数的次数为1;②未知数所在的式子是整式,即分母中不含未知数.3.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解.4.解方程:求方程的解的过程叫做解方程.知识点二、等式的性质与去括号法则1.等式的性质:等式的性质1:等式两边同时加上(或减去)同一个代数式,所得结果仍是等式. 等式的性质2:等式两边乘同一个数,(或除以同一个不为0的数),所得结果仍是等式. 2.合并法则:合并时,把系数相加(减)作为结果的系数,字母和字母的指数保持不变. 3.去括号法则:(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同. (2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反. 知识点三、一元一次方程的解法 解一元一次方程的一般步骤:(1)去分母:在方程两边同乘以各分母的最小公倍数.(2)去括号:依据乘法分配律和去括号法则,先去小括号,再去中括号,最后去大括号. (3)移项:把含有未知数的项移到方程一边,常数项移到方程另一边.(4)合并:逆用乘法分配律,分别合并含有未知数的项及常数项,把方程化为ax =b(a ≠0)的形式.(5)系数化为1:方程两边同除以未知数的系数得到方程的解bx a=(a ≠0). (6)检验:把方程的解代入原方程,若方程左右两边的值相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.知识点四、用一元一次方程解决实际问题的常见类型1.等积变形:①形状面积变了,周长没变;②原体积=变化后体积.2.利润问题:商品利润=商品售价-商品进价3.行程问题:路程=速度×时间4.和差倍分问题:增长量=原有量×增长率5.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量6.银行存贷款问题:本息和=本金+利息,利息=本金×利率×期数7.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.8.方案问题:(1)运用一元一次方程解应用题的方法求解两种方案值相等的情况.(2)用特殊值试探法选择方案,取小于(或大于)一元一次方程解的值,比较两种方案的优劣性后下结论.【典型例题】类型一、一元一次方程的概念1.(2014•郸城县校级模拟)如果方程(k ﹣1)x |k|+3=0是关于x 的一元一次方程,那么k 的值是 .【思路点拨】根据一元一次方程的定义知|k|=1且未知数是系数k ﹣1≠0,据此可以求得k 的值.【答案】 ﹣1. 【解析】解:∵方程(k ﹣1)x |k|+3=0是关于x 的一元一次方程, ∴|k|=1,且k ﹣1≠0, 解得,k=﹣1; 故答案是:﹣1.【总结升华】本题考查了一元一次方程的概念和解法.一元一次方程的未知数的指数为1,且未知数的系数不为零.举一反三:【变式】下列说法中正确的是( ).A.2a-a=a不是等式 B.x2-2x-3是方程 C.方程是等式 D.等式是方程【答案】C2. 若方程3(x-1)+8=2x+3与方程253x k x+-=的解相同,求k的值.【答案与解析】解:解方程3(x-1)+8=2x+3,得x=-2.将x=-2代入方程253x k x+-=中,得22253k-++=.解这个关于k的方程,得263k=.所以,263k=.【总结升华】由于两个方程的解相同,所以可以将其中一个方程的解代入另一个方程中,从而求得问题的答案.举一反三:【变式】(2015春•泉州期中)当x= 时,代数式2x+1与5x﹣8的值相等.【答案】3.解:根据题意得:2x+1=5x﹣8,∴2x﹣5x=﹣8﹣1,∴﹣3x=﹣9,∴x=3.类型二、一元一次方程的解法3.解方程2351 46y y+--=【思路点拨】通过方程的同解原理(去分母,去括号,合并同类项,系数化为1),一步一步将一个复杂的方程转化成与它同解的最简的方程,从而达到求解的目的.【答案与解析】解:去分母,得3(y+2)-2(3-5y)=12去括号,得3y+6-6+10y=12合并同类项,得13y=12未知数的系数化为1,得1213 y=【总结升华】转化思想是初中数学中一种常见的思想方法,它能将复杂的问题转化为简单的问题,将生疏的问题转化为熟悉的问题,将未知转化为已知.事实上解一元一次方程就是利用方程的同解原理,将复杂的方程转化为简单的方程直至求出它的解.举一反三:【变式】解方程:解方程:0.10.050.20.0550.20.54x x+--+=【答案】解:把方程可化为:0.520.550 254x x+--+=再去分母得:232x=-解得:16x=-4.解方程:113(1)(1)2(1)(1)22x x x x+--=--+【思路点拨】本题按常规方法求解,比较繁锁,如能根据题目的特点,巧用“整体思维”,就能算得又快又对,起到事半功倍的效果.【答案与解析】解:113(1)(1)2(1)(1)22x x x x+++=-+-75(1)(1)22x x+=-7(1)5(1)x x+=-7755x x+=-212x=-x=-6【总结升华】直接去括号太繁琐,若将(x+1)及(x-1)看作一个整体,并移项合并同类项,解答十分巧妙,可免去去分母的步骤及简化去括号的过程.类型三、一元一次方程的应用5.甲车从A地出发以60 km/h的速度沿公路匀速行驶, h后,乙车也从A地出发,以80 km/h的速度沿该公路与甲车同向匀速行驶,求乙车出发后几小时追上甲车.【答案与解析】解:设乙车出发后x小时追上甲车,依题意得60×+60x=80x,解得 x=.答:乙车出发后小时追上甲车.【总结升华】此题的等量关系为:甲前 h的行程+甲后来的行程=乙的行程.6.如图,一个盛有水的圆柱形玻璃容器的内底面半径为10cm,原容器内水的高度为12cm,把一根半径为2cm的玻璃棒垂直插入水中后,问容器内的水将升高多少cm(圆柱的体积=底面积×高)【思路点拨】根据题意,得等量关系为:容器的底面积×容器中水的原来高度+玻璃棒的截面积×(容器中水的高度+水增加的高度)=容器的底面积×(容器中水原来的高度+水增加的高度).【答案与解析】解:解:设容器内的水将升高xcm,据题意得:π•102×12+π•22(12+x)=π•102(12+x),1200+4(12+x)=100(12+x),1200+48+4x=1200+100x,96x=48,x=.答:容器内的水将升高.【总结升华】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.本题也可以根据水面上升部分的体积等于插入水中玻璃棒的体积来列等量关系进行求解.7.某商品的进价为1500元,提高40%后标价,若打折销售,使其利润为20%,则此商品是按几折销售的(结果精确到)【答案与解析】解:设按x折销售,根据题意得出:1500×(1+40%)×x10=1500×(1+20%),解得x≈,答:此商品是按折销售的.【总结升华】本题考查了一元一次方程的应用,解此题的关键是弄清“售价=进价+利润”和打几折即现价就是原价的百分之几十.举一反三:【变式】“五一”期间,某商场搞优惠促销活动,决定由顾客抽奖确定折扣,某顾客购买甲、乙两种商品,分别抽到七折(按原销售价70%销售)和九折,共付款386元,这两种商品原销售价之和为500元,问两种商品原销售价分别为多少元?【答案】解:设甲种商品原价x元,则乙种商品原价为(500-x)元,则:70%x+90%(500-x)=386, +=386, =64,x=320;乙种商品原价为500-320=180(元);答:甲种商品原价为320元,乙种商品原价为180元.【巩固练习】一、选择题 1.(2015春•宜阳县期中)下列方程中,是一元一次方程的为( ) A .3x+2y=6 B .x 2+2x ﹣1=0C .=xD .﹣3=2. 下列变形错误的是( ).A.由x + 7= 5得x+7-7 = 5-7B.由3x -2 =2x + 1得x= 3C.由4-3x = 4x -3得4+3 = 4x+3xD.由-2x= 3得x= -32 3. 某书中一道方程题:213xx ++=,□处在印刷时被墨盖住了,查书后面的答案,得知这个方程的解是 2.5x =-,那么□处应该是数字( ).A .B .C .5D .74. 将(3x +2)-2(2x -1)去括号正确的是( ).A 3x +2-2x +1B 3x +2-4x +1C 3x +2-4x -2D 3x +2-4x +2 5. 当x=2时,代数式ax -2x 的值为4,当x=-2时,这个代数式的值为( ). A.-8 B.-4 C.-2 6.解方程121153x x +-=-时,去分母正确的是( ). A .3(x+1)=1-5(2x-1) B .3x+3=15-10x-5C .3(x+1)=15-5(2x-1)D .3x+1=15-10x+57.某球队参加比赛,开局11场保持不败,积23分,按比赛规则,胜一场得3分,平一场得1分,则该队获胜的场数为( ). A .4 B .5 C .6 D .78.某超市选用每千克28元的甲种糖3千克,每千克20元的乙种糖2千克,每千克12元的丙种糖5千克混合成杂拌糖后出售,在总销售额不变的情况下,这种杂拌糖平均每千克售价应是( ).A .18元B .元C .元D .20元 二、填空题9.在0,-1,3中, 是方程3x -9=0的解. 10.如果3x52a -=-6是关于x 的一元一次方程,那么a = ,方程的解=x .11.若x =-2是关于x 的方程324=-a x 的解,则a = . 12.由3x =2x +1变为3x -2x =1,是方程两边同时加上 .13.“代数式9-x 的值比代数式x 32-1的值小6”用方程表示为 . 14.当x = 时,代数式223x -与32x-互为相反数.15.(2015•哈尔滨模拟)把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班的学生有 人.16.某商场把彩电按标价的8折出售,仍可获利20%,若该彩电的进价为2000元,则标价是 . 三、解答题17.(1)310.10.3542x x -=+; (2)122(1)(3)23x x x --=+.18.已知代数式11213y y ---+的值为0,求代数式312143y y ---的值. 19.(2015•南丹县一模)某水果销售店用1000元购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示: 进价(元/千克) 售价(元/千克) 甲种 5 8 乙种 9 13(1)这两种水果各购进多少千克?(2)若该水果店按售价销售完这批水果,获得的利润是多少元?20.学校校办工厂需制作一块广告牌,请来师徒二人,已知师傅单独完成需4天,徒弟单独完成需6天,现由徒弟先做一天,再两人合作,完成后共得到报酬450元,如果按各人完成的工作量计算报酬,那么该如何分配?【答案与解析】 一、选择题1.【答案】C .2.【答案】D【解析】由23x -=,得32x =-3.【答案】C【解析】把x =代入方程,再把□当作未知数解方程即可. 4.【答案】D【解析】(32)2(21)32222(1)3242x x x x x x +--=+-⋅-⋅-=+-+5.【答案】B 【解析】将2x =代入得:244a -=,得28a =;将2x =-代入得:24844a -+=-+=- 6.【答案】C【解析】去分母时避免漏乘常数项,当分子是多项式时,去分母后给分子加上括号. 7.【答案】C【解析】设该队获胜x 场,则平的场数为(11-x),则3x+(11-x)=23.解得x =6.故选C . 8.【答案】B 【解析】可设这种杂拌糖平均每千克的售价是x 元.依题意,得(3+2+5)x =28×3+20×2+12×5,解得x =,故选B . 二、填空题 9. 【答案】3;【解析】代入验证即可. 10. 【答案】35,-2;【解析】35215a a -=⇒=,362x x =-⇒=- 11. 【答案】112-; 【解析】将2x =-代入得:118232a a --=⇒=- 12. 【答案】-2x ; 13. 【答案】29)613x x -+=-(; 14. 【答案】138; 【解析】322023x x --+=,解得:138x =15.【答案】45.【解析】设有x 名学生,根据书的总量相等可得:3x+20=4x ﹣25,解得:x=45.答:这个班有45名学生. 16. 【答案】3000.【解析】设标价为x 元,则0.82000(120%)x =+,解得:3000x = 三、解答题 17.【解析】解:(1)去分母,得=2x+.移项,得3x-2x =+. 合并同类项,得x =.(2)去分母,得12x-3(x-1)=4(x+3).去括号,得12x-3x+3=4x+12. 移项,得12x-3x-4x =12-3. 合并同类项.得5x =9.系数化为1,得95x =. 18.【解析】 解:由题意,得112103y y ---+=.去分母,得61130y y --++=. 移项合并同类项,得714y -=-.系数化为1,得y =2.当y =2时,3121321221143434y y --⨯-⨯--=-=, 即若代数式11213y y ---+的值为0,则代数式312143y y ---的值为14. 19.【解析】解:(1)设购进甲种水果x 千克,则购进乙种水果(140﹣x )千克,根据题意得: 5x+9(140﹣x )=1000, 解得:x=65,∴140﹣x=75.答:购进甲种水果65千克,乙种水果75千克;(2)3×65+4×75=495(元) 答:利润为495元. 20.【解析】解:设两人一起做x 天,据题意,得:11(1)164x x ++=,解得x =2. 师傅应得报酬为14×2×450=225(元).徒弟应得报酬为450-225=225(元).答:师傅应得报酬为225元,徒弟应得报酬为225元.。

一元一次方程复习教案(2课时)

一元一次方程复习教案(2课时)

第六章一元一次方程复习教案(2课时)一、复习指导1、会解方程2、理解并应用方程解的定义3、一元一次方程解的情况分析4、问题情景----建立数学模型----解释、应用与拓展数学方法:定义法数学思想:转化思想分类讨论思想整体思想二.例题评析例1 解方程:(1);(2);(3);(5).例2 以x为未知数的方程的解是x=3,求a的值.说明:本例根据方程的解的含意,将x=3代入方程,得到一个以a为未知数的新方程,解得a的值.例3 一种商品的进货价为1500元,如果出售一件可得的利润是售价的15%,求这种商品的售价(精确到1 元).例4 有A、B两个圆柱形的容器,A容器的底面积是B容器的底面积的2倍,A容器内的水深为10厘米,B容器深21厘米,若把A容器内的水倒入B容器,水是否会溢出?说明:利用方程也可以解决不知是否相等的问题.本例中,如果解出的B容器中的水深超过了容器的深度,就表示水会溢出.例5 甲、乙两人骑车分别从A、B两地同时出发,相向而行.甲每小时行10千米,乙每小时行12千米,乙到达A地比甲到达B地早1小时零6分.求:(1)甲、乙两人出发后何时相遇?(2)A、B两地的距离.例6A、B两地相距480千米,一列慢车从A地开出,每小时行60千米;一列快车从B地开出,每小时行100千米.(1)如果两车同时开出相向而行,多少小时相遇?(2)如果两车同时开出同向(延BA方向)而行,快车几小时可追上慢车?(3)慢车先开出1小时,两车相向而行,快车开出几小时可与慢车相遇?例7 将5000元钱存入银行,一年到期,扣除20%的利息税后的本息和为5080元,求这种存款的年利率.解:设年利率为x %,根据题意得5000[1+ x %×(1—20%)]=5080.解这个方程得x =2,即年利率为2%.例8 某人将20**元钱用两种不同方式存入银行,1000元存活期一年,1000元存一年定期,年利率为2%,一年到期取款时都要交20%的利息税,到期此人共得交税后的本息和2023.68元,求活期存款的月利率.例9 一项工程,甲单独做需20天完成,乙单独做需30天完成,若先由甲单独做8天,再由乙单独做3天,剩下的由甲、乙两人合做还需要几天能完成?例10 一个三位数,十位上的数比个位上的数大2,百位上的数比个位上的数小2,而这三个数位上的数字和的17倍等于这个三位数,求这个三位数.例11 有一个四位数,低位上的两个数字组成的两位数比高位上的两个数字组成的两位数的5倍多4;若将低位上的两个数字组成的两位数与高位上的两个数字组成的两位数对调那么所得的新四位数比原四位数大7920,求原四位数.复习题1.解方程:(1);(2);(3);(4);(5);-= =4(6);(7)(8).2.(1)与2是同类项,求的值.(2)与是同类项,求的值.3.(1)已知是方程的解,求m的值.(2)已知是方程的解,解方程.4.(1)当m为什么值时,代数式的值比代数式的值大5?(2)当x=—3时,代数式的值是—7,当x为何值时,这个代数式的值是1?5.某车间今年平均每月生产一种产品80件,比去年平均每月产量的1.5倍少10件,求去年平均每月的产量.6.某数的2倍与3的和比它的4倍多1,求这个数.7.黄豆发成豆芽后,重量可增加4.5倍,要得到330千克豆芽,需要黄豆多少千克?8.甲、乙两车间共有120人,其中甲车间人数比乙车间人数的4倍少5人,求甲、乙两车间各有多少人.9.要锻造长、宽、高分别为300毫米、200毫米、60毫米的长方体毛坯,应截底面积为30×30平方毫米的方钢多长?10.将内径分别为5厘米和15厘米,高均为30厘米的两个圆柱形容器注满水,将水倒入内径为20厘米,高为30厘米的圆柱形容器中,水是否会溢出?11.甲、乙两地相距200千米,A车从甲地开往乙地,每小时行40千米,A车行了1.5小时后,B 车从乙地开往甲地,每小时行30千米,B车行了多长时间后与A车相遇?12.某商店销售一种商品时,先按进货价加50%标价,后为了促销,打八折销售,此时每件仍可获利120元,求这种商品的进货价.13.一个工地爆破时点燃导火线后,点火人员要在爆炸前转移到400米外的安全地带,导火线的燃烧速度为0.8厘米,人离开的速度是5米/秒,导火线至少需要多长?14.某人存入5000元三年期教育存款(免征利息税),到期后得本息和5417元,求年利率.15.一块金与银的合金250克,放在水中称减轻16克,已知金在水中称重减轻重量,银中水中称重减轻重量,求这块合金中金银各占多少?16.初三(2)班的一个综合实践活动小组去A,B两个超市调查去年和今年“五一节”期间的销售情况,下图是调查后小敏与其他两位同学交流的情况.根据他们的对话,请你分别求出A,B两个超市今年“五一节” 期间的销售额.17.(本题满分8分)西北某地区为改造沙漠,决定从20**年起进行“治沙种草”,把沙漠地变为草地,并出台了一项激励措施:在“治沙种草”的过程中,每一年新增草地面积达到10亩的农户,当年都可得到生活补贴费1500元,且每超出一亩,政府还给予每亩a元的奖励.另外,经治沙种草后的土地从下一年起,平均每亩每年可有b元的种草收入.下表是某农户在头两年通过“治沙种草”每年获得的总收入情况:(注:年总收入=生活补贴费+政府奖励费+种草收入)(1)试根据以上提供的资料确定a、b的值;(2)从20**年起,如果该农户每年新增草地的亩数均能比前一年按相同的增长率增长,那么20**年该农户通过“治沙种草” 获得的年总收入将达到多少元?《一元一次方程》过关测试题姓名:成绩:一、解下列方程,要求严格按照解方程的一般步骤进行。

一元一次方程知识点及经典例题

一元一次方程知识点及经典例题

一、知识要点梳理知识点一:一元一次方程及解的概念 1、 一元一次方程:一元一次方程的标准形式是:ax+b=0(其中x 是未知数,a,b 是已知数,且a≠0)。

要点诠释:一元一次方程须满足下列三个条件: (1) 只含有一个未知数; (2) 未知数的次数是1次; (3) 整式方程. 2、方程的解:判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等. 知识点二:一元一次方程的解法1、方程的同解原理(也叫等式的基本性质)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

如果,那么;(c 为一个数或一个式子)。

等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

如果,那么;如果,那么要点诠释:分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。

即:(其中m≠0)特别须注意:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如方程:-=1.6,将其化为: -=1.6。

方程的右边没有变化,这要与“去分母”区别开。

2、解一元一次方程的一般步骤:解一元一次方程的一般步骤变形步骤 具 体 方 法 变 形 根 据注 意 事 项去分母方程两边都乘以各个分母的最小公倍数等式性质21.不能漏乘不含分母的项;2.分数线起到括号作用,去掉分母后,如果分子是多项式,则要加括号去括号先去小括号,再去中括号,最后去大括号 乘法分配律、去括号法则 1.分配律应满足分配到每一项 2.注意符号,特别是去掉括号移 项 把含有未知数的项移到方程的一边,不含有未知数的项移到另一边等式性质11.移项要变号;2.一般把含有未知数的项移到方程左边,其余项移到右边合并同 类 项 把方程中的同类项分别合并,化成“b ax =”的形式(0≠a )合并同类项法则合并同类项时,把同类项的系数相加,字母与字母的指数不变未知数的系数化成“1”方程两边同除以未知数的系数a ,得a b x = 等式性质2 分子、分母不能颠倒要点诠释:理解方程ax=b 在不同条件下解的各种情况,并能进行简单应用:①a≠0时,方程有唯一解;②a=0,b=0时,方程有无数个解;③a=0,b≠0时,方程无解。

一元一次方程教案最新7篇

一元一次方程教案最新7篇

一元一次方程教案最新7篇元一次方程教学设计篇一一、教材分析1、教材地位和作用本节课是义务教育课程标准实验教科书数学六年级上册第五章《一元一次方程》中第一节课的内容。

是小学与初中知识的衔接点,学生在小学已经初步接触过方程,了解了什么是方程,什么是方程的解,并学会了用逆运算法解一些简单的方程。

并在前一章刚学过整式的概念及其运算的基础上,本节课将带领学生继续学习方程、一元一次方程等内容。

要求教师帮助学生在现实情境中,通过对多种实际问题的分析,感受方程作为刻画现实世界的模型的意义,建立方程归纳得出一元一次方程的概念并用尝试检验法来求解,同时也为学生进一步学习一元一次方程的解法和应用起到铺垫作用。

2、教学目标综上分析及教学大纲要求,本课时教学目标制定如下:⒈.通过对多种实际问题的分析,感受方程作为刻画现实世界的有效模型的意义⒈.会根据简单数量关系列方程,通过观察、归纳一元一次方程的概念⒈.体会解决问题的一种重要的思想方法----尝试检验法⒈.回顾理解等式的两个性质,并初步学会利用等式的两个性质解一元一次方程3、教学重点和难点重点:一元一次方程的概念和用尝试检验法求方程的解难点:利用等式的两个性质解一元一次方程二、教法与学法分析:教法方法与手段:本节课利用多媒体教学平台,在概念教学设计中,注意遵循人们认识事物的规律,从具体到抽象,从特殊到一般,由浅入深。

从学生熟悉的实际问题开始,将实际问题“数学化”建立方程模型。

采用教师引导,学生自主探索、观察、归纳的教学方式。

利用多媒体和天平演示等教学设备辅助教学,充分调动学生的积极性。

学法指导:根据本节课的内容特点及学生的心理特征,在学法上,极力倡导了新课程的自主探究、合作交流的学习方法。

通过对学生原有知识水平的分析,创设情境,使数学回到生活,鼓励学生思考,探索情境中的所包含的数量关系,学生在经历“建立方程模型”这一数学化的过程后,理解学习方程和一元一次方程的意义,培养学生抽象概括等能力。

解一元一次方程复习课PPT课件一等奖新名师优质课获奖比赛公开课

解一元一次方程复习课PPT课件一等奖新名师优质课获奖比赛公开课
(2)2x+3=x-1移项得2x-x=3-1; 2x-x=-3-1
火眼金睛 (3)3x-12-2x=4x-3移项得
3x-2x+4x=-12-3. 3x-2x-4x=12-3 (4)5(y+8)-2 =4y
去括号得 5y+8-2=4y; 5y+40-2=4y
火眼金睛
(5)2x-3(3x-2)=x-1
等式性质2
先去小括号,再去中 括号,最终去大括号
乘法分配律
把具有未知数旳项都移到方 程旳一边,其他旳项移到方 程旳另一边(记住:移项要 变号)
等式性质1
把方程化为ax=b (a≠0)旳形式
乘法分配律
在方程两边都除以未知数旳 等式性质2
系数,得到方程旳解x= a
注意事项
不要漏乘不含分母旳项,分子是 一种整体,去分母后应加括号
选苹果 游戏
规则:每个苹果上旳数字代表该类题旳分值, 其中必答题是每个小组必须作答,答对得1分, 答错得0分;抢答题只有两道,答对得2分, 答错倒扣1分;挑战题只有一道,答对得3分, 答错倒扣2分。
1
必答题
2
抢答题
3
挑战题
火眼金睛 1、下列解方程旳过程有无错,若错,错在哪里?
(1)5y+8=9y移项得5y-9y=8; 5y-9y=-8
1、不要漏乘括号内旳各项 2、注意“+”、“-”号旳变化
移项要变号
系数相加,字母 及其指数不变 不要把分子分母旳位 置颠倒
2、解一元一项
例:一元一次方程 3Y 1 1 5Y 7
4
6
去分母,得:( 3 3Y3(3Y1-)1)-112=22((55YY-7)7)
例:方程3X+20=4X-25+5

一元一次方程归纳总结

一元一次方程归纳总结

一元一次方程只含有一个未知数(即“元”),并且未知数的最高次数为1(即“次”)的整式方程叫做一元一次方程(英文名:linear equation with one unknown)。

一元一次方程的标准形式(即所有一元一次方程经整理都能得到的形式)是ax+b=0(a,b为常数,x为未知数,且a≠0)。

求根公式:x=-b/a。

一、基本信息标准形式一元一次方程的标准形式(即所有一元一次方程经整理都能得到的形式)是ax+b=0(a,b为常数,x为未知数,且a≠0)。

其中a是未知数的系数,b是常数,x是未知数。

未知数一般设为x,y,z。

方程特点(1)该方程为整式方程。

(2)该方程有且只含有一个未知数。

(3)该方程中未知数的最高次数是1。

满足以上三点的方程,就是一元一次方程。

判断方法要判断一个方程是否为一元一次方程,先看它是否为整式方程。

若是,再对它进行整理。

如果能整理为 ax+b=0(a≠0)的形式,则这个方程就为一元一次方程。

里面要有等号,且分母里不含未知数。

变形公式ax=-b(a,b为常数,x为未知数,且a≠0)求根公式通常解法去分母→去括号→移项→合并同类项→系数化为1。

两种类型(1)总量等于各分量之和。

将未知数放在等号左边,常数放在右边。

如:x+2x+3x=6。

(2)等式两边都含未知数。

如:300x+400=400x,40x+20=60x。

方程举例2a=4a-63b=-1x=1都是一元一次方程。

方程起源“方程”一词来源于中国古算术书《九章算术》。

在这本著作中,已经列出了一元一次方程。

法国数学家笛卡尔把未知数和常数通过代数运算所组成的方程称为代数方程。

在19世纪以前,方程一直是代数的核心内容。

主要用途一元一次方程通常可用于做应用题,如工程问题、行程问题、分配问题、盈亏问题、球赛积分表问题、电话(水表、电表)计费问题、数字问题等。

[2]二、补充说明合并同类项(1)依据:乘法分配律(2)把未知数相同且其次数也相同的项合并成一项;常数计算后合并成一项(3)合并时次数不变,只是系数相加减。

第五章一元一次方程整章教案

第五章一元一次方程整章教案
-举例:已知某物品A的价格比物品B贵20元,购买2个物品A和3个物品B共花费180元。引导学生正确列出方程组。
-特殊解的判断:一元一次方程组可能存在唯一解、无解或无穷多解,学生需要学会判断。
-举例:解方程组x + y = 4和2x + 2y = 8。指导学生分析此方程组为何有无穷多解。
-综合练习中的难点题型:选取典型例题,针对学生易错、难懂的题型进行详细讲解。
1.讨论主题:学生将围绕“一元一次方程在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了一元一次方程的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对一元一次方程的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的一元一次方程教学中,我发现学生们对于方程的概念和应用有着不错的接受程度,但在具体的解题方法和应用上,还存在一些问题。特别是在将实际问题转化为方程模型的过程中,部分学生感到困惑,这说明我们在教学中需要更多地联系实际,让学生感受到数学与生活的紧密联系。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一元一次方程相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。例如,通过实物分配演示一元一次方程的基本原理。

一元一次方程移项(教案)

一元一次方程移项(教案)

一元一次方程-移项(教案)第一章:引言1.1 目的引导学生回顾一元一次方程的基本概念,为新学期的学习打下基础。

1.2 内容(1) 复习一元一次方程的定义及解法。

(2) 介绍移项的概念及其在解方程中的应用。

1.3 教学方法采用讲解、示例、练习相结合的方式进行教学。

1.4 教学步骤(1) 复习一元一次方程的定义及解法。

(2) 引入移项的概念,解释其在解方程中的作用。

(3) 示例演示移项操作,让学生理解并掌握移项技巧。

(4) 练习题巩固所学知识。

第二章:移项的基本原则2.1 目的让学生掌握移项的基本原则,能够正确进行移项操作。

2.2 内容(1) 介绍移项的基本原则。

(2) 解释为什么移项时需要改变变量的符号。

2.3 教学方法采用讲解、示例、练习相结合的方式进行教学。

(1) 讲解移项的基本原则。

(2) 通过示例演示移项操作,让学生理解并掌握移项技巧。

(3) 练习题巩固所学知识。

第三章:移项在解方程中的应用3.1 目的让学生学会运用移项技巧解一元一次方程。

3.2 内容(1) 介绍移项在解方程中的应用。

(2) 演示解方程的过程,让学生理解并掌握解题思路。

3.3 教学方法采用讲解、示例、练习相结合的方式进行教学。

3.4 教学步骤(1) 讲解移项在解方程中的应用。

(2) 通过示例演示解方程的过程,让学生理解并掌握解题思路。

(3) 练习题巩固所学知识。

第四章:移项的拓展应用4.1 目的让学生能够将移项技巧应用到更广泛的问题中。

4.2 内容(1) 介绍移项的拓展应用。

(2) 演示如何将移项技巧应用到实际问题中。

采用讲解、示例、练习相结合的方式进行教学。

4.4 教学步骤(1) 讲解移项的拓展应用。

(2) 通过示例演示如何将移项技巧应用到实际问题中。

(3) 练习题巩固所学知识。

第五章:总结与评价5.1 目的总结本章节所学内容,检查学生的学习效果。

5.2 内容(1) 总结移项的基本概念、原则及其在解方程中的应用。

(2) 评价学生的学习情况。

一元一次方程说课稿

一元一次方程说课稿

北师大版七年级数学上册第五章第一节第一课时一元一次方程说课稿南峰中学刘雨忠一、教材分析从《课程标准》看,一元一次方程是“数与代数”领域中一块重要的内容,是所有代数方程的基础.一元一次方程也是中学数学的主要内容之一,在初中数学中占有重要地位.通过一元一次方程的学习,可以对已学过的实数、整式、方程等知识加以巩固,同时又是今后学习一次函数、一元二次方程等知识的基础.本节课时是一元一次方程的导入课,主要内容是培养学生将实际问题转化成数学问题的能力,归纳出一元一次方程的概念,为进一步学习一元一次方程的解法及应用起到了铺垫作用.二、教学目标根据本节内容和新课标的要求。

知识目标:(1)了解方程概念和方程的解。

(2)探究归纳一元一次方程的概念以及一元一次方程特征。

(3)能根据给出的现实情景,找出等量关系列出方程。

能力目标:经历从实际问题中寻找数量关系到列方程的过程,感受方程作为刻画现实世界有效模型的意义,体会模型思想,提高学生抽象概括能力。

情感目标:(1)通过用一元一次方程刻画身边的问题,了解数学的价值。

(2)养成独立思考、自主探究的学习习惯。

(3)激发学生学数学、爱数学、用数学的情感。

三、教学重难点重点:一元一次方程的概念,正确列出一元一次方程.难点:找到实际问题中的等量关系四、学情分析对于方程模型七年级学生并不陌生,在小学时已学过简易的方程. 但是与初中要求相比规范性、严谨性还不够,理解也还比较浅显。

加之算术解法的熟悉,大部分学生还没有真正体会到方程在解决实际问题的优越性和重要性。

部分学生在本节学习中可能存在以下问题:(1)不能根据实际问题中的数量关系,找出等量关系。

(2)找出等量关系后,习惯于用小学算术解法依然不会列方程。

(3)学生初学方程的概念和列方程时,往往不设未知数就直接进行列方程或在设未知数时,有单位却忘记写单位等。

五、 教学过程5.1. 创设情景 引入新课准备课本若干待用,先放任意本书,按老师口令完成以下操作放6本拿走5本,放4本拿走3本,放2本拿走1本,抽若干学生说自己现在的本数,教师回答最初的本数。

《一元一次方程》 讲义

《一元一次方程》 讲义

《一元一次方程》讲义一、什么是一元一次方程在数学的世界里,方程就像是一座神秘的桥梁,连接着已知和未知。

而一元一次方程,则是这座桥梁中较为基础和常见的一种。

一元一次方程,简单来说,就是指含有一个未知数,并且未知数的最高次数是 1 的整式方程。

我们可以用一个通用的形式来表示一元一次方程:ax + b = 0 (其中a ≠ 0 )。

这里的“x”就是我们要寻找的未知数,“a”是未知数的系数,“b”则是常数项。

比如说,3x + 5 = 14 就是一个一元一次方程。

在这个方程中,未知数是 x ,系数是 3 ,常数项是 5 和 14 。

二、一元一次方程的求解接下来,让我们一起来探索如何求解一元一次方程。

求解一元一次方程的基本思路就是通过一系列的运算,将方程变形,最终求出未知数的值。

以方程 2x + 7 = 15 为例,我们的目标是让 x 单独在等号的一边。

首先,我们要把常数项 7 移到等号的右边,这时候要注意,移项时要变号,所以得到 2x = 15 7 ,即 2x = 8 。

然后,将方程两边同时除以系数 2 ,得到 x = 4 。

再来看一个稍微复杂一点的方程,比如 5(x 3) + 2 = 17 。

第一步,先把括号展开,得到 5x 15 + 2 = 17 。

接着,合并同类项,5x 13 = 17 。

然后,把-13 移到等号右边,5x = 17 + 13 ,即 5x = 30 。

最后,两边同时除以 5 ,解得 x = 6 。

三、一元一次方程的应用一元一次方程在我们的日常生活中有着广泛的应用。

比如,购物时计算折扣和价格。

假设一件商品原价为 x 元,打 8 折后的价格是 160 元,那么可以列出方程 08x = 160 ,解得 x = 200 ,就知道这件商品的原价是 200 元。

再比如,行程问题。

如果一辆汽车以每小时 60 千米的速度行驶,行驶了 x 小时后,总共行驶了 300 千米,那么可以列出方程 60x =300 ,解得 x = 5 ,也就是这辆汽车行驶了 5 小时。

数学人教版七年级上册一元一次方程.1.1 一元一次方程刘金龙

数学人教版七年级上册一元一次方程.1.1  一元一次方程刘金龙
2.将数值代入方程右边进行计算。 3.比较左右两边的值,若左边=右边, 则是方程的解,反之,则不是.
一元一次方程
我来试试
强化练习:根据下列问题,设未知数, 列出方程,并指出是不是一元一次方程: (1)环形跑道一周长400 m,沿跑道 跑多少周,可以跑3 000 m? (2)一个梯形的下底比上底多2cm, 高是5 cm,面积是40 cm2,求上底的 长.
3.1从算式到方程
3.1.1 一元一次方程 (第二课时)
平凉市泾川县飞云中学 刘金龙
一元一次方程
学习目标要求
知识与技能
1.了解方程的概念,掌握一元一次方程的概念; 2. 理解方程的解和解方程的意义; 过程与方法 体验和领会实际问题抽象成数学问题的过程。 情感、态度与价值观 体会在解决问题的过程中,同学间的相互合作 与交流的重要性。

一元一次方程的概念:只含有一个未知数, 未 知数的指数都是1,并且等号两边都是整式, 这样的方程叫做一元一次方程.
一元一次方程
活学活用
下列方程是一元一次方程的是:( ①⑤ ① 5+4x=11 ② 2x+y=5

)

x2-5x+6=0
2 x 3 ④ x
y 1 y 1 ⑤ 2 3
注意:一元一次方程必须满足三点: ①只含有一个未 知数; ②未知数的指数为1; ③方程的两边都是整式 (分母中不含有未知数).
解:(2)设上底为x cm,则下底为( x +2) cm 1 0 . 54 xx2 是一元一次方程 2 一元一次方程
小结: 列出一元一次方程的一般步骤:
1.设:恰当的设出未知数,用字母X表示问 题中的未知量 2.找:寻找实际问题中的相等关系

第五章一元一次方程知识点总结和例题讲解

第五章一元一次方程知识点总结和例题讲解

一元一次方程知识点及题型一、方程的有关概念1.方程: 含有未知数的等式就叫做方程.2.一元一次方程: 只含有一个未知数(元)x, 未知数x的指数都是1(次), 这样的方程叫做一元一次方程.3.方程的解:使方程中等号左右两边相等的未知数的值, 叫做方程的解.注:.方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程....方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.二、等式的性质三、移项法则: 把等式一边的某项变号后移到另一边, 叫做移项.四、去括号法则五、解方程的一般步骤1.去分母(方程两边同乘各分母的最小公倍数)2.去括号(按去括号法则和分配律)3.移项(把含有未知数的项移到方程一边, 其他项都移到方程的另一边, 移项要变号)4.合并(把方程化成a...(a≠0)形式)5.系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=).六. 列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数, 列出方程:设出未知数后, 表示出有关的含字母的式子, •然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程, 求出未知数的值.(5)检验, 写答案:检验所求出的未知数的值是否是方程的解, •是否符合实际, 写出答案【基础及提高】一. 选择题1.下列各式中, 是方程的个数为()(1)﹣4A.1个B.2个C.3个D.4个﹣3=﹣7;(2)3x﹣5=2x+1;(3)2x+6;(4)x﹣y=v;(4)a+b>3;(5)a2+a﹣6=0.A.如果ac=bc, 那么a=b B.如果, 那么a=b2. 下列说法正确的是()C.如果a=b, 那么D.如果, 那么x=﹣2y 3. 若关A.x=0B.x=3C.x=﹣3D.x=22﹣m+3=0是一元一次方程, 则这个方程的解是()4. 方程(m+1)x|m|+1=0是关于x 的一元一次方程, 则m()A.m=±1B.m=1C.m=﹣1D.m≠﹣15. 若关于x的方程nxn﹣1+n﹣4=0是一元一A.x=﹣1B.x=1C.x=﹣4D.x=4程的解是()A.1B.9C.0D.4 6. 已知x=3是关于x的方程x+m=2x﹣1的解,则(m+1)2的值是()7. 已知A.4B.3C.2D.1 x=﹣6是方程2x﹣6=ax的解, 则代数式的值是()8. 设A.B.C.D.﹣P=2x﹣1,Q=4﹣3x,则5P﹣6Q=7时,x的值应为()9. 服装A.总体上是赚了B.总体上是赔了店同时销售两种商品, 销售价都是100元,结果一种赔了20%, 另一种赚了20%, 那么在这次销售中,该服装店()C.总体上不赔不赚D.没法判断是赚了还是赔了10. 如图是一个长方形试管架, 在a cm长的木条上钻了4个圆孔, 每个孔的直径为2cm, 则x等于()A.cm B.cm C. cm D. cmA.k≠3B.k=﹣2C.k=﹣4D.k=211. 关于x的方程(k﹣3)x﹣1=0的解是x=﹣1, 那么k的值是()12. 江苏卫视《一站到底》栏目中, 有一期的题目如图, 两个天平都保持平衡, 则三个球体的重量等于()个正方体的重量.A.2B.3C.4D.513. 已知A.1B.1或3C.3D.2或3方程2x+k=5的解为正整数, 则k所能取的正整数值为()A.B.3C.8D.9 14. 小芳同学解关于x的一元一次方程﹣时,发现有个数模糊看不清楚,聪明的小芳翻看了书后的答案, 知道3. 于是她很快补上了这个数. 她补的这个数是()A.B.C.D.15. 若代数式3x﹣7和6x+13互为相反数, 则x的值为()A.2个B.3个C.4个D.5个16. 按下面的程序计算, 若开始输入的值x为结果为656, 则满足条件的x的不同值最多有()二. 填空题17.一件衣服先按成本提高50%标价, 再以8折(标价的80%)出售, 结果获利28元. 若设这件衣服的成本是x元, 根据题意, 可得到的方程是_________ .18.图1是边长为30cm的正方形纸板, 裁掉阴影部分后将其折叠成如图2所示的长方体盒子, 已知该长方体的宽是高的2倍, 则它的体积是_________ cm3.19.已知及的值相等时, x= _________ .20.若x=﹣1是关于x方程ax+b=1的根, 则代数式(a﹣b)2011的值是_________ .21.某人用24000元买进甲、乙两种股票, 在甲股票升值15%, 乙股票下跌10%时卖出, 共获利1350元, 则此人买甲股票的钱比买乙股票的钱多_________ 元.22如果要由等式m﹙a+1﹚=x﹙a+1﹚得到m=x, 需要满足的条件是_________ .23. 关于x的方程(a﹣1)x2+x+a2﹣4=0是一元一次方程, 则方程的解为_________ .24. 关于x的方程(m+2)x=6解为自然数, 当m为整数时, 则m的值为_________ .25.已知m+n=2008(m﹣n), 则= _________ .三计算题解方程: (1)3(x﹣1)﹣2(2x+1)=12;(2)(3). (4)﹣=.(5). (6)(7). (8)﹣=3.(9)(10)四. 解答题1.若x=2是方程ax-1=3的解, 求a的值2. 方程x+2=5及方程ax-3=9的解相等求a的值3. m为何值时, 关于m的方程的解是的解的2倍?4. 已知, 是方程的解, 求代数式的值.5. 一家商店将某种服装按进价提高40%后标价, 又以8折优惠卖出, 结果每件仍获利15元, 这种服装每件的进价是多少?6. 一批货物, 甲把原价降低10元卖出, 用售价的10%做积累, 乙把原价降低20元, 用售价的20%做积累, 若两种积累一样多, 则这批货物的原售价是多少?7. 某商店开张, 为了吸引顾客, 所有商品一律按八折优惠出售, 已知某种皮鞋进价60元一双, 八折出售后商家获利润率为40%, 问这种皮鞋标价是多少元?优惠价是多少元?8. 某蔬菜公司收购到某种蔬菜140吨, 准备加工上市销售. 该公司的加工能力是: 每天可以精加工6吨或粗加工16吨, 现计划用15天完成加工任务, 该公司应安排几天精加工, 几天粗加工?9.今年“六•一”儿童节, 张红用8.8元钱购买了甲、乙两种礼物, 甲礼物每件1.2元, 乙礼物每件0.8元, 其中甲礼物比乙礼物少1件, 问甲、乙两种礼物各买了多少件?10.小明和小东两人练习跑步, 都从甲地出发跑到乙地, 小明每分钟跑250米, 小东每分钟跑200米, 小明让小东先出发3分钟之后再出发, 结果两人同时到达乙地, 求甲、乙两地之间的路程是多少米?11. 某船从A地顺流而下到达B地, 然后逆流返回, 到达A.B两地之间的C地, 一共航行了7小时, 已知此船在静水中的速度为8千米/时, 水流速度为2千米/时。

一元一次方程知识点总结

一元一次方程知识点总结

一元一次方程知识点总结一、等式与方程1.等式:(1)定义:含有等号的式子叫做等式.(2)性质:①等式两边同时加上(或减去)同一个整式,等式的值不变.若a b=那么a c b c+=+②等式两边同时乘以一个数或除以同一个不为0的整式,等式的值不变.若a b=那么有ac bc=或a c b c÷=÷(0c≠)③对称性:若a b=,则b a=.④传递性:若a b=,b c=则a c=.(3)拓展:①等式两边取相反数,结果仍相等.如果a b=,那么a b-=-②等式两边不等于0时,两边取倒数,结果仍相等.如果0a b=≠,那么11 a b =③等式的性质是解方程的基础,很多解方程的方法都要运用到等式的性质.如移项,运用了等式的性质①;去分母,运用了等式的性质②.④运用等式的性质,涉及除法运算时,要注意转换后除数不能为0,否则无意义.2.方程:(1)定义:含有未知数的等式叫做方程.(2)说明:①方程中一定有含一个或一个以上未知数,且方程是等式,两者缺一不可.②未知数:通常设x、y、z为未知数,也可以设别的字母,全部小写字母都可以.未知数称为元,有几个未知数就叫几元方程.一道题中设两个方程时,它们的未知数不能一样!③“次”:方程中次的概念和整式的“次”的概念相似.指的是含有未知数的项中,未知数次数最高的项对应的次数,也就是方程的次数.未知数次数最高是几就叫几次方程.④方程有整式方程和分式方程.整式方程:方程的两边都是关于未知数的整式的方程叫做整式方程.分式方程:分母中含有未知数的方程叫做分式方程.二、一元一次方程1.一元一次方程的概念:(1)定义:只含有一个未知数(元)且未知数的指数是1(次)的整式方程叫做一元一次方程.(2)一般形式:0ax b+=(a,b为常数,x为未知数,且0a≠).(3)注意:①该方程为整式方程.②该方程有且只含有一个未知数.③该方程中未知数的最高次数是1.④化简后未知数的系数不为0.如:212x x-=,它不是一元一次方程.⑤未知数在分母中时,它的次数不能看成是1次.如13xx+=,它不是一元一次方程.2.一元一次方程的解法:(1)方程的解:能使方程左右两边相等的未知数的值叫做方程的解,一般写作:“?x=”的形式.(2)解方程:求出方程的解的过程,也可以说是求方程中未知数的值的过程,叫解方程.(3)移项:①定义:从方程等号的一边移到等号另一边,这样的变形叫做移项.②说明:Ⅰ移项的标准:看是否跨过等号,跨过“=”号才称为移项;移项一定改变符号,不移项的不变.Ⅱ移项的依据:移项实际上就是对方程两边进行同时加减,根据是等式的性质①.Ⅲ移项的原则:移项时一般把含未知数的项向左移,常数项往右移,使左边对含未知数的项合并,右边对常数项合并,方便求解.(4)解一元一次方程的一般步骤及根据:①去分母——等式的性质②②去括号——分配律③移项——等式的性质①④合并——合并同类项法则⑤系数化为1——等式的性质②⑥检验——把方程的解分别代入方程的左右边看求得的值是否相等(在草纸上)(5)一般方法:①去分母,程两边同时乘各分母的最小公倍数.②去括号,一般先去小括号,再去中括号,最后去大括号.但顺序有时可依据情况而定使计算简便,本质就是根据乘法分配律.③移项,方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了要变号.(一般都是把未知数移到一起)④合并同类项,合并的是系数,将原方程化为ax b=(0a≠)的形式.⑤系数化1,两边都乘以未知数的系数的倒数.⑥检验,用代入法,在草稿纸上算.(6)注意:(对于一元一次方程的一般步骤要熟练掌握,更要观察所求方程的形式、特点,灵活变化解题步骤)①分母是小数时,根据分数的基本性质,把分母转化为整数,局部变形;②去分母时,方程两边各项都乘各分母的最小公倍数,Ⅰ此时不含分母的项切勿漏乘,即每一项都要乘Ⅱ分数线相当于括号,去分母后分子各项应加括号(整体思想);③去括号时,不要漏乘括号内的项,不要弄错符号;④移项时,切记要变号,不要丢项,有时先合并再移项,以免丢项;⑤系数化为1时,方程两边同乘以系数的倒数或同除以系数,不要弄错符号(打草稿认真计算);⑥不要生搬硬套解方程的步骤,具体问题具体分析,找到最佳解法;⑦分数、小数运算时不能嫌麻烦,不要跳步,一步步仔细算.(7)补充:分数的基本性质:与等式基本性质②不同.分数的分子分母两个整体同时乘以同一个不为0的数或除以同一个不为0的数,分数的值不变.3.一元一次方程的应用:(1)解决实际应用题的策略:①审题:就是多读题,读懂题,读的时候一定沉下心去,不能慌不要急躁,要细,一个字一个字的精读,要慢,边读边思考.找到已知条件,未知条件,找到数量关系和等量关系,可以用笔在题目中标注下来重要信息和数量关系,审题往往伴随下个步骤.②设出适当未知数,往往问什么设什么,有时也间接设未知数,然后用未知数通过关系表示出其他相关的量.③找出等量关系,用符号语言表示就是列出方程.(2)分析问题方法:①文字关系分析法,找关键字词句分析实际问题中的数量关系②表格分析法,借助表格分析分析实际问题中的数量关系③示意图分析法,通过画图帮助分析实际问题中的数量关系(3)设未知量方法:一个应用题,往往涉及到几个未知量,为了利用一元一次方程来解应用题,我们总是设其中一个未知量为x,并用这个未知数的代数式去表示其他的未知量,然后列出方程.①设未知量的原则就是设出的量要便于分析问题,与其它量关系多,好表示其它量,好表示等量关系;②有直接设未知量和间接设未知量,还有不常见的辅助设未知量.(4)找等量关系的方法:“等量关系”特指数量间的相等关系,是数量关系中的一种.数学题目中常含有多种等量关系,如果要求用方程解答时,就需找出题中的等量关系.①标关键词语,抓住关键句子确定等量关系.(比如多,少,倍,分,共)解题时只要找出这种关键语句,正确理解关键语句的含义,就能确定等量关系.②紧扣基本公式,利用基本关系确定等量关系就是根据常见的数量关系确定等量关系.(比如体积公式,单价×数量=总价,单产量×数量=总产量,速度×时间=路程,工效×时间=工作总量等.这些常见的基本数量关系,就是等量关系)③通过问题中不变的量,相等的量确定等量关系.就是用不同的方法表示同一个量,从而建立等量关系.④借助线段图确定等量关系。

《一元一次方程》全章教案

《一元一次方程》全章教案

第三章一元一次方程3.1从算式到方程3.1.1一元一次方程(2课时)第1课时方程的概念1.初步学会寻找问题中的相等关系,列出方程,了解方程的概念.2.培养学生获取信息、分析问题、处理问题的能力.重点了解一元一次方程及相关概念.难点寻找问题中的相等关系,列方程.活动1:创设情境,导入新课师:小学中我们已经学习过列方程解决问题,什么是方程?你能举一个例子吗?学生回答.活动2:探究新知1.定义方程,回顾举例师:你知道什么叫方程吗?生:含有未知数的等式叫做方程.师:你能举出一些方程的例子吗?由学生举例,教师总结.练习:判断下列式子是不是方程,正确的打“√”,错误的打“×”.(1)1+2=3(2)x+2>1(3)1+2x=4(4)x+y=2(5)x2-1(6)x2=x+2(7)x+3-5(8)x=82.如何根据题意列方程师:利用多媒体展示图片,出示教材本小节开头的问题:一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是70 km/h,卡车的行驶速度是60 km/h,客车比卡车早1小时经过B地,A,B两地间的路程是多少?学生分组活动,同桌两个同学讨论看能否用算术方法解,然后考虑用方程如何解决,然后小组内同学交流,教师可以参与到学生中去,要关注学生解决问题的思路,在用算术法时,是否遇到了麻烦,用方程可以轻松解决吗?让学生感受方程在解决实际问题时的优势.解:设A,B两地间的路程是x km.根据客车比卡车早1小时经过B地,可得方程x 60-x70=1.在这一过程的教学中,教师不仅要使学生掌握本问题的解决方法,更重要的是让学生去体会列方程过程中的一般思路和方法.在这一过程中,教师还应当注意培养学生的发散思维和创新能力,可以让他们进行小组间的交流,也可以根据题意画一个表格讨论,看一看各小组所列的方程是否一致,以开拓学生的思路,从而掌握更多的解题方法.活动3:归纳整理师:提出问题,你能谈谈列方程过程中的思路和方法吗?你是怎样一步步列出方程的?学生讨论交流,然后回答.算术法和方程法有什么不同?你能谈谈你的认识吗?两种方法的比较:从形式上观察:算术方法与方程方法有什么不同的情况出现?从思路上看:你刚才做题的想法有什么不同?(师根据学生的口述列成表,便于比较)用方程解用算术方法解1.未知数用x表示,x参加列式 1.未知数不参加列式2.根据题意找出数量间的相等关系,列出含有未知数x的等式 2.根据题里已知数和未知数间的关系,确定解答步骤,再列式计算师指出:在两个方面的区别中,未知数能不能参加列式决定了怎样分析,并且决定了列式的不同特点.学生讨论交流后回答.教师不必苛求学生的回答,只要学生能谈出一两点体会,教师都应当加以鼓励.练习:教材练习第1,2题.学生独立完成,然后交流.活动4:小结与作业小结:谈谈你本节课的收获.作业:习题3.1第1,5题.要上好一节课不仅要埋头钻研教材,设计教学过程,还必须善于与学生交流,要学会从学生的角度看问题,也就是常说的要学会做学生,应从学生能否理解的角度来安排适当的教学程序,用有趣的资料激发学生的学习热情,更应主动地去了解学生对过去相应的知识的掌握程度,这样才能把握住实施教的深浅及分寸,做到进行适当的引导,达到事半功倍的效果.第2课时一元一次方程1.理解一元一次方程、方程的解的概念.2.掌握检验某个值是不是方程的解的方法.重点寻找等量关系,列出方程.难点对于复杂一点的方程,用估算的方法寻求方程的解,需要多次的尝试,也需要一定的估计能力.一、情境引入师出示问题:问题:小雨、小思的年龄和是25,小雨年龄的2倍比小思的年龄大8岁,小雨、小思的年龄各是几岁?如果设小雨的年龄为x岁,你能用不同的方法表示小思的年龄吗?在学生回答的基础上,教师加以引导:小思的年龄可以用两个不同的式子25-x和2x-8来表示,这说明许多实际问题中的数量关系可以用含字母的式子来表示.由于这两个不同的式子表示的是同一个量,因此我们可以写成:25-x =2x -8.这样就得到了一个方程.二、尝试探究师:让学生尝试解决例1,对于基础比较差的学生,教师可以作如下提示: (1)选择一个未知数,设为x. (2)对于这三个问题,分别考虑:用含x 的式子分别表示正方形的周长;用含x 的式子表示这台计算机x 个月的使用时间; 用含x 的式子分别表示男生和女生的人数. (3)找一个问题中的相等关系列出方程. 学生讨论完成后交流.师:让学生观察并讨论所列方程等号两边式子的关系,师生归纳:(1)方程等号两边表示的是同一个量;(2)左右两边表示的方法不同.简单地说:列方程就是用两种不同的方法表示同一个量.学生讨论交流:以上各题,你还能用两种不同的方法来表示另一个量,再列出方程吗? 让学生在学习小组内讨论,然后分组汇报交流:如(2)题中,选“已使用的时间”可列方程:2450-150x =1700.选“还可使用的时间”可列方程:150x =2450-1700. 解题书写过程(略). 三、探究概念 学生讨论交流.在学生观察上述方程的基础上,教师进行归纳:各方程都只含有一个未知数,并且未知数的指数都是1,这样的方程叫做一元一次方程式.“一元”:一个未知数,“一次”:未知数的次数是一次. 引导学生归纳:从上面的分析过程我们可以发现,用方程的方法来解决实际问题,一般要经历哪几个步骤?在学生回答的基础上,教师用方框表示:实际问题――→设未知数 列方程一元一次方程分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法.列出方程后,还必须解这个方程,求出未知数的值,对于简单的方程,我们可以采用估算的方法.①问题:你认为该怎样进行估算?可以采用“尝试—发现—归纳”的方法:让学生尝试后发现,要求出答案必须用一些具体的数值代入,看方程是否成立,最后教师进行归纳.可以用列表的方法进行尝试,也可以像下面的示意图那样按程序进行尝试.②在此基础上给出概念:能使方程左右两边相等的未知数的值,叫做方程的解,求方程解的过程,叫做解方程.一般地,要检验某个值是不是方程的解,可以用这个值代替未知数代入方程,看方程左右两边是否相等.四、练习与小结练习:教材练习第3题.小结:1.谈谈你对一元一次方程的认识.2.谈谈你对列方程的认识.3.如何进行估算?五、布置作业习题3.1第6,7,8题.学生在小学已经对方程有初步认识,但这个过程没有给“一元一次方程”这样准确的理性的概念.本节课是基于学生在小学已经学习的基础上来进行的.继续对有关方程的一些初步知识,并能通过对多个熟悉的实际问题的分析,由学生结合已有知识,得出一元一次方程,并能给出一元一次方程的简单概念及一些相关概念.3.1.2等式的性质(2课时)第1课时等式的性质1.了解等式的两条性质.2.会用等式的性质解简单的(用等式的一条性质)一元一次方程.3.培养观察、分析、概括及逻辑思维能力.重点理解和应用等式的性质.难点应用等式的性质把简单的一元一次方程化成“x=a”的形式.活动1:创设情境,导入新课师:哪位同学能谈谈上节课我们学习了哪些内容?学生思考回答.师:通过估算的方法,我们可以求得方程的解,可是我们也看到,通过估算求解,需要通过多次尝试才能得到正确的答案,有没有相对简单的方法,使我们可以获得方程的解呢?从今天开始我们就来学习解方程.活动2:探究等式的性质分组进行实验(时间约10~15分钟);每小组准备天平一架,砝码、等质量小木块等若干.教师引导学生进行以下操作.操作(1)1.先在托盘中放入一块小木块,然后在另一个托盘中加入砝码,使天平平衡.2.然后在两个托盘中放入等质量的木块各一块,观察此时天平是否平衡,可以重复此步骤.操作(2)在两个托盘中放入等质量的木块各一块,观察此时天平是否平衡. 在两个托盘中放入等质量的木块各两块,观察此时天平是否平衡. 在两个托盘中放入等质量的木块各相等数量的块数,观察此时天平是否平衡,可以重复此步骤.思考:这其中包含的数学道理是什么? 学生讨论后交流.然后师生共同归纳出等式的性质: 如果a =b ,那么a±c =b±c.等式性质1:等式两边加(或减)同一个数或同一个式子,结果仍相等.教师按类似的方法得出等式性质2: 如果a =b ,那么ac =bc ; 如果a =b ,那么a c =bc(c ≠0).等式性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.活动3:解决问题师出示教材82页例2(1)(2).师生共同分析如何运用等式的性质解决这两个问题,在分析过程中教师注意化归思想的渗透,应当告诉学生解方程就是使方程向“x =a ”的形式进行化归,沿着这个思路进行引导,使学生感受化归思想,能自觉地运用等式的性质解决问题.解:略练习:教材第83页练习(1)(2). 学生独立完成,然后同学间交流.根据时间情况和学生的掌握情况,教师可以随机再补充几个练习. 活动4:小结与作业小结:谈谈你对等式性质的认识. 作业:习题3.1第2,3题.等式的性质(关于乘除的),是在学生掌握了等式的性质(关于加减的)的基础上教学的.学生已掌握了一定的学习方法,形成了一定的推理能力.因此,本节课教学中,充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他成为知识的发现者、创造者,培养学生自我探究和实践能力.第2课时 用等式的性质解方程1.通过解一元一次方程进一步理解等式的性质;2.会用等式的性质解简单的(两次运用等式的性质)一元一次方程.重点用等式的性质解方程. 难点需要两次运用等式的性质,并且有一定的思维顺序.一、创设情境,复习引入解下列方程:(1)x +7=5;(2)2x =5. 要求学生能说出:①每一步的依据分别是什么?②求方程的解就是把方程化成什么形式?师:这节课继续学习用等式的性质解一元一次方程. 二、探究新知 对于简单的方程,我们通过观察就能选择用等式的哪一条性质来解,下列方程你也能马上做出选择吗?例1:利用等式的性质解方程:(1)0.6-x =2.4 (2)-13x -5=4先让学生对第(1)题进行尝试,然后教师进行引导:①要把方程0.6-x =2.4转化为x =a 的形式,必须去掉方程左边的0.6,怎么去? ②要把方程-x =1.8转化为x =a 的形式,必须去掉x 前面的“-”,怎么去? 然后给出解答:解:两边减0.6,得0.6-x -0.6=2.4-0.6. 化简,得 -x =1.8,两边同乘-1得 x =-1.8.小结:(1)这个方程的解答中两次运用了等式的性质;(2)解方程的目标是把方程最终化为x =a 的形式,在运用性质进行变形时,始终要朝着这个目标去转化.你能用这种方法解第(2)题吗? 在学生解答后点评.解:两边加5,得到13x -5+5=4+5,化简,得-13x =9,两边同乘-3,得x =-27.解后反思:①第(2)题能否先在方程的两边同乘“-3”?②比较这两种方法,你认为哪一种方法更好?为什么?允许学生在讨论后再回答.例2:(补充)服装厂用355米布做成人服装和儿童服装,成人服装每套平均用布3.5米,儿童服装每套平均用布1.5米.现已做了80套成人服装,用余下的布还可以做几套儿童服装?在学生弄清题意后,教师再作分析:如果设余下的布可以做x 套儿童服装,那么这x 套服装就需要布1.5x 米,根据题意,你能列出方程吗?解:设余下的布可以做x 套儿童服装,那么这x 套服装就需要布1.5x 米,根据题意,得80×3.5+1.5x =355.化简,得280+1.5x =355, 两边减280,得280+1.5x -280=355-280, 化简,得 1.5x =75,两边同除以1.5,得x =50.答:用余下的布还可以做50套儿童服装.解后反思:对于许多实际问题,我们可以通过设未知数,列方程,解方程,以求出问题的解.也就是把实际问题转化为数学问题.问题:我们如何才能判别求出的答案50是否正确?在学生代入验算后,教师引导学生归纳出方法:检验一个数值是不是某个方程的解,可以把这个数值代入方程,看方程左右两边是否相等,例如:把x =50代入方程80×3.5+1.5x =355的左边,得80×3.5+1.5×50=280+75=355.方程的左右两边相等,所以x =50是方程的解.你能检验一下x =-27是不是方程13x -5=4的解吗?三、课堂练习练习:1.课本83页练习(3),(4).2.补充练习:小刚带了18元钱到文具店买学习用品,他买了5支单价为1.2元的圆珠笔,剩下的钱刚好可以买8本笔记本,问笔记本的单价是多少?(用列方程的方法求解)解:设笔记本的单价为x 元.根据圆珠笔和笔记本的钱的总和为18元,得方程 5×1.2+8x =18. 化简,得6+8x =18.两边减6,得6+8x -6=18-6, 化简,得8x =12.两边同除以8,得x =1.5. 答:笔记本的单价是每本1.5元. 四、小结(1)这节课学习的内容. (2)我有哪些收获?(3)我应该注意什么问题? 五、作业习题3.1第4,10题.解方程是学生刚接触的新知识,学生原有的知识储备与生活经验不足,因此教学中老师要时刻关注学生的学习的情况,引导学生经历将现实生活问题加以数学化,引导学生通过操作、观察、分析和比较,由具体的知识渗透到抽象的去理解等式的性质,并应用等式的性质来解方程.3.2 解一元一次方程(一) ——合并同类项与移项(4课时)第1课时 合并同类项1.经历运用方程解决实际问题的过程,体会方程是刻画现实世界的有效数学模型. 2.学会合并(同类项),会解“ax +bx =c ”类型的一元一次方程.重点建立方程解决实际问题,会解“ax +bx =c ”类型的一元一次方程. 难点分析实际问题中的已知量和未知量,找出相等关系,列出方程.一、创设情境,导入新课师:背景资料投影展示:约公元820年,中亚细亚数学家阿尔-花拉子米写了一本代数书,重点论述怎样解方程.这本书的拉丁文译本取名为《对消与还原》.“对消”与“还原”是什么意思呢?通过下面几节课的学习讨论,相信同学们一定能回答这个问题.二、探究分析,解决问题 师:出示教材问题1.某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买的数量又是去年的2倍,前年这个学校购买了多少台计算机?分析:引导学生回忆:实际问题――→设未知数 列方程一元一次方程问题:如何列方程?分哪些步骤?师生共同讨论分析:①设未知数:前年购买计算机x 台. ②找相等关系:前年购买量+去年购买量+今年购买量=140台. 然后教师引导学生列出方程. ③x +2x +4x =140. 进一步提出问题:怎样解这个方程?如何将方程向x =a 的形式进行转化?学生观察,讨论交流,教师引导学生说出将方程左边合并同类项,向x =a 的形式转化. 教师板演过程或用教材的框图表示过程.(过程略)思考:本问题的解决过程中,合并同类项起到了什么作用? 学生讨论后回答.(让学生感受化归的思想)问题:对于本问题,你还有其他的方法解决吗? 三、尝试运用,巩固加深 教师出示教材例1. 解下列方程: (1)2x -52x =6-8;(2)7x -2.5x +3x -1.5x =-15×4-6×3. 师生共同解决,教师板书过程. 四、练习与小结练习:课本第88页练习1.小结:谈谈你对这节课的收获.五、作业习题3.2第1,4,5题.本节课研究的内容是“合并同类项”,“合并同类项”是化简解方程的重要方法.通过合并同类项可以使方程向x=a的形式转化.这节课与前面所学的知识有千丝万缕的联系.合并同类项的法则是建立在数的运算的基础上,在合并同类项的过程中,要不断运用数的运算,可以说合并同类项是有理数加减运算的延伸和拓广.第2课时合并同类项的应用学会探索数列中的规律,建立等量关系.能正确地求解一元一次方程.重点建立一元一次方程解决实际问题.难点探索并发现实际问题中的等量关系,并列出方程.活动1:创设情境,导入新课师:练习解方程:(1)-4x+0.5x=6;(2)7x-4.5x=7.5-5;(3)-12x+34x=-3.学生独立完成,然后同学交流.活动2:探究新知教师出示教材例2.有一列数,按一定规律排列成1,-3,9,-27,81,-243,…,其中某三个相邻数的和是-1701,这三个数各是多少?第一个数 1第二个数-3第三个数9第四个数-27第五个数81第六个数-243面进行观察.师生共同完成解答过程,教师注意要规范地书写过程.在这一过程中,老师要关注学生能否准确地发现规律,能否列出方程,本问题的难点在于它有多个未知数,要引导学生找到相邻的数的关系,然后设出未知数,再用含未知数的式子表示相邻的数.解:设这三个相邻数中的第1个数为x,则第2个数为-3x,第3个数为-3×(-3x)=9x.根据这三个数的和是-1701.得 x -3x -9x =-1701, 合并,得x =-243, 所以-3x =729,9x =-2187.答:这三个数是-243,729,-2187.思考:有一列数,按一定规律排列成1,-3,9,-27,81,-243,…,你能说出它的第n 个数是多少吗?(用含n 的式子表示)可作为课下思考题,本问题与本课时的关系不大,但作为对本例题的一个拓展,却有让学生重新思考的价值.活动3:综合运用教师出示例题.(或投影展示) 补例:一批商界人士在露天茶座聚会,他们先是两人一桌,服务员给每桌送上一瓶果汁,后来他们又改为三人一桌,服务员又给每桌送上一瓶葡萄酒,不久他们改坐成四人一桌,服务员再给每桌一瓶矿泉水.此外他们每人都要了一瓶可口可乐.聚会结束时服务员共收拾了50个空瓶.如果没人带走瓶子,那么聚会有几人参加?分析:要求聚会有几人参加,就要先设出未知数,再根据题意列出等量关系,设共有x 人参加,由题意得,一共要了x 2瓶果汁,x 3瓶葡萄酒,x4瓶矿泉水,x 瓶可口可乐,即:空瓶子数为各类饮料瓶子数之和,由这个等量关系,列出方程求解.解:设这次聚会共有x 人参加,由题意得:x +x 2+x 3+x4=50,解得:x =24.答:这次聚会共有24人参加. 学生讨论交流,师生共同解决. 活动4:小结小结:谈谈你这节课的收获. 活动5:作业习题3.2第5,12,13题.实施开放式教学,倡导自主探索、合作交流的学习方式.让学生从熟悉的生活实例出发,探索获得同类项概念,体验知识的形成过程,体会观察、分析、归纳等解决问题的技能与方法.教师只是整个教学活动的组织者和指导者,体现了以人为本的现代教学理念.第3课时 移项1.通过分析实际问题中的数量关系,建立方程解决问题,进一步认识方程模型的重要性.2.掌握移项方法,学会解“ax +b =cx +d ”类型的一元一次方程,理解解方程的目标,体会解法中蕴涵的化归思想.重点建立方程解决实际问题,会解“ax +b =cx +d ”类型的一元一次方程. 难点分析实际问题中的相等关系,列出方程.一、创设情境,导入新课出示教材问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?二、探究新知引导学生回顾列方程解决实际问题的基本思路. 学生讨论、分析:1.设未知数:设这个班有x 名学生. 2.找相等关系:这批书的总数是一个定值,表示它的两个等式相等. 3.列方程:3x +20=4x -25.问题1:怎样解这个方程?它与上节课遇到的方程有何不同?学生讨论后发现:方程的两边都有含x 的项(3x 与4x)和不含字母的常数项(20与-25). 问题2:怎样才能使它向x =a 的形式转化呢?学生思考、探索:为使方程的右边没有含x 的项,等号两边同减去4x ,为使方程的左边没有常数项,等号两边同减去20.3x -4x =-25-20.问题3:以上变形依据是什么? 等式的性质1.归纳:像上面那样把等式一边的某项变号后移到另一边,叫做移项. 师生共同完成解答过程,或用框图表示.问题4:以上解方程中“移项”起了什么作用? 学生讨论、回答,师生共同整理:通过移项,含未知数的项与常数项分别位于方程左右两边,使方程更接近于x =a 的形式.师:解方程时,要合并同类项和移项.前面提到的古老的代数书中的“对消”与“还原”,指的就是“合并同类项”和“移项”.三、尝试运用,加深巩固师出示教材例3.解下列方程:(1)3x +7=32-2x ;(2)x -3=32x +1.教师引导学生按照框图所展示的过程,共同完成本例. 练习:课本第90页练习1. 四、小结谈谈本节课你的收获. 五、作业习题3.2第2,3题.这节课要学习的方程类型是两边都有x 和常数项,通过移项的方法化到合并同类项的方程类型.教学重点是用移项解一元一次方程,难点是移项法则的探究.在教学过程中一定要强调学生,移项的时候要注意变号.第4课时 方程的应用1.进一步培养学生列方程解应用题的能力.2.通过探究实际问题与一元一次方程的关系,感受数学的应用价值,提高分析问题、解决问题的能力.重点建立一元一次方程解决实际问题. 难点探究实际问题与一元一次方程的关系.活动1:创设情境,引入新课 师:展示投影:练习解方程:(1)12x +4x =9 (2)-4x =-2x +6 (3)5x +4=4x -3 (4)0.6x =50+0.4x学生独立完成,然后师生交流答案,看谁做得又对又快.活动2:探究新知 教师展示教材例4.某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200 t ;如用新工艺,则废水排量比环保限制的最大量少100 t .新旧工艺的废水排量之比为2:5,两种工艺的废水排量各是多少?学生讨论交流.教师可提示学生分析:1.本题可否用小学学习的算术法来求解?2.题目中两种工艺的废水排量都是与环保最大值相关的,根据小学学过的比例式,如果设环保设计的最大量为x t ,你能否列出一个关于x 的比例式?3.根据新旧工艺的废水排量之比为2:5,如果设新、旧工艺的废水排量分别为2x t 和5x t ,你能列出方程吗?解:设新、旧工艺的废水排量分别为2x t 和5x t . 根据废水排量与环保限制最大量之间的关系,得 5x -200=2x +100. 移项,得5x -2x =100+200. 合并同类项,得 3x =300,系数化为1,得 x =100,所以2x =200, 5x =500.答:新、旧工艺产生的废水排量分别为200 t 和500 t . 师:通过解答过程,你能说一下这种设法的好处吗?活动3:综合运用 补例:一个黑白足球的表面一共有32个皮块,其中有若干块黑色五边形和白色六边形,黑、白皮块的数目之比为3:5,问黑色皮块有多少?学生思考、讨论出多种解法,师生共同讲评. 本问题是一个与上一问题相似的问题,关键是让学生认真分析出各个量之间的关系,让学生学会类比、用上一问题的方法模式去解决本问题。

《一元一次方程》单元教学设计知识结构

《一元一次方程》单元教学设计知识结构

《一元一次方程》单元教学设计知识结构一、教学内容分析(一)教科书内容本章是七年级(下)数学第6章《一元一次方程》,属于《标准》中的“数与代数”领域。

方程有悠久的历史,它随着实践需要而产生,并且具有极其广泛的应用。

从数学本身看,方程是代数学的核心内容,正是对于它的研究才推动了整个代数学的发展。

从代数中关于方程的分类看,一元一次方程是最简单的代数方程,也是所有代数方程的基础。

本章主要内容包括:一元一次方程及其相关概念,一元一次方程的解法,利用一元一次方程分析与解决实际问题。

其中,以方程为工具分析问题、解决问题,是全章的重点,同时也是难点。

分析实际问题中的数量关系并用一元一次方程表示其中的相等关系,是始终贯穿于全章的主线,而对一元一次方程的有关概念和解法的讨论,则是在建立和运用方程这种数学模型的大背景之下进行的。

列方程中蕴涵的“数学建模思想”和解方程中蕴涵的“化归思想”,是本章始终渗透的主要数学思想。

(二)本章知识结构图1. 利用一元一次方程解决问题的基本过程如下:2. 本章知识安排的前后顺序如下:二、单元整体目标分析(1)、经历“把实际问题抽象为数学方程”的过程,体会方程是刻画现实世界的一种有效的数学模型,了解一元一次方程及其相关概念,认识从算式到方程是数学的进步。

(2)、通过观察、归纳得出等式的性质,能利用它们探究一元一次方程的解法。

(3)、了解解方程的基本目标(使方程逐步转化为“x =a”的形式),熟悉解一元一次方程的一般步骤,掌握一元一次方程的解法,体会解法中蕴涵的化归思想。

(4)、能够“找出实际问题中的已知数和未知数,分析它们之间的关系,设未知数,列出方程表示问题中的等量关系”,体会建立数学模型的思想。

(5)、通过探究实际问题与一元一次方程的关系,进一步体会利用一元一次方程解决问题的基本过程(见上图),感受数学的应用价值,提高分析问题、解决问题的能力。

三、学情分析:1 、学生初学列方程解应用题时,往往弄不清解题步骤,不设未知数就直接进行列方程或在设未知数时,有单位却忘记写单位等。

第五章 一元一次方程(回顾与思考)(课件)七年级数学上册(北师大版)

第五章 一元一次方程(回顾与思考)(课件)七年级数学上册(北师大版)

A.75
B.25
C.90
D.81
【巩固提升作业】
【拓展延伸作业】
小强的爸爸平常开车从家中到小强奶奶家,匀速行驶需要6小 时,某天,他们以平常的速度行驶了3个小时的路程时遇到了 暴雨,立即将车速减少了20千米/小时,到达奶奶家时共用 了7小时 (1)小强家到他奶奶家的距离是多少千米? (2)爸爸开车的速度是多少?
【基础达标作业】
【巩固提升作业】
1、我国古代数学著作《孙子算经》中有这样一道题,原文如下:
今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城
中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完
,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?

在这个问题中,城中人家的户数为( )
新课标 北师大版 七年级上册
第五章一元一次方程 回顾与思考
1.掌握一元一次方程的概念。 2.会求解一元一次方程。 3.会进行一元一次方程的应用。(重难点)
1、方程: 含有未知数的等式叫做方程 2、一元一次方程: 只含有一个未知数,并且未知数的指数次
数都是1,等号两边都是整式。
3、方程的解: 使方程左右两边的值相等的未知数的值
追及相遇问题:根据野鸭的路程+大雁的路程=总路程即可得出答案
2、为保障蔬菜基地种植用水,需要修建灌溉水渠,计划修建灌溉 水渠600米,甲施工队施工5天后,增加施工人员,每天比原来多 修建20米,再施工2天完成任务,求甲施工队增加人员后每天修建 灌溉水渠多少米?
根据工效问题公式:工作总量=工作时间×工作效率
3、某商品的进价为每件25元,若按标价打九折售出后,每件可 获利2元,则该商品的标价为每件多少元?
标价×折扣—进价=利润

专题10 一元一次方程(知识点串讲)(解析版)

专题10 一元一次方程(知识点串讲)(解析版)

专题10 一元一次方程知识网络重难突破知识点一一元一次方程的基础等式的概念:用等号表示相等关系的式子。

方程的概念:含有未知数的等式叫做方程。

特征:它含有未知数,同时又是—个等式。

一元一次方程的概念:只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程。

【特征】1. 只含有一个未知数x2. 未知数x的次数都是13. 等式两边都是整式。

方程的解的概念:能使方程中等号左右两边相等的未知数的值叫方程的解。

一元方程的解又叫根。

典例1(2018·江苏南通一中初一期末)已知下列方程,属于一元一次方程的有()①x﹣2=2x;②0.5x=1;③x3=8x﹣1;④x2﹣4x=8;⑤x=0;⑥x+2y=0.A.5个B.4个C.3个D.2个【答案】C【详解】①是分式方程;②符合一元一次方程的定义;③经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程;④未知项的最高次数为2,故不是一元一次方程;⑤符合一元一次方程的定义;⑥含有两个未知数,故不是一元一次方程;因此②、③、⑤是一元一次方程,所以一共有三个一元一次方程.故答案选C.【点睛】本题考查了一元一次方程的定义,解题的关键是熟练的掌握一元一次方程的定义.典例2 (2018·南昌市期中)已知x=1是方程a(x﹣2)=a+3x的解,则a的值等于()A.32B.−32C.34D.−34【答案】B【详解】把x=1代入方程a(x-2)=a+3x得a(1-2)=a+3,解得a=−32.故选B.【点睛】本题考查方程的解和解方程,解题的关键是熟练代入.典例3 (2017·江苏初一期末)若方程ax=2x+b有无数多个解,则( )A.a≠0,b≠0B.a≠2,b=0C.a=2,b=0D.a=0,b=0【答案】C【解析】根据方程ax=2x+b可得(a-2)x=b,①当a≠0,b≠0时,x=−b2,故A不正确;②当a≠2,b=0时,x=0,故B 不正确;③当a=2,b=0时,方程有无数个解;④当a=0,b=0时,x=0.故选:C典例4(2019·昌平区期中)下列方程中,解为x=4的方程是()A.x﹣1=4B.4x=1C.4x﹣1=3x+3D.15(x−1)=1【答案】C 【详解】解:A 、当x=4时,左边=4-1=3≠右边,故选项不符合题意; B 、当x=4时,左边=16≠右边,故选项不符合题意;C 、当x=4时,左边=16-1=15,右边=13+3=15,则左边=右边,则x=4是方程的解,选项符合题意;D 、当x=4时,左边=2(4-1)=6≠右边,故选项不符合题意. 故选:C . 【点睛】本题考查了方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值,理解定义是关键. 典例5(2017·重庆市江津第四中学校初一期末)若关于x 的方程mx m−2−m +3=0是一元一次方程,则这个方程的解是( ) A.x =0 B.x =3C.x =−3D.x =2【答案】D 【解析】解:由一元一次方程的特点得m ﹣2=1,即m=3, 则这个方程是3x=0, 解得:x=0. 故选:A .知识点二 等式的性质(解一元一次方程的基础)等式的性质1:等式两边(或减)同一个数(或式子),结果仍相等。

一元一次方程(1到5课时)

一元一次方程(1到5课时)

第三章一元一次方程总体设计一、课程学习目标1. 经历“把实际问题抽象为数学方程”的过程,体会方程是刻画现实世界的一种有效的数学模型,了解一元一次方程及其相关概念,认识从2到方程的进步。

2. 通过观察、归纳、得出等式的性质,能利用他们探究一元一次方程的解法。

3. 了解方程的基本目标,熟悉解一元一次方程的一般步骤,掌握一元一次方程的解法体会解法中蕴涵的化归思想。

5. 通过探究实际问题与一元一次方程的关系,进一步体会利用一元一次方程解决问题的基本过程。

二、本章知识结构图1. 利用一元一次方程解决问题的基本过程2. 本章知识安排的前后顺序三、内容安排本章主要内容包括:一元一次方程及其相关概念,一元一次方程的解法利用一元一次方程分析与解决实际问题。

其中,以方程为工具分析问题、解决问题。

分析实际问题中的数量关系并用一元一次方程表示其中的相等关系,是始终贯穿全章的主线,而对一元一次方程的有关概念和解法的讨论,是在建立和运用方程这种数学模型的大背景之下进行的。

列方程中蕴涵的“化归思想”是本章始终渗透的主要数学思想。

教学重点以方程为工具分析问题、解决问题。

教学难点以方程为工具分析问题、解决问题。

四、课时安排本章教学时间约需18课时,具体安排如下:3.1 从算式到方程4课时3.2解一元一次方程(一)———合并同类项与移项4课时3.3解一元一次方程(二)———去括号与去分母4课时3.4实际问题和一元一次方程4课时小结2课时3.1.1 一元一次方程(1课时)教学目标:1.通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;2.初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;3.理解一元一次方程、方程的解等概念;能力目标:1.掌握检验某个值是不是方程的解的方法;2.培养学生获取信息,分析问题,处理问题的能力.教学重点:寻找相等关系、列出方程.教学难点:从实际问题中寻找相等关系;对于复杂一点的方程,用估算的方法寻求方程的解,需要多次的尝试,也需要一定的估计能力.教学过程:[活动1]展示问题:1.世界上最大的动物是蓝鲸,一只大象重5吨。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

哈27中学学生导学案
课题:一元一次方程 (1)班级:学生姓名:时间:
学习目标学习要求::(1)理解一元一次方程的概念;会识别一元一次方程;
(2)了解方程的解,会验证方程的解;
(3)知道怎样列方程解决实际问题;
感受方程作为刻画现实世界有效模型的意义
课前预习阅读教材1—5页感受体会(1)方程的概念;(2)怎样列方程;(3)一元一次方程的概念;(4)什么叫方程的解
课堂学习(一) 基础知识:
(1)方程的概念
请同学们举出一些你接触过的方程:
方程的概念:
判断下列式子是否是方程:
(1)5x+3y-6x=7 (2)4x-7 (3) 5x >3
(4)6x2+x-2=0 (5)1+2=3 (6) -
x
5
+7=11
(2)列方程
根据下列问题,设未知数并列出方程:
(1)用一根长24㎝的铁丝围成一个正方形,正方形的边长是多少?
(2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?
(3)一元一次方程的概念
观察上面所列方程,它们有什么共同的特点?
一元一次方程的概念:
①下列式子哪些是一元一次方程?不是一元一次方程的,要说明理由.
(1)9x=2 (2) x+2y=0 (3) x2-1=0
(4) x=0 (5)
x
3
-7=2 (6) 4y-7
②若2x m2
3 +2m=0是关于x的一元一次方程,则m=
(4)方程的解
方程的解:
① 下列各数是方程4x —3=2x+3的解的是( )
(A) x =3 (B) x =8 (C) x =5 (D) x =7
② 已知关于x 的方程3a —x=2
x +3的解是4,则a 2—2a= (二)能力提升:
1根据下列条件列出方程:
(1)某数的5倍加上3,等于该数的7倍减去5;求某数?
(2)王涛买了6kg 香蕉和3kg 苹果,共花了19元,已知苹果1.8元/kg ,
则香蕉每千克多少元?
(3)某校女生占全体学生数的52% ,比男生多80人,这个学校有多少学生?
2 关于x 的方程(k 2-1)x 2
+(k-1)x+2k=0是一元一次方程,
(1)求k 的值,并写出这个一元一次方程;
(2)判断x= -1是否是该方程的解,请说明理由。

27中学七年数学作业9月3日班级:姓名:
1.方程的定义:含有的叫做方程.
2.一元一次方程的定义:只含有,未知数的,这样的方程叫做一元一次方程.
3方程的解的定义:使方程中的值叫做方程的解.
4.列式表示:
(1)比x大5的数;(2)b的三分之一;(3)比x的3倍大5的数;
(4)比b的一半小7的数;
5.某班有男生25人,比女生人数的2倍少15人,这个班有女生多少人?如果设这个班女生有x人,可列方程为.
6.在①2x+3y-1;②1+7=15-8+1;③1-1
2
x=x+1④x+2y=3中方程有( )个.
A.1
B.2
C.3
D.4
7.x、y是两个有理数,“x与y的和的1
3
等于4”用式子表示为( ) .
A.
1
4
3
x y
++= B.
1
4
3
x y
+= C.
1
()4
3
x y
+= D.以上都不对
8.若方程3a x-4=5(a已知,x未知)是一元一次方程,则a等于( ) .
A.任意有理数
B.0
C.1
D.0或1
9.x=2是下列方程( )的解.
A.2x=6
B.(x-3)(x+2)=0
C.x2=3
D.3x-6=0
10..根据下列问题,设未知数并列出方程:
(1)环形跑道一周长400米,沿跑道跑多少周,可以跑3000米?
(2)甲种铅笔每枝0.3元,乙种铅笔每枝0.6元,用9元钱买了两种铅笔共20枝,两种铅笔各买了多少枝?
(3)一个梯形的下底比上底多2cm,高是5cm,面积是40cm2,求上底.。

相关文档
最新文档