湖南省长沙市雨花区广益实验中学2019-2020学年九年级(上)期中数学试卷(解析版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年九年级(上)期中数学试卷
一.选择题(共12小题)
1.已知=,则=()
A.B.C.D.
2.在平面直角坐标系中,点P(﹣3,﹣5)关于原点对称的点的坐标是()A.(3,﹣5)B.(﹣3,5)C.(3,5)D.(﹣3,﹣5)3.某校开展了主题为“青春•梦想”的艺术作品征集活动.从九年级五个班收集到的作品数量(单位:件)分别为:42,50,45,46,50,则这组数据的中位数是()A.42件B.45件C.46件D.50件
4.下列图标中,既是轴对称图形,又是中心对称图形的是()
A.B.
C.D.
5.已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x 的一元二次方程x2﹣3x+m=0的两实数根是()
A.x1=1,x2=﹣1 B.x1=1,x2=2 C.x1=1,x2=0 D.x1=1,x2=3 6.如图,四边形ABCD和A'B'C'D'是以点O为位似中心的位似图形,若OA:OA'=2:3,则四边形ABCD与A'B'C'D'的面积比是()
A.4:9 B.2:5 C.2:3 D.:
7.下列说法正确的是()
A.对角线互相垂直的四边形是平行四边形
B.对角线相等且互相平分的四边形是矩形
C.对角线相等且互相垂直的四边形是菱形
D.对角线互相垂直的平行四边形是正方形
8.如同,在△ABC中,点D,E分别在边AB,AC上,下列条件中不能判断△ABC∽△AED的是()
A.=B.=C.∠ADE=∠C D.∠AED=∠B 9.如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()
A.30πcm2B.48πcm2C.60πcm2D.80πcm2
10.已知二次函数y=﹣(x﹣a)2﹣b的图象如图所示,则反比例函数y=与一次函数y =ax+b的图象可能是()
A.B.
C.D.
11.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()
A.abc>0 B.b2﹣4ac<0 C.9a+3b+c>0 D.c+8a<0
12.如图,在菱形ABCD中,tan A=,M,N分别在边AD,BC上,将四边形AMNB沿MN翻折,使AB的对应线段EF经过顶点D,当EF⊥AD时,的值为()
A.B.C.D.
二.填空题(共6小题)
13.如图,数轴上点A表示的实数是.
14.已知是方程组的解,则代数式(a+b)(a﹣b)的值为.15.河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比是1:,则AC的长是米.
16.如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),当x<2时,y1y2.(填“>”或“<”).
17.如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为.
18.在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=的图象上.若AB=2,则k=.
三.解答题(共8小题)
19.计算:()﹣2+2sin45°﹣+|1﹣|.
20.先化简,再求值(1﹣)÷,其中x=+1.
21.为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如图不完整的统计图表.
满意度人数所占百分

非常满意12 10%
满意54 m
比较满意n40%
不满意 6 5%
根据图表信息,解答下列问题:
(1)本次调查的总人数为,表中m的值;
(2)请补全条形统计图;
(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为
游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.
22.由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A处时,测得小岛C位于它的北偏东70°方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛C位于它的北偏东37°方向.如果航母继续航行至小岛C的正南方向的D处,求还需航行的距离BD的长.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,sin37°≈0.6,cos37°≈0.80,tan37°≈0.75)
23.为落实“美丽秦州”的工作部署,市政府计划对城区道路进行改造,现安排甲、乙两个工程队完成,已知甲队的工作效率是乙队工作效率的倍,甲队改造720米的道路比乙队改造同样长的道路少用4天.
(1)甲、乙两工程队每天能改造道路的长度分别是多少米?
(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长2400米,改造总费用不超过195万元,至少安排甲队工作多少天?
24.如图,AB是⊙O的直径,P为BA延长线上一点,过P作⊙O的切线,切点为C,CD平分∠ACB交⊙O于D,交AB于G.
(1)求证:△PAC∽△PCB;
(2)已知⊙O的半径为5,PC=2,过C作CH⊥AB于H.
①求tan∠ADC;
②求GH的长.
25.已知y1,y2分别是关于x的函数,如果函数y1和y2的图象有交点,那么称y1,y2为“亲密函数”,交点称为函数y1和y2的“亲密点”;若两函数图象有两个交点,横坐标分别是x1,x2,称L=|x1﹣x2|为函数y1和y2的“亲密度”,特别地,若两函数图象只有一个交点,则两函数的“亲密度”L=0.
(1)已知一次函数y1=2x﹣5与反比例函数y2=,请判断函数y1和y2是否为“亲密函数”,若是,请写出“亲密点”及“亲密度”L,若不是,请说明理由;
(2)已知二次函数y=ax2﹣6x+c与x轴只有一个交点,与一次函数y=x﹣1的“亲密度”L=3,求二次数的解析式;
(3)已知“亲密函数”y1=ax﹣2和y2=的“亲密度”L=0,“亲密点”为P(x0,y0),将过P的抛物线y=ax2+bx+c(b>0)进行平移,点P的对应点为P1(1﹣m,2b﹣1),平移后的抛物线仍经过点P,当m≥﹣时,求平移后抛物线的顶点所能达到的最高点的坐标.
26.如图,在平面直角坐标系xOy中,经过C(1,1)的抛物线y=ax2+bx+c(a>0)顶点为M,与x轴正半轴交于A,B两点.
(1)如图1,连接OC,将线段OC绕点O逆时针旋转使得C落在y轴的正半轴上,求线段OC过的面积;
(2)如图2,延长线段OC至N,使得ON=OC,若∠ONA=∠OBN且tan∠BAM=,求抛物线的解析式;
(3)如图3,已知以直线x=为对称轴的抛物线y=ax2+bx+c交y轴于(0,5),交直线l:y=kx+m(k>0)于C,D两点,若在x轴上有且仅有一点P,使∠CPD=90°,求k的值.
参考答案与试题解析
一.选择题(共12小题)
1.已知=,则=()
A.B.C.D.
【分析】直接利用比例的合比性质得到答案即可.
【解答】解:∵=,
∴==,
故选:B.
2.在平面直角坐标系中,点P(﹣3,﹣5)关于原点对称的点的坐标是()A.(3,﹣5)B.(﹣3,5)C.(3,5)D.(﹣3,﹣5)【分析】根据关于原点对称的点的坐标特点解答.
【解答】解:点P(﹣3,﹣5)关于原点对称的点的坐标是(3,5),
故选:C.
3.某校开展了主题为“青春•梦想”的艺术作品征集活动.从九年级五个班收集到的作品数量(单位:件)分别为:42,50,45,46,50,则这组数据的中位数是()A.42件B.45件C.46件D.50件
【分析】将数据从小到大排列,根据中位数的定义求解即可.
【解答】解:将数据从小到大排列为:42,45,46,50,50,
∴中位数为46,
故选:C.
4.下列图标中,既是轴对称图形,又是中心对称图形的是()
A.B.
C.D.
【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.
【解答】解:A、不是轴对称图形,也不是中心对称图形,故本选项错误;
B、不是轴对称图形,是中心对称图形,故本选项错误;
C、是轴对称图形,不是中心对称图形,故本选项错误;
D、既是轴对称图形,又是中心对称图形,故本选项正确.
故选:D.
5.已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x 的一元二次方程x2﹣3x+m=0的两实数根是()
A.x1=1,x2=﹣1 B.x1=1,x2=2 C.x1=1,x2=0 D.x1=1,x2=3 【分析】关于x的一元二次方程x2﹣3x+m=0的两实数根就是二次函数y=x2﹣3x+m(m 为常数)的图象与x轴的两个交点的横坐标.
【解答】解:∵二次函数的解析式是y=x2﹣3x+m(m为常数),
∴该抛物线的对称轴是:x=.
又∵二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),
∴根据抛物线的对称性质知,该抛物线与x轴的另一个交点的坐标是(2,0),
∴关于x的一元二次方程x2﹣3x+m=0的两实数根分别是:x1=1,x2=2.
故选:B.
6.如图,四边形ABCD和A'B'C'D'是以点O为位似中心的位似图形,若OA:OA'=2:3,则四边形ABCD与A'B'C'D'的面积比是()
A.4:9 B.2:5 C.2:3 D.:
【分析】根据题意求出两个相似多边形的相似比,根据相似多边形的性质解答.
【解答】解:∵四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,OA:OA′=2:3,
∴DA:D′A′=OA:OA′=2:3,
∴四边形ABCD与四边形A′B′C′D′的面积比为:()2=,
故选:A.
7.下列说法正确的是()
A.对角线互相垂直的四边形是平行四边形
B.对角线相等且互相平分的四边形是矩形
C.对角线相等且互相垂直的四边形是菱形
D.对角线互相垂直的平行四边形是正方形
【分析】根据平行四边形、矩形、菱形、正方形的判定定理,即可解答.
【解答】解:A、对角线互相平分的四边形是平行四边形,故错误;
B、对角线相等且互相平分的四边形是矩形,正确;
C、对角线垂直且互相平分的四边形是菱形,故错误;
D、对角线互相垂直且相等的平行四边形是正方形,故错误;
故选:B.
8.如同,在△ABC中,点D,E分别在边AB,AC上,下列条件中不能判断△ABC∽△AED的是()
A.=B.=C.∠ADE=∠C D.∠AED=∠B 【分析】根据相似三角形的判定定理进行判定即可.
【解答】解:∵∠DAE=∠CAB,
∴当∠AED=∠B或∠ADE=∠C时,△ABC∽△AED;
当=即=时,△ABC∽△AED.
故选:A.
9.如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()
A.30πcm2B.48πcm2C.60πcm2D.80πcm2
【分析】首先利用勾股定理求出圆锥的母线长,再通过圆锥侧面积公式可以求得结果.【解答】解:∵h=8,r=6,
可设圆锥母线长为l,
由勾股定理,l==10,
圆锥侧面展开图的面积为:S侧=×2×6π×10=60π,
所以圆锥的侧面积为60πcm2.
故选:C.
10.已知二次函数y=﹣(x﹣a)2﹣b的图象如图所示,则反比例函数y=与一次函数y =ax+b的图象可能是()
A.B.
C.D.
【分析】观察二次函数图象,找出a>0,b>0,再结合反比例(一次)函数图象与系数的关系,即可得出结论.
【解答】解:观察二次函数图象,发现:
抛物线的顶点坐标在第四象限,即a>0,﹣b<0,
∴a>0,b>0.
∵反比例函数y=中ab>0,
∴反比例函数图象在第一、三象限;
∵一次函数y=ax+b,a>0,b>0,
∴一次函数y=ax+b的图象过第一、二、三象限.
故选:B.
11.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()
A.abc>0 B.b2﹣4ac<0 C.9a+3b+c>0 D.c+8a<0
【分析】根据二次函数的图象求出a<0,c>0,根据抛物线的对称轴求出b=﹣2a>0,即可得出abc<0;根据图象与x轴有两个交点,推出b2﹣4ac>0;对称轴是直线x=1,与x轴一个交点是(﹣1,0),求出与x轴另一个交点的坐标是(3,0),把x=3代入二次函数得出y=9a+3b+c=0;把x=4代入得出y=16a﹣8a+c=8a+c,根据图象得出8a+c <0.
【解答】解:A、∵二次函数的图象开口向下,图象与y轴交于y轴的正半轴上,
∴a<0,c>0,
∵抛物线的对称轴是直线x=1,
∴﹣=1,
∴b=﹣2a>0,
∴abc<0,故本选项错误;
B、∵图象与x轴有两个交点,
∴b2﹣4ac>0,故本选项错误;
C、∵对称轴是直线x=1,与x轴一个交点是(﹣1,0),
∴与x轴另一个交点的坐标是(3,0),
把x=3代入二次函数y=ax2+bx+c(a≠0)得:y=9a+3b+c=0,故本选项错误;
D、∵当x=3时,y=0,
∵b=﹣2a,
∴y=ax2﹣2ax+c,
把x=4代入得:y=16a﹣8a+c=8a+c<0,
故选:D.
12.如图,在菱形ABCD中,tan A=,M,N分别在边AD,BC上,将四边形AMNB沿MN翻折,使AB的对应线段EF经过顶点D,当EF⊥AD时,的值为()
A.B.C.D.
【分析】首先延长NF与DC交于点H,进而利用翻折变换的性质得出NH⊥DC,再利用边角关系得出BN,CN的长进而得出答案.
【解答】解:如图,延长NF与DC交于点H,
∵∠ADF=90°,
∴∠A+∠FDH=90°,
∵∠DFN+∠DFH=180°,∠A+∠B=180°,∠B=∠DFN,
∴∠A=∠DFH,
∴∠FDH+∠DFH=90°,
∴NH⊥DC,
设DM=4k,DE=3k,EM=5k,
∴AD=9k=DC,DF=6k,
∵tan A=tan∠DFH=,
则sin∠DFH=,
∴DH=DF=k,
∴CH=9k﹣k=k,
∵cos C=cos A==,
∴CN=CH=7k,
∴BN=2k,
∴=.
故选:B.
二.填空题(共6小题)
13.如图,数轴上点A表示的实数是﹣1 .
【分析】直接利用勾股定理得出三角形斜边长即可得出A点对应的实数.
【解答】解:由图形可得:﹣1到A的距离为=,
则数轴上点A表示的实数是:﹣1.
故答案为:﹣1.
14.已知是方程组的解,则代数式(a+b)(a﹣b)的值为﹣8 .【分析】把x与y的值代入方程组求出a与b的值,代入原式计算即可得到结果.【解答】解:把代入方程组得:,
①×3+②×2得:5a=﹣5,即a=﹣1,
把a=﹣1代入①得:b=﹣3,
则原式=a2﹣b2=1﹣9=﹣8,
故答案为:﹣8
15.河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比是1:,则AC的长是6米.
【分析】根据迎水坡AB的坡比是1:,可得=,即可求得AC的长.
【解答】解:∵堤高BC=6米,迎水坡AB的坡比是1:,
∴=,
∴AC=BC=6(米).
故答案为6米.
16.如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),当x<2时,y1<y2.(填“>”或“<”).
【分析】由图象可以知道,当x=2时,两个函数的函数值是相等的,再根据函数的增减性即可得到结论.
【解答】解:由图象知,当x<2时,y2的图象在y1上方,
∴y1<y2.
故答案为:<.
17.如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为3.
【分析】由矩形的性质和线段垂直平分线的性质证出OA=AB=OB=3,得出BD=2OB=6,由勾股定理求出AD即可.
【解答】解:∵四边形ABCD是矩形,
∴OB=OD,OA=OC,AC=BD,
∴OA=OB,
∵AE垂直平分OB,
∴AB=AO,
∴OA=AB=OB=3,
∴BD=2OB=6,
∴AD===3;
故答案为:3.
18.在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=的图象上.若AB=2,则k=﹣.
【分析】(方法一)设点A(a,﹣a+1),B(b,﹣b+1)(a<b),则A′(,),B′(,),由AB=2可得出b=a+2,再根据反比例函数图象上点的坐标特征即可得出关于k、a、b的方程组,解之即可得出k值.
(方法二)由一次函数图象上点的坐标特征结合AB的长度可设点A的坐标为(a,﹣a+1),则点B的坐标为(a+2,﹣a﹣1),点A′的坐标为(,),点B′的坐标为(,﹣),再根据反比例函数图象上点的坐标特征可得出关于k、a的方程组,解之即可得出结论.
【解答】解:(方法一)设点A(a,﹣a+1),B(b,﹣b+1)(a<b),则A′(,),B′(,),
∵AB===(b﹣a)=2,
∴b﹣a=2,即b=a+2.
∵点A′,B′均在反比例函数y=的图象上,
∴,
解得:k=﹣.
(方法二)∵直线y=﹣x+1上有两点A、B,且AB=2,
∴设点A的坐标为(a,﹣a+1),则点B的坐标为(a+2,﹣a﹣1),点A′的坐标为(,),点B′的坐标为(,﹣).
∵点A′,B′均在反比例函数y=的图象上,
∴,
解得:.
故答案为:﹣.
三.解答题(共8小题)
19.计算:()﹣2+2sin45°﹣+|1﹣|.
【分析】直接利用负整数指数幂的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案.
【解答】解:原式=4+2×﹣2+﹣1
=4+﹣2+﹣1
=3.
20.先化简,再求值(1﹣)÷,其中x=+1.
【分析】根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.
【解答】解:(1﹣)÷


=,
当x=+1时,原式==.
21.为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如图不完整的统计图表.
满意度人数所占百分

非常满意12 10%
满意54 m
比较满意n40%
不满意 6 5%
根据图表信息,解答下列问题:
(1)本次调查的总人数为120 ,表中m的值45% ;
(2)请补全条形统计图;
(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.
【分析】(1)利用12÷10%=120,即可得到总人数;用120×40%即可得到n的值.(2)根据n的值即可补全条形统计图;
(3)根据用样本估计总体,3600××100%,即可答.
【解答】解:(1)12÷10%=120,总人数=120,
n=120×40%=48,m==45%.
故答案为120,45%.
(2)根据n=48,画出条形图:
(3)3600××100%=1980(人),
答:估计该景区服务工作平均每天得到1980名游客的肯定.
22.由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A处时,测得小岛C位于它的北偏东70°方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛C位于它的北偏东37°方向.如果航母继续航行至小岛C的正南方向的D处,求还需航行的距离BD的长.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,sin37°≈0.6,cos37°≈0.80,tan37°≈0.75)
【分析】根据题意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD中,由三角函数得出CD=27.2海里,在直角三角形BCD中,得出BD,即可得出答案.
【解答】解:由题意得:∠ACD=70°,∠BCD=37°,AC=80海里,
在直角三角形ACD中,CD=AC•cos∠ACD=27.2海里,
在直角三角形BCD中,BD=CD•tan∠BCD=20.4海里.
答:还需航行的距离BD的长为20.4海里.
23.为落实“美丽秦州”的工作部署,市政府计划对城区道路进行改造,现安排甲、乙两个工程队完成,已知甲队的工作效率是乙队工作效率的倍,甲队改造720米的道路比乙队改造同样长的道路少用4天.
(1)甲、乙两工程队每天能改造道路的长度分别是多少米?
(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长2400米,改造总费用不超过195万元,至少安排甲队工作多少天?
【分析】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据工作时间=工作总量÷工作效率结合甲队改造720米的道路比乙队改造同样长的道路少用4天,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)设安排甲队工作m天,则安排乙队工作天,根据总费用=甲队每天所需费用×工作时间+乙队每天所需费用×工作时间结合总费用不超过195万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.
【解答】解:(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度
为x米.
根据题意得:﹣=4
解得:x=60,
经检验,x=60是原分式方程的解,且符合题意,
∴x=90.
答:乙工程队每天能改造道路的长度为60米,甲工程队每天能改造道路的长度为90米.(2)设安排甲队工作m天,则安排乙队工作天.
根据题意得:7m+×5≤195.
解得:m≥10.
答:至少安排甲队工作10天.
24.如图,AB是⊙O的直径,P为BA延长线上一点,过P作⊙O的切线,切点为C,CD平分∠ACB交⊙O于D,交AB于G.
(1)求证:△PAC∽△PCB;
(2)已知⊙O的半径为5,PC=2,过C作CH⊥AB于H.
①求tan∠ADC;
②求GH的长.
【分析】(1)如图,连接OC,先证∠B=∠ACP,又因为∠CPA=∠BPC,即可得出结论;(2)①由(1)知△PAC∽△PCB,利用相似三角形的性质可求出AP的长,可求出∠B的正切值,即可写出∠ADC的正切值;
②如图,连接OD,证OD∥CH,所以△DOG∽△CHG,在Rt△ABC中,设AC=x,则BC=x,由勾股定理可求出x的值,即得AC,BC的长,由面积法求出CH的长,由锐角三角函数求出BH的长,进一步求出OH的长,利用相似三角形的性质即可求出GH的长.
【解答】(1)证明:如图,连接OC,
∵PC是⊙O的切线,
∴∠OCP=90°,
∴∠OCA+∠ACP=90°,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠B+∠CAO=90°,
∵OC=OA,
∴∠OCA=∠OAC,
∴∠B=∠ACP,
又∵∠CPA=∠BPC,
∴△PAC∽△PCB;
(2)①由(1)知△PAC∽△PCB,
∴==,
∵PC=2,AB=5×2=10,
∴=,
∴AP=2(取正值),
∴==,
∵∠ADC=∠B,
∴tan∠ADC=tan∠B==;
②如图,连接OD,
∵CD平分∠ACB,
∴∠BCD=∠ACD=ACB=45°,
∴∠BOD=∠DOA=90°,
∵CH⊥AB,
∴∠CHG=90°=∠DOA,
∴OD∥CH,
∴△DOG∽△CHG,
在Rt△ABC中,设AC=x,则BC=x,∴x2+(x)2=102,
∴x=(取正值),
∴AC=,BC=,
∵S△ABC=BC•AC=AB•CH,
∴×=10CH,
∴CH=,
∵tan∠B=,
∴==,
∴BH=,
∴OH=BH﹣BO=﹣5=,
∵△DOG∽△CHG,
∴=,
即=,
∴GH=2﹣.
25.已知y1,y2分别是关于x的函数,如果函数y1和y2的图象有交点,那么称y1,y2为“亲密函数”,交点称为函数y1和y2的“亲密点”;若两函数图象有两个交点,横坐标分别是x1,x2,称L=|x1﹣x2|为函数y1和y2的“亲密度”,特别地,若两函数图象只有一个交点,则两函数的“亲密度”L=0.
(1)已知一次函数y1=2x﹣5与反比例函数y2=,请判断函数y1和y2是否为“亲密函数”,若是,请写出“亲密点”及“亲密度”L,若不是,请说明理由;
(2)已知二次函数y=ax2﹣6x+c与x轴只有一个交点,与一次函数y=x﹣1的“亲密度”L=3,求二次数的解析式;
(3)已知“亲密函数”y1=ax﹣2和y2=的“亲密度”L=0,“亲密点”为P(x0,y0),将过P的抛物线y=ax2+bx+c(b>0)进行平移,点P的对应点为P1(1﹣m,2b﹣1),平移后的抛物线仍经过点P,当m≥﹣时,求平移后抛物线的顶点所能达到的最高点的坐标.
【分析】(1)联立y1=2x﹣5与反比例函数y2=并整理得:2x2﹣5x﹣3=0,解得:x
=3或﹣,即可求解;
(2)由题意得:△=36﹣4ac=0,解得:ac=9,L=3,则L2=9,即:(x1+x2)2﹣4x1x2=9,即可求解;
(3)联立y1=ax﹣2和y2=并整理得:ax2﹣2x+1=0,△=4a﹣4=0,解得:a=1,当a=1时,x=1,故点P(1,﹣1);由平移前的抛物线y=x2+bx+c,可得
y=(x+)2﹣+c,即y=(x+)2﹣﹣2﹣b.因为平移后P(1,﹣1)的对应点为P1(1﹣m,2b﹣1),可知,抛物线向左平移m个单位长度,向上平移2b个单位长度.则平移后的抛物线解析式为y=(x++m)2﹣﹣2﹣b+2b,即y=(x++m)2﹣﹣2+b.把(1,﹣1)代入,得(1++m)2﹣﹣2+b=﹣1.即可求解.
【解答】解:(1)联立y1=2x﹣5与反比例函数y2=并整理得:
2x2﹣5x﹣3=0,解得:x=3或﹣,
故“亲密点”为:(﹣,6)或(3,1);
“亲密度”L=3+=;
(2)由题意得:△=36﹣4ac=0,解得:ac=9,
联立y=ax2﹣6x+c、y=x﹣1并整理得:ax2﹣7x+c+1=0,
则x1+x2=,x1x2=;
L=3,则L2=9,
即:(x1+x2)2﹣4x1x2=9,
则()2﹣4()2=9,
解得:a=1或﹣,c=9或﹣;
故抛物线的表达式为:y=x2﹣6x+9或y=﹣x2﹣6x﹣;
(3)联立y1=ax﹣2和y2=并整理得:ax2﹣2x+1=0,
△=4a﹣4=0,解得:a=1,
当a=1时,x=1,故点P(1,﹣1);
由平移前的抛物线y=x2+bx+c,可得
y=(x+)2﹣+c,即y=(x+)2﹣﹣2﹣b.
因为平移后P(1,﹣1)的对应点为P1(1﹣m,2b﹣1)
可知,抛物线向左平移m个单位长度,向上平移2b个单位长度.
则平移后的抛物线解析式为y=(x++m)2﹣﹣2﹣b+2b,
即y=(x++m)2﹣﹣2+b.
把(1,﹣1)代入,得
(1++m)2﹣﹣2+b=﹣1.
(1++m)2=﹣b+1.
(1++m)2=(﹣1)2.
所以1++m=±(﹣1).
当1++m=﹣1时,m=﹣2(不合题意,舍去);
当1++m=﹣(﹣1)时,m=﹣b,
因为m≥﹣,所以b≤.
所以0<b≤,
所以平移后的抛物线解析式为y=(x﹣)2﹣2+b.
即顶点为(,﹣2+b),
设p=﹣﹣2+b,即p=﹣(b﹣2)2﹣1.
因为﹣<0,所以当b<2时,p随b的增大而增大.
因为0<b≤,
所以当b=时,p取最大值为﹣,
此时,平移后抛物线的顶点所能达到的最高点坐标为(,﹣).
26.如图,在平面直角坐标系xOy中,经过C(1,1)的抛物线y=ax2+bx+c(a>0)顶点为M,与x轴正半轴交于A,B两点.
(1)如图1,连接OC,将线段OC绕点O逆时针旋转使得C落在y轴的正半轴上,求线段OC过的面积;
(2)如图2,延长线段OC至N,使得ON=OC,若∠ONA=∠OBN且tan∠BAM=,求抛物线的解析式;
(3)如图3,已知以直线x=为对称轴的抛物线y=ax2+bx+c交y轴于(0,5),交直线l:y=kx+m(k>0)于C,D两点,若在x轴上有且仅有一点P,使∠CPD=90°,求k的值.
【分析】(1)线段OC过的面积=×π×()2=;
(2)△ONA∽△OBN,则OA•OB=ON2=4,即mn=4…①,则抛物线的表达式为:y=a(x ﹣m)(x﹣n),MH=|y M|=﹣a(﹣m)(﹣n)=,AH═﹣m,tan ∠BAM==a(n﹣m)=,化简得:a(n﹣m)=…②,将(1,1)代入y =a(x﹣m)(x﹣n)并化简得:a(5﹣m﹣n)=1…③,联立①②③即可求解;
(3)抛物线的表达式为:y=x2﹣5x+5;设点D(m,n),n=m2﹣5m+5,而点C(1,1),则k==m﹣4,若在x轴上有且仅有一点P,使∠CPD=90°,则过CD中点的圆R与x轴相切,即可求解.
【解答】解:(1)线段OC过的面积=×π×()2=;
(2)ON=OC=4,设点A、B的坐标分别为:(m,0)、(n,0),
∠ONA=∠OBN,则△ONA∽△OBN,则OA•OB=ON2=4,即mn=4…①,
则抛物线的表达式为:y=a(x﹣m)(x﹣n),
过点M作MH⊥AB交AB于点H,函数的对称轴为:x=(m+n),
则MH=|y M|=﹣a(﹣m)(﹣n)=,
AH=x M﹣x A=﹣m
tan∠BAM==a(n﹣m)=,
化简得:a(n﹣m)=…②,
将(1,1)代入y=a(x﹣m)(x﹣n)并化简得:a(5﹣m﹣n)=1…③,
联立①②③并解得:m=,n=,a=2,
则抛物线的表达式为y=a(x﹣m)(x﹣n)=a(x2﹣mx﹣nx+mn)=2x2﹣9x+8;
(3)由题意得:,解得:,
故抛物线的表达式为:y=x2﹣5x+5;
设点D(m,n),n=m2﹣5m+5,而点C(1,1),
则k==m﹣4,
若在x轴上有且仅有一点P,使∠CPD=90°,则过CD中点的圆R与x轴相切,设切点为P,
则点H(,),则HP=HC,
即(﹣1)2+(﹣1)2=()2,
化简得:3m2﹣18m+19=0,
解得:m=3+(不合题意的值已舍去),k=m﹣4=.。

相关文档
最新文档