脂蛋白受体简述

脂蛋白受体简述

脂蛋白受体脂蛋白受体是位于细胞膜上能与脂蛋白结合的蛋白质。脂蛋白能在血液中运转并进行代谢,很重要的一点就是可以被细胞上的受体识别并与之结合,再被摄取进入细胞内进行代谢。到目前已报道的受体有很多种,但了解最多的是LDL受体,其次是VLDL受体。这两种受体的氨基酸序列、构象及和配体的结合部位都已阐明。脂蛋白受体在决定脂类代谢途径,调节血浆脂蛋白水平等方面有极其重要的作用。 1.低密度脂蛋白受体LDL受体广泛分布于肝、动脉壁平滑肌细胞、血管内皮细胞、淋巴细胞、单核细胞、巨噬细胞等处,但各组织或细胞的LDL受体活性差别很大。它不仅能识别APOB100还能识别APOE,所以除能和LDL结合之外,还能和含有APOE的VLDL、O-VLDL、LDL残基等结合,将它们吞入细胞内,使细胞从所摄取的脂蛋白中获得脂质(主要为胆固醇),此代谢过程称为LDL受体途径。由于LDL受体能和APOB以及和APOE结合,所以又称APOB/APOE受体。LDL受体主要参与VLDL、IDL和LDL的分解代谢。 2.极低密度脂蛋白受体和LDL受体不同,它仅对含APOE的脂蛋白如VLDL、B-VLDL、VLDL残基有高度的亲和力,并和这些脂蛋白结合。VLDL受体广泛分布于心肌、骨骼肌、脂肪等组织细胞内,在肝内基本未发现VLDL受体。许多实验表明人体内除了LDL受体和VLDL受体外,还有其他脂蛋白受体。其中较为确切的是近年发现仅存在于肝细胞表面膜上的一种特异性受体:APOE受体。这种受体主要识别含APOE丰富的脂蛋白,包括CM残粒和VLDL残粒(β-VLDL),所以又称之残粒受体,也称之为LDL受体相关蛋白(LRP)。APOE受体数量比较恒定,不像LDL受体那样受细胞内游离胆固醇的含量的调节。此外还有清道夫受体和其他一些受体参加脂蛋白的代谢。

脂蛋白受体简述

脂蛋白受体脂蛋白受体是位于细胞膜上能与脂蛋白结合的蛋白质。脂蛋白能在血液中运转并进行代谢,很重要的一点就是可以被细胞上的受体识别并与之结合,再被摄取进入细胞内进行代谢。到目前已报道的受体有很多种,但了解最多的是LDL受体,其次是VLDL受体。这两种受体的氨基酸序列、构象及和配体的结合部位都已阐明。脂蛋白受体在决定脂类代谢途径,调节血浆脂蛋白水平等方面有极其重要的作用。 1.低密度脂蛋白受体LDL受体广泛分布于肝、动脉壁平滑肌细胞、血管内皮细胞、淋巴细胞、单核细胞、巨噬细胞等处,但各组织或细胞的LDL受体活性差别很大。它不仅能识别APOB100还能识别APOE,所以除能和LDL结合之外,还能和含有APOE的VLDL、O-VLDL、LDL残基等结合,将它们吞入细胞内,使细胞从所摄取的脂蛋白中获得脂质(主要为胆固醇),此代谢过程称为LDL受体途径。由于LDL受体能和APOB以及和APOE结合,所以又称APOB/APOE受体。LDL受体主要参与VLDL、IDL和LDL的分解代谢。 2.极低密度脂蛋白受体和LDL受体不同,它仅对含APOE的脂蛋白如VLDL、B-VLDL、VLDL残基有高度的亲和力,并和这些脂蛋白结合。VLDL受体广泛分布于心肌、骨骼肌、脂肪等组织细胞内,在肝内基本未发现VLDL受体。许多实验表明人体内除了LDL受体和VLDL受体外,还有其他脂蛋白受体。其中较为确切的是近年发现仅存在于肝细胞表面膜上的一种特异性受体:APOE受体。这种受体主要识别含APOE丰富的脂蛋白,包括CM残粒和VLDL残粒(β-VLDL),所以又称之残粒受体,也称之为LDL受体相关蛋白(LRP)。APOE受体数量比较恒定,不像LDL受体那样受细胞内游离胆固醇的含量的调节。此外还有清道夫受体和其他一些受体参加脂蛋白的代谢。

高密度脂蛋白受体及结合蛋白

高密度脂蛋白受体及结合蛋白 主题词]脂蛋白,高密度;受体;动脉粥样硬化;胆固醇;逆向转运 [摘要] 高密度脂蛋白受体在脂质代谢中发挥着重要的作用。最近十年,有关高密度脂蛋白受体及结合蛋白的研究受到了广泛的重视,其中被公认为高密度脂蛋白受体的清道夫受体B?及很有可能被确定为受体的高密度脂蛋白结合蛋白2最引人注目。两者的分子结构、特异性配体及在胆固醇逆向转运中的作用具有较大的差异,进一步探明两者之间的关联可为研究动脉粥样硬化的发病机理及其新的治疗途径提供有力的理论基础。 迄今为止,在不同细胞的表面及细胞内已分离出了多种可与高密度脂蛋白(h i g h density lipo p r o t e i n,HDL)结合的蛋白质,它们具有截然不同的分子结构,分别参与多种生物化学 过程的调控。其中某些蛋白质可特异性识别并以高亲和力与HDL结合,引发下游的生物学, 称之为HDL的特异性受体。有些蛋白质也可与HDL结合,但不产生或 只产生较弱的效应,则称之为HDL的结合蛋白。至今,研究比较深入的HDL受体及结合蛋白包括清道夫受体B?(s c a v e n g e r re-c e p t o r c l a s s Bt y p e?,SRB?)、高密度脂蛋白结合蛋白(HDLb i n d i n g p r o t e i n, H B)、CD36、v i g i l i n及cubili等,其中只有SRB?被公认为HDL受体[1],并对其它几种的结构功能进行深入的研究,以探明其与HDL及相关效应的关系。1清道夫受体B?1.1结构SRB?在结构上的同源性隶属于CD36膜蛋白家族成员,在功能上与CD36、SRBò同属于B类清道夫受体家族,此类受体存在一免疫优势区域(i m m u n o d o m i n a n t d o m a i n),类似于A类清道夫受体带正电荷的胶原样结构,具有广泛的配体结合特性,可与低密度脂蛋白(l o w d ensityl i p o p r o t e i n,LDL)、修饰的L D L、HDL等结合,却不能与A类受体某些其它的配体如岩藻多糖、多聚鸟苷酸、角叉聚糖等结合。J o h n s o n 等

受体酪氨酸蛋白激酶的研究

受体酪氨酸蛋白激酶的研究 曹 川,戴 霞(综述),李世荣(审校) (中国人民解放军第三军医大学附属西南医院整形外科,重庆400038) 中图分类号:Q78 文献标识码:A 文章编号:100622084(2008)1221780202 摘要:酪氨酸蛋白激酶是细胞信号转导的主要信号酶之一,对细胞的生长、发育与功能调控起着重要的作用。受体型酪氨酸蛋白激酶是细胞内段具有酪氨酸激酶活性跨膜结构的酶蛋白受体,其胞外区与生长因子配体结合,然后激活胞内段的酶活性区启动信号转导,参与细胞的生长、增殖、转化及胚胎发育和肿瘤形成。主要介绍受体型酪氨酸蛋白激酶的结构、分类及其信号转导途径。 关键词:受体酪氨酸蛋白激酶;信号转导;丝裂原活化蛋白激酶 Research Progress of Receptor Tyrosi n e Prote i n K i n a se CAO Chuan,DA I X ia,L I Shi2rong.(D epart2 m ent of P lastic Surgery,Southw estern Hospital,Third M ilitary M edical U niversity of PLA,Chongqing400038, China) Abstract:Tyr osine p r otein kinase is one of the key kinases in cell signal transducti on,which p lays an i m portant r ole in cell gr owth,devel opment and functi onal regulati on.Recep t or tyr osine p r otein kinase is a trans me mbrane kinase p r otein recep t orwith tyr osine p r otein kinase activity on intracellular part,it can actuate the signal transducti on by activating the active z one of its intracellular part resulting fr om the combinati on of its extr ocellular part with its gr owth fact or ligand and then takes part in the cell gr owth,cell p r oliferati on,cell transdifferentiati on,e mbryonic devel opment and tumor genesis.This article mainly revie ws recep t or tyr osine p r otein kinase about its structure,classificati on and its signal transducti on pathway. Key words:Recep t or tyr osine p r otein kinase;Signal transducti on;M it ogen activited p r otein kinase 细胞信号转导的基本方式是蛋白磷酸化,磷酸化过程在 胞内多种蛋白激酶的催化作用下进行,细胞内一类主要的蛋 白激酶是酪氨酸蛋白激酶(tyr osine p r otein kinases,TPK),其 磷酸化作用位点为蛋白质的酪氨酸残基。TPK是信号转导中 一类与受体及多种信号蛋白活化有关的信号酶,对细胞的增 殖、分化及功能具有重要的调节作用,为一个大的结构多样的 酶家族,分为受体依赖型TPK(recep t or tyr osine kinases,RTK) 和非受体依赖型TPK。RTK即具有酶活性的细胞膜受体(又 称催化性受体),是细胞内段具有酪氨酸激酶活性的跨膜结 构的酶蛋白受体,其胞外区与生长因子配体结合,然后激活胞 内段的酶活性区启动信号转导,大多数生长因子如表皮生长 因子(ep ider mal gr owth fact or,EGF)、血小板衍生生长因子 (p latelet2derived gr owth fact or,P DGF)、成纤维细胞生长因子 (fibr oblast gr owth fact or,FGF)、胰岛素样生长因子(insulin2like gr owth fact or,I GF)等的受体均有RTK活性。有一些受体本身 不具有酶活性,但在其胞内段有TPK特异结合的位点,配体 与受体结合后,须通过该位点结合胞内TPK再磷酸化胞内靶 蛋白的酪氨酸残基,启动信号转导过程,这类受体也称为细胞 因子受体超家族,包括干扰素、白细胞介素、集落刺激因子等。 具有TPK活性的受体是外界刺激信息传递至细胞核,转化成 细胞效应的信号通路的关键组成部分,参与细胞的生长、增 殖、转化及胚胎发育和肿瘤形成,具有重要的生理功能[1]。 1 RTK的共同结构 所有RTK都是膜结合的Ⅰ型糖蛋白,基本结构模式可分 成3个部分:细胞外结构区、跨膜区以及细胞内激酶区。其结 构的共同特点是胞内段均具有TPK活性区,再根据胞外区结 构的不同将其聚类[1,2]。 1.1 胞外区 胞外区为500~850个氨基酸组成的亲水性配 体结合区,糖基化位点大都在此区。每一种RTK的胞外区都 含有一个以上的可识别结构域,包括半胱氨酸富含区、甘氨酸富含区、亮氨酸富含区、纤维粘连蛋白Ⅲ样重复区、类I g区、类Ⅷ因子区、EGF样结构域、cadherin 样结构域、kringle样结构域、dis2 coidin样结构域等。 根据RTK胞外区的结构特点,可将其分为4个类型:Ⅰ型为胞外区具有富含半胱氨酸的2个重复序列,包括EGFR、HER2/ neu、HER3/c2erb23和Xm rk。Ⅱ型为异四聚体结构,由2个α及β亚单位以二硫键相连。α亚单位含一富含半胱氨酸的重复序 列,构成配体结合区,β亚单位穿膜后与酪氨酸激酶区相连,包括胰岛素受体、I GFR。Ⅰ、Ⅱ型RTK富含半胱氨酸的重复序列构成坚固的能抵抗蛋白酶消化的构型。Ⅲ型没有胞外区富含半胱氨酸的重复序列,由5个I g样结构组成,RTK激酶区有一77~107个亲水性氨基酸构成的插入序列将ATP结合位点与底物磷酸化位点分开,包括P DGFR和v2f m s/c2kit。Ⅳ型结构同Ⅲ型类似,胞外区仅由3个I g样结构组成,包括FGFR、flg和bek。4种RTK引起的最终细胞生物效应并不相同,但结构上的相似性说明它们可能源于同一受体结构不断进化的结果,从而提示它们在信号转导途径及调节机制方面有共同之处。 1.2 跨膜区 跨膜区由高度疏水、缺乏带电荷的氨基酸残基构成,长度保守(22~26个氨基酸),但氨基酸序列并不保守。RTK的单跨膜区域明显不同于其他跨膜受体(如β2肾上腺素能受体等),且在信号转导中没有直接的作用。 1.3 胞内区 胞内区由500~600个氨基酸组成,负责产生转导信号,其启动信号的分子机制包括胞内分子的一系列变构激活和与蛋白底物及调节因子(如蛋白激酶C)的相互作用。胞内区分为以下几个亚结构:①近膜区:由41~50个氨基酸组成,将酪氨酸激酶区与胞膜分开,4种RTK的近膜区氨基酸序列各不相同,但每一类型RTK近膜区的氨基酸序列高度保守,对信号转导有调节作用。②激酶区:氨基酸序列高度保守,包括ATP结合位点、底物结合区、自身磷酸化位点和调节位点;③羧基末端:由70~200个氨基酸组成,一级结构在不同种属间不同,甚至在同一类型的RTK中亦不相同。该区富含分子质量小的氨基酸,构成亲水性强的多肽链,赋予羧基末端极大的柔韧性。 2 RTK的分类 到目前为止,已发现50多种不同的RTK,根据它们胞外区的结构特点与功能,主要分为9个亚族,其中大部分为细胞

生理综述--高密度脂蛋白在胆固醇逆转运过程中的作用

高密度脂蛋白在胆固醇逆转运过程中的作用 摘要: 高密度脂蛋白(HDL)是血清蛋白之一,近年来因其作为动脉粥样硬化和冠心病的保护因子受到重视。本文旨在对HDL在机体血浆胆固醇逆转运(RCT) 中的作用过程作一简单综述,介绍了HDL的分子结构、代谢过程以及其在胆固醇逆转运的具体作用机制。 关键词:高密度脂蛋白结构代谢胆固醇逆转运 Abstract:High density lipoprotein(HDL)is a kind of serum albumin. And it has been paid much attention tobecause of its importance on preventing atherosclerosis (AS) and coronary heart disease (CHD).This review mainly introduces the process of RCT and the effect of HDL during RCT, and alsomentions the molecular structure and the metabolism of HDL. Keywords: HDL, molecular structure, metabolism, RCT 正文: 高密度脂蛋白(HDL)是血液中密度最高、颗粒最小的一种脂蛋白,是机体血脂代谢的重要物质。目前研究最多的就是其参与体内胆固醇的逆转运过程。它可作为胆固醇的接受体,通过与受体相互作用介导胆固醇从动脉壁内膜流出并转运之到肝脏进行代谢,从而降低血浆中的胆固醇水平,预防AS的发生。另外HDL还可以抑制低密度脂蛋白(LDL)的氧化、参与氧化性LDL 的转运、抑制血管平滑肌细胞增生、抑制单核细胞的迁移和黏附等作用。限于篇幅,本文简单介绍一下HDL,只讨论其在胆固醇逆转运方面的作用机制。 1 HDL的结构和分类[1] HDL是血浆中的一种高度异质性的大分子复合物,密度为1.063~1.210,主要由磷脂(PL)、游离胆固醇(FC)、胆固醇酯(CE) 和载脂蛋白A-I (apoA-I) 组成。磷脂和胆固醇的极性基团暴露在HDL颗粒表面,其非极性碳链则朝向核心,有助于HDL颗粒在血浆中的顺利运输。载脂蛋白A带电的亲水性氨基酸残基组成的螺旋极性面暴露在颗粒外,而不带电的疏水氨基酸残基组成非极性面在颗粒内部与脂质相互作用,形成HDL特有的两性α螺旋结构与脂质相互作用,是其稳定存在的结构基础[2]。 HDL的蛋白成分很复杂,上文提到的apoA-I含量最为丰富,占HDL结构蛋白的70%,在其结构和代谢方面有着重要作用[3]。 根据体积和密度的不同,HDL可依密度增大依次分为HDL1、HDL2、HDL3 ,三者不仅表现为颗粒结构和成分上的区别,同时存在生物学功能方面的差异——小而密的HDL3 更倾向于被认为是冠心病的保护因子。 2 HDL的代谢过程[4-5] 2.1 HDL的成熟 HDL主要由肝脏和小肠合成分泌。血浆的乳糜微粒(CM) 和极低密度脂蛋白(VLDL) 在三酰甘油(TG) 水解的过程中,表面组分(apo-A、apo-C、磷脂和胆固醇) 解离也可形成新生的HDL。 新生的HDL 呈圆盘状,主要成分为磷脂和apoA-I,其进入血液后在apo-A 的激活下,卵磷脂胆固醇脂酰转移酶(LCAT)作用于其表面胆固醇和磷脂生成胆固醇酯,后者转向其核心部位。HDL 作为胆固醇接受体不断地移走细胞膜上的胆固醇,导致细胞内多余胆固醇的外流,这一过程是由识别apoA-I 的清道夫受体SR-BI介导的。由于卵磷脂胆固醇酰基转移反应使HDL 核心胆固醇酯的- 1 -含量逐步增加,使新生圆盘状的HDL 向球型HDL3转变。 HDL3进一步在LCAT 的作用下,更多的吸收细胞中流出的胆固醇生成胆固醇酯使HDL核心胆固醇酯含量逐步增加,颗粒增大,最后生成HDL2,这一过程称为HDL的成熟[6]。

低密度脂蛋白

LDL受体介导的血浆低密度脂蛋白胆固醇的内吞 范丽娟,李仲* 细胞通过细胞表面的低密度脂 蛋白受体(LDL receptor, LDLR)介导的内吞从血液 中摄取富含胆固醇的低密度脂蛋白,这是体内清 除血浆中胆固醇的最主要方式。当细胞表面的 LDLR出现功能缺陷时,可以导致高胆固醇血症, 继而引起动脉粥样硬化、冠心病和中风等严重疾 1 血浆中的脂蛋白 在人类和其他脊椎动物的血液中,由于脂肪 包括甘油三酯、胆固醇等都不溶或微溶于水,故 其在血液中是以脂蛋白的形式运输的。脂蛋白, 顾名思义,是由脂质与蛋白质组成,它们之间是 通过疏水性相互作用而结合在一起。脂蛋白一般 都是以不溶于水的甘油三酯(TG)和胆固醇酯(CE) 为核心,表面覆盖有极性的磷脂、胆固醇和少量 蛋白质,它们的亲水基团暴露在表面,故具有亲 水性[1] 。应用超速离心法可将血浆脂蛋白分为四 类:乳糜微粒(CM)、极低密度脂蛋白(VLDL)、低病。密度脂蛋白(LDL)和高密度脂蛋白(HDL),其中 LDL是富含胆固醇水平最高的脂蛋白[2] 。脂蛋白中 的蛋白质被称为载脂蛋白(Apo),不同脂蛋白含不 同的载脂蛋白,如表1所示。

图1LDLR介导的血浆中LDL脂蛋白内吞的模型 LDL是一种球形颗粒的脂蛋白,其直径为 19~25 nm,核心是1 500个胆固醇酯,外面由800个 磷脂和500个未酯化的胆固醇分子包裹,最外层有 一个相对分子质量为514 000的载脂蛋白B-100 (Apo B-100) [3-5] ,LDL是血浆中主要的胆固醇转运 脂蛋白。 在血浆中大约70%的LDL是通过低密度脂蛋 白受体(LDLR)介导的内吞作用进入各组织细胞所 清除,其余由清道夫受体摄取、氧化,以及由周 围组织进行非受体介导途径所摄取[9] 。由此可见,LDLR介导的LDL内吞途径对于调节血浆总胆固醇浓度及胆固醇的体内平衡起关键性作用[10] 。 在血浆中LDL水平的升高已经被证明是冠状 动脉疾病和其他动脉粥样硬化疾病的一个普遍的危 险因素[11-13] 。清除LDL主要通过肝脏的LDLR介导 的内吞过程,LDL受体的功能缺陷是引起家族性高 胆固醇血症和冠状动脉疾病最主要的原因之一。 3 低密度脂蛋白受体介导的血浆中低密度脂蛋白胆固醇的内吞在发现 LDLR后,Brown和Goldstein进一步提出了由LDLR介导的LDL细胞内吞的过程以及相关的机制[10,33],这种由LDLR介导LDL内吞的代谢过 程称为LDL受体途径(LDL receptor pathway), 该途

低密度脂蛋白胆固醇(LDL)的检测

低密度脂蛋白胆固醇(LDL)的检测 发表时间:2011-06-10T11:12:15.357Z 来源:《中外健康文摘》2011年第11期供稿作者:张艳华[导读] 临床意义 LDL增高是动脉粥样硬化发生发展的主要脂类危险因素。 张艳华(黑龙江省七台河市七煤医疗中心朝阳医院 154600) 【中图分类号】R446.1【文献标识码】A【文章编号】1672-5085 (2011)11-0189-02 【摘要】低密度脂蛋白胆固醇是血清中携带胆固醇的主要颗粒,主要由极低密度脂蛋白胆固醇分解而来,低密度脂蛋白直接向组织和细胞内运输胆固醇,因此LDL增高是动脉粥样硬化发生发展的主要脂类危险因素,其血清水平越高,发生动脉粥样硬化的危险性越大。【关键词】低密度脂蛋白胆固醇血清检测 直接测定血清(或血浆)LDL-C的经典方法是超速离心分离 LDL,或超速离心(去除VLDL)结合沉淀法,均非一般实验室所能采用。电泳分离LDL的方法也不够简单。十多年来发展起来的简单方法有两类:一类是用化学法分离VLDL,然后测定HDL与 LDL部分的胆固醇,减去HDL-C得LDL-C;另一类是选择沉淀 LDL法。该法在LDL沉淀后,可测出上清液的HDL+VLDL部分的胆固醇,然后计算出LDL-C,或直接取沉淀物测定LDL-C,这类方法有3种沉淀剂:①肝素-枸橼酸;②聚乙烯硫酸;③多环表面活化阴离子(法国试剂盒,未具体指名化学名称)。目前多用PVS沉淀法,美国LRC各实验室也统一采用此法(Boehringer试剂盒)。但国内还很少用LDL-C直接测定,而是用Friedewald公式用TC、 TG、HDL-C 3项测定计算LDL-C,不如直接测定法可靠。新近,中华医学会检验学会已推荐匀相法作为临床实验室测定LDL-C的常规方法。 1 临床资料 一般资料 48份血脂测定标本为本院的血脂门诊病人标本,早晨空腹采血,室温自行凝固后经离心分离血清,当天完成总胆固醇(TC)、HDL-C和甘油三酯(TG)测定,48份标本的TC平均浓度为5.93±1.37(3.40~9.03)mmol/L,TG的平均浓度为2.04±1.04(0.45~5.88)mmol/L,HDL-C的平均浓度为1.56±0.46(0.68~2.52)mmol/L。 2 聚乙烯硫酸沉淀法 2.1 原理用聚乙烯硫酸(PVS)选择沉淀血清中LDL,测出上清液中的胆固醇代表HDL-C与VLDL-C之和,所以TC减去上清液胆固醇即得LDL-C值。试剂中含EDTA用以除去两价阳离子,避免VLDL共同沉淀。适量的中性多聚物(聚乙二醇独甲醚PEG-ME)用以加速沉淀。胆固醇测定同TC测定。 2.2 试剂 (1)沉淀剂:每100 ml中含PVS钾盐70 mg,EDTA-Na2·2H2O 186 mg及PEGME 16 ml,可在4℃冰箱存放,至少稳定3个月(DEGME 为黏稠液体,要确保加量准确)。 (2)酶试剂:同TC测定。 (3)参考标准:同TC用定值血清。 2.3 操作用早晨空腹血清,如在4℃存放不得超过4天,深低温保存只能冻1次,化冻后即须测定。在小离心管中加入血清200μl,沉淀剂100μl,混合,室温放置15分钟,离心(3 000转/分钟,15分钟)。 2.4 计算 TC(mmol/L)= ×校准管浓度(mmol/L) LDL-C(mmol/L) = ×校准管浓度(mmol/L) LDL-C(mmol/L)=T-C(mmol/L)-非LDL-C(mmol/L) 2.5 临床意义 LDL增高是动脉粥样硬化发生发展的主要脂类危险因素。过去只测TC估计LDL-C水平,但TC水平也受HDL-C水平的影响。故最好采用LDL-C代替TC作为动脉粥样硬化性疾病的危险因素指标。美国国家胆固醇教育计划成人治疗专业组规定以LDL-C水平作高脂蛋白血症的治疗决策及其需要达到的治疗目标。 3 匀相测定法 3.1 原理基本原理有如下几类。 (1)增溶法(SOL法) ①VLDL、CM和HDL由表面活性剂和糖化合物封闭。 ②LDL-C+表面活性剂+CEH和COD→胆甾烯酮+ H2O2。 ③H2O2+4-AAP+POD+HSDA→苯醌胺色素。 (2)表面活性剂法(SUR法) ①VLDL、CM和HDL+表面活性剂I+CEH和COD→胆甾烯酮+ H2O2。 H2O2+POD→清除H2O2,无色。 ②LDL-C+表面活性剂Ⅱ+CEH和COD→胆甾烯酮+ H2O2。 ③H2O2+4-AAP+POD+HSDA→苯醌亚胺色素。 (3)保护法(PRO) ①LDL+保护剂,保护LDL不被酶反应。非LDL-C+CEH和COD→H2O2+过氧化氢酶→H2O。 ②LDL-C+去保护剂+CEH和COD→胆甾烯酮+ H2O2。 ③H2O2+4-AAP+POD+HDAOS→显色。 (4)过氧化氢酶法(CAT法) ①非LDL-C+非离子表面活性剂+CEH和COD→胆甾烯酮+ H2O2。 H2O2+过氧化物酶→H2O2。 ②LDL-C+离子型表面活性剂+CEH和COD→胆甾烯酮+ H2O2。过氧化氢酶+NaN3→抑制。

高密度脂蛋白胆固醇

高密度脂蛋白与低密度脂蛋白谁好 2013-09-27 14:30来源:医学教育网 【提问】高密度脂蛋白与低密度脂蛋白谁好 【医学教育网回答】学员1505121168,您好!您的问题答复如下:高密度脂蛋白为血清蛋白之一。缩写为HDL。富含磷脂质,可输出胆固醇促进胆固醇的代谢,它运载周围组织中的胆固醇,再转化为胆汁酸或直接通过胆汁从肠道排出,动脉造影证明高密度脂蛋白胆固醇含量与动脉管腔狭窄程度呈显著的负相关。所以高密度脂蛋白是一种抗动脉粥样硬化的血浆脂蛋白,是冠心病的保护因子。 低密度脂蛋白是富含胆固醇的脂蛋白,其胆固醇主要来自从CE 转运的高密度脂蛋白中的胆固醇。 高密度脂蛋白胆固醇和低密度脂蛋白胆固醇是人体中常见的两种胆固醇。前者能将血管中的血脂运到肝脏中处理掉,有效防止心脏病和其他心血管疾病,因而被称为“好胆固醇”;而低密度脂蛋白胆固醇会把肝脏中的血脂运到血管里,诱发疾病,被称“坏胆固醇”。

高密度脂蛋白胆固醇 高密度脂蛋白胆固醇(HDL-C),可通俗地理解为“好”胆固醇,是抗动脉粥样硬化的胆固醇,因为HDL-C可减少患冠状动脉心脏病的危险。 中文名高密度脂蛋白胆固醇又称HDL 密度 1.21到1.063克/毫 升外文名High-density lipoprotein 直径8至13纳米 形状圆盘状 1介绍 高密度脂蛋白胆固醇(HDL-C):高密度脂蛋白胆固醇可通俗地理解为“好“胆固醇,抗动脉粥样硬化的胆固醇,因为HDL-C可减少患冠状动脉心脏病的危险。 2组成 高密度脂蛋白主要是由肝脏合成。它是由载脂蛋白、磷脂、胆固

醇和少量脂肪酸组成。 3常值 总胆固醇低而高密度脂蛋白高对健康有利,那么是不是总胆固醇越低越好而高密度脂蛋白越高越好呢?不是的。总胆固醇与高密度脂蛋白的比值男性最好小于4.5,女性最好小于3.5;即对成年男性来说,高密度脂蛋白应在1.2毫摩尔/升(45毫克/分升)以上,成年女性在1.4毫摩尔/升(55毫克/分升)以上。如一位男性,总胆固醇为5.2毫摩尔/升(200毫克/分升),那么他的高密度脂蛋白最低应是1.0毫摩尔/升(40毫克/分升),最好在1.2毫摩尔/升(45毫克/分升)以上;如果总胆固醇与高密度脂蛋白比值大于5,其患动脉粥样硬化和冠心病的可能性就增加了。是否总胆固醇低,就能保证不发生冠心病呢?答案是否定的。我们曾收治过一位急性心肌梗死患者,其总胆固醇值仅4.4毫摩尔/升(168毫克/分升),但高密度脂蛋白比值为6.7,远远高于正常值5。 那么是不是高密度脂蛋白水平高,就保证不发生冠心病呢?也不是。例如有一位男性冠心病患者,其高密度脂蛋白为1.4毫摩尔/升(55毫克/分升),高于正常值,但他的总胆固醇为9.9毫摩尔/升(380毫克/分升)其总胆固醇与高密度脂蛋白比值为 6.9。故单纯高密度脂蛋白水平高,也不能保证不发生心脏病。由此可见,总胆固醇与高密度脂蛋白比值正常其重要。一些动物,如海豚,它的高密度脂蛋白达20.8毫摩尔/升(800毫克/分升),占总胆固醇的90%,它极少患动脉硬化。故总胆固醇与高密度脂蛋白的比值越低,心脑血管系统就

低密度脂蛋白与动脉粥样硬化的关系

低密度脂蛋白与动脉粥样硬化的关系 关键词:低密度脂蛋白;动脉粥样硬化 摘要:动脉粥样硬化(atherosclerosis ,简称AS)AS的形成过程是一个复杂的过程,它既是炎症性疾病又是免疫性疾病。AS斑块(下面有注解)主要由脂质核心和其表面的纤维帽组成,脂质核心内富含泡沫细胞坏死崩解碎片及胆固醇结晶等。斑块和其内的脂质核心越大,纤维帽越薄越容易破裂。而纤维帽内富含大量的氧化型低密度脂蛋白(OX-LDL)。低密度脂蛋白(LDL)是致动脉粥样硬化的主要危险因素,近年来发现氧化LDL及小、密LDL(sLDL)具有更强烈的致动脉粥样硬化(AS)作用,并成为AS研究的热点之一。 1 氧化型低密度脂蛋白与动脉粥样硬化关系的初步认识 1952年Glaind等最先报道了过氧化损伤与动脉粥样硬化间的关系,他们发现在人类的大动脉粥样硬化灶存在着过氧化脂质(LPO),静脉注射脂质过氧化物可以诱发动脉粥样硬化,巨噬细胞吞噬LDL 变成泡沫细胞是动脉粥样硬化的根本改变,但研究发现巨噬细胞表面只有少量的LDL受体,而且存在着负反馈机制,所以人们推测除LDL 受体途径外还有其他吞噬LDL的途径,以后发现巨噬细胞表面存在着“清道夫”受体,它几乎不能吞噬天然LDL(Native LDL),却能大量吞噬一些受修饰的LDL(既变构LDL),而其中最重要的就是氧化LDL。通过这种吞噬方式无负反馈调节机制,大量的胆固醇蓄积于巨噬细胞内,最终形成泡沫细胞,进而动脉粥样硬化得已形成与发展. 内皮细胞、平滑肌细胞、巨噬细胞均可产生过氧化脂质,主要是

丙二醛(MDA),MDA与LDL的ApoB 100赖氨酸残基交链,由此改变了ApoB 100的构象,这样产生的MDA-LDL就是氧化LDL。当然也可有其它形式的变构LDL。 2 氧化LDL的生物学特征 (1)细胞毒性作用:血管内皮细胞的损伤及功能的改变是动脉粥样硬化发生的始动因素,氧化型LDL在血管内皮损伤中占重要位置。它可选择性作用于细胞循环的S期,损伤血管内皮细胞和平滑肌细胞,使内皮细胞脱落坏死,并可以增强单核细胞和T细胞的粘附及向内皮下移行,还可以诱导细胞表达多种粘附分子如JCAM-1、VCAM-1等,这些均可促进动脉粥样硬化的发生、发展。(2)化学趋化作用:Berliner 发现经修饰的LDL处理过的内皮细胞可使生成的单核细胞趋化因子增加7倍。且有明显的剂量-效应关系,内皮细胞与单核细胞的结合量也增加了3~5倍。同时氧化型LDL可使单核巨噬细胞粘附于动脉内膜,使平滑肌细胞向内膜移动。(3)促进血管平滑肌的增生:汪浩川等发现,氧化型的LDL使血管平滑肌细胞体积变大,由梭型变成不规则,胞体变细长,这表明氧化型LDL可促使血管平滑肌由收缩型向合成型转化,并有促进血管平滑肌细胞迁移和游走作用。进一步的研究还表明氧化型LDL可诱发一系列与细胞增殖有关的原癌基因的表达如sis,jun,ras等,DNA合成加速。有研究证实用抗氧化剂丙丁酚、维生素E、C可以抑制猪冠状动脉球囊扩张术后的动脉中层增生,因而有预防再狭窄的作用。(4)氧化型LDL易被巨噬细胞吞噬,且无负反馈调节,故导致大量胆固醇蓄积,进而使其变为泡沫细胞。

有关低密度脂蛋白胆固醇的几大误区

有关低密度脂蛋白胆固醇的几大误区 低密度脂蛋白胆固醇在我们的生活中是每个人都有可能会产生的小疾病。但是很多人却对此并不了解。其实低密度脂蛋白胆固醇可通俗地理解为"坏"胆固醇,因为这是有可能会导致心脏病的,具有一定的危险性。在日常生活中人们对于低密度脂蛋白胆固醇的认识常存在很多误区。下面就为大家分析一下。 低密度脂蛋白胆固醇的三大常见误区 1、胆固醇高就是坏事,胆固醇越低越好。 胆固醇主要分为低密度脂蛋白胆固醇(以下简称LDL),和高密度脂蛋白胆固醇(以下简称HDL),LDL高于正常是坏事,但HDL 高于3.0是大大的好事,他是脂质的清道夫。高密度脂蛋白HDL 可将血液中的多余的胆固醇转运到肝脏,处理分解成胆酸盐,通过胆道排泄出去,从而形成一条血脂代谢的专门途径,也称“逆转运途径”。

2、低密度脂蛋白胆固醇(LDL)是导致动脉粥样硬化的主要原因。 正常情况下LDL是以非氧化状态存在,非氧化的LDL并不容易引起动脉粥样硬化(小动脉壁像稀粥样的改变),最新的第7版《内科学》已明确阐述LDL被氧化成了(Ox-LDL),这些氧化了的LDL才会沉积在血管内壁,导致粥样硬化。 3、只要低密度脂蛋白胆固醇(LDL-C)正常了,其他的胆固醇不用管。 即使低密度脂蛋白胆固醇(LDL)正常了,也不排斥LDL有部 分被氧化,照样会导致粥样硬化。关键是要看HDL是否足量。1975年Miller博士和他的研究小组,发现了八例患者血脂水平都在 正常范围,却患上了严重的冠心病(冠心病是心脑血管疾病的代 表性疾病);同时又发现,这八例冠心病患者都有HDL偏低的特点。

以上就是几个关于低密度脂蛋白胆固醇的误区,相信经过的介绍你已经有了一定的了解了。在这里要格外注意的是,配合相应的降低胆固醇的食疗方法可以有效的减轻这一情况的发生。感谢大家的阅读。

核糖体合成蛋白质内幕

核糖体合成蛋白质内幕 桔子帮小帮主 科学松鼠会的诺贝尔红旗手的行业内幕 Boss朝你亮亮产品图纸,限时要你交工,可图纸写满阿拉伯语,一场噩梦!危难关头,突然冒出无数小工厂,内配流水线,精通双语的工人摩拳擦掌。真是救人于水火!你飞速复印来图纸。不出半小时,阿拉伯乱码已变成交付使用的产品。可以去讨好boss喽~ 这不只是人间一幕,在你数以兆计的小小细胞里时刻上演了这争分夺秒的故事。请看“地形图”:一个细胞相当于一座城池,约占你身体十兆分之一的体积,紫色轮廓圈出它的疆界(当然颜色是假的,不然你就成了辛普森了);中央的粉色“宫殿”叫细胞核,住着大权在握的boss,这资本家不仅把黑线团似的遗传密码DNA全锁着,还不停发号施令,让手下取了DNA复印件,去制造细胞需要的产品;而那些翻译和生产双项全能的工厂,正是城池之内宫殿之外散布的小蓝点,今年“诺贝尔红旗手”——核糖体。 穿珠子红旗手 什么,我刚进入正题,你就开始撇嘴?不要嫌它们小哦!因为它们比你看到的更渺小……500颗核糖体小工厂排成一排,差不多横跨一颗细胞。 劳动阶级的普遍特点,除了个头微不足道,还有“人多势众”。在一个活跃生长的细菌之城里可能有20000个这样的工厂,重量是整个细胞的四分之一;人细胞中更可达到几百万个。放眼望去一派繁忙的劳动景象。

(这是一幅真实的细胞电子显微镜照片,显示了你细胞的局部,密密麻麻排起队列的都是核糖体,让你体会一下它们有多繁忙!细节不再赘述。)忙活什么呢?核糖体凭着单一式样的厂房,就地取材地抓取细胞里的氨基酸零件,按DNA图纸的要求穿成不同式样的蛋白质链,对工作不挑不捡,任劳任怨。正因为它们的工作,你才出落成你如今的模样:头上冒出乱蓬蓬的头发,手指顶着剪不完的指甲,胃里晃荡着蛋白酶,体液里武装了抗体,走上生命之路。说核糖体工厂是保量保质的劳模,一点不过。在疯长的细菌中,核糖体1秒之内能把20个氨基酸穿在一起,你的细胞的核糖体略逊一筹,1秒能穿6、7个(那也比你穿珠子快多了!),更可贵的是制造过程同时质检,穿100000个氨基酸,大约才出一个次品。 现在,让我们揉揉眼睛,将目光集中到一颗核糖体小蓝点。 正如你所预料,核糖体并非毫无细节的小蓝点。它分大小两坨。在细菌中,小的名叫30S小亚基(位于上图下方,略扁平的那个),大的叫50S大亚基(上边厚的),总和为70S。所以学生物不需要会数学~(好了我开玩笑。其实,“S”描述的是小颗粒在粘稠液体里下沉的速度,总体的下沉性质当然不是两个的加

脂蛋白受体

脂蛋白受体 https://www.360docs.net/doc/0d1960673.html,/html/analecta/1999/04/01/31/795.htm 百拇医药网 脂蛋白受体是一类跨细胞膜上的糖蛋白,能与相应的脂蛋白配体作用,介导细胞对脂蛋白的摄取与代谢。 脂蛋白能在血液中运转并进行代谢,很重要的一点就是可以被细胞上的受体识别并与之结合,再被摄取进入细胞内进行代谢。到目前已报道的受体有很多种,但了解最多的是LDL 受体,其次是VLDL 受体。这两种受体的氨基酸序列、构象及和配体的结合部位都已阐明。 脂蛋白受体的作用是决定脂类代谢途径,调节血浆脂蛋白的水平。 1.低密度脂蛋白受体 也叫载脂蛋白B 、E 受体,是一种细胞膜表面的 糖蛋白。受体集中存在于细胞膜一定区域,横跨细胞 膜全层。这一区域的细胞膜内陷形成一个小坑,叫做 包被坑。包被坑内面覆有一层特殊的蛋白质叫包涵 素。坑中密布低密度脂蛋白受体,可将血液中的低密 度脂蛋白浓集于一处,有利于高效摄取。受体与低密 度脂蛋白结合后,包被坑膜向内内陷,形成一个小泡 (即吞饮泡)进入细胞内,这一过程叫“受体介导的吞饮 作用”。多个吞饮泡可以相互融合形成酸性入胞小体。 在溶酶体的作用下低密度脂蛋白与其受体分离,受体 回到细胞膜继续行使转运功能,载脂蛋白被分解成氨 基酸。胆固醇酯经水解得到胆固醇,进一步参与细胞 的生理代谢活动。 分布:广泛分布于肝、动脉壁平滑肌细胞、肾上 腺皮质细胞、血管内皮细胞、淋巴细胞、单核细胞和 巨噬细胞等。 配体:ApoB100、ApoE (ApoB /ApoE 受体、 BE 受体)。 结合的脂蛋白:LDL (主要),VLDL 、β-VLDL 、 LDL 残基等。 LDL 受体和上述脂蛋白结合将它们吞入细胞内, 使细胞从所摄取的脂蛋白中获得脂质(主要为胆固 醇),此代谢过程称为LDL 受体途径。 LDL 受体的合成受细胞内胆固醇水平负反馈调 节。 2.极低密度脂蛋白受体 分布:脂肪细胞、心肌、骨骼肌等(肝内基本没有)。 配体:ApoE 结合的脂蛋白:VLDL 、β-VLDL 、VLDL 残基等; VLDL 受体的作用是清除血液循环中CM 残粒和β-VLDL 残粒。 3.其他受体 清道夫受体:巨噬细胞表面有摄取变性LDL 的受体,清除血液变性LDL ,被定名为清道夫受体。 巨噬细胞通过清道夫受体清除血管内过多的脂质和病菌毒素,是机体的防御功能之一。 残粒受体:存在于肝细胞表面膜上特异性受体,配体为ApoE 。 这种受体主要识别含ApoE 丰富的脂蛋白,包括CM 残粒和VLDL 残粒(β-VLDL )。 LDL 受体 density 密度;binding 连接的;region 区域;linked 连接的 oligosaccharide 低聚糖,寡糖;plasma membrane 质膜 GlcNAc [=N-acetylglucosamine,N-acetyl-D-glucosamine] N-乙酰葡糖胺,乙酰氨基葡糖;mannose 甘露糖; GalNAc [=N-acetylgalactosamine] N-乙酰半乳糖胺 galactose 半乳糖;sialic acid 唾液酸

低密度脂蛋白

LDL 受体介导的血浆低密度脂蛋白胆固醇的吞丽娟,仲* 细胞通过细 胞表面的低密度脂蛋白受体(LDL receptor, LDLR) 介导的吞从血液中 摄取富含胆固醇的低密度脂蛋白,这是体清除血浆中胆固醇的最主要方 式。当细胞表面的LDLR 出现功能缺陷时,可以导致高胆固醇血症, 继而引起动脉粥样硬化、冠心病和中风等严重疾 1 血浆中的脂蛋白在 人类和其他脊椎动物的血液中,由于脂肪包括甘油三酯、胆固醇等都不 溶或微溶于水,故其在血液中是以脂蛋白的形式运输的。脂蛋白,顾 名思义,是由脂质与蛋白质组成,它们之间是通过疏水性相互作用而结 合在一起。脂蛋白一般都是以不溶于水的甘油三酯(TG) 和胆固醇酯 (CE) 为核心,表面覆盖有极性的磷脂、胆固醇和少量蛋白质,它们的 亲水基团暴露在表面,故具有亲水性[1] 。应用超速离心法可将血浆脂蛋白分为四类:乳糜微粒(CM) 、极低密 度脂蛋白(VLDL) 、低病。密度脂蛋白和高密度脂蛋白(HDL) ,其中 (LDL) LDL 是富含胆固醇水平最高的脂蛋白[2] 。脂蛋白中的蛋白质被称为载 脂蛋白(Apo) ,不同脂蛋白含不同的载脂蛋白,如表 1 所示。

LDL Cetated W NM I C I**" W '、、 |fj ? ■ H^otyiK 溯可耐 ‘ LDL \d MBn^rarm - Rfri/nrEj drmwri 才g 管—* Lyivwm Lfwison&e F?H dio^frlrrcil

有氧运动对高密度脂蛋白代谢的影响

有氧运动对高密度脂蛋白代谢的影响 2001级运动人体科学硕士研究生董莉 前言:高密度脂蛋白(HDL)是人体一种重要的血浆脂蛋白,它参与胆固醇逆向转运(RCT),具有抗动脉粥样硬化(AS)的作用。研究表明,体力活动,尤其是持续时间长、周期性、大肌群参加的有氧运动,可使人体内HDL水平增加。随着分子生物学的不断渗透发展,脂蛋白转运和代谢过程中的所有基因都已作为“候选基因”加以研究。而有三类蛋白质起关键作用,一是载脂蛋白类,二是脂蛋白酶类,三是脂蛋白受体。那么,有氧运动过程中,哪些蛋白的表达及其表达量会对HDL代谢发生影响,这些基因产物还有哪些相关因素?其调节机制又是如何呢?本文在HDL现有的研究进展基础上对有氧运动过程中HDL代谢变化的情况及其可能机制作一简要综述。 1.有氧运动中HDL代谢变化 1.1高密度脂蛋白――胆固醇(HDL—C)的结构与功能 血浆各种脂蛋白具有大致相似的基本结构。疏水性较强的甘油三酯及胆固醇酯均位于脂蛋白的内核,而具极性及非极性基团的载脂蛋白、磷脂及游离胆固醇则以单分子层借其非极性的疏水基团与内部的疏水链相联系,覆盖于脂蛋白表面,其极性基团朝外,呈球状。HDL主要以胆固醇酯为内核,HDL的蛋白质与脂类比值最高,大部分表面被蛋白质分子所覆盖,并与磷脂交错穿插。 HDL主要由肝合成,按密度大小可分为HDL1、HDL2及HDL3 。HDL1仅在摄取高胆固醇膳食才在血中出现,正常人血浆中主要含HDL2及HDL3。新生HDL进入血液后,在卵磷脂椀ü檀减; 泼福↙CAT)的催化下,表面卵磷脂的2位脂酰基转移至胆固醇3位羟基生成溶血卵磷脂及胆固醇酯。此过程消耗的卵磷脂及游离胆固醇不断从细胞膜、CM及VLDL得到补充。HDL表面的apoAI 是LCAT 的激活剂,它可能是游离胆固醇的接受体,能增加LCAT 的催化活性。在LCAT 的作用下生成的胆固醇酯转运入HDL的核心。新生HDL 先转变为HDL3,然后酯化胆固醇继续增加,再加上CM及VLDL 水解过程中释出的磷脂、apoAI、AII 等,转变为密度较小、颗粒较大的HDL2。

高密度脂蛋白胆固醇HDL

高密度脂蛋白胆固醇(HDL-C)测定1.第1页页首内容 血清高密度胆固醇(HDL-C)测定(直接法) 天津市宝坻区人民医院检验科 操作规程文件号:CZGC/SH/043 第四版 共3 页 本规程每2年复审一次 复审日期:2013年5月1日 复审人:陈玉良(签名) 规程编写者:崔树明 审批者:陈玉良 批准日期:2013年5月6日 实施日期:2013年5月10日 文件分发部门和/或个人:检验科 医务科;保管者:王文志(签名) 院长办公室;保管者:刘会芹(签名) 院档案室;保管者:刘会芹(签名) 检验科;主任:陈玉良(签名) 临床化学检验室:崔树明(签名) 2.原理

本方法是双试剂测定,第一种试剂包含聚合物和多聚阴离子,它们附着在LDL,VLDL 和乳糜微粒的表面。这些脂蛋白甚至在清洁剂存在的情况下都是稳定的,清洁剂是作为第二种试剂的一部分被添加进去的,另外一部分是胆固醇试剂剩下的成分。另一方面,HDL颗粒在聚合物和多聚阴离子存在的情况下是不稳定的,它们被清洁剂溶解。因此,只有HDL-C作用于胆固醇测定。 胆固醇脂酶 高密度脂蛋白胆固醇脂+H2O-------------﹥胆固醇+脂肪酸 胆固醇氧化酶 胆固醇+O2-------------﹥胆烯酮+ H2O2 过氧化物酶 H2O2+4-氨基安替比林+DSBmT-------------﹥醌亚胺+H2O 3.样本采集与处理 3.1受检者(体检对象或病人)的准备:除总胆固醇不一定用空腹血外,测定甘油三酯、脂蛋白与载脂蛋白的病人必须空腹12h,不饮酒24h后采集血样。对于体检对象抽血前应有2周时间保持平时的饮食习惯,近期内体重稳定,无急性病、外伤、手术等意外情况。妊娠后期各项血脂都会增高,应在产后或终哺乳后3个月检验才能反映其基本血脂水平。注意有无应用影响血脂的药物,如降血脂药、避孕药、噻嗪类利尿剂、β受体阻断剂、免役抑制剂、某些降压药、降糖药、胰岛素及其他激素制剂等,检验以前应根据所用药物的特性停止用药数天或数周,否则应记录用药情况。对体检对象应做前瞻性观察者,还应注意采血的季节,因为血脂水平有季节性变动,为了前后比较应在每年同一季

相关文档
最新文档