2008年全国卷ⅠⅠ高考理科数学真题及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008年全国卷ⅠⅠ高考理科数学真题及答案
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至10页.考试结束后,将本试卷和答题卡一并交回.
第Ⅰ卷
注意事项:
1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.不能答在试题卷上.
3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
参考公式:
如果事件A B ,互斥,那么 球的表面积公式
()()()P A B P A P B +=+
2
4πS R =
如果事件A B ,相互独立,那么 其中R 表示球的半径
()()()P A B P A P B = 球的体积公式
如果事件A 在一次试验中发生的概率是p ,那么 34π3
V R =
n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径
()(1)
(012)k k n k
k n P k C p p k n -=-=,,,,
一、选择题
1.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤( )
A .{}01,
B .{}101-,,
C .{}012,,
D .{}1012-,,,
2.设a b ∈R ,且0b ≠,若复数3
()a bi +是实数,则( ) A .2
2
3b a = B .22
3a b =
C .22
9b a =
D .22
9a b =
3.函数1
()f x x x
=
-的图像关于( ) A .y 轴对称 B . 直线x y -=对称 C . 坐标原点对称 D . 直线x y =对称
4.若1
3
(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( )
A .a <b <c
B .c <a <b
C . b <a <c
D . b <c <a
5.设变量x y ,满足约束条件:222y x x y x ⎧⎪
+⎨⎪-⎩
,
,.≥≤≥,则y x z 3-=的最小值( )
A .2-
B .4-
C .6-
D .8-
6.从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为( ) A .
929
B .
1029
C .
1929
D .
2029
7
.64(1(1的展开式中x 的系数是( ) A .4-
B .3-
C .3
D .4
8.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则
MN 的最大值为( )
A .1
B
C
D .2
9.设1a >,则双曲线22
22
1(1)x y a a -=+的离心率e 的取值范围是( )
A
.
B
.
C .(25), D
.(2
10.已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E 是SB 的中点,则AE SD ,所成的角的余弦值为( ) A .
1
3
B
C
D .
23
11.等腰三角形两腰所在直线的方程分别为20x y +-=与740x y --=,原点在等腰三角形的底边上,则底边所在直线的斜率为( ) A .3
B .2
C .13
-
D .12
-
12.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于( ) A .1
B .2
C .3
D .2
第Ⅱ卷
二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.
13.设向量(1
2)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ .
14.设曲线ax y e =在点(01),处的切线与直线210x y ++=垂直,则a = . 15.已知F 是抛物线24C y x =:的焦点,过F 且斜率为1的直线交C 于A B ,两点.设
FA FB >,则FA 与FB 的比值等于 .
16.平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:
充要条件① ; 充要条件② . (写出你认为正确的两个充要条件)
三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) 在ABC △中,5cos 13B =-,4
cos 5
C =. (Ⅰ)求sin A 的值;
(Ⅱ)设ABC △的面积33
2
ABC S =
△,求BC 的长. 18.(本小题满分12分)
购买某种保险,每个投保人每年度向保险公司交纳保费a 元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为
4
1010.999-.
(Ⅰ)求一投保人在一年度内出险的概率p ;
(Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元). 19.(本小题满分12分)
如图,正四棱柱1111ABCD A BC D -中,124AA AB ==,点
E 在1CC 上且EC E C 31=. (Ⅰ)证明:1AC ⊥平面BED ; (Ⅱ)求二面角1A DE B --的大小.
C D
E A 1
B 1
C 1
D 1