初三数学期末试题
2024年北京密云区初三九年级上学期期末数学试题和答案
北京市密云区2023-2024学年第一学期期末考试九年级数学试卷2024.1考生须知1.本试卷共7页,共3道大题,28道小题,满分100分,考试时间120分钟.2.在试卷和答题卡上准确填写学校、班级、姓名和考号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效,作图必须使用......2.B .铅笔...4.考试结束,请将本试卷和答题纸一并交回.一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个..选项是符合题意的.1.二次函数y =3(x +1)2-4的最小值是()A .1B.-1C .4D .-42.已知⊙O 的半径为6,点P 在⊙O 内,则线段OP 的长度可以是()A .5B .6C .7D .83.中国瓷器,积淀了深厚的文化底蕴,是中国传统艺术文化的重要组成部分.瓷器上的图案设计精美,极富变化.下面瓷器图案中,既是轴对称图形又是中心对称图形的是()A .B .C .D .4.下列事件中,为必然事件的是()A .等腰三角形的三条边都相等;B .经过任意三点,可以画一个圆;C .在同圆或等圆中,相等的圆心角所对的弧相等;D .任意画一个三角形,其内角和为360°.5.在下列方程中,有一个方程有两个实数根,且它们互为相反数,这个方程是()A .x +2=0B .x 2-x =0C .x 2-4=0D .x 2+4=06.如图,四边形ABCD 内接于⊙O ,若∠A =60°,⊙O 的半径为3,则的长为()A .πB .2πC.3πD .6π7.如图,在正方形网格中,A ,B 两点在格点上,线段AB 绕某一点逆时针旋转一定角度后得到线段A'B',点A'与点A 对应,其旋转中心是()A .点B B .点GC .点ED .点F8.某种幼树在相同条件下进行移植试验,结果如下:移植总数n 400750150035007000900014000成活数m 364651133031746324807312620成活的频率0.9100.8680.8870.9070.9030.8970.901下列说法正确的是()A .由于移植总数最大时成活的频率是0.901,所以这种条件下幼树成活的概率为0.901;B .由于表格中成活的频率的平均数约为0.90,所以这种条件下幼树成活的概率为0.90;C .由于表格中移植总数为1500时成活数为1330,所以移植总数3000时成活数为2660;D .由于随着移植总数的增大,幼树移植成活的频率越来越稳定在0.90左右,所以估计幼树成活的概率为0.90.二、填空题(本题共16分,每小题2分)9.若关于x 的方程(k +3)x 2-6x +9=0是一元二次方程,则k 的取值范围是.10.将抛物线y=x 2向下平移1个单位长度,再向右平移2个单位长度后,得到抛物线的解析式为.11.用配方法解一元二次方程x 2-4x =1时,将原方程配方成(x -2)2=k 的形式,则k 的值为.12.如图,AB 、AC 为⊙O 的切线,B 、C 为切点,连接OC 并延长到D ,使CD =OC ,连接AD .若∠BAD =75°,则∠AOC 的度数为.mnB D13.若点A (-2,y1),B (-1,y 2),C (3,y 3)三点都在二次函数y =-3x 2的图象上,则y 1、y 2、y 3的大小关系是(按从小到大的顺序,用“<”连接).14.请写出一个常数a 的值,使得二次函数y =x 2+4x +a 的图象与x 轴没有交点,则a 的值可以是.15.如图,正六边形ABCDEF 内接于⊙O ,若⊙O 的半径为4,则正六边形ABCDEF 的面积为_________.16.在平面直角坐标系xOy 中,点A 、点B 的位置如图所示,抛物线y =ax 2-2ax 经过A 、B 两点,下列四个结论中:①抛物线的开口向上②抛物线的对称轴是x =1③A 、B 两点位于对称轴异侧④抛物线的顶点在第四象限所有不.正确..结论的序号是.三、解答题(本题共68分,其中17-22每题5分,23-26每题6分,27、28题每题7分)17.解方程:x 2+8x -20=0.18.下面是小宁设计的“作平行四边形的高”的尺规作图过程.已知:平行四边形ABCD .求作:AE ⊥BC ,垂足为E .作法:如图所示,①连接AC ,分别以点A 和点C 为圆心,大于的长为半径作弧,两弧相交于P ,Q 两点;②作直线PQ ,交AC 于点O ;③以点O 为圆心,OA 长为半径作圆,交线段BC 于点E (点E 不与点C 重合),连接AE .所以线段AE 就是所求作的高.12AC根据小宁设计的尺规作图过程,解决问题:(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AP=CP,AQ=,∴点P、Q都在线段AC的垂直平分线上,∴直线PQ为线段AC的垂直平分线,∴O为AC中点.∵AC为直径,⊙O与线段BC交于点E,∴∠AEC=°.()(填推理的依据)∴AE⊥BC.19.已知:二次函数y=x2+bx-3的图象经过点A(2,5).(1)求二次函数的解析式;(2)求该函数的顶点坐标.20.二十四节气是中华民族农耕文明的智慧结晶,是专属中国人的独特时间美学,被国际气象界誉为“中国第五大发明”.如图,小文购买了四张形状、大小、质地均相同的“二十四节气”主题邮票,正面分别印有“立春”“立夏”“秋分”“大暑”四种不同的图案,背面完全相同,他将四张邮票洗匀后正面朝下放在桌面上.(1)小文从中随机抽取一张,抽出的邮票恰好是“大暑”的概率是___________;(2)若印有“立春”“立夏”“秋分”“大暑”四种不同图案的邮票分别用A,B,C,D 表示,小文从中随机抽取一张(不放回),再从中随机抽取一张,请用画树状图或列表的方法求小文抽到的两张邮票恰好是“立春”和“立夏”的概率.21.2023年10月,第三届“一带一路”国际合作高峰论坛在北京召开,回顾了十年来共建“一带一路”取得的丰硕成果.为促进经济繁荣,某市大力推动贸易发展,2021年进出口贸易总额为60000亿元,2023年进出口贸易总额为86400亿元.若该市这两年进出口贸易总额的年平均增长率相同,求这两年该市进出口贸易总额的年平均增长率.22.玉环为我国的传统玉器,通常为正中带圆孔的扁圆形器物.据《尔雅·释器》记载:“肉好若一,谓之环”,其中“肉”指玉质部分(边),“好”指中央的孔.结合图1,“肉好若一”的含义可以表示为:中孔直径d=2h.图2是一枚破损的汉代玉环,为修复原貌,需推算出该玉环的孔径尺寸.如图3,文物修复专家将破损玉环的外围边缘表示为弧AB,设弧AB所在圆的圆心为O,测得弧所对的弦长AB为6cm,半径OC⊥AB于点D,测得CD=1cm,连接OB,求该玉环的中孔半径的长.图1图2图323.已知关于x的一元二次方程x2-5x+m=0(m<0).(1)判断方程根的情况,并说明理由;(2)若方程的一个根为6,求m的值和方程的另一个根.24.如图,⊙O是△ABC的外接圆,∠ABC=45°,连接OC交AB于点E,过点A作OC的平行线交BC延长线于点D.(1)求证:AD是⊙O的切线;(2)若⊙O的半径为4,AD=6,求线段CD的长.25.某景观公园计划修建一个人工喷泉,从垂直于地面的喷水枪喷出的水流路径可以看作是抛物线的一部分.记喷出的水流距喷水枪的水平距离为x m,距地面的竖直高度为y m,获得数据如下:x(米)00.5 2.0 3.55y(米) 1.67 2.25 3.00 2.250小华根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小华的探究过程,请补充完整:(1)在平面直角坐标系xOy中,描出以表中各对对应值为坐标的点,并用平滑的曲线画出该函数的图象;(2)直接写出水流最高点距离地面的高度为米;(3)求该抛物线的表达式,并写出自变量的取值范围;(4)结合函数图象,解决问题:该景观公园准备在距喷水枪水平距离3m处修建一个大理石雕塑,使喷水枪喷出的水流刚好落在雕塑顶端,则大理石雕塑的高度约为m(结果精确到0.1m).26.在平面直角坐标系xOy中,点(2,m)和(5,n)在抛物线y=x2+2bx上,设抛物线的对称轴为x=t.(1)若m=0,求b的值;(2)若mn<0,求该抛物线的对称轴t的取值范围.27.如图,在Rt△ABC中,∠ACB=90°,AC=BC.点D为AB边上的一点,将线段CD绕点C逆时针旋转90°得到线段CE,连接AE、BE.(1)依据题意,补全图形;(2)直接写出∠ACE+∠BCD的度数;(3)若点F为BD中点,连接CF交AE于点P,用等式表示线段AE与CF之间的数量关系,并证明.28.在平面直角坐标系xOy中,已知⊙O的半径为1,点A的坐标为(-1,0).点B是⊙O上的一个动点(点B不与点A重合).若点P在射线AB上,且AP=2AB,则称点P 是点A关于⊙O的2倍关联点.(1)若点P是点A关于⊙O的2倍关联点,且点P在x轴上,则点P的坐标为_______;(2)直线l经过点A,与y轴交于点C,∠CAO=30°.点D在直线l上,且点D是点A关于⊙O的2倍关联点,求D点的坐标;(3)直线y=x+b与x轴交于点M,与y轴交于点N,若线段MN上存在点A关于⊙O的2倍关联点,直接写出b的取值范围.北京市密云区2023-2024学年第一学期期末考试九年级数学试卷参考答案及评分标准2024.1一、选择题(本题共16分,每小题2分)题号12345678选项D A B C C B C D二、填空题(本题共16分,每小题2分)9.k≠-3;10.y=(x-2)2-1;11.k=5;12.65°;13.y3<y1<y2;14.6;(答案不唯一,大于4均可)15.16.①④.三、解答题(本题共68分.其中17~22题每题5分,23~26题每题6分,27、28题每题7分)说明:与参考答案不同,但解答正确相应给分.17.解:x2+8x-20=0(x+10)(x-2)=0………………………………2分∴x+10=0或x-2=0………………………………3分∴x=-10或x=2………………………………4分∴x1=-10,x2=2………………………………5分18.(1)………………………………2分(2)CQ………………………………3分90°,直径所对的圆周角是直角.………………………………5分19.(1)解:将点A(2,5)代入y=x2+bx-3解析式4+2b-3=5………………………………1分2b=4b=2………………………………2分∴二次函数的解析式为y=x2+2x-3………………………………3分(2)解:y=x2+2x-3=(x+1)2-4………………………………4分∴该函数的顶点坐标是(-1,-4)………………………………5分20.(1)14………………………………1分(2)根据题意,可以画出如下树状图:………………………………3分由树状图可知,所有可能出现的结果共有12种,即AB,AC,AD,BA,BC,BD,CA,CB,CD,DA,DB,DC,并且它们出现的可能性相等.其中,恰好抽到的两张邮票是“立春”和“立夏”(记为事件A)的结果有2种,即AB或BA.………………………………4分∴()21 126P A==.………………………………5分21.解:设这两年该市进出口贸易总额的年平均增长率为x,则:………………………………1分60000(1+x)2=86400………………………………2分(1+x)2=36251+x=65±解得:x1=0.2,x2=-2.2………………………………4分经检验:x=-2.2不符实际意义,舍去∴x=0.2=20%答:这两年该市进出口贸易总额的年平均增长率为20%.………………………………5分22.解:∵OC是⊙O的半径,且OC⊥AB∴AD=BD∵AB=6∴BD=3………………………………1分设⊙O的半径为x,则OC=OB=x∵CD=1∴OD=x-1………………………………2分在Rt△ODB中∵OD2+BD2=OB2∴(x-1)2+32=x2………………………………3分x=5∴OB=5………………………………4分∵玉环的中孔直径d=2h∴玉环的中孔半径为2.5cm.………………………………5分23.(1)该方程有两个不相等的实数根,理由如下:………………………………1分解:△=(-5)2-4m………………………………2分=25-4m∵m<0∴-4m>0∴25-4m>0即△>0………………………………3分∴方程有两个不相等的实数根(2)解:将x=6代入原方程∴36-30+m=0∴m=-6………………………………4分原方程为x2-5x-6=0(x-6)(x+1)=0解得:x1=6,x2=-1………………………………5分∴方程的另一个根为-1.………………………………6分24.(1)证明:连接OA………………………………1分∵⊙O是△ABC的外接圆,且∠ABC=45°∴∠AOC=90°………………………………2分∵OC//AD∴∠AOC+∠OAD=180°∴∠OAD=90°∴AD是⊙O的切线………………………………3分(2)解:过点C作CF⊥AD于点F,∴∠AFC=90°∴∠AOC=∠OAD=∠AFC=90°∴四边形AOCF是矩形∵OC=OA∴矩形AOCF是正方形∵⊙O的半径为4∴AF=CF=OC=4………………………………4分∵AD=6∴FD=AD-AF=2………………………………5分在Rt△CFD中CD==∴线段CD的长为………………………………6分25.(1)………………………………1分(2)3;………………………………2分(3)解:设y=a(x-2)2+3(a<0)………………………………3分∵将(5,0)代入函数表达式,则9a+3=0a=∴………………………………4分自变量的取值范围为:0≤x≤5.………………………………5分(4)2.7m(误差均可)………………………………6分26.(1)解:当m=0时,将(2,0)代入y=x2+2bx∴4+4b=0………………………………1分4b=-4∴b=-1………………………………2分(2)解:由题意,抛物线经过点(2,m)和(5,n)∵a>0∴抛物线开口向上,且经过坐标原点(0,0)如果t≤0,那么当x≥t时,y随x的增大而增大∴m>0,n>0,与mn<0不符,舍去如果t≥5,那么当x≤t时,y随x的增大而减小∴m<0,n<0,与mn<0不符,舍去∴0<t<5∵mn<0∴函数图象示意图为:图1图213-21(2)33y x=--+0.1±由图1,当0<t <2时作(0,0)关于x=t 的对称点(x 0,0)∵抛物线为轴对称图形∴点(x 0,0)在抛物线上∴x 0=2t∵a >0∴x ≥t 时,y 随x 的增大而增大∵m <0<n ∴2<2t <5………………………………3分∴512t <<∴12t <<………………………………4分由图2,当2≤t <5时作(5,n )关于x=t 的对称点(x 1,n )∵抛物线为轴对称图形∴点(x 1,n )在抛物线上∴x 1=2t -5∵a >0∴x ≤t 时,y 随x 的增大而减小∵m <0<n ∴2t -5<0<2………………………………5分其中0<2恒成立,解2t -5<0得t <52∴522t ≤<综上所述,512t <<………………………………6分27.(1)………………………………1分(2)∠ACE+∠BCD=180°………………………………2分(3)AE与CF之间的数量关系为:AE=2CF………………………………3分证明:延长CF至H,使FH=CF∵点F为BD中点∴DF=BF∵∠DFH=∠CFB∴△DFH≅△CFB………………………………4分∴DH=BC,∠H=∠BCF∵AC=BC∴DH=AC∵∠H=∠BCF∴DH//BC∴∠DCB+∠CDH=180°∵∠DCB+∠ACE=180°∴∠CDH=∠ACE………………………………5分∵CD=CE∴△CDH≅△ECA………………………………6分∴CH=AE∵CH=2CF∴AE=2CF………………………………7分28.(1)(3,0)………………………………1分(2)解:当直线l 与y 轴正半轴交于点C 时∵点D 在直线l 上,且点D 是点A 关于⊙O 的2倍关联点,∴直线l 与⊙O 的另一个交点为点B ,点D 在射线AB 上,满足AD =2AB 过点O 作OE ⊥AB ∴AB =2AE………………………………2分在Rt △AOE 中,∠CAO =30°,OA=1∴OE =12∴2AE ==∴AB =2∵AD =2AB∴AD =………………………………3分过点D 作DF ⊥x 轴,交x 轴于点F ∵在Rt △AOE 中,∠CAO =30°∴DF ,3AF ==∴OF =2∴D (2)………………………………4分同理可证,当直线l 与y 轴负半轴交于点C 时,D (2,……………………5分综上所述,D 点坐标为(2,)或(2,)(3)1b -≤≤或11b <≤………………………………7分。
人教版九年级数学期末考试综合复习测试题(含答案)
人教版九年级数学期末考试综合复习测试题(含答案)一.选择题(共10小题,每小题3分,共30分)1.计算,3(2)a -结果正确的是( )A .32a -B .36a -C .38a -D .38a2.据教育部统计,2022年高校毕业生约1076万人,用科学记数法表示1076万为( )A .4107610⨯B .61.07610⨯C .71.07610⨯D .80.107610⨯3.下列汽车标志中,是中心对称图形的是( ) A . B . C . D .4.如图所示,直线//EF GH ,射线AC 分别交直线EF 、GH 于点B 和点C ,AD EF ⊥于点D ,如果20A ∠=︒,则(ACH ∠= )A .160︒B .110︒C .100︒D .70︒5.如图,已知ABC ADE ∆≅∆,若70E ∠=︒,30D ∠=︒,则BAC ∠的度数是( )A .70︒B .80︒C .40︒D .30︒6.方程2210x x --=实数根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .不能确定7.在平面直角坐标系中,若点(1,)A a b -+与点(,3)B a b -关于原点对称,则点(,)C a b 在( )A .第一象限B .第二象限C .第三象限D .第四象限8.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与ABC ∆相似的是( )A .B .C .D .9.已知正比例函数11(0)y k x k =≠的图象与反比例函数22(0)k y k x =≠的图象交于A ,B 两点,其中点A 在第二象限,横坐标为2-,另一交点B 的纵坐标为1-,则12(k k ⋅= )A .4B .4-C .1-D .110.已知(3,2)A --,(1,2)B -,抛物线2(0)y ax bx c a =++>顶点在线段AB 上运动,形状保持不变,与x 轴交于C ,D 两点(C 在D 的右侧),下列结论:①2c -;②当0x >时,一定有y 随x 的增大而增大;③若点D 横坐标的最小值为5-,则点C 横坐标的最大值为3;④当四边形ABCD 为平行四边形时,12a =. 其中正确的是( )A .①③B .②③C .①④D .①③④二.填空题(共5小题,每小题3分,共15分)11.因式分解:22416x y -= . 12.若2|2|(3)0x y -++=,则2()x y += .13.已知m ,()n m n ≠是一元二次方程220230x x +-=的两个实数根,则代数式22m m n ++的值为 .14.如图,A ,B ,C ,D 是O 上的四点,且点B 是AC 的中点,BD 交OC 于点E ,60OED ∠=︒,35OCD ∠=︒,那么AOC ∠的度数是 .15.如图,E 为正方形ABCD 内一点,5AD =,4AE =,将ADE ∆绕点A 顺时针旋转90︒到ABE ∆',则边DE 所扫过的区域(图中阴影部分)的面积为 .题14图 题15图三.解答题(一)(共3小题,每小题8分,共24分)16.(1)计算:0111(2021)()2cos45221π--++-︒+; (2)先化简,再求值:23210(1)19x x x x --⋅---,其中x 是1、2、3中的一个合适的数.17.如图,DE AB ⊥于E ,DF AC ⊥于F ,若BD CD =,BE CF =.求证:(1)AD 平分BAC ∠;(2)2AC AB BE =+.18.今年,我市某学校举办了为贫困生捐赠书包活动.该学校用2000元在某商店购进一批学生书包,随后发现书包数量不够,于是又购进第二批同样的书包,所购数量是第一批的3倍,每个书包比第一批购买时贵了4元,结果第二批用了6300元.(1)该学校第一批购进的学生书包每个多少元?(2)如果该商店第一批、第二批学生书包每个的进价分别是68元、70元,售给该学校的这些学生书包,该商店盈利多少元?四.解答题(二)(共3小题,每小题9分,共27分)19.某银行柜台在储户人数较多时常开放1、2、3、4号窗口办理日常业务,一般是先到取号机拿号,按顾客“先到达,先服务“的方式服务(1)求某储户在3号窗口办业务的概率是(2)储户乙取号时发现储户甲已办理完业务准备离开(储户甲、乙先后到达银行取号办理业务),请用树状图或列表法求储户甲、乙两人在同一柜台办理业务的概率.20.如图,在平行四边形ABCD 中,BD AB ⊥,延长AB 至点E ,使BE AB =,连接EC .(1)求证:四边形BECD 是矩形.(2)连接AC ,若3AD =,2CD =,求AC 的长.21.Rt ABO ∆的顶点A 是双曲线k y x =与直线(1)y x k =--+在第二象限的交点,AB 垂直x 轴于点B 且32ABO S ∆=. (1)求这两个函数解析式;(2)求AOC ∆的面积;(3)根据图象直接写出不等式(1)k x k x >-+的解集.五.解答题(三)(共2小题,每小题12分,共24分)22.如图,AB 是⊙O 的直径,C 、D 是⊙O 上两点,连接CD ,C 是的中点,过点C 作AD 的垂线,垂足是E .连接AC 交BD 于点F .(1)求证:CE 是⊙O 的切线;(2)求证:△CDF ∽△CAD ;(3)若DF =2,CD =,求AC 值.23.如图,在平面直角坐标系中,抛物线21y ax bx =++交y 轴于点A ,交x 轴正半轴于点(4,0)B ,交直线AD 于点5(3,)2D ,过点D 作DC x ⊥轴于点C . (1)求抛物线的解析式;(2)点P 为x 轴正半轴上一动点,过点P 作PN x ⊥轴交直线AD 于点M ,交抛物线于点N ;若点P 在线段OC 上(不与O 、C 重合),连接CM ,求PCM ∆面积的最大值。
陕西省西安市交通大学附属中学2023-2024学年九年级上学期期末数学试题(含解析)
A .B . . . 2.我们常常在建筑中看到四边形的元素.如图,墙面上砌出的菱形窗户的边长为框宽度忽略不计),其中较小的内角为A .4B .3.一元二次方程的根的情况为(A .有两个不相等的实数根D .无法确定3223210x x --=A .25.如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.已知正三角形的边长为A .B .13A .10.点在二次函数A .最大值二.填空题(本大题共14.如图,在矩形段上移动,并与意一点,连接90︒(),A m n 4-ABCD EF EF ,AN CM三.解答题(本大题共1115.计算:(1);(2)18.已知:如图,点为对角线点,.求证:.19.为贯彻落实党的二十大精神,全面建设社会主义现代化国家、兴,某校团委举办以“无悔青春献祖国,接力奋斗新时代赛,九年级(2)班的王伟和孙莉两人文采相当,且都想代表班级参赛,于是班长制作了()0π3128-+--2cos30tan60sin45cos45︒-︒+︒O ABCD Y E F DE BF =21.西安丰庆公园是现代生态景观与历史文化景观融为一体的皇家园林,园内的最高建筑.某数学活动小组想测量怡心阁的高度心阁的高度:小明沿后退到F 恰好看到标杆顶端22.类比一次函数的研究思路,九年级“励志”行探究.下面是他们的探究过程,请补充完整:(1)列表:下表是与的几组对应值,则的值为01654210BD x y m x ⋅⋅⋅5-4-3-2-1-y ⋅⋅⋅m(3)函数的图象和直线的交点坐标是______.23.如图,四边形是的内接四边形,为直径,点为弧的中点,延长交于点,为的切线.(1)求证:;(2)若,求的长.24.如图,在平面直角坐标系中,点的坐标为,连接,将线段绕着点逆时针旋转,点的对应点为点.(1)求经过三点的抛物线的表达式;(2)将抛物线沿着轴平移到抛物线,在抛物线上是否存在点,使得以为顶点的四边形为正方形,若存在,求平移的方式.若不存在,说明理由.|1|y x =-2y =ABCD O e BD D AC AD BC 、E DF O e CDF EDF ∠=∠2DF EF ==AD A ()4,2OA OA O 90︒A B ,,B O A L L x L 'L 'D ,,,B O A D图2图3【详解】解:观察图形可得,其主视图是3.A【分析】本题考查了根的判别式,根据题意算出根的判别式即可得;掌握根的判别式即可得.【详解】解:,23210x x --=在Rt ACD中,tan C故选B.【点睛】本题考查了锐角三角比的意义.将角转化到直角三角形中是解答的关键.7.C【分析】根据二次函数的性质判断出【详解】解:∵抛物线开口向下,∴a<0,9.B【分析】本题主要考查了同弧所对的圆周角相等,∠的圆周角相等得到ADC=【点睛】本题主要考查了等边三角形的性质,每个内角都相等.13.48【分析】本题考查了反比例函数与几何的综合.1求得相似比为,利用相似比求得∵平行于轴,∴轴,∴,∵,∴,AC x BAC ∠BD x ⊥BAC BDO ∽△△2OC BC =13BC BA BO BD ==18.详见解析【分析】根据平行四边形的性质得出,再证明线段的差得出,即可得出结论.【详解】证明:∵四边形是平行四边形,OEA OFC ∠=∠AOE ≌△△AD AE BC CF -=-ABCD依题意,∴,∵,∴,∴,设,2, 1.5,EM FD MD EF MN ====3 1.5 1.5CM CD MD =-=-=CM AN ∥CME ANE V V ∽CM EM AN EN=AN x =;(3)解:把代入中得:,解得:或,∴函数的图象和直线的交点坐标是:23.(1)见详解(2)【分析】(1)由“直径所对的圆周角等于”和圆周角定理可得2y =|1|y x =-|1|2x -==1x -3x =|1|y x =-2y =390︒设与交于点,∵是等腰直角三角形,AB OD M (),D m n BOA △(2)如图所示,连接AC、(3)如图所示,过点D作DH⊥。
2024年北京东城区初三上学期期末考数学试卷和答案
东城区2023—2024学年第一学期期末统一检测初三数学2024.1一、选择题(每题2分,共16分)1.下列四个交通标志图案中,是中心对称图形的是2.若3x =是关于x 的方程22=0x x m --的一个根,则m 的值是A .-15B .-3C .3D .153.关于二次函数22(1)2y x =-+,下列说法正确的是A .当x =1时,有最小值为2B .当x =1时,有最大值为2C .当x =-1时,有最小值为2D .当x =-1时,有最大值为24.在下列事件中,随机事件是A .投掷一枚质地均匀的骰子,向上一面的点数不超过6B .从装满红球的袋子中随机摸出一个球,是白球C .通常情况下,自来水在10℃结冰D .投掷一枚质地均匀的骰子,向上一面的点数为25.如图,正方形ABCD 的边长为6,且顶点A ,B ,C ,D 都在⊙O 上,则⊙O 的半径为A.3B.6C.32D.626.北京2022年冬奥会以后,冰雪运动的热度持续.某地雪场第一周接待游客7000人,第三周接待游客8470人.设该地雪场游客人数的周平均增长率为x ,根据题意,下面所列方程正确的是A .27000(1)8470x +=B .270008470x =C .7000(1+2)8470x =D .37000(1)8470x +=7.如图,某汽车车门的底边长为1m ,车门侧开后的最大角度为72°.若将一扇车门侧开,则这扇车门底边扫过区域的最大面积是A .2πm 10B .2πm5C .22πm5D .24πm58.⊙O 是△ABC 的内切圆,与AB ,BC ,AC 分别相切于点D ,E ,F .若⊙O 的半径为2,△ABC 的周长为26,则△ABC 的面积为A.3B.24C.26D.52二、填空题(每题2分,共16分)9.把抛物线22y x =向下平移3个单位长度,所得到的抛物线的解析式为.10.若一元二次方程261=0x x +-经过配方,变形为()23x n +=的形式,则n 的值为.11.为了解某小麦品种的发芽率,某农业合作小组在相同条件下对该小麦做发芽试验,试验数据如下表:种子个数n 550100200500100020003000发芽种子个数m 4449218947695118982851发芽种子频率m n0.8000.8800.9200.9450.9520.9510.9490.950(1)估计该品种小麦在相同条件下发芽的概率为(结果保留两位小数);(2)若在相同条件下播种该品种小麦种子10000个,则约有个能发芽.12.在平面直角坐标系xOy 中,已知点A 的坐标为(1,2),点B 与点A 关于原点对称,则点B 的坐标为_____________.13.已知二次函数2+8+3y x x =-,当x >m 时,y 随x 的增大而减小,则m 的值可以是____________(写出一个即可).14.如图,A ,B ,C 是⊙O 上的三个点,若∠ACB=40°,则∠OBA 的大小是_____________°.15.如图1,一名男生推铅球,铅球的运动路线近似是抛物线的一部分.铅球出手位置的高度为35m,当铅球行进的水平距离为4m 时,高度达到最大值3m.铅球的行进高度y (单位:m)与水平距离x (单位:m)之间的关系满足二次函数.若以最高点为原点,过原点的水平直线为x 轴,建立如图2所示的平面直角坐标系xOy ,则该二次函数的解析式为2121x y -=.若以过出手点且与地面垂直的直线为y 轴,y 轴与地面的交点为原点,建立如图3所示的平面直角坐标系xOy ,则该二次函数的解析式为.16.某单位承担了一项施工任务,完成该任务共需A ,B ,C ,D ,E ,F ,G 七道工序.施工要求如下:①先完成工序A ,B ,C ,再完成工序D ,E ,F ,最后完成工序G ;②完成工序A 后方可进行工序B ;工序C 可与工序A ,B 同时进行;③完成工序D 后方可进行工序E ;工序F 可与工序D ,E 同时进行;④完成各道工序所需时间如下表所示:工序A B C D E F G 所需时间/天11152817163125(1)在不考虑其它因素的前提下,该施工任务最少_____________天完成.(2)现因情况有变,需将工期缩短到80天.工序A ,C ,D 每缩短1天需增加的投入分别为5万元,4万元,6万元,其余工序所需时间不可缩短,则所增加的投入最少是_____________万元.三、解答题(共68分,17-21题,每题5分,22题6分,第23题5分,第24-26题,每题6分,27-28题,每题7分)17.解方程:()()3121x x x +=+.18.如图,在Rt △ACB 中,∠C =90°.求作:⊙O ,使得△ACB 的三个顶点都在⊙O 上.作法:①作边AB 的垂直平分线,交AB 于点O ;②以点O 为圆心,OA 长为半径作圆.则⊙O 为所求作的圆.(1)利用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接OC .由作图可知,OB =OA=12AB .∴点B 在⊙O 上.在Rt △ACB 中,∠ACB =90°,∴OC =12________()(填推理依据).∴OC =OA .∴点C 在⊙O 上.∴△ACB 的三个顶点都在⊙O 上.19.在平面直角坐标系xOy 中,二次函数2y x bx =+的图象过点A (3,3).(1)求该二次函数的解析式;(2)用描点法画出该二次函数的图象;(3)当0x <<3时,对于x 的每一个值,都有2kx x bx +>,直接写出k 的取值范围.20.某班开展“讲数学家故事”的活动.下面是印有四位中国数学家纪念邮票图案的卡片A,B,C,D,卡片除图案外其它均相同.将四张卡片背面朝上,洗匀后放在桌面上,小明同学从中随机抽取两张,讲述卡片上数学家的故事.(1)请写出小明抽到的两张卡片所有可能出现的结果;(2)求小明抽到的两张卡片中恰好有数学家华罗庚邮票图案的概率.21.如图,AB 是⊙O 的弦,半径OD ⊥AB 于点C .若AB =16,CD =2,求⊙O 的半径的长.22.已知关于x 的一元二次方程()222120x m x m -++-=(1)当该方程有两个不相等的实数根时,求m 的取值范围;(2)当该方程的两个实数根互为相反数时,求m 的值.23.如图,在边长均为1个单位长度的小正方形组成的网格中,O ,B 为格点(每个小正方形的顶点叫做格点),OA =3,OB =4,且∠AOB=150°.线段OA 关于直线OB 对称的线段为O A ',将线段OB 绕点O 逆时针旋转45︒得到线段OB '.(1)画出线段O A ',OB ';(2)将线段OB 绕点O 逆时针旋转角()4590αα︒<<︒得到线段OC ',连接A C ''.若=5A C '',求∠B OC ''的度数.24.如图,AB 为⊙O 的直径,点C 在⊙O 上,∠ACB 的平分线CD 交⊙O 于点D.过点D 作DE ∥AB ,交CB 的延长线于点E .(1)求证:直线DE 是⊙O 的切线;(2)若∠BAC =30°,22BC =,求CD 的长.25.食用果蔬前,适当浸泡可降低农药的残留.某小组针对同种果蔬研究了不同浸泡方式对某种农药去除率的影响.方式一:采用清水浸泡.记浸泡时间为t分钟,农药的去除率为y1%,部分实验数据记录如下:方式二:采用不同浓度的食用碱溶液浸泡相同时间.记食用碱溶液的浓度为x%,农药的去除率为y2%,部分实验数据记录如下:结合实验数据和结果,解决下列问题:(1)通过分析以上实验数据,发现可以用函数刻画方式一中农药的去除率y1(%)与浸泡时间t(分)之间的关系,方式二中农药的去除率y2(%)与食用碱溶液的浓度x(%)之间的关系,请分别在下面的平面直角坐标系中画出这两个函数的图象:(2)利用方式一的函数关系可以推断,降低该种农药残留的最佳浸泡时间约为__________分钟.(3)方式一和方式二的函数关系可以推断,用食用碱溶液浸泡含该种农药的这种果蔬时,要想不低于清水浸泡的最大去除率,食用碱溶液的浓度x %中,x 的取值范围可以是_____________.26.在平面直角坐标系xOy 中,点(2,c )在抛物线2(0)y ax bx c a =++>上,设该抛物线的对称轴为直线x t =.(1)求t 的值;(2)已知11()M x y ,,22()N x y ,是该抛物线上的任意两点,对于11m x m <<+,212m x m +<<+,都有12y y <,求m 的取值范围.27.在△ABC 中,AB =AC ,∠BAC =120°,D 为BC 上一点,连接DA ,将线段DA 绕点D 顺时针旋转60°得到线段DE .(1)如图1,当点D 与点B 重合时,连接AE ,交BC 于点H ,求证:AE ⊥BC ;(2)当BD ≠CD 时(图2中BD <CD ,图3中BD >CD ),F 为线段AC 的中点,连接EF .在图2,图3中任选一种情况,完成下列问题:①依题意,补全图形;②猜想∠AFE 的大小,并证明.28.在平面直角坐标系xOy 中,已知点P 和直线1l ,2l ,点P 关于直线1l ,2l “和距离”的定义如下:若点P 到直线1l ,2l 的距离分别为1d ,2d ,则称1d +2d 为点P 关于直线1l ,2l 的“和距离”,记作d .特别地,当点P 在直线1l 上时,1d =0;当点P 在直线2l 上时,2d =0.(1)在点1P (3,0),2P (-1,2),3P (4,-1)中,关于x 轴和y 轴的“和距离”为3的点是________;(2)若P 是直线3y x =-+上的动点,则点P 关于x 轴和y 轴的“和距离”d 的最小值为________;(3)已知点A (0,3),⊙A 的半径为1,点P 是⊙A 上的动点,直接写出点P 关于x 轴和直线y +6的“和距离”d 的取值范围.东城区2023—2024学年度第一学期期末统一检测初三数学参考答案及评分标准2024.1一、选择题(每题2分,共16分)题号12345678答案BCADCABC二、填空题(每题2分,共16分)9.223y x =-10.1011.0.95950012.(-1,-2)13.答案不唯一,m ≥4即可14.5015.21251233y x x =-++16.86,38三、解答题(共68分,17-21题,每题5分,22题6分,第23题5分,第24-26题,每题6分,27-28题,每题7分)17.解:移项,得()()31210.x x x +-+=因式分解,得()()1320.x x +-=……………………………..1分于是得10x +=,或320.x -=……………………………..3分所以方程的两个根分别为1=-1x ,22.3x =……………………………..5分18.解:(1)作图如下,------------------------3分(2)AB直角三角形斜边上的中线等于斜边的一半.------------------------5分19.解:(1)∵点A (3,3)在抛物线二次函数2y x bx =+的图象上,∴2333b =+.解得2b =-.∴二次函数的解析式为22y x x =-.------------------------2分(2)列表:x …-10123…y…3-13…描点,连线------------------------4分(3)当k ≥1.------------------------5分20.解:(1)所有可能出现的结果共6种:AB ,AC ,AD ,BC ,BD ,CD .…………3分(2)记抽到的2张卡片中恰好有数学家华罗庚邮票图案为事件M ,M 包含的结果有3种,即AC ,BC ,CD ,且6种可能的结果出现的可能性相等,所以()31==62P M …………5分21.解:连接OA .∵半径OD ⊥AB 于点C ,AB =16,∴∠ACO =90°,AC =12AB =8,………2分设OA =r ,则OC =2r -.在Rt △AOC 中,根据勾股定理,得222OA AC OC =+,即2228(2)r r =+-.………4分解得17r =.∴⊙O 的半径的长17.………5分22.解:(1)∵关于x 的一元二次方程22(21)20x m x m -++-=有两个不相等的实数根,∴[]()2222=(21)4244148490m m m m m m ∆-+--=++-+=+> (2)分解得94m >-.∴m 的取值范围是94m >-.………..3分(2)由(1)可知,49m ∆=+.由求根公式,得()1212m x +=,()2212m x +=.………..5分∵该方程的两个实数根互为相反数,∴12+0x x =.∴()()2121+21022m m m +++=+=.解得1=2m -,符合题意.∴当方程的两个实数根互为相反数时,1=2m -.………..6分23.解:(1)如图.……………….2分(2)如图,在△A OC ''中,==3OA OA ',==4OC OB ',=5A C '',∴222=A C OA OC ''''+.∴△A OC ''是直角三角形.∴=90.A OC ''︒∠………………..3分∵∠AOB =150°,OA OA OB '与关于直线对称,∴=150.A OB '︒∠………………..4分∴=60C OB '︒∠,即=60α︒.∴=604515B OC C OB B OB '''''-=︒-︒=︒∠∠∠.………………..5分24.(1)证明:如图1,连接OD .∵AB 是⊙O 的直径,∴∠ACB=90°.∵CD 平分∠ACB ,∴∠ACD =∠BCD=45°.---------------1分∴∠ABD =∠ACD=45°.∵OD =OB ,∴∠ODB =∠OBD =45°.--------------2分∵DE ∥AB ,∴∠BDE =∠OBD =45°.∴∠ODE =∠ODB+∠BDE=90°.∴OD ⊥DE .∵OD 为⊙O 的半径,∴直线DE 是⊙O 的切线.------------------3分(3)如图2,过点B 作BF ⊥CD 于点F .∴∠BFC =∠BFD =90°.∵∠BCD =45°.∴∠CBF =45°.图1∴BF CF =.------------------4分在Rt △BFC 中,BC =根据勾股定理,得=2BF CF =.∵ BCBC =,∴∠CDB =∠BAC =30°.------------------5分∴2=4.BD BF =在Rt △BFD 中,根据勾股定理,得DF∴CD CF DF =+------------------6分25.解:(1)画图如下,---------------------------------------------------------------------2分(2)10-------------------------------------------4分(3)答案不唯一,如7x ≤≤12.---------------------------6分26.解:(1)由题意可知,42a b c c ++=,∴2b a =-.∴12bt a=-=.---------------------------2分(2)∵0a >,1t =,∴当1x >时,y 随x 的增大而增大,当1x <,时y 随x 的增大而减小.---------------------------3分①当1m ≥时,∵11m x m <<+,212m x m +<<+,∴121x x <<.∴12y y <,符合题意.---------------------------4分②当112m <≤时,有3122m +<,(i )当111x m <+≤时,∵212m x m +<<+,∴121x x <≤.∴12y y <.(ii )当11m x <<时,设11()M x y ,关于抛物线对称轴1x =的对称点为01()M 'x y ,,则01x >,011=1x x --.∴012x x =-.∵112m <≤,∴0312x <<.∵3122m +≤<,212m x m ++<<∴232x >.∴02312x x <<<.∴12y y <.∴当112m <≤时,符合题意.---------------------------5分③当102m <≤时,3112m +<≤,令11=2x ,23=2x ,则12=y y ,不符合题意.④当102m -<≤时,有1112m +<≤,令1=0x ,2=1x ,则12=1x x <,∴.12>y y ,不符合题意.⑤当112m -<-≤时,1012m +<≤,令11=2x -,2=1x ,则12=1x x <,∴.12>y y ,不符合题意.⑥当1m <-时,1221x x m <<+<,∴.12>y y ,不符合题意.综上所述,m的取值范围是12m ≥.---------------------------6分27.(1)证明:∵AB =AC ,∠BAC =120°,∴∠ABC =∠C =30°.将线段DA 绕点D 顺时针旋转60°得到线段DE ,∴DE =DA ,∠ADE =60°.∴△ADE 是等边三角形.∴∠BAE =60°.∴∠AHB =90°.∴BC ⊥AE.………..3分(2)解:选择图2:①补全图形如图所示:………..4分②猜想∠AFE =90°.………..5分证明:如图,过点A 作AH ⊥BC 于H ,连接AE .则∠AHB =∠AHC =90°.∵AB =AC ,∠BAC =120°,∴∠CAH =12∠BAC =60°,∠C =30°.∴AH =12AC .∵F 为线段AC 中点,∴AF =12AC .∴AH =AF .由(1)可知△ADE 是等边三角形.∴∠DAE =60°=∠CAH ,AD=AE.∴∠DAH =∠EAF.在△ADH 和△AEF 中,.DAH EA AD AE AH AF F ∠==⎧∠⎪⎨⎪=⎩,,∴△ADH ≌△AEF (SAS ).∴∠AFE =∠AHD =90°.………7分选择图3:①补全图形如图所示:②(选择图3的答案与选择图2的答案一致)28.解:(1)P 1,P 2.………2分(2)3.………4分(3)71122d ≤≤.………7分。
2024年北京朝阳区初三九年级上学期期末数学试题和答案
张卡片,除所标注文字不同外无其他差别.其中,写有“珍稀濒危植.随机摸出一张卡片写有“珍的扇形作圆锥的侧面,记扇形的半径为R,所在一定范围内变化时,l与S都随R的变第12题图第14题图试题13.某科技公司开展技术研发,在相同条件下,对运用新技术生产的一批产品的合格率进行检测,下表是检测过程中的一组统计数据:估计这批产品合格的产品的概率为.14.如图,AB 是半圆O 的直径,将半圆O 绕点A 逆时针旋转30°,点B 的对应点为B ',连接A B ',若AB =8,则图中阴影部分的面积是_______.15.对于向上抛的物体,在没有空气阻力的条件下,上升高度h ,初速度v ,抛出后所经历的时间t ,这三个量之间有如下关系:221gt vt h -=(其中 g 是重力加速度,g 取10m/s 2).将一物体以v=21m/s 的初速度v 向上抛,当物体处在离抛出点18m 高的地方时,t 的值为 .16.已知函数y 1=kx +4k -2(k 是常数,k ≠0),y 2=ax 2+4ax -5a (a 是常数,a ≠0),在同一平面直角坐标系中,若无论k 为何值,函数y 1和y 2的图象总有公共点,则a 的取值范围是_______.三、解答题(共68分,第17-22题,每题5分,第23-26题,每题6分,27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.解方程x 2-1 =6x .18.关于x 的一元二次方程x 2-(m +4)x +3(m +1)=0 .(1)求证:该方程总有两个实数根;(2)若该方程有一根小于0,求m 的取值范围.抽取的产品数n 5001000150020002500300035004000合格的产品数m 476967143119262395288333673836合格的产品频率nm0.9520.9670.9540.9630.9580.9610.9620.959图2图3图1图1 图2试题北京市朝阳区2023~2024学年度第一学期期末检测九年级数学试卷参考答案及评分标准(选用)2024.1一、选择题(共16分,每题2分)题号12345678答案DABCACAC二、填空题(共16分,每题2分)三、解答题(共68分,第17-22题,每题5分,第23-26题,每题6分,27-28题,每题7分)17.解:方程化为x 2 -6x =1.x 2 -6x+9 =10.1032=-)(x .103±=-x .1031+=x ,1032-=x .18.(1)证明:依题意,得=[-(m +4)]2-4×3(m +1) =(m -2)2.∵(m -2)2≥0,∴0≥∆∴该方程总有两个实数根.(2)解:解方程,得x =.∴x 1= m +1,x 2=3.依题意,得m +1<0.∴m <-1.19.解:(1)根据题意,设该二次函数的解析式为 y 2=a (x -1)2+4.当x =0时,y 2 =3∴a =-1.∴y 2=-x 2+2x +3.题号9101112答案x 1=3,x 2=-3相切(1,3)140题号13141516答案答案不唯一,如0.9593438+π1.2或3a <0或a ≥52线段垂直平分线上的点与这条线段两个端点的距离相等.三角形的外角等于与它不相邻的两个内角的和.由题意可知,抛物线顶点C ),(9254.设抛物线对应的函数解析式)4(2+-=x a y试题26. 解:(1)由题意知,a +b +c = 9a +3b +c .∴b = -4a .∴22=-=a b t . (2)∵a >0,∴当x ≥t 时,y 随x 的增大而增大;当x ≤t 时,y 随x 的增大而减小.设抛物线上的四个点的坐标为A (t -1,m A ) ,B (t ,m B ),C (2,n C ),D (3,n D ).点A 关于对称轴x =t 的对称点为A'(t +1,m A )∵抛物线开口向上,点B 是抛物线顶点,∴m A >m B .ⅰ 当t ≤1时,n C < n D∴t +1≤2.∴m A ≤n C ,∴不存在m >n ,不符合题意.ⅱ 当1<t ≤2时,n C < n D∴2<t +1≤3.∴m A >n C .∴存在m >n ,符合题意.ⅲ当2<t ≤3时,∴n 的最小值为m B .∵m A >m B .. ∴存在m >n ,符合题意.ⅳ 当3<t <4时,n D <n C .∴2<t -1<3.∴m A >n D .∴存在m >n ,符合题意.ⅴ 当t ≥4时,n D <n C .∴t -1≥3.∴m A ≤n D ,∴不存在m >n ,不符合题意.综上所述,t 的取值范围是1<t <4.)解:补全图1,如图.证明:延长AF到点G,使得GF=AF,连接,连接GE并延长,与AB的延长。
2024年北京石景山初三九年级上学期期末数学试题和答案
石景山区2023-2024学年第一学期初三期末试卷数 学第一部分 选择题一、选择题(共16分,每题2分)第1- 8题均有四个选项,符合题意的选项只有一个. 1.若34(0)x y y ,则xy的值是(A)34 (B)43(C)74(D)732.如图,在Rt ACB △中,90C °,3AC BC ,则sin A 为(A) 13 (B)4 (C)10(D) 103.如图,四边形ABCD 内接于⊙O ,AB 是直径,D 是 AC的 中点.若40B °,则A 的大小为 (A) 50° (B) 60° (C) 70°(D) 80°4.将抛物线23y x 向左平移1个单位长度,平移后抛物线 的解析式为 (A) 23(1)y x(B) 23(1)y x(C) 231y x(D) 231y x5.若抛物线229y xmx 与x 轴只有一个交点,则m 的值为(A) 3(B) 3(C)(D) 3AB C6.如图1,“矩”在古代指两条边成直角的曲尺,它的两边长分别为a ,b .中国古老的天文和数学著作《周髀算经》中简明扼要地阐述了“矩”的功能:“平距以正绳,偃矩以望高,覆矩以测深,卧矩以知远,环矩以为圆,合矩以为方”.其中“偃矩以望高”的意思就是把“矩”仰立放可测物体的高度.如图2,从“矩”AFE 的一端A 望向树顶端的点C ,使视线通过“矩”的另一端E ,测得8m BD , 1.6m AB . 若“矩”的边30cm EF a ,边60cm AF b ,则树高CD 为 (A) 4m (B) 5.3m (C) 5.6m (D) 16m7.在平面直角坐标系xOy 中,若点1(4)y ,,2(6)y ,在抛物线2(3)1(0)y a x a 上,则下列结论正确的是 (A) 121y y(B) 211y y(C) 211y y(D) 121y y8.如图,在ABC △中,CD AB 于点D ,给出下面三个条件: ①A BCD ; ②A BCD ADC ; ③AD CD CD BD. 添加上述条件中的一个,即可证明ABC △是直角三角形的条件序号是 (A) ①②(B) ①③(C) ②③(D) ①②③第二部分 非选择题二、填空题(共16分,每题2分)9.如图,在矩形ABCD 中,E 是边AD 的中点,连接BE 交 对角线AC 于点F .若6AC ,则AF 的长为 . 10.在平面直角坐标系xOy 中,若点1(3)y ,,2(7)y ,在反比例函数(0)ky k x的图象上,则1y 2y (填“>”“=”或“<”). DABCE F DCBA第6题 图1 第6题 图2DCH11.如图,正六边形ABCDEF 内接于⊙O ,12AB ,则 AB 的长为 .12.如图,PA ,PB 分别与⊙O 相切于A ,B 两点,60P °,6PA ,则⊙O 的半径为 .13.如图,线段AB ,CD 分别表示甲、乙建筑物的高,两座建筑物间的距离BD 为30m .若在点A 处测得点D 的俯角 为30°,点C 的仰角 为45°,则乙建筑物的高CD 约为 m (结果精确到0.1m1.4141.732 ).14.如图,点A ,B 在⊙O 上,140AOB °.若C 为⊙O 上任一点(不与点A ,B 重合),则ACB 的大小为 .15.如图,E 是正方形ABCD 内一点,满足90AEB °,连接CE .若2AB ,则CE 长的最小值为 .16.在平面直角坐标系xOy 中,抛物线2(0)y ax bx c a的顶点为(1)P k ,,且经过点(30)A ,,其部分图象如图 所示,下面四个结论中, ①0a ; ②2b a ;③若点(2)M m ,在此抛物线上,则0m ; ④若点()N t n ,在此抛物线上且n c ,则0t . 所有正确结论的序号是 .A BCDENBDM第11题 第12题 第13题三、解答题(共68分,第17-21题,每题5分,第22题6分,第23题5分,第24-26题,每题6分,第27-28题,每题7分) 解答应写出文字说明、演算步骤或证明过程. 17.计算:20248sin 60(1)tan 45 °°.18.如图,在四边形ABCD 中,AC 平分BAD ,90ACD B °.(1)求证:ACD △∽ABC △; (2)若3AB ,4AD ,求AC 的长.19.已知二次函数223y x x .(1)将223y x x 化成2()(0)y a x h k a 的形式,并写出其图象的顶点坐标;(2)求此函数图象与x 轴交点的坐标;(3)在平面直角坐标系xOy 中,画出此函数的图象.20.如图,AB 是⊙O 的直径,弦CD AB 于点E ,6CD ,1BE .求⊙O 的半径.21.已知二次函数2y x bx c 的图象过点(10)A ,和(03)B ,. (1)求这个二次函数的解析式;(2)当14x 时,结合图象,直接写出函数值y 的取值范围.DABC22.如图,在四边形ABCD 中,AD ∥BC ,90B °,3cos 5C,10CD . 求AB 的长.23.已知某蓄电池的电压为定值,使用此电源时,用电器的电流I (单位:A )与电阻R (单位: )成反比例函数关系,即(0)kI k R ,其图象如图所示.(1)求k 的值;(2)若用电器的电阻R 为6 ,则电流I为 A ;(3)如果以此蓄电池为电源的用电器的电流I 不得超过10A ,那么用电器的电阻R应控制的范围是 .24.如图,在ABC △中,AB AC ,以AB 为直径的O 交BC 于点D ,交AC 于点E ,点F 在AC 的延长线上,12CBF BAC . (1)求证:BF 是O 的切线; (2)若5AB ,1tan 2CBF ,求CE 的长.I /AB CD25.投掷实心球是北京市初中学业水平考试体育现场考试的选考项目之一.实心球被投掷后的运动路线可以看作是抛物线的一部分.建立如图所示的平面直角坐标系, 实心球从出手(点A 处)到落地的过程中,其竖直高度y (单位:m )与水平距离x (单位:m )近似满足二次函数关系.小石进行了三次训练,每次实心球的出手点A 的竖直高度为2m .记实心球运动路线的最高点为P ,训练成绩(实心球落地点的水平距离)为d (单位:m ).训练情况如下:根据以上信息,(1)求第二次训练时满足的函数关系式; (2)小石第二次训练的成绩2d 为 m ; (3)直接写出训练成绩1d ,2d ,3d 的大小关系.2OA26.在平面直角坐标系xOy 中,抛物线2(0)y ax bx c a 经过点(33)A a c ,. (1)求该抛物线的对称轴;(2)点1(12)M a y ,,2(2)N a y ,在抛物线上.若12c y y ,求a 的取值范围.27.如图,在Rt ACB △中,90ACB °,60BAC °.D 是边BA 上一点(不与点B重合且12BD BA),将线段CD 绕点C 逆时针旋转60°得到线段CE ,连接DE ,AE . (1)求CAE 的度数;(2)F 是DE 的中点,连接AF 并延长,交CD 的延长线于点G ,依题意补全图形.若G ACE ,用等式表示线段FG ,AF ,AE 之间的数量关系,并证明.DABCE28.在平面直角坐标系xOy 中,⊙O 的半径为1.对于⊙O 的弦AB 和点C 给出如下定义:若点C 在弦AB 的垂直平分线上,且点C 关于直线AB 的对称点在⊙O 上,则称点C 是弦AB 的“关联点”. (1)如图,点1(22A ,,1(22B ,. 在点1(00)C ,,2(10)C ,,3(11)C ,,4(20)C ,中,弦AB 的“关联点”是 ;(2)若点1(0)2C ,是弦AB 的“关联点”,直接写出AB 的长; (3)已知点(02)M ,,(0)15N ,.对于线段MN 上一点S ,存在⊙O 的弦PQ ,使得点S 是弦PQ 的“关联点”.记PQ 的长为t ,当点S 在线段MN 上运动时,直接写出t 的取值范围.石景山区2023-2024学年第一学期初三期末数学试卷答案及评分参考阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可。
初三期末数学试题及答案
初三期末数学试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是无理数?A. 3.14159B. πC. 0.33333D. √22. 一个直角三角形的两条直角边分别为3和4,斜边的长度是:A. 5B. 6C. 7D. 83. 函数y = 2x + 3的斜率是:A. 2B. 3C. -2D. -34. 一个数的平方根是4,这个数是:A. 16B. -16C. 8D. -85. 以下哪个方程的解是x = 2?A. x + 2 = 4B. x - 2 = 4C. 2x = 4D. 3x = 6答案:1. B 2. A 3. A 4. A 5. A二、填空题(每题1分,共5分)6. 一个数的绝对值是5,这个数是______。
7. 一个正比例函数y = kx,当x = 2时,y = 4,k的值是______。
8. 一个二次方程ax² + bx + c = 0的判别式是b² - 4ac,当判别式小于0时,方程______实数解。
9. 一个圆的半径是r,它的面积是______。
10. 一个数的立方根是2,这个数是______。
答案:6. ±5 7. 2 8. 没有9. πr² 10. 8三、计算题(每题5分,共15分)11. 计算下列表达式的值:(3x - 2)² - 4(x - 3)²,当x = 1。
12. 解下列方程:2x - 5 = 3x + 1。
13. 化简下列分数:\(\frac{2x}{3} + \frac{5}{x - 2}\)。
答案:11. 712. x = -613. \(\frac{2x^2 - 4x + 15}{3(x - 2)}\)四、解答题(每题10分,共20分)14. 一个长方体的长、宽、高分别是2x,3x和4x,求它的体积。
15. 一个圆的半径是5厘米,求它的周长和面积。
答案:14. 体积是 \(24x^3\)。
2024年北京海淀区初三九年级上学期期末数学试题和答案
海淀九年级数学2024.1第一部分选择题一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.我国古代典籍《周易》用“卦”描述万物的变化.下图为部分“卦”的符号,其中是中心对称图形的是()A.B. C. D.2.抛物线2(1)2y x =--+的顶点坐标是()A.()1,2- B.()1,2 C.()1,2-- D.()1,2-3.若关于x 的一元二次方程220x x m +-=有一个根为1,则m 的值为()A.3B.0C.2-D.3-4.在平面直角坐标系xOy 中,抛物线2y ax bx c =++如图所示,则关于x 的方程20ax bx c ++=的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.有实数根D.没有实数根5.如图,在O 中,AB 为直径,C ,D 为圆上的点,若51CDB ∠=,则CBA ∠的大小为()A.51B.49C.40D.396.如图,O 的半径为2,将O 的内接正六边形ABCDEF 绕点O 顺时针旋转,第一次与自身重合时,点A 经过的路径长为()A.2B.3π C.23π D.4π7.林业部门考察某种幼树在一定条件下的移植成活率,统计数据如下:移植总数m 1027075015003500700014000成活数n 823566213353180629212628成活的频率n m(结果保留小数点后三位)0.8000.8700.8830.8900.9090.8990.902下列说法正确的是()A.若移植10棵幼树,成活数将为8棵B.若移植270棵幼树,成活数不会超过235棵C.移植的幼树越多,成活率越高D.随着移植总数的增加,幼树移植成活的频率总在0.900左右摆动,显示出一定的稳定性,可以估计该幼树在同等条件下移植成活的概率为0.9008.如果一个圆的内接三角形有一边的长度等于半径,那么称其为该圆的“半径三角形”.给出下面四个结论:①一个圆的“半径三角形”有无数个;②一个圆的“半径三角形”可能是锐角三角形、直角三角形或钝角三角形;③当一个圆的“半径三角形”为等腰三角形时,它的顶角可能是30,120或150;④若一个圆的半径为2,则它的“半径三角形”面积最大值为上述结论中,所有正确结论的序号是()A.①②B.②③C.①②③D.①②④第二部分非选择题二、填空题(共16分,每题2分)9.在平面直角坐标系xOy 中,将抛物线23y x =向下平移1个单位,得到的抛物线表达式为________.10.如图,由5个相同的正方形组成的十字形纸片沿直线AB 和EF 前开后重组可得到矩形ABCD ,那么②可看作①通过一次________得到(填“平移”“旋转”或“轴对称”).11.若关于x 的一元二次方程216ax =有整数根,则整数a 的值可以是________(写出一个即可).12.已知y 是x 的二次函数,表中列出了部分y 与x 的对应值:x 012y1-113.“青山绿水,畅享生活”,人们经常将圆柱形竹筒改造成生活用具,图1所示是一个竹筒水容器,图2为该竹筒水容器的截面.已知截面的半径为10cm ,开口AB 宽为12cm ,这个水容器所能装水的最大深度是________cm .图1图214.如图,PA ,PB 是O 的两条切线,切点分别为A ,B ,60P ∠=.若O 的半径为3,则图中阴影部分的面积为________(结果保留π).15.如图,将面积为25的正方形ABCD 的边AD 的长度增加a ,变为面积为22的矩形AEGF .若正方形ABCD 和矩形AEGF 的周长相等,则a 的值是________.16.小云将9张点数分别为19~的扑克牌以某种分配方式全部放入A ,B 两个不透明的袋子中(每个袋子至少放一张扑克牌),从两个袋子中各随机抽取一张扑克牌,将两张扑克牌的点数之和为k 这一事件的概率记为k P .(1)若将点数为1和2的扑克牌放入A 袋,其余扑克牌放入B 袋,则8P =________;(2)对于所有可能的分配方式以及所有的k ,k P 的最大值是________.三、解答题(共68分,第17-19题,每题5分,20题6分,第21-23题,每题5分,第24-26题,每题6分,第27-28题,每题7分)解答写出文字说明、演算步骤或证明过程.17.解方程:21x x +=.18.已知22310a a -+=,求代数式()2(3)3a a a -++的值.19.如图,在ABC △中,45B ∠=,将ABC △绕点A 逆时针旋转得到AB C ''△,使点B '在BC 的延长线上.求证:BB C B '⊥''.20.已知关于x 的方程2220x mx m n -+-=有两个不相等的实数根.(1)求n 的取值范围;(2)若n 为符合条件的最小整数,且该方程的较大根是较小根的2倍,求m 的值.21.如图,P 是O 外一点,PA 与O 相切,切点为A .画出O 的另一条切线PB ,切点为B .小云的画法是:①连接PO ,过点A 画出PO 的垂线交O 于点B ;②画出直线PB .直线PB 即为所求.(1)根据小云的画法,补全图形;(2)补全下面的证明.证明:连接OA ,OB .OA OB = ,AB PO ⊥,PO ∴垂直平分AB ,OAB OBA ∠∠=.PA ∴=①.PAB ∠∴=②.PAO PBO ∠∠∴=.PA 是O 的切线,A 为切点,OA AP ∴⊥.90PAO ∠∴= .90PBO ∠∴= .OB PB ∴⊥于点B .OB 是O 的半径,PB ∴是O 的切线(③)(填推理的依据)。
2023北京西城区初三(上)期末数学试题及参考答案
2023北京西城初三(上)期末数 学满分100分,考试时间120分钟.第一部分选择题一、选择题(共16分,每题2分)1.二次函数y =(x -2)2+3的最小值是() A.3 B.2 C.-2 D.-32.中国传统扇文化有着深厚的文化底蕴,是中华民族文化的一个组成部分,在中国传统社会中,扇面形状的设计与日常生活中的图案息息相关,下列扇面图形中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D.3.下列事件中是随机事件的是( )A.明天太阳从东方升起B.经过有交通信号灯的路口时遇到红灯C.平面内不共线的三点确定一个圆D.任意画一个三角形,其内角和是540︒4.如图,在O 中,弦AB ,CD 相交于点P ,45A ∠=︒,80APD ∠=︒,则B ∠的大小是( )A.35°B.45°C.60°D.70°5.抛物线221y x =−+通过变换可以得到抛物线()2213y x =−++,以下变换过程正确的是( )A.先向右平移1个单位,再向上平移2个单位B.先向左平移1个单位,再向下平移2个单位C.先向右平移1个单位,再向下平移2个单位D.先向左平移1个单位,再向上平移2个单位6.要组织一次篮球联赛,赛制为单循环形式(每两队之间都只赛一场),计划安排15场比赛,如果设邀请x 个球队参加比赛,那么根据题意可以列方程为( )A.215x =B.()115x x +=C.()115x x −=D. ()1152x x −=7. 如图,在等腰ABC 中,120A ∠=︒,将ABC 绕点C 逆时针旋转()090αα︒<<︒得到CDE ,当点A 的对应点D 落在BC 上时,连接BE ,则BED ∠的度数是( )A.30°B.45°C.55°D.75°8.下表记录了二次函数()220y ax bx a =++≠中两个变量x 与y 的5组对应值,其中121x x <<.根据表中信息,当02x −<<时,直线y k =与该二次函数图象有两个公共点,则k 的取值范围是( ). A. 726k << B. 726k <≤ C. 823k << D. 823k <≤第二部分非选择题二、填空题(共16分,每题2分)9.一元二次方程x 2﹣16=0的解是_____.10.已知O 的半径为5,点P 到圆心O 的距离为8,则点P 在O ______(填“内”“上”或“外”).11.若关于x一元二次方程230x x c ++=有两个相等的实数根,则c 的值为__________.12.圆心角是60°的扇形的半径为6,则这个扇形的面积是_____.13.点()3,M m 是抛物线2yx x 上一点,则m 的值是______,点M 关于原点对称的点的坐标是______.14.已知二次函数满足条件:①图像象过原点;②当1x >时,y 随x 的增大而增大,请你写出一个满足上述条件的二次函数的解析式:______.15.如图,在平面直角坐标系xOy 中,以点)A 为圆心,1为半径画圆,将A 绕点O 逆时针旋转的()0180αα︒<<︒得到A ',使得A '与y 轴相切,则α的度数是____.16.如图,AB 是O 的直径,C 为O 上一点,且AB OC ⊥,P 为圆上一动点,M 为AP 的中点,连接CM ,若O 的半径为2,则CM 长的最大值是_____.三、解答题(共68分,第17-18题,每题5分,第19题6分,第20-23题5分,第24-26题,每题6分,第27-28题,每题7分)17. 解方程:2420x x −+=18. 已知:点A ,B ,C 在O 上,且45BAC ∠=︒.求作:直线l ,使其过点C ,并与O 相切.作法:①连接OC ;②分别以点B ,点C 为圆心,OC 长为半径作弧,两弧交于O 外一点D ;③作直线CD .直线CD 就是所求作直线l .(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面证明.证明:连接OB ,BD ,∵OB OC BD CD ===,∴四边形OBDC 菱形,∵点A ,B ,C 在O 上,且45BAC ∠=︒, ∴BOC ∠=______°(_________________)(填推理的依据).∴四边形OBDC 是正方形,∴90OCD ∠=︒,即OC CD ⊥,∵OC 为O 半径,∴直线CD 为O 的切线(_________________)(填推理的依据).19.已知二次函数2=23y x x −−.(1)将2=23y x x −−化成()2y a x h k =−+的形式,并写出它的顶点坐标; (2)在所给的平面直角坐标系中画出此函数的图象;(3)当12x −<<时,结合图象,直接写出函数值y 的取值范围.20.如图,AB 是O 的一条弦,点C 是AB 的中点,连接OC 并延长交劣弧AB 于点D ,连接OB ,DB ,若4AB =,1CD =,求BOD 的面积.21.在学习《用频率估计概率》时,小明和他的伙伴们设计了一个摸球试验:在一个不透明帆布袋中装有白球和红球共4个,这4个球除颜色外无其他差别,每次摸球前先将袋中的球搅匀,然后从袋中随机摸出1个球,观察该球的颜色并记录,再把它放回,在老师的帮助下,小明和他的伙伴们用计算机模拟这个摸球试验,下图显示的是这个试验中摸出一个球是红球的结果.(1)根据所学的频率与概率关系的知识,估计从这个不透明的帆布袋中随机摸出一个球是红球的概率是的是______,其中红球的个数是______;(2)如果从这个不透明的帆布袋中同时摸出两个球,用列举法求摸出的两个球刚好一个是红球和一个是白球的概率.22.如图,在四边形ABCD 中,AC ,BD 是对角线,将点B 绕点C 逆时针旋转60°得到点E ,连接AE ,BE ,CE .(1)求CBE ∠的度数;(2)若ACD 是等边三角形,且30ABC ∠=︒,3AB =,5BD =,求BE 的长.23. 已知关于x 的方程22x 2mx m 90−+−=.(1)求证:方程有两个不相等的实数根;(2)设此方程的两个根分别为1x ,2x ,且12x x >,若1225x x =+,求m 的值.24. 如图,在ABC 中,AB AC =,90BAC ∠=︒,点O 是AC 上一点,以O 为圆心,OA 长为半径作圆,使O 与BC 相切于点D ,与AC 相交于点E .过点B 作BF AC ∥,交ED 的延长线于点F .(1)若4AB =,求O 的半径;(2)连接BO ,求证:四边形BFEO 是平行四边形.25.跳台滑雪是冬季奥运会的比赛项目之一,如图,运动员通过助滑道后在点A 处起跳经空中飞行后落在着陆坡BC 上的点P 处,他在空中飞行的路线可以看作抛物线的一部分,这里OA 表示起跳点A 到地面OB 的距离,OC 表示着陆坡BC 的高度,OB 表示着陆坡底端B 到点O 的水平距离,建立如图所示的平面直角坐标系,从起跳到着陆的过程中,运动员的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系:2116y x bx c =−++,已知70m OA =,60m OC =,落点P 的水平距离是40m ,竖直高度是30m .(1)点A 的坐标是_____,点P 的坐标是_______;(2)求满足的函数关系2116y x bx c =−++; (3)运动员在空中飞行过程中,当他与着陆坡BC 竖直方向上的距离达到最大时,直接写出此时的水平距离.26.在平面直角坐标系xOy 中,抛物线()20y ax bx c a =++≠的对称轴为直线x t =,且320a b c ++=.(1)当0c 时,求t 的值;(2)点()12,y −,()21,y ,()33,y 在抛物线上,若0a c ,判断1y ,2y 与3y 的大小关系,并说明理由.27.如图,在ABC 中,AC BC =,90ACB ∠=︒,45APB ∠=︒,连接CP ,将线段CP 绕点C 顺时针旋转90°得到线段CQ ,连接AQ .(1)依题意,补全图形,并证明:AQ BP =;(2)求QAP ∠度数;(3)若N 为线段AB 的中点,连接NP ,请用等式表示线段NP 与CP 之间的数量关系,并证明. 28.给定图形W 和点P ,Q ,若图形W 上存在两个不重合的点M ,N ,使得点P 关于点M 的对称点与点Q 关于点N 的对称点重合,则称点P 与点Q 关于图形W 双对合.在平面直角坐标系xOy 中,已知点()1,2−−A ,()5,2B −,()1,4C −.(1)在点()4,0D −,()2,2E ,()6,0F 中,与点O 关于线段AB 双对合的点是______;(2)点K 是x 轴上一动点,K 的直径为1. ①若点A 与点()0,T t 关于K 双对合,求t 的取值范围;②当点K 运动时,若ABC 上存在一点与K 上任意一点关于K 双对合,直接写出点K 横坐标k 的取值范围.的参考答案第一部分选择题一、选择题(共16分,每题2分)1.【答案】A【解析】【分析】根据二次函数的性质解答即可.【详解】二次函数y=(x-2)2+3,当x=2时,最小值是3,故选A.【点睛】本题考查的是二次函数的最值,掌握二次函数的性质是解题的关键.2.【答案】C【解析】【分析】根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.【详解】解:A.是轴对称图形,不是中心对称图形,故A选项不合题意;B.是轴对称图形,不是中心对称图形,故B选项不符合题意;C.既是轴对称图形,又是中心对称图形,故C选项合题意;D.是轴对称图形,不是中心对称图形,故D选项不合题意.故选:C.【点睛】本题主要考查了轴对称图形和中心对称图形,解题的关键在于能够熟练掌握轴对称图形和中心对称图形的定义.3.【答案】B【解析】【分析】根据随机事件的定义,逐项判断即可求解.【详解】解:A.明天太阳从东方升起,是必然事件,故本选项不符合题意;B.经过有交通信号灯的路口时遇到红灯,是随机事件,故本选项符合题意;C.平面内不共线的三点确定一个圆,是必然事件,故本选项不符合题意;D.任意画一个三角形,其内角和是540︒,是不可能事件,故本选项不符合题意;故选:B.【点睛】本题主要考查的是必然事件、不可能事件、随机事件的概念,熟练掌握必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件是解题的关键.4.【答案】A【解析】【分析】根据三角形的外角的性质可得C A APD ∠+∠=∠,求得C ∠,再根据同弧所对的圆周角相等,即可得到答案.【详解】解:C A APD ∠+∠=∠,45A ∠=︒,80APD ∠=︒,804535C APD A ∴∠=∠−∠=︒−︒=︒,35B C ∴∠=∠=︒,故选:A .【点睛】本题考查了圆周角定理及三角形的外角的性质,熟练掌握知识点是解题的关键.5.【答案】D【解析】【分析】由平移前后的解析式,结合平移法则即可得解;【详解】解:抛物线221y x =−+通过先向左平移1个单位,再向上平移2个单位可以得到抛物线()2213y x =−++,故选择:D【点睛】本题考查抛物线的平移.熟练掌握二次函数平移规律是解题的关键.6.【答案】D【解析】【分析】赛制为单循环形式(每两队之间都赛一场),x 个球队比赛总场数()112x x =−,由此可得出方程.【详解】解:设邀请x 个队,每个队都要赛()1x −场,但两队之间只有一场比赛, 由题意得(1)152x x −=. 故选:D .【点睛】本题考查了由实际问题抽象一元二次方程的知识,解决本题的关键是读懂题意,得到总场数与球队之间的关系.7.【答案】B【解析】【分析】由等腰三角形的性质和三角形内角和定理,得30ABC ACB ∠=∠=︒,根据旋转的性质,得BC CE =,30DCE DEC ABC ACB ∠=∠=∠=∠=︒,再由等腰三角形和三角形内角和定理得()118030752CBE CEB ∠=∠=︒−︒=︒,即可求得BED BEC CED ∠=∠−∠. 【详解】解:AB AC =,120A ∠=︒,30ABC ACB ∴∠=∠=︒,由旋转得,BC CE =,30DCE DEC ABC ACB ∠=∠=∠=∠=︒,()118030752CBE CEB ∴∠=∠=︒−︒=︒, 753045BED BEC CED ∴∠=∠−∠=︒−︒=︒,故选:B .【点睛】本题考查了旋转的性质,等腰三角形的性质和三角形内角和定理,熟练掌握知识点是解题的关键.8.【答案】C【解析】【分析】根据表中数据得出对称轴=1x −,进而得到抛物线与x 轴的交点,利用交点式得到()()31y a x x =+−,从而得到二次函数表达式为224233y x x =−−+,根据当502x −<<时,直线y k =与该二次函数图像有两个公共点,可得823k <<. 【详解】解:由()()53m m −,、,可得抛物线对称轴5312x −+==−, 又由()()1,01,0x 、以及对称轴=1x −可得13x =−,()()3,01,0∴−、,则设抛物线交点式为()()31y a x x =+−,()()()22312323y a x x a x x ax ax a =+−=+−=+−与()220y ax bx a =++≠对比可得32a −=,解得23a =−, ∴二次函数表达式为224233y x x =−−+, ∴当52x =−时,2557313226y ⎛⎫⎛⎫=−−+−−= ⎪⎪⎝⎭⎝⎭; 当0x =时,2y =; 当=1x −时,()()28131133y =−−+−−=, 78263<<,当502x −<<时,直线y k =与该二次函数图像有两个公共点, ∴823k <<, 故选:C【点睛】本题考查二次函数图像与性质,掌握二次函数表达式的求法是解决问题的关键. 第二部分非选择题二、填空题(共16分,每题2分)9.【答案】x 1=﹣4,x 2=4【解析】【分析】直接运用直接开平方法进行求解即可.【详解】解:方程变形得:x 2=16,开方得:x =±4,解得:x 1=﹣4,x 2=4.故答案为:x 1=﹣4,x 2=4【点睛】本题考查了一元二次方程的解法,掌握直接开平方法是解答本题的关键. 10.【答案】外【解析】【分析】点与圆的位置关系有3种.设O 的半径为r ,点P 到圆心的距离OP d =,则有:①点P 在圆外⇔d r ;②点P 在圆上⇔d r =;③点P 在圆内⇔d r <,由此即可判断; 【详解】解:=5r ,8d =, d r ∴>,∴点P 在O 外,故答案为:外.【点睛】本题考查点与圆的位置关系,记住:①点P 在圆外⇔d r ;②点P 在圆上⇔d r =;③点P 在圆内⇔d r <是解题的关键.11.【答案】94【解析】【分析】根据判别式0∆=求解即可.【详解】解:∵一元二次方程230x x c ++=有两个相等的实数根,∴2340c ∆=−=,解得94c =. 故答案为:94. 【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根. 12.【答案】6π【解析】【分析】根据扇形的面积公式S =2π360n r 计算,即可得出结果.【详解】解:该扇形的面积S =2606360π⨯=6π. 故答案为6π.【点睛】本题考查了扇形面积的计算,熟记扇形的面积公式是解题的关键.13.【答案】①.6②.(3,6)−−【解析】 【分析】将()3,M m 代入二次函数解析式,得出()36M ,,根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解.【详解】解:∵点()3,M m 是抛物线2yx x 上一点,∴2336m =−=, ∴()36M ,,∴点M 关于原点对称的点的坐标是(3,6)−−,故答案为:6,(3,6)−−.【点睛】本题考查了二次函数的性质,关于原点对称的点的坐标特征,求得点()36M ,是解题的关键.14. 【答案】22y x x =−(答案不唯一)【解析】【分析】根据二次函数的图像与性质可以得出各系数的取值范围,举一例即可.【详解】解:图像过原点,∴可以设解析式为:()1y ax x x =−,当1x >时,y 随x 的增大而增大,∴0a >,开口向上,且对称轴112x x =≤, 即12x ≤, ∴可以设二次函数为()1y ax x x =−,满足102a x >≤,均可.故答案不唯一,如:22y x x =−.【点睛】本题考查二次函数的图像与性质,掌握二次函数的图像与各系数间的关系是解题的关键. 15.【答案】45︒或135︒【解析】【分析】分析可知:A 在以O 为半径的圆上运动,分情况讨论,当A 转到A '时,OA '=,作A B y '⊥轴与点B ,利用勾股定理可知1OB =,进一步可求出旋转角度为45︒;当A 转到A ''时,OA ''=A C x '⊥轴与点C ,利用勾股定理可知1OC =,进一步可求出旋转角度为135︒.【详解】解:∵)A ,将A 绕点O 逆时针旋转()0180αα︒<<︒得到A '∴A 在以O 为半径的圆上运动,当A 转到A '时,OA '=,作A B y '⊥轴于点B ,∵A '半径为1,A '与y 轴相切,∴1BA '=,由勾股定理可得:1OB ===, ∴OBA '为等腰直角三角形,∴45BOA '∠=︒,45AOA '∠=︒,即旋转角度为45︒;当A 转到A ''时,OA ''=A C x '⊥轴于点C ,∵A ''半径为1,A ''与y 轴相切,∴1CA ''=,由勾股定理可得:1OC ===, ∴OCA ''△为等腰直角三角形,∴45COA ''∠=︒,18045135AOA ''∠=︒−︒=︒,即旋转角度为135︒;故答案为:45︒,135︒【点睛】本题考查圆与切线,旋转,等腰直角三角形,勾股定理,解题的关键是掌握切线的性质,旋转,理解A 在以O16.1##1+【解析】【分析】连接OM ,PB ,取AO 中点D ,连接CD DM 、、PB ,AB 是⊙O 的直径,可推出90APB ∠=︒和AMO APB ~,由此可知90APB AMO ∠=∠=︒,则M 在以AO 为直径的圆上,当CM 与D 点重合时,CM 最大,根据AB OC ⊥求出CD 长代入即可.【详解】解:连接OM ,PB ,∵AB 是⊙O 的直径,∴90APB ∠=︒,∵M 为AP 的中点,O 为AB 的中点,∴AMO APB ~,∴90APB AMO ∠=∠=︒,取AO 中点D ,连接CD DM 、,∴M 在以AO 为直径的圆上,∵三角形两边之和大于第三边,且O 的半径为2,∴1DM =,∴当CM 与D 点重合时,CM 最大,∴CM CD DM =+,∵AB OC ⊥,∴CD ==,∴1CM =,1+.【点睛】本题考查了直径所对的圆周角是90︒及三角形的中位线的性质,熟练掌握数形结合思想是解题关键. 三、解答题(共68分,第17-18题,每题5分,第19题6分,第20-23题5分,第24-26题,每题6分,第27-28题,每题7分)17.【答案】12x =+22x =;【解析】【分析】选用配方法可解此方程.【详解】解:x 2-4x+2=0x 2-4x+4-2=0(x-2)2=2∴x-2=解得:12x =+22x =故答案为12x =,22x =【点睛】本题考查了选用适当的方法解一元二次方程.18.【答案】(1)见解析;(2)90°;一条弧所对的圆周角等于它所对的圆心角的一半;经过半径的外端并且垂直于这条半径的直线是圆的切线【解析】【分析】(1)按照题中作法步骤作图即可;(2)根据圆周角定理和切线的判定定理填空.【小问1详解】解:补全图形,如图所示;【小问2详解】90°;一条弧所对的圆周角等于它所对的圆心角的一半;经过半径的外端并且垂直于这条半径的直线是圆的切线.【点睛】本题考查作图-复杂作图,圆周角定理,切线的判断和性质,熟练掌握知识点是解题的关键.19.【答案】(1)2(1)4y x =−−,()1,4−(2)见解析(3)40y −≤<【解析】 【分析】(1)运用配方法将原解析式化为顶点式即可;(2)根据(1)所得的顶点式解析式,利用五点作图法直接画出图像即可;(3)根据函数图像确定当12x −<<时对应的y 的取值范围即可.【小问1详解】2=23y x x −−22113x x =−+−−2(1)4x =−−.【小问2详解】列表如下:【小问3详解】由图象可得,当12x −<<时,4<0y −≤.【点睛】本题主要考查了二次函数的顶点式、二次函数的图象、二次函数的性质等知识点,准确画出二次函数的图象成为解答本题的关键.20.【答案】52【解析】【分析】设O 的半径为x ,由垂径定理得出BC ,用含x 的式子表示OC ,再根据勾股定理列方程解得半径的长,即可求解.【详解】解:设OD x =,则OB x =.点C 是AB 的中点,OC 过圆心O ,OC AB ∴⊥.4AB =,1CD =,122BC AB ∴==,1OC OD CD x =−=−. 在Rt BCO △中,222OB OC BC =+,222(1)2x x ∴=−+.解得,52x =.52OD ∴=. 1522BOD S OD BC =⋅⋅=∴. 【点睛】本题考查了垂径定理,勾股定理,根据垂径定理判断出OC 是AB 的垂直平分线是解题的关键. 21.【答案】(1)0.75,3(2)12【解析】【分析】(1)根据图表中的频率分布可估计概率,再利用总数乘以概率可得红球个数;(2)列出表格,利用概率公式计算.【小问1详解】解:由图表可知:摸出红球的频率分布在0.75上下,则可估计随机摸出一个球是红球的概率是0.75,红球的个数是:40.753⨯=,故答案为:0.75,3;小问2详解】 由(1)可知帆布袋中有3个红球和1个白球. 列表如下:(白,红1),(白,红2),(白,红3),(红1,红2),(红1,红3),(红2,红3),且这些结果出现的可能性相等,其中摸出的两个球刚好一个是红球和一个是白球(记为事件A )共有3种结果,即(白,红1),(白,红2),(白,红3), 所以31()62P A ==. 【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.也考查了利用频率估计概率.22.【答案】(1)60︒(2)4【解析】【分析】(1)根据旋转的性质得到CB CE =,60BCE ∠=︒,进而证明BCE 为等边三角形,即可得到答案;(2)首先证明ACE DCB ≅,之后在Rt ABE 中根据勾股定理得到BE 的长.【小问1详解】 解:将点B 绕点C 逆时针旋转60︒得到点E ,CB CE ∴=,60BCE ∠=︒,BCE ∴△是等边三角形,60CBE ∴∠=︒.【小问2详解】解:ACD 是等边三角形,AC DC ∴=,60ACD ∠=︒ ,ACE DCB ∴∠=∠,又CB CE =,ACE DCB ∴≅ ,AE BD ∴=,5BD =,5AE ∴=.60CBE ∠=︒,30ABC ∠=︒,90ABE ∴∠=︒,∴在Rt ABE 中,B E3AB =,4BE ∴=.【点睛】本题主要考查旋转的性质,等边三角形的判定性质,全等三角形的判定与性质,勾股定理,掌握相关定理是解题的关键.23.【答案】(1)见解析;(2)4−.【解析】【分析】(1)根据方程的系数结合根的判别式,即可得出0∆>,由此可证出此方程有两个不相等的实数根; (2)解方程,再由12x x >,1225x x =+,即可得到关于m 的一元一次方程,解之即可得出结论.【小问1详解】证明:()()222419m m ∆=−−⨯⨯−224436m m =−+360=>.∴方程有两个不相等的实数根.【小问2详解】解:解方程,得22622m m x ±±==,12x x >,13x m ∴=+,23x m =−.1225x x =+,()2335m m ∴+=−+.4m ∴=−.【点睛】本题考查了根的判别式、根与系数的关系,解题的关键是掌握根的判别式、根与系数的关系的表达式,并会熟练计算.24.【答案】(1)4;(2)见解析.【解析】【分析】(1)连接OD ,由⊙O 与AB 相切于点A ,与BC 相切于点D ,得到90ODC OD DC ∠=︒=,,由切线长定理得:4BD AB ==,由勾股定理求出BC =O 的半径.(2)连接AD ,交OB 于点H ,由AE 是⊙O 的直径,得到90ADE ∠=︒.根据AB BC ,与⊙O 分别相切于点A ,D ,证得90AHO ∠=︒.得到OB EF ∥.即可证得四边形BFEO 是平行四边形.【小问1详解】解:连接OD ,如图.∵在ABC 中,90AB AC BAC =∠=︒,,∴⊙O 与AB 相切于点A ,45ACB ∠=︒.∵OD 是⊙O 的半径,⊙O 与BC 相切于点D ,∴OD BC ⊥.∴90ODC OD DC ∠=︒=,.∵4AB =,∴由切线长定理得:4BD AB ==,由勾股定理得:BC =.∴ 4OD DC ==−.∴⊙O的半径是4.【小问2详解】证明:连接AD ,交OB 于点H ,如图.∵AE 是⊙O 的直径,∴90ADE ∠=︒.∵AB BC ,与⊙O 分别相切于点A ,D ,∴BD AB ABO DBO =∠=∠,.∴OB AD ⊥.∴90AHO ∠=︒.∴AHO ADE ∠=∠.∴OB EF ∥.∵BF AC ∥,∴ 四边形BFEO 是平行四边形.【点睛】此题考查了圆的切线的性质定理,切线长定理,直径所对的圆周角是直角,平行四边形的判定定理,熟记各定理是解题的关键.25.【答案】(1)()0,70A ,()40,30P ;(2)21370162y x x =−++; (3)18m【解析】【分析】(1)70m OA =,落点P 的水平距离是40m ,竖直高度是30m ,即可得到点A 、P 的坐标; (2)用待定系数法求解即可;(3)由60m OC =,先求出直线BC 的表达式,作MN y ∥轴交抛物线和直线BC 于点M 、N ,用含未知数m 的式子表示MN ,再根据二次函数的性质进行判断即可.小问1详解】 解:70m OA =,落点P 的水平距离是40m ,竖直高度是30m , ()0,70A ∴,()40,30P ;【小问2详解】 解:把()0,70A ,()40,30P 代入2116y x bx c =−++【得,270130404016c b c =⎧⎪⎨=−⨯++⎪⎩, 解得,3270b c ⎧=⎪⎨⎪=⎩,21370162y x x ∴=−++; 【小问3详解】解:60m OC =,∴设直线BC 的表达式为()600y kx k =+≠, 把()40,30P 代入,得304060k =+, 解得,34k =−, 3604y x ∴=−+,设213,70162M m m m ⎛⎫−++ ⎪⎝⎭到BC 竖直方向上的距离最大,作MN y ∥轴交抛物线和直线BC 于点M 、N , ∴3,604N m m ⎛⎫−+ ⎪⎝⎭, 213370601624MN m m m ⎛⎫∴=−++−−+ ⎪⎝⎭21910164m m =−++()22213618181016m m =−−+−+()21811810164m =−−++()2112118164m =−−+()2118016m −−≤, ∴当18m =时,MN 最大,即水平距离为18m 时,运动员与着陆坡BC 竖直方向上的距离达到最大.【点睛】本题考查了二次函数的实际应用,待定系数法求解析式,二次函数图象的性质,熟练掌握知识点是解题的关键.26.【答案】(1)34(2)231y y y <<【解析】【分析】(1)由320a b c ++=,0c ,可得320a b +=,根据对称轴为直线2b x a=−即可求解; (2)根据320a b c ++=,求得对称轴2b x t a ==−的范围,再将点()12,y −根据对称性转化到对称轴右侧,再根据0a c 得抛物线开口向上,y 随x 的增大而增大,即可得出答案.【小问1详解】当0c 时,得320a b +=, 32b a ∴=−, 332224a b t a a −∴=−==; 【小问2详解】320a b c ++=, 32a c b +∴=−, 333222444a cb ac c t a a a a +−+∴=−=−==+, 0a c >>, 1044c a ∴<<, 314t ∴<<, 点()12,y −关于直线x t =的对称点的坐标是()122,t y +,72242t ∴<+<. 1322t ∴<<+.0a >,∴当x t >时,y 随x 的增大而增大.231y y y ∴<<.【点睛】本题考查了二次函数的性质,主要涉及到二次函数的开口方向、对称性以及增减性,熟知二次函数的基本性质是解决函数问题的关键.27.【答案】(1)画图和证明见解析;(2)135°(3)CP =,证明见解析.【解析】【分析】(1)先根据题意画出对应的图形,只需要利用SAS 证明BCP ACQ ≌即可证明AQ BP =; (2)连接QP ,如图所示.先由等腰直角三角形的性质得到45CQP CPQ ∠=∠=︒.再证明APQ CPB ∠=∠.由全等三角形的性质得到CQA CPB ∠=∠.则可以推出45APQ PQA ∠+∠=︒,利用三角形内角和定理即可得到180135QAP APQ PQA ∠=︒−−=︒∠∠;(3)如图所示,延长PN 至K ,使得NK PN =,连接AK .证明ANK BNP ≌.得到KAN PBN ∠=∠,AK BP =,则AK BP ∥.进一步证明135KAP ∠=︒.得到KAP QAP ∠=∠.由此证明KAP QAP ≌,得到KP QP =.在等腰直角PCQ △中,CP CQ =,则KP QP ==,即可证明CP =.【小问1详解】补全图形,如图所示.证明:∵ 线段CP 绕点C 顺时针旋转90°得到线段CQ ,∴90CP CQ PCQ =∠=︒,∵90ACB ∠=︒,∴BCP ACQ ∠=∠,∵AC BC =,∴()SAS BCP ACQ ≌∴AQ BP =;【小问2详解】解:连接QP ,如图所示.由(1)可得PCQ △是等腰直角三角形,∴45CQP CPQ ∠=∠=︒.∴45CQA PQA ∠∠=︒+.∵45APB ∠=︒,∴APQ CPB ∠=∠.由BCP ACQ ≌可得CQA CPB ∠=∠.∴45APQ PQA ∠+∠=︒.∴180135QAP APQ PQA ∠=︒−−=︒∠∠;【小问3详解】解;CP =,理由如下:如图所示,延长PN 至K ,使得NK PN =,连接AK .∵N 为线段AB 的中点,∴AN BN =.∵ANK BNP ∠=∠,∴()SAS ANK BNP ≌.∴KAN PBN ∠=∠,AK BP =.∴AK BP ∥,AK AQ =.∴180KAP APB ∠+∠=︒.∵45APB ∠=︒,∴135KAP ∠=︒.∵135QAP ∠=︒,∴KAP QAP ∠=∠.由BCP ACQ ≌可得AQ BP =,∴AK AQ =,∵AP AP =,∴()SAS KAP QAP ≌.∴KP QP =.∵在等腰直角PCQ △中,CP CQ =,∴KP QP ==.∵2KP NP =,∴CP =.【点睛】本题主要考查了旋转的性质,全等三角形的性质与判定,等腰直角三角形的性质与判定,三角形内角和定理,勾股定理等,正确作出辅助线构造全等三角形是解题的关键.28.【答案】(1)D ,F ;(2)①2−−t ≤≤2−+52−k ≤≤12或3k ≤≤3+ 【解析】【分析】(1)根据双对合的定义逐一判断即可得到答案;(2)①由双对合定义可知随着直径GH 的端点G ,H 在K 上运动,点1A 在以点A 为圆心,2为半径的圆上及其内部(不含点A ),由此求出取值范围;②找出临界图形,计算可以求出取值范围.【小问1详解】 由双对合定义可知:12MN PQ MN PQ =,, ()1,2−−A ,()5,2B −,6AB AB x ∴=,轴,()4,0D −,()6,0F ,46OD OF OD AB OF AB ∴==,,,,∴O 关于线段AB 的双对合点是D ,F ;故答案为D ,F ;【小问2详解】①设GH 是K 上任意一条直径,则1GH =.设点1A 是与点A 关于K 双对合的点,将点A 和点1A 分别关于点G ,H 对称后重合的点记为2A ,所以点G ,H 分别是2AA 和12A A 的中点.由三角形中位线的知识,可知1AA 22GH ==.随着点G ,H 在K 上运动,点1A 在以点A 为圆心,2为半径的圆上及其内部(不含点A ),将它记为S .因为点A 与点()0T t ,关于K 双对合,所以当S 与y 轴相交时,可求得t 的值为2−−2−+所以t 的取值范围是2−t ≤≤2−②当ABC 上的一点在AC 上时,如图,则K 上离AC 最近的点到AC 的距离为:1112k ⎛⎫−−+≤ ⎪⎝⎭时存在,解得5122k −≤≤;当ABC 上的一点在BC 上时,则K 上的点离BC 最近的点到BC 的距离不大于1, 即K 到BC 的距离不大于32, AC AB 6==,B C 45∠∠∴==︒,即BC 与x 轴的的夹角为45°,∴交点()30M ,,这时MK ≤,即33k ≤≤;当ABC 上的一点在BC 上时,则K 上的点离AB 最近的点到AB 的距离大于1,不存在;综上所述:52−k ≤≤12或3k ≤≤3+【点睛】本题考查新定义,能正确理解新定义并转化为所学知识解决问题是解题的关键.。
2024年最新人教版初三数学(上册)期末试卷及答案(各版本)
2024年最新人教版初三数学(上册)期末试卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列哪个数是有理数?A. √2B. 3/4C. πD. √12. 下列函数中,哪个函数是奇函数?A. y = x^3B. y = x^2C. y = |x|D. y = x^43. 下列哪个图形是正方体?A. 长方体B. 正方体C. 球体D. 圆柱体4. 下列哪个命题是假命题?A. 对顶角相等B. 两直线平行,同旁内角相等C. 两直线平行,内错角相等D. 两直线平行,同旁内角互补5. 下列哪个数是无理数?A. 1/2B. √9C. πD. 0.333二、判断题5道(每题1分,共5分)1. 任何两个实数的和都是实数。
()2. 任何两个实数的积都是实数。
()3. 0是正数。
()4. 1是质数。
()5. 2是偶数。
()三、填空题5道(每题1分,共5分)1. 两个角的和为180°,这两个角互为__________。
2. 两个角的和为90°,这两个角互为__________。
3. 两个角的和为360°,这两个角互为__________。
4. 两个角的和为270°,这两个角互为__________。
5. 两个角的和为__________°,这两个角互为补角。
四、简答题5道(每题2分,共10分)1. 请简要说明有理数的定义。
2. 请简要说明无理数的定义。
3. 请简要说明实数的定义。
4. 请简要说明函数的定义。
5. 请简要说明奇函数的定义。
五、应用题:5道(每题2分,共10分)1. 计算下列表达式的值:(3/4 + 1/3) ÷ (5/6 1/2)2. 计算下列表达式的值:(2/3)^2 × (3/4)^33. 计算下列表达式的值:√(27) + √(48) √(75)4. 计算下列表达式的值:log2(64) + log2(16) log2(8)5. 计算下列表达式的值:sin(45°) + cos(45°) tan(45°)六、分析题:2道(每题5分,共10分)1. 请分析并解释勾股定理及其应用。
2024届吉林省数学九年级第一学期期末经典试题含解析
2024届吉林省数学九年级第一学期期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的俯视图是A.B.C.D.2.已知点A、B、C、D、E、F是半径为r的⊙O的六等分点,分别以A、D为圆心,AE和DF长为半径画圆弧交于点P.以下说法正确的是( )①∠PAD=∠PDA=60º;②△PAO≌△ADE;③PO=2r;④AO∶OP∶PA=1∶2∶3.A.①④B.②③C.③④D.①③④3.一个不透明的袋子中有3个白球,4个黄球和5个红球,这些球除颜色不同外,其他完全相同.从袋子中随机摸出一个球,则它是黄球的概率是()A.14B.13C.512D.124.下列命题错误..的是( )A.经过三个点一定可以作圆B.经过切点且垂直于切线的直线必经过圆心C.同圆或等圆中,相等的圆心角所对的弧相等D.三角形的外心到三角形各顶点的距离相等5.sin60tan45︒+︒的值等于()A .2B .322+ C .3D .16.如图所示,在ABCD 中,AC 与BD 相交于点O ,E 为OD 的中点,连接AE 并延长交DC 于点F ,则ABE ∆与ABCD 的面积比值为( )A .1:8B .1:4C .3:8D .3:47.下列事件是必然事件的是( ) A .打开电视机,正在播放篮球比赛 B .守株待兔C .明天是晴天D .在只装有5个红球的袋中摸出1球,是红球.8.抛物线y =2 x 2+3与两坐标轴....的公共点个数为( ) A .0个B .1个C .2个D .3个9.已知在Rt △ABC 中,∠C =90°,BC =5,那么AB 的长为( ) A .5sin AB .5cos AC .D .10.下列方程中,没有实数根的是( ) A .x 2﹣2x ﹣3=0 B .(x ﹣5)(x +2)=0 C .x 2﹣x +1=0D .x 2=1二、填空题(每小题3分,共24分)11.在二次函数中2(0)y ax bx c a =++≠,y 与x 的部分对应值如下表: x ...... -1 0 1 2 3 4 ...... y......-7-2mn-2-7......则m 、n 的大小关系为m _______n .(填“>”,“=”或“<”) 12.正五边形的中心角的度数是_____.13.一只不透明的布袋中有三种珠子(除颜色以外没有任何区别),分别是3个红珠子,4个白珠子和5个黑珠子,每次只摸出一个珠子,观察后均放回搅匀,在连续9次摸出的都是红珠子的情况下,第10次摸出红珠子的概率是_____. 14.若3是关于x 的方程x 2-x +c =0的一个根,则方程的另一个根等于____.15.在一个不透明的袋子中装有3个白球和若干个红球,这些球除颜色外都相同.每次从袋子中随机摸出一个球,记下颜色后再放回袋中,通过多次重复试验发现摸出红球的频率稳定在0.7附近,则袋子中红球约有___个.16.计算:2sin30°+tan45°=_____.17.已知x =1是一元二次方程x 2+mx +n =0的一个根,则m 2+2mn +n 2的值为_____. 18.已知方程x 2﹣3x ﹣5=0的两根为x 1,x 2,则x 12+x 22=_________. 三、解答题(共66分)19.(10分)如图,在ABC 中,90C ∠=︒,BAC ∠的平分线交BC 于点D ,点O 在AB 上,以点O 为圆心,OA 为半径的圆恰好经过点D ,分别交AC ,AB 于点E ,F (1)试判断直线BC 与O 的位置关系,并说明理由.(2)若3BD =,1BF =,求阴影部分的面积(结果保留π)20.(6分)如图,抛物线y =x 2+bx+c 与x 轴交于点A 和B (3,0),与y 轴交于点C (0,3). (1)求抛物线的解析式;(2)若点M 是抛物线上在x 轴下方的动点,过M 作MN ∥y 轴交直线BC 于点N ,求线段MN 的最大值;(3)E 是抛物线对称轴上一点,F 是抛物线上一点,是否存在以A ,B ,E ,F 为顶点的四边形是平行四边形?若存在,请直接写出点F 的坐标;若不存在,请说明理由.21.(6分)如图,已知二次函数23y x ax =++的图象经过点()2,3P -.(1)求a 的值和图象的顶点坐标。
2024年北京燕山区初三上学期期末考数学试卷和答案
燕山地区2023—2024学年第一学期九年级期末考试数学试卷2024.1一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.....1.下列图案是我国国产品牌汽车的标识,其中是中心对称图形的是A .B .C .D .2.已知点P 在半径为r 的⊙O 内,且OP =3,则r 的值可能为A .1B .2C .3D .43.下列函数中,当0x >时,y 随x 的增大而减小的是A .y =xB .y =1x +C .y =2x D .y =2x -4.一个小球在如图所示的地板上自由滚动,并随机停留在某块方砖上.如果每一块方砖除颜色外完全相同,则小球最终停留在白砖上的概率是A .13B .49C .59D .235.如图,点A ,B 在⊙O 上,点C 是劣弧AB ︵的中点,∠AOC =80°,则∠CDB 的大小为A .40°B .45°C .60°D .80°6.电影《志愿军:雄兵出击》于国庆档上映,首周累计票房约3.5亿元,第三周累计票房约6.8亿元.若每周累计票房的增长率相同,设增长率为x ,根据题意可列方程为A .23.5 6.8x =B .3.5(1 6.8)x +=C .23.5(1) 6.8x +=D .23.5(1) 6.8x -=7.如图,在平面直角坐标系xOy 中,△ABC 的三个顶点都在格点上,则△ABC 外接圆的圆心坐标为A .(3,2)B .(2,3)C .(2,2)D .(3,3)8.平面直角坐标系xOy 中,已知二次函数y =ax 2+bx (a ≠0)的部分图象如图所示,给出下面三个结论:①a •b >0;②二次函数y =ax 2+bx (a ≠0)有最大值4;③关于x 的方程ax 2+bx =0有两个实数根14=-x ,20=x .上述结论中,所有正确结论的序号是A .①②B .①③C .②③D .①②③二、填空题(共16分,每题2分)9.平面直角坐标系xOy 中,与点P (-4,1)关于原点对称的点的坐标是.10.一元二次方程(3)3x x x -=-的解是.11.将抛物线212y x =向左平移1个单位长度,得到抛物线的解析式为.12.已知某二次函数的图象开口向上,且顶点坐标为(1,3),则这个二次函数解析式可以是.13.如图,P A ,PB 是⊙O 的两条切线,切点为A ,B ,若∠AOB =90°,P A =3,则⊙O 的半径为.14.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,连接AD ,若OE =3,CD =8,则AD 的长为.15.在一个不透明的盒子中共装有40个球,其中有a 个红球,这些球除颜色外无其他差别.为估计a 的值,小颖做摸球试验,她将盒子里面的球充分搅匀,任意摸出1个球记下颜色再放回,不断重复上述过程,记录实验数据如下:摸球的次数n 2050100200300400500摸到红球的次数m133262117181238301摸到红球的频率mn0.650.640.620.5850.6030.5950.602根据以上数据,估计a 的值约为.16.2023年第19届杭州亚运会的举办带热了吉祥物“宸宸、琮琮和莲莲”的销售.某网店经营亚运会吉祥物玩偶礼盒装,每盒进价为30元.当地物价部门规定,该礼盒销售单价最高不能超过50元/盒.在销售过程中发现该礼盒每周的销量y (件)与销售单价x (元)之间近似满足函数关系:2180-y x =+(30≤x ≤50).(1)设该网店每周销售该礼盒所获利润为w (元),则w 与x 的函数关系式为;(2)该网店每周销售该礼盒所获最大利润为元.(第14题)(第13题)宸宸琮琮莲莲三、解答题(共68分,第17-19题,每题5分,第20题6分,第21-23题,每题5分,第24-26题,每题6分,第27-28题,每题7分)解答应写出文字说明,演算步骤或证明过程.17.解方程:220+-=.41x x18.已知250-,求代数式22=x x-x x x-+-的值.3(2)(1)19.2023年7月31日,北京遭遇140年以来最大的暴雨,房山地区受灾严重.为了做好防汛救灾工作,某社区特招募志愿工作者,小东和小北积极报名参加,根据社区安排,志愿者被随机分到A组(信息登记),B组(物资发放),C组(垃圾清运)的其中一组.(1)小东被分配到A组是事件(填“必然”,“随机”或“不可能”);小东被分配到A组的概率是.(2)请用列表或画树状图的方法,求出小东和小北被分配到同一组的概率.20.如图,将△ABC绕点B逆时针旋转得到△DBE,点C的对应点E恰好落在AB上.(1)若BC=6,BD=9,求线段AE的长.(2)连接AD,若∠C=110°,∠BAC=40°,求∠BDA的度数.21.阅读下面的材料一元二次方程及其解法最早出现在公元前两千年左右的古巴比伦人的《泥板文书》中.到了中世纪,阿拉伯数学家阿尔·花拉子米在他的代表作《代数学》中记载了求一元二次方程正数解的几何解法,我国三国时期的数学家赵爽在其所著《勾股圆方图注》中也给出了类似的解法.以x2+10x=39为例,花拉子米的几何解法步骤如下:①如图1,在边长为x的正方形的两个相邻边上作边长分别为x和5的矩形,再补上一个边长为5的小正方形,最终把图形补成一个大正方形;②一方面大正方形的面积为(x+)2,另一方面它又等于图中各部分面积之和,因为x2+10x=39,可得方程(x+)2=39+,则方程的正数解是x =.根据上述材料,解答下列问题.(1)补全花拉子米的解法步骤②;(2)根据花拉子米的解法,在图2的两个构图①②中,能够得到方程x 2-6x =7的正数解的正确构图是(填序号).22.已知关于x 的一元二次方程22(2)0x x m -+-=有两个不相等的实数根.(1)求m 的取值范围;(2)若m 为正整数,请你写出一个满足条件的m 值,并求出此时方程的根.23.已知二次函数23(0)+y ax bx a =+≠的图象经过点A (1,0),B (3,0).(1)求该函数的解析式;(2)当x >3时,对于x 的每一个值,函数y x n =+的值小于二次函数23+y ax bx =+的值,结合函数图象,直接写出n 的取值范围.24.如图,在△ABC 中,∠ACB =90°,点D 在AB 上,以AD 为直径作⊙O 与BC 相切于点E ,连接DE 并延长交AC 的延长线于点F .(1)求证:AF =AD ;(2)若CE =4,CF =2,求⊙O 的半径.图1①②25.学校组织九年级学生进行跨学科主题学习活动,利用函数的相关知识研究某种化学试剂的挥发情况.在两种不同的场景A 和场景B 下做对比实验,设实验过程中,该试剂挥发时间为x 分钟时,在场景A ,B 中的剩余质量分别为y 1,y 2(单位:克).下面是某研究小组的探究过程,请补充完整:记录y 1,y 2与x 的几组对应值如下:x (分钟)05101520…y 1(克)2523.52014.57…y 2(克)252015105…(1)在同一平面直角坐标系xOy 中,描出上表中各组数值所对应的点(x ,y 1),(x ,y 2),并画出函数y 1,y 2的图象;(2)进一步探究发现,场景A 的图象是抛物线的一部分,y 1与x 之间近似满足函数关系210.04+y x bx c =-+.场景B 的图象是直线的一部分,y 2与x 之间近似满足函数关系2y ax c =+(a ≠0).请分别求出场景A ,B 满足的函数关系式;(3)查阅文献可知,该化学试剂的质量不低于4克时,才能发挥作用.在上述实验中,记该化学试剂在场景A ,B 中发挥作用的时间分别为x A ,x B ,则x A x B (填“>”,“=”或“<”).26.在平面直角坐标系xOy 中,点M (-1,m ),N (3,n )在抛物线2y ax bx c =++(a >0)上,设抛物线的对称轴为x =t .(1)若m =n ,求t 的值;(2)若c <m <n ,求t 的取值范围.27.如图,△ABC 为等边三角形,点M 为AB 边上一点(不与点A ,B 重合),连接CM ,过点A 作AD ⊥CM 于点D ,将线段AD 绕点A 顺时针旋转60°得到线段AE ,连接BE .(1)依题意补全图形,直接写出∠AEB 的大小,并证明;(2)连接ED 并延长交BC 于点F ,用等式表示BF 与FC 的数量关系,并证明.28.在平面直角坐标系xOy 中,对于⊙C 和⊙C 外一点P 给出如下定义:连接CP 交⊙C 于点Q ,作点P 关于点Q 的对称点P′,若点P′在线段CQ 上,则称点P 是⊙C 的“关联点”.例如,图中P 为⊙C 的一个“关联点”.(1)⊙O 的半径为1.①如图1,在点A (2-,0),B (2,2),D (0,3)中,⊙O 的“关联点”是;②已知点M 在直线323y x =-上,且点M 是⊙O 的“关联点”,求点M 的横坐标m 的取值范围.(2)直线31()y x =--与x 轴,y 轴分别交于点E ,点F ,⊙T 的圆心为T (t ,0),半径为2,若线段..EF ..上所有点....都是⊙T 的“关联点”,直接写出t 的取值范围.图1备用图燕山地区2023—2024学年第一学期九年级期末考试数学试卷答案及评分参考2024年1月阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可。
初三数学期末考试练习试题及答案
初三数学期末考试练习试题及答案初三数学期末考试练习试题及答案初三数学期末考试练习试题一、选择题(每题3分、共30分)1.四会市现在总人口43万多,数据43万用科学记数法表示为( )A.43×104B.4.3×105C.4.3×106D.0.43×1062.下列四个多边形:①等边三角形;②正方形;③正五边形;④正六边形、其中,既是轴对称图形又是中心对称图形的是( )A.①②B.②③C.②④D.①④3.如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC 等于( )A.20B.15C.10D.54.如图是一个用相同的小立方体搭成的几何体的三视图,则组成这个几何体的小立方体的个数是( )A.2B.3C.4D.55.在平面中,下列命题为真命题的是( )A.四边相等的四边形是正方形B.对角线相等的四边形是菱形C.四个角相等的四边形是矩形D.对角线互相垂直的四边形是平行四边形6.若关于x的方程x2﹣4x+m=0没有实数根,则实数m的取值范围是( )A.m<﹣4b.m>﹣4C.m<4d.m>47.用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为( )A.(x+2)2=9B.(x﹣2)2=9C.(x+2)2=1D.(x﹣2)2=18.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是( )A.B.C.D.9.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx的图象可能为( )A.B.C.D.10.如图,抛物线y=x2与直线y=x交于A点,沿直线y=x平移抛物线,使得平移后的抛物线顶点恰好为A点,则平移后抛物线的解析式是( )A.y=(x+1)2﹣1B.y=(x+1)2+1C.y=(x﹣1)2+1D.y=(x﹣1)2﹣1二、填空题(每题3分、共30分)11.若在实数范围内有意义,则x的取值范围是 .12.已知一次函数y=kx+3的图象经过第一、二、四象限,则k的取值范围是 .13.分解因式:3ax2﹣3ay2= .14.在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .15.设x1、x2是方程3x2﹣x﹣1=0的两个实数根,则3x12﹣2x1﹣x2的值等于 .16.某商品原价289元,经过两次连续降价后售价为256元,设平均每次降价的百分率为x,则由题意所列方程 .17.若|a﹣3|+(a﹣b)2=0,则ab的倒数是 .18.如图,在?ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程x2+2x﹣3=0的根,则?ABCD的周长是 .19.如图,A(4,0),B(3,3),以AO,AB为边作平行四边形OABC,则经过C点的反比例函数的解析式为 .三、解答题(共60分)20.(﹣1)0+()﹣2﹣.21.先化简,再求值:,其中.22.解不等式组:,并把解集在数轴上表示出来.23.某校初三(1)班的同学踊跃为“雅安芦山地震”捐款,根据捐款情况(捐款数为正数)制作以下统计图表,但生活委员不小心把墨水滴在统计表上,部分数据看不清楚.捐款人数0~20元21~40元41~60元61~80元681元以上4(1)全班有多少人捐款?(2)如果捐款0~20元的人数在扇形统计图中所占的圆心角为72°,那么捐款21~40元的有多少人?24.四张扑克牌的点数分别是2,3,4,8,将它们洗匀后背面朝上放在桌上.(1)从中随机抽取一张牌,求这张牌的点数偶数的概率;(2)从中随机抽取一张牌,接着再抽取一张,求这两张牌的点数都是偶数的概率.25.如图.直线y=ax+b与双曲线相交于两点A(1,2),B(m,﹣4).(1)求直线与双曲线的解析式;(2)求不等式ax+b>的解集(直接写出答案)26.(10分)(2013南通)某公司营销A、B两种产品,根据市场调研,发现如下信息:信息1:销售A种产品所获利润y(万元)与销售产品x(吨)之间存在二次函数关系y=ax2+bx.在x=1时,y=1.4;当x=3时,y=3.6.信息2:销售B种产品所获利润y(万元)与销售产品x(吨)之间存在正比例函数关系y=0.3x.根据以上信息,解答下列问题;(1)求二次函数解析式;(2)该公司准备购进A、B两种产品共10吨,请设计一个营销方案,使销售A、B两种产品获得的利润之和最大,最大利润是多少?27.(12分)(2008包头)阅读并解答:①方程x2﹣2x+1=0的根是x1=x2=1,则有x1+x2=2,x1x2=1.②方程2x2﹣x﹣2=0的根是x1=,x2=,则有x1+x2=,x1x2=﹣1.③方程3x2+4x﹣7=0的根是x1=﹣,x2=1,则有x1+x2=﹣,x1x2=﹣.(1)根据以上①②③请你猜想:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根为x1,x2,那么x1,x2与系数a、b、c有什么关系?请写出你的猜想并证明你的猜想;(2)利用你的猜想结论,解决下面的问题:已知关于x的方程x2+(2k+1)x+k2﹣2=0有实数根x1,x2,且x12+x22=11,求k的值.参考答案与试题解析一、选择题(每题3分、共30分)1.四会市现在总人口43万多,数据43万用科学记数法表示为( )A.43×104B.4.3×105C.4.3×106D.0.43×106考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于43万有6位,所以可以确定n=6﹣1=5.解答:解:43万=430000=4.3×105.故选B.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n 值是关键.2.下列四个多边形:①等边三角形;②正方形;③正五边形;④正六边形、其中,既是轴对称图形又是中心对称图形的是( )A.①②B.②③C.②④D.①④考点:中心对称图形;轴对称图形.分析:根据正多边形的性质和轴对称与中心对称的性质解答.解答:解:由正多边形的对称性知,偶数边的正多边形既是轴对称图形,又是中心对称图形;奇数边的正多边形只是轴对称图形,不是中心对称图形.故选C.点评:此题考查正多边形对称性.关键要记住偶数边的正多边形既是轴对称图形,又是中心对称图形,奇数边的正多边形只是轴对称图形.3.如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC 等于( )A.20B.15C.10D.5考点:菱形的性质;等边三角形的判定与性质.分析:根据菱形的性质及已知可得△ABC为等边三角形,从而得到AC=AB.解答:解:∵AB=BC,∠B+∠BCD=180°,∠BCD=120°∴∠B=60°∴△ABC为等边三角形∴AC=AB=5故选D.点评:本题考查了菱形的性质和等边三角形的判定.4.如图是一个用相同的小立方体搭成的几何体的三视图,则组成这个几何体的小立方体的个数是( )A.2B.3C.4D.5考点:由三视图判断几何体.分析:根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再结合题意和三视图的特点找出每行和每列的小正方体的个数再相加即可.解答:解:由俯视图易得最底层有3个立方体,第二层有1个立方体,那么搭成这个几何体所用的小立方体个数是4.故选C.点评:本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.5.在平面中,下列命题为真命题的是( )A.四边相等的四边形是正方形B.对角线相等的四边形是菱形C.四个角相等的四边形是矩形D.对角线互相垂直的四边形是平行四边形考点:正方形的判定;平行四边形的判定;菱形的判定;矩形的判定;命题与定理.分析:分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案,不是真命题的可以举出反例.解答:解:A、四边相等的四边形不一定是正方形,例如菱形,故此选项错误;B、对角线相等的四边形不是菱形,例如矩形,等腰梯形,故此选项错误;C、四个角相等的四边形是矩形,故此选项正确;D、对角线互相垂直的四边形不一定是平行四边形,如右图所示,故此选项错误.故选:C.点评:此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.若关于x的方程x2﹣4x+m=0没有实数根,则实数m的取值范围是( )A.m<﹣4b.m>﹣4C.m<4d.m>4考点:根的判别式.专题:计算题.分析:由方程没有实数根,得到根的判别式的值小于0,列出关于m的不等式,求出不等式的解集即可得到m的范围.解答:解:∵△=(﹣4)2﹣4m=16﹣4m<0,∴m>4.故选D点评:此题考查了根的判别式,熟练掌握根的判别式的意义是解本题的关键.7.用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为( )A.(x+2)2=9B.(x﹣2)2=9C.(x+2)2=1D.(x﹣2)2=1考点:解一元二次方程-配方法.分析:移项后配方,再根据完全平方公式求出即可.解答:解:x2+4x﹣5=0,x2+4x=5,x2+4x+22=5+22,(x+2)2=9,故选:A.点评:本题考查了解一元二次方程的应用,关键是能正确配方.8.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是( )A.B.C.D.考点:由实际问题抽象出分式方程.分析:题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式.解答:解:根据题意,得.故选:C.点评:理解题意是解答应用题的关键,找出题中的等量关系,列出关系式.9.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx的图象可能为( )A.B.C.D.考点:二次函数的图象;一次函数的图象.专题:数形结合.分析:根据二次函数的性质首先排除B选项,再根据a、b的值的正负,结合二次函数和一次函数的性质逐个检验即可得出答案.解答:解:根据题意可知二次函数y=ax2+bx的图象经过原点O(0,0),故B选项错误;当a<0时,二次函数y=ax2+bx的图象开口向下,一次函数y=ax+b的斜率a为负值,故D选项错误;当a<0、b>0时,二次函数y=ax2+bx的对称轴x=﹣>0,一次函数y=ax+b与y轴的交点(0,b)应该在y轴正半轴,故C选项错误;当a>0、b<0时,二次函数y=ax2+bx的对称轴x=﹣>0,一次函数y=ax+b与y轴的交点(0,b)应该在y轴负半轴,故A选项正确.故选A.点评:本题主要考查了二次函数的性质和一次函数的性质,做题时要注意数形结合思想的运用,同学们加强训练即可掌握,属于基础题.10.如图,抛物线y=x2与直线y=x交于A点,沿直线y=x平移抛物线,使得平移后的抛物线顶点恰好为A点,则平移后抛物线的解析式是( )A.y=(x+1)2﹣1B.y=(x+1)2+1C.y=(x﹣1)2+1D.y=(x﹣1)2﹣1考点:二次函数图象与几何变换.分析:首先根据抛物线y=x2与直线y=x交于A点,即可得出A 点坐标,然后根据抛物线平移的性质:左加右减,上加下减可得解析式.解答:解:∵抛物线y=x2与直线y=x交于A点,∴x2=x,解得:x1=1,x2=0(舍去),∴A(1,1),∴抛物线解析式为:y=(x﹣1)2+1,故选:C.点评:此题主要考查了二次函数图象的几何变换,关键是求出A 点坐标,掌握抛物线平移的性质:左加右减,上加下减.二、填空题(每题3分、共30分)11.若在实数范围内有意义,则x的取值范围是x≥2 .考点:二次根式有意义的条件.专题:计算题.分析:让二次根式的被开方数为非负数列式求解即可.解答:解:由题意得:3x﹣6≥0,解得x≥2,故答案为:x≥2.点评:考查二次根式有意义的条件;用到的知识点为:二次根式有意义,被开方数为非负数.12.已知一次函数y=kx+3的图象经过第一、二、四象限,则k的取值范围是 k<0 .考点:一次函数图象与系数的关系.分析:根据一次函数经过的象限确定其图象的增减性,然后确定k 的取值范围即可.解答:解:∵一次函数y=kx+3的图象经过第一、二、四象限,∴k<0;故答案为:k<0.点评:本题考查了一次函数的图象与系数的关系,解题的关键是根据图象的位置确定其增减性.13.分解因式:3ax2﹣3ay2= 3a(x+y)(x﹣y) .考点:提公因式法与公式法的综合运用.分析:当一个多项式有公因式,将其分解因式时应先提取公因式,再对余下的多项式继续分解.解答:解:3ax2﹣3ay2=3a(x2﹣y2)=3a(x+y)(x﹣y).故答案为:3a(x+y)(x﹣y)点评:本题考查了提公因式法,公式法分解因式,关键在于提取公因式后再利用平方差公式继续进行二次因式分解,分解因式一定要彻底.14.在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .考点:概率公式.分析:由在10个外观相同的产品中,有2个不合格产品,直接利用概率公式求解即可求得答案.解答:解:∵在10个外观相同的产品中,有2个不合格产品,∴现从中任意抽取1个进行检测,抽到合格产品的概率是:=.故答案为:.点评:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.15.设x1、x2是方程3x2﹣x﹣1=0的两个实数根,则3x12﹣2x1﹣x2的值等于 .考点:根与系数的关系;一元二次方程的解.分析:根据题意可知,x1+x2=,然后根据方程解的定义得到3x12=x1+1,然后整体代入3x12﹣2x1﹣x2计算即可.解答:解:∵x1,x2是方程3x2﹣x﹣1=0的两个实数根,∴x1+x2=,∵x1是方程x2﹣5x﹣1=0的实数根,∴3x12﹣x1﹣1=0,∴x12=x1+1,∴3x12﹣2x1+x2=x1+1﹣2x1﹣x2=1﹣(x1+x2)=1﹣=.故答案为:.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系x1+x2=﹣,x1x2=,以及一元二次方程的解.16.某商品原价289元,经过两次连续降价后售价为256元,设平均每次降价的百分率为x,则由题意所列方程289×(1﹣x)2=256 .考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣降低的百分率)=256,把相应数值代入即可求解.解答:解:第一次降价后的价格为289×(1﹣x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为289×(1﹣x)×(1﹣x),则列出的方程是289×(1﹣x)2=256.点评:考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.17.若|a﹣3|+(a﹣b)2=0,则ab的倒数是 .考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.解答:解:根据题意得,a﹣3=0,a﹣b=0,解得a=b=3,所以,ab=33=27,所以,ab的倒数是.故答案为:.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.18.如图,在?ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程x2+2x﹣3=0的根,则?ABCD的周长是 4+2 .考点:解一元二次方程-因式分解法;平行四边形的性质.专题:计算题.分析:先解方程求得a,再根据勾股定理求得AB,从而计算出?ABCD的周长即可.解答:解:∵a是一元二次方程x2+2x﹣3=0的根,∴(x﹣1)(x+3)=0,即x=1或﹣3,∵AE=EB=EC=a,∴a=1,在Rt△ABE中,AB==a=,∴?ABCD的周长=4a+2a=4+2.故答案为:4+2.点评:本题考查了用因式分解法解一元二次方程,以及平行四边形的性质,是基础知识要熟练掌握.19.如图,A(4,0),B(3,3),以AO,AB为边作平行四边形OABC,则经过C点的反比例函数的解析式为 y=﹣ .考点:待定系数法求反比例函数解析式;平行四边形的性质.专题:待定系数法.分析:设经过C点的反比例函数的解析式是y=(k≠0),设C(x,y).根据平行四边形的性质求出点C的坐标(﹣1,3).然后利用待定系数法求反比例函数的解析式.解答:解:设经过C点的反比例函数的解析式是y=(k≠0),设C(x,y).∵四边形OABC是平行四边形,∴BC∥OA,BC=OA;∵A(4,0),B(3,3),∴点C的纵坐标是y=3,|3﹣x|=4(x<0),∴x=﹣1,∴C(﹣1,3).∵点C在反比例函数y=(k≠0)的图象上,∴3=,解得,k=﹣3,∴经过C点的反比例函数的解析式是y=﹣.故答案为:y=﹣.点评:本题主要考查了平行四边形的性质(对边平行且相等)、利用待定系数法求反比例函数的解析式.解答反比例函数的解析式时,还借用了反比例函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.三、解答题(共60分)20.(﹣1)0+()﹣2﹣.考点:实数的运算;零指数幂;负整数指数幂.专题:计算题.分析:原式第一项利用零指数幂法则计算,第二项利用负整数指数幂法则计算,即可得到结果.解答:解:原式=1+4﹣=4.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.21.先化简,再求值:,其中.考点:分式的化简求值;约分;分式的乘除法;分式的加减法.专题:计算题.分析:先算括号里面的减法,再把除法变成乘法,进行约分即可.解答:解:原式=&pide;()=×=,当x=﹣3时,原式==.点评:本题主要考查对分式的加减、乘除,约分等知识点的理解和掌握,能熟练地运用法则进行化简是解此题的关键.22.解不等式组:,并把解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:计算题.分析:分别解两个不等式得到x≥﹣2和x<1,再根据大于小的小于大的取中间确定不等式组的解集,然后用数轴表示解集.解答:解:,由①得:x≥﹣2,由②得:x<1,∴不等式组的解集为:﹣2≤x<1,如图,在数轴上表示为:.点评:本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.也考查了在数轴上表示不等式的解集.23.某校初三(1)班的同学踊跃为“雅安芦山地震”捐款,根据捐款情况(捐款数为正数)制作以下统计图表,但生活委员不小心把墨水滴在统计表上,部分数据看不清楚.捐款人数0~20元21~40元41~60元61~80元681元以上4(1)全班有多少人捐款?(2)如果捐款0~20元的人数在扇形统计图中所占的圆心角为72°,那么捐款21~40元的有多少人?考点:扇形统计图;统计表.分析:(1)根据扇形统计图中的捐款81元以上的认识和其所占的百分比确定全班人数即可;(2)分别确定每个小组的人数,最后确定捐款数在21﹣40元的人数即可.解答:解:(1)4&pide;8%=50答:全班有50人捐款.(2)∵捐款0~20元的人数在扇形统计图中所占的圆心角为72°∴捐款0~20元的人数为50×=10∴50﹣10﹣50×32%﹣6﹣4=14答:捐款21~40元的有14人.点评:本题考查了扇形统计图及统计表的知识,解题的关键是确定总人数.24.四张扑克牌的'点数分别是2,3,4,8,将它们洗匀后背面朝上放在桌上.(1)从中随机抽取一张牌,求这张牌的点数偶数的概率;(2)从中随机抽取一张牌,接着再抽取一张,求这两张牌的点数都是偶数的概率.考点:列表法与树状图法;概率公式.分析:(1)利用数字2,3,4,8中一共有3个偶数,总数为4,即可得出点数偶数的概率;(2)利用树状图列举出所有情况,让点数都是偶数的情况数除以总情况数即为所求的概率.解答:解:(1)根据数字2,3,4,8中一共有3个偶数,故从中随机抽取一张牌,这张牌的点数偶数的概率为:;(2)根据从中随机抽取一张牌,接着再抽取一张,列树状图如下:根据树状图可知,一共有12种情况,两张牌的点数都是偶数的有6种,故连续抽取两张牌的点数都是偶数的概率是:=.点评:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.25.如图.直线y=ax+b与双曲线相交于两点A(1,2),B(m,﹣4).(1)求直线与双曲线的解析式;(2)求不等式ax+b>的解集(直接写出答案)考点:反比例函数与一次函数的交点问题.分析:(1)先把先把(1,2)代入双曲线中,可求k,从而可得双曲线的解析式,再把y=﹣4代入双曲线的解析式中,可求m,最后把(1,2)、(﹣,﹣4)代入一次函数,可得关于a、b的二元一次方程组,解可求a、b的值,进而可求出一次函数解析式;(2)根据图象观察可得x>1或﹣<x<0.主要是观察交点的左右即可.<>解答:解:(1)先把(1,2)代入双曲线中,得k=2,∴双曲线的解析式是y=,当y=﹣4时,m=﹣,把(1,2)、(﹣,﹣4)代入一次函数,可得,解得,∴一次函数的解析式是y=4x﹣2;(2)根据图象可知,若ax+b>,那么x>1或﹣<x<0.<>点评:本题考查了一次函数与反比例函数交点问题,解题的关键是掌握待定系数法求函数解析式,并会根据图象求出不等式的解集.26.(10分)(2013南通)某公司营销A、B两种产品,根据市场调研,发现如下信息:信息1:销售A种产品所获利润y(万元)与销售产品x(吨)之间存在二次函数关系y=ax2+bx.在x=1时,y=1.4;当x=3时,y=3.6.信息2:销售B种产品所获利润y(万元)与销售产品x(吨)之间存在正比例函数关系y=0.3x.根据以上信息,解答下列问题;(1)求二次函数解析式;(2)该公司准备购进A、B两种产品共10吨,请设计一个营销方案,使销售A、B两种产品获得的利润之和最大,最大利润是多少?考点:二次函数的应用.分析:(1)把两组数据代入二次函数解析式,然后利用待定系数法求解即可;(2)设购进A产品m吨,购进B产品(10﹣m)吨,销售A、B两种产品获得的利润之和为W元,根据总利润等于两种产品的利润的和列式整理得到W与m的函数关系式,再根据二次函数的最值问题解答.解答:解:(1)∵当x=1时,y=1.4;当x=3时,y=3.6,∴,解得,所以,二次函数解析式为y=﹣0.1x2+1.5x;(2)设购进A产品m吨,购进B产品(10﹣m)吨,销售A、B两种产品获得的利润之和为W元,则W=﹣0.1m2+1.5m+0.3(10﹣m)=﹣0.1m2+1.2m+3=﹣0.1(m﹣6)2+6.6,∵﹣0.1<0,∴当m=6时,W有最大值6.6,∴购进A产品6吨,购进B产品4吨,销售A、B两种产品获得的利润之和最大,最大利润是6.6万元.点评:本题考查了二次函数的应用,主要利用了待定系数法求二次函数解析式,二次函数的最值问题,比较简单,(2)整理得到所获利润与购进A产品的吨数的关系式是解题的关键.27.(12分)(2008包头)阅读并解答:①方程x2﹣2x+1=0的根是x1=x2=1,则有x1+x2=2,x1x2=1.②方程2x2﹣x﹣2=0的根是x1=,x2=,则有x1+x2=,x1x2=﹣1.③方程3x2+4x﹣7=0的根是x1=﹣,x2=1,则有x1+x2=﹣,x1x2=﹣.(1)根据以上①②③请你猜想:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根为x1,x2,那么x1,x2与系数a、b、c有什么关系?请写出你的猜想并证明你的猜想;(2)利用你的猜想结论,解决下面的问题:已知关于x的方程x2+(2k+1)x+k2﹣2=0有实数根x1,x2,且x12+x22=11,求k的值.考点:根与系数的关系;解一元二次方程-公式法;解一元二次方程-因式分解法;根的判别式.专题:压轴题;阅读型.分析:(1)由①②③中两根之和与两根之积的结果可以看出,两根之和正好等于一次项系数与二次项系数之比的相反数,两根之积正好等于常数项与二次项系数之比.(2)欲求k的值,先把代数式x12+x22变形为两根之积或两根之和的形式,然后与两根之和公式、两根之积公式联立组成方程组,解方程组即可求k值.解答:解:(1)猜想为:设ax2+bx+c=0(a≠0)的两根为x1、x2,则有,.理由:设x1、x2是一元二次方程ax2+bx+c=0(a≠0)的两根,那么由求根公式可知,,.于是有,,综上得,设ax2+bx+c=0(a≠0)的两根为x1、x2,则有,.(2)x1、x2是方程x2+(2k+1)x+k2﹣2=0的两个实数根∴x1+x2=﹣(2k+1),x1x2=k2﹣2,又∵x12+x22=x12+x22+2x1x2﹣2x1x2=(x1+x2)2﹣2x1x2∴[﹣(2k+1)]2﹣2×(k2﹣2)=11整理得k2+2k﹣3=0,解得k=1或﹣3,又∵△=[﹣(2k+1)]2﹣4(k2﹣2)≥0,解得k≥﹣,∴k=1.点评:本题考查了学生的总结和分析能力,善于总结,善于发现,学会分析是学好数学必备的能力.将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.。
初三数学期末测试题及答案
初三数学期末测试题全卷分A 卷和B 卷,A 卷满分86分,B 卷满分34分;考试时间l20分钟。
A 卷分第Ⅰ卷和第Ⅱ卷,第Ⅰ卷为选择题,第Ⅱ卷为其他类型的题。
一、选择题(本题共有个小题,每小题4分,共32分)在每小题给出的四个选项中,只有一项是正确的,把正确的序号填在题后的括号内。
1.下列实数中是无理数的是( ) (A )38.0 (B )π (C )4 (D ) 722-2.在平面直角坐标系中,点A (1,-3)在( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 3.下列四组数据中,不能..作为直角三角形的三边长是( ) (A )3,4,6 (B )7,24,25 (C )6,8,10 (D )9,12,15 4.下列各组数值是二元一次方程43=-y x 的解的是( )(A )⎩⎨⎧-==11y x (B )⎩⎨⎧==12y x (C )⎩⎨⎧-=-=21y x (D )⎩⎨⎧-==14y x5.已知一个多边形的内角各为720°,则这个多边形为( )(A )三角形 (B )四边形 (C )五边形 (D )六边形6.如果03)4(2=-+-+y x y x ,那么y x -2的值为( ) (A )-3 (B )3 (C )-1 (D )17.在平面直角坐标系中,已知一次函数b kx y +=下列结论正的是( )(A )k >0,b >0 (B )k >0, b <0 (C )k <0, b >0 (D )k <0, 8.下列说法正确的是( )(A )矩形的对角线互相垂直 (B )等腰梯形的对角线相等(C )有两个角为直角的四边形是矩形 (D )对角线互相垂直的四边形是菱形 二、填空题:(每小题4分,共16分)A B CDc9.如图,在Rt △ABC 中,已知a 、b 、c 分别是∠A 、∠B 、∠C 的对边,如果b =2a ,那么ca= 。
北京市海淀区2023~2024学年第一学期初三期末数学参考答案
海淀区九年级第一学期期末练习数学试卷参考答案第一部分 选择题一、选择题 (共16分,每题2分)第二部分 非选择题二、填空题(共16分,每题2分)9.231y x =− 10.旋转11.1(答案不唯一) 12.最大值 13.18 14.3π 1516.(1)17,(2)15三、解答题(共68分,第17-19题,每题5分,第20题6分,第21-23题,每题5分,第24-26题,每题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17. 解:方程化为210x x +−=.111a b c ===−,,.24b ac ∆=−2141(1)50=−⨯⨯−=>.方程有两个不相等的实数根x = ,即 1x =2x = 18. 解:∵22310a a −+=, ∴2231a a −=−.∴原式22693a a a a =−+++2239a a =−+ 19=−+ 8=.19. 证明:∵将△ABC 绕点A 逆时针旋转得到△AB'C', ∴△ABC ≌△AB'C'.∴AB AB'=,45B AB'C'∠=∠=︒. ∴45AB'B B ∠=∠=︒.∴454590BB'C AB'B AB'C'∠=∠+∠=︒+︒=︒. ∴BB'C'B'⊥.20. 解:(1)∵关于x 的方程2220x mx m n −+−=有两个不相等的实数根, ∴∆22(2)4()0m m n =−−−>. 解得 0n >.(2)∵n 为符合条件的最小整数, ∴1n =.∴方程可化为22210x mx m −+−=. 解方程,得 11x m =−,21x m =+. ∵1(1)20m m +−−=>, ∴11m m +>−.∵该方程的较大根是较小根的2倍, ∴12(1)m m +=−. ∴3m =. 21.(1)作图如下:(2) ① PB ;② ∠PBA ;③ 经过半径的外端并且垂直于这条半径的直线是圆的切线.22.(1)12. (2)解:画树状图如下:由树状图可知,所有可能出现的结果共有12种,即(红,绿),(红,黄1),(红,黄2),(绿,红),(绿,黄1),(绿,黄2),(黄1,红),(黄1,绿),(黄1,黄2),(黄2,红),(黄2,绿),(黄2,黄1),并且它们出现的可能性相等. 其中,摸出的两个球恰好是一个红球和一个黄球(记事件A )的结果有4种,即(红,黄1),(红,黄2),(黄1,红),(黄2,红).∴41()123P A ==. 23. 解:(1)∵抛物线经过点(0,2)A 和(3,1)B −,∴2,931,c b c =⎧⎨++=−⎩ 得42.b c =−⎧⎨=⎩,∴抛物线的表达式为242y x x =−+. (2) 12t −<<.24. (1)22816y x x =−+, 04x ≤≤;(2)(3)2,8.25. 解:(1)∵CM ∥AD ,∴CDA MCD α∠=∠=.∴22COA CDA α∠=∠=.(2)∵CM 与半圆O 的切线相切于点C ,∴OC CM ⊥. ∴90ECO ∠=︒. 即90DCO MCD ∠+∠=︒. ∵CD ∥AB ,∴2DCO COA α∠=∠=. ∴390α=︒.∴30α=︒.∴60DCO ∠=︒.∵OE CD ⊥于F ,∴90CFO ∠=︒.∴90906030COE DCO ∠=︒−∠=︒−︒=︒.∴ 2OE CE =.∵AB 为直径,6AB =, ∴3OC =.在Rt △OCE 中,由勾股定理得222OC CE OE +=. ∴2223(2)CE CE +=.∴CE =. 26.解:(1)① 4b a =−; ② m n >.理由如下: 由① ,4b a =−,∴224y ax bx c ax ax c =++=−+.∵点(1,)A m −,点(3,)B n 在抛物线24(0)y ax ax c a =−+>上, ∴45m a a c a c =++=+, 9123n a a c a c =−+=−+.∵0a >, ∴53a a >−.∴53a c a c +>−+. ∴m n >. (2)解法一:∵0a >,∴当x t ≥时,y 随x 的增大而增大,当x t ≤时,y 随x 的增大而减小. ① 当1t ≤−时,∵034x <<, ∴013t x ≤−<<.∴m n p <<,不符合题意. ② 当13t −<≤时,设点(1,)A m −关于抛物线对称轴x t =的对称点为点(,)A A x m '',则A x t '>,(1)A t x t '−−=−. ∴21A x t '=+.(ⅰ)当11t −<≤时, ∵11t −<≤,034x << ∴012+13t x <≤<. ∴m n p <<,不符合题意. (ⅱ)当312t <<时, 令021x t =+,则m p =,不符合题意. (ⅲ)当332t ≤≤时, ∵332t ≤≤,034x <<, ∴0342+1t x t ≤<<≤. ∴m p n >>,符合题意. ③当3t >时,令03x t <<,且034x <<,则n p >,不符合题意.综上所述,t 的取值范围是332t ≤≤. 解法二:∵0a >,∴当x t ≥时,y 随x 的增大而增大,当x t ≤时,y 随x 的增大而减小. ∵当034x <<时,都有p n >, ∴03t x ≤<. ① 当1t ≤−时, ∵13t ≤−<,∴n m >,不符合题意.② 当13t −<≤时,设点(1,)A m −关于抛物线对称轴x t =的对称点为点''(,)A A x m ,则'A x t >,'(1)A t x t −−=−. ∴'21A x t =+. ∵ m p >,∴021t x +>.∵当034x <<时,都有m p >, ∴214t +≥. ∴32t ≥. ∴332t ≤≤.综上所述,t 的取值范围是332t ≤≤. 27.(1)证明:∵AB AC =,∴B C ∠=∠.∵EDC B ∠=∠,∴EDC C ∠=∠.∴.ED EC = (2)① 依题意补全如下图.② 延长EF 至点M ,使MF EF =,连接BM ,AM ,AE .∵点F 是BD 的中点, ∴BF FD =.又∵MFB EFD ∠=∠, ∴△FMB ≌△FED .∴MB ED =,MBF EDF ∠=∠. ∵ED EC =, ∴MB EC =.∵AF EF ⊥,FM EF =, ∴AM AE =. 又∵AB AC =, ∴△AMB ≌△AEC . ∴ABM C ∠=∠.设C α∠=,则ABM ABC EDC α∠=∠=∠=. ∴2MBC α∠=. ∵MBF EDF ∠=∠, ∴MB ∥DE .∴2DEC MBC α∠=∠=. ∵180DEC EDC C ∠+∠+∠=︒, ∴2180ααα++=︒. ∴=45α︒.∴45.ABC C ∠=∠=︒ ∴90.BAC ∠=︒28.(1)① 23P P ,;② 依题意可知,点(2,0)T ,点Q 2TQ ≤≤. ∵OP 与以TQ 为半径的⊙T 相切于点P ,∴OP TP ⊥,TP TQ =. ∴90OPT ∠=︒.∴点P 在以OT 为直径的⊙D 2TP ≤≤,其中点(1,0)D .∴符合条件的点P 组成的图形为EOF (点O 除外),其中点(1,1)E ,(1,1)F −,如图.当直线y x b =+与D 相切时,设切点为G ,与x 轴交点为H ,则DG ⊥直线y x b =+,45GHD ∠=︒.由1DG =,可得DH =∴(1H .将(1H 代入y x b =+中可得1b .当直线y x b =+过点(0,0)时,0b =,此时直线y x b =+也经过点(1,1).当直线y x b =+过点(1,1)−时,2b =−. ∵直线y x b =+上存在伴随切点,∴b 的取值范围是21b −≤≤.(2t ≤≤t ≤≤.。
初三上册数学期末考试题及答案
初三上册数学期末考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 2B. √2C. 0.5D. 3.14答案:B2. 一个数的平方根是它本身,这个数是A. 0B. 1C. -1D. 2答案:A3. 一个等腰三角形的两边长分别为3和4,那么它的周长是A. 7B. 10C. 11D. 14答案:C4. 已知一个数列的前三项为1, 2, 4,那么第四项是A. 8C. 6D. 5答案:A5. 函数y=2x+3的图像经过点A. (0, 3)B. (1, 5)C. (2, 4)D. (3, 9)答案:B6. 一个圆的直径是10厘米,那么它的半径是A. 5厘米B. 10厘米C. 15厘米D. 20厘米答案:A7. 一个长方体的长、宽、高分别是2cm、3cm、4cm,那么它的体积是A. 24立方厘米B. 12立方厘米C. 26立方厘米D. 36立方厘米答案:A8. 一个数的绝对值是5,这个数可能是B. -5C. 5或-5D. 0答案:C9. 一个角的补角是90°,那么这个角是A. 90°B. 45°C. 30°D. 60°答案:B10. 一个数的立方根是它本身,这个数是A. 0B. 1C. -1D. 2答案:A二、填空题(每题4分,共20分)1. 一个数的平方是25,这个数是____。
答案:±52. 一个数的倒数是2,这个数是____。
答案:1/23. 一个数的相反数是-3,这个数是____。
答案:34. 一个数的绝对值是10,这个数是____。
答案:±105. 一个数的平方根是4,这个数是____。
答案:16三、解答题(共50分)1. 解方程:x² - 5x + 6 = 0(10分)答案:x₁ = 2,x₂ = 32. 已知等腰三角形的两边长分别为5cm和10cm,求第三边的长度。
(10分)答案:第三边的长度为10cm。
九年级初三数学期末考试卷
一、选择题(每题5分,共50分)1. 若m和n是实数,且m + n = 0,则下列等式中正确的是()A. m² = n²B. m² > n²C. m > nD. m < n2. 已知等差数列{an}中,a1 = 2,d = 3,则第10项a10等于()A. 27B. 30C. 33D. 363. 已知函数f(x) = 2x - 1,则f(-3)的值为()A. -7B. -5C. 1D. 34. 下列哪个不是一元二次方程?()A. x² + 2x + 1 = 0B. x² - 3x + 4 = 0C. x³ + 2x² - 3x - 6 = 0D. 2x² - 3x + 1 = 05. 已知三角形ABC中,∠A = 45°,∠B = 60°,则∠C的度数为()A. 75°B. 105°C. 120°D. 135°6. 若等比数列{an}中,a1 = 2,q = 3,则第5项a5等于()A. 18B. 27C. 36D. 547. 下列哪个不是等差数列?()A. 1, 4, 7, 10, ...B. 1, 3, 5, 7, ...C. 1, 2, 4, 8, ...D. 1, 2, 3, 4, ...8. 已知函数f(x) = x² - 4x + 4,则f(2)的值为()A. 0B. 2C. 4D. 89. 若等差数列{an}中,a1 = 3,d = -2,则第10项a10等于()A. -17B. -15C. -13D. -1110. 下列哪个不是一元二次方程的解?()A. x = 1B. x = 2C. x = -3D. x = 0二、填空题(每题5分,共50分)1. 若x² - 5x + 6 = 0,则x的值为__________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
陕西师大附中2007—2008学年度第一学期期末考试九年级数学试题出题人:杨勋 审题人:王全一、一、选择题(共10小题,每小题3分,计30分. 每小题只有一个选项是符合题意的) 1、方程(3)3x x x +=+的解是( )A 、1x =B 、120,3x x ==-C 、121,3x x ==D 、121,3x x ==-2、若某四边形的对角线互相垂直,则顺次连接其四边中点所得的图形为( ) A 、平行四边形 B 、菱形 C 、矩形 D 、任意四边形3、若反比例函数k y x=的图象经过点(1,2)-,则其函数图象一定经过点( )A 、(21)-,B 、(12),C 、(21)--,D 、(03), 4、在A B C ∆中,若390,3,sin ,5C A C B ∠===则B C的值是( )A 、3B 、4C 、5D 、65、点(1tan 45)M -,关于y 轴的对称点的坐标是( ) A 、(1-,1) B 、(1,1) C 、(1,1-) D 、(1-,1-)6、抛物线222y x kx =-++与x 轴交点的个数为( )A 、0个B 、1个C 、2个D 、与k 的取值有关7、如图1,已知A B 是⊙O 的弦,点C 在⊙O 上,若25BAO ∠=,则C ∠的大小是( )A 、25B 、50C 、60D 、65 图12与9、图2是甲、乙两户居民家庭全年支出费用的扇形统计图,根据统计图,下面对这两户居民家庭全年教育支出费用判断正确的是( ) A 、甲户比乙户多 B 、乙户比甲户多 C 、甲户、乙户一样多 D 、无法确定10、如图3,在R t △ABC 中,90,8,10,ACB BC AB CD ∠=== 是斜边A B 上的中线,以A C 为直径作⊙O ,设线段C D 的中点为P ,则点P 与⊙O 的位置关系是( )A 、点P 在⊙O 内B 、点P 在⊙O 上C 、点P 在⊙O 外D 、无法确定图2图3二、填空题(共6小题,每小题3分,计18分) 11、已知反比例函数2m y x+=的图象具有下列特征:在所在象限内,y 的值随x 值的增大而增大,则m 的取值范围是 .12、如图4,在菱形A B C D 中,AE BC ⊥于点,E 若51,cos ,13E C B ==则这个菱形的面积是 .13、如图5所示的抛物线是二次函数2231y ax x a =-+-的图象,那么a 的值是 .图4 图5 图614、如图6,在⊙O 中,弦A B 的长为8cm ,圆心O 到A B 的距离为3cm ,则⊙O 的半径为 cm .15、如图7,在宽为20m ,长为32m 的矩形地面上修筑同样宽的两条互相垂直的道路,余下的部分作为耕地,要使耕地的面积为y 2m ,土地的宽为x m ,则y 与x 之间的函数关系式为 .(不要求写出x 的取值范围)16、一块等边三角形的木板,边长为1cm ,现将三角形木板沿水平线翻滚,如图8所示,那么B 点从开始到结束,翻滚两次所经过的路径长度为 cm .图7 图8B 2C 1B 1A 1CBA甲陕西师大附中2007—2008学年度第一学期期末考试九年级数学答题纸二、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)二、填空题(共6小题,每小题3分,计18分)11、 12、 13、14、 15、 16、三、解答题(共8小题,计52分)17、(本题满分6分)已知两圆的半径R ,()r R r >是方程2560x x -+=的两个根,两圆的圆心距为d .(1)若6d =,判定两圆的位置关系;(2)若4d =,判定两圆的位置关系; (3)若1d =,判定两圆的位置关系.18、(本题满分6分)如图9,河的对岸有水塔A B ,今在C处测得塔顶A 的仰角为30 ,前行20m 到D 处,又测得塔顶A 的仰角为45 ,求塔高A B .图919(本题满分7分)某中学学生会为考察该校学生参加课外活动的情况,采取抽样调查的方法从篮球、排球、乒乓球、足球及其他等五个方面调查了若干名学生的兴趣爱好(每人只能选其中一项),并将结果绘制成如下两幅不完整的统计图,请根据图中提供的信息解答下列问题: (1)在这次考察中一共调查了多少名学生? (2)在扇形统计图中,“乒乓球”部分所对应的圆心角是多少度? (3)在左图中补全条形统计图.(4)若全校有1800名学生,试估计该校喜欢篮球的学生约有多少人?20、(本题满分6分)甲、乙两人在玩转盘游戏时,把转盘A B、分成4等份、3等份,并在每一份内标上数字,如图10所示.游戏规定:转动两个转盘停止后,指针所指的两个数字之和为奇数时,甲获胜;为偶数时,乙获胜.(1)用列表法(或画树状图法)求甲获胜的概率;(2A 图10 B21、(本题满分7分)如图11,A B 是⊙O 的直径,A ∠=30,A C C D =.(1)求证:C D 是⊙O 的切线; (2)若2O A =,求BD CD 、的长图1122、(本题满分8分)某公司试销一种成本单价为500元∕件的新产品,规定试销时的销售单价不低于成本单价,又不高于800元∕件.经试销调查,发现销售量y (件)与销售单价x(元∕件)可近似地看作一次函数的关系(如图12所示)(1)根据图象,求y 与x 之间的函数表达式;(2)设公司获得的利润(利润=销售总价-成本总价)为S 元. ①试用销售单价x 表示利润S ;②试问:销售单价定为多少时,该公司可获得最大利润?最大利润是多少?此时的销售量是多少?图12Ay23、(本题满分12分)如下图,在A B C ∆中,90,4,3,A A B A C M∠===是边A B 上的动点(M 不与A B 、重合),M N ∥B C 交A C 于点N ,A M N ∆关于M N的对称图形是P M N ∆.设A M x =.(1)用含x 的式子表示A M N ∆的面积;(2)当x 为何值时,点P 恰好落在边B C 上;(3)在动点M 的运动过程中,记P M N ∆与梯形M B C N 重叠部分面积为y ,试求y 与x 之间的函数关系式,并求当x 为何值时,重叠部分的面积最大?最大面积是多少?① ②B A P A陕西师大附中2007—2008学年度第一学期期末考试九年级数学答案一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题11、2m <- 12、391613、-1 14、5 15、252640y x x =-+16、43π三、解答题(共8小题,计52分) 17、(6分)解: 方程2560x x -+=的两根123,2,x x ==5, 1.R r R r ∴+=-=(1)65d R r d R r =+=<+∴ ,,,两圆外离. (2)45,d R r =<+= 但41,d R r =>-=即,R r d R r -<<+∴两圆相交. (3)11,d R r ==-=∴ 两圆内切.18、(6分)解:设A B x =m ,则在R t A B C ∆和R t A B D ∆中,tan 30A B BC ===m,tan 45A B BD AB x ===m,1)C D BC BD x ∴=-=m,又20C D = m ,1)20,x ∴=10x ∴==.因此塔高为10)m . 19、(7分)解:(1)66010%=∴这次考察中一共调查了60名学生. (2)125%10%20%20%25%----=36025%90∴⨯=∴在扇形统计图中,“乒乓球”部分所对应的圆心角为90.(3)6020%12⨯= ,补全统计图如下图:(4)、180025%450⨯=∴可以估计该校学生喜欢篮球活动的约有450人. 20、(6分)解:方法1:画树状图如下:由上图可知,所有等可能的结果共有12种,指针所指的两个数字之和为奇数的结果有6种.方法12结果有6种.∴P(和为奇数)61122==.2转盘B 转盘A 5675675677654321(2) P (和为奇数)12=. ∴P(和为偶数)11122=-=.∴这个游戏规则对双方是公平的.21、(7分) 解:(1)连接O C60.COD ∴∠=又A C C D =30A D ∴∠=∠=180603090OCD ∴∠=--=C D ∴是⊙O 的切线.(2)2 2.O A O C =∴= ,在R t O C D ∆中,tan 30O CC D ==4sin 30O C O D ==.422B D O D O B ∴=-=-=.22、(8分)解:(1)由图象可得,直线y kx b =+过点(600,400)和(700,300),故有400600,300700,k b k b =+⎧⎨=+⎩解得1,1000.k b =-⎧⎨=⎩故一次函数y kx b =+的表达式为1000.y x =-+ (2)①由题意有S 500xy y =-2(1000)500(1000)1500500000(500800)x x x x x x =-+--+=-+-<<②21500500000S x x =-+-22(1500)500000(750)62500.x x x =---=--+30OA OCA ACO =∴∠=∠=故当销售价格定为750元时,公司可获得最大利润,且最大利润为62500元. 此时10007501000250.y x =-+=-+=即此时销售量为250件. 23、(12分)解:(1)由题意得:A M N ∆∽A B C ∆,AM AN ABAC∴=即43x A N =34x A N ∴=,故238A M N S x∆=.(2)如图①,由轴对称性质知:AM PM =,A M N P M N ∠=∠. 又M N ∥B C ,P M N M P B ∴∠=∠,A M N B ∠=∠, B M PB ∴∠=∠,AM PM BM ∴==.∴点M是A B 的中点,即当122x A B ==时,点P 恰好落在边B C 上.(3)以下分两种情况来讨论: Ⅰ)当02x <≤时,238y x=,∴当2x =时,233282y =⨯=最大.Ⅱ)当24x <<时,如图②,设PM 、P N 分别交B C 于E 、F . 由(2)得4M E M B x ==-,(4)24PE PM ME x x x ∴=-=--=-. 由题意知PEF ∆∽A B C ∆2()PEF ABCS PE ABS ∆∆∴=.23(2)2P E F S x ∆∴=-.2222339(2)6682898()283PM N PEF y S S x x x x x ∆∆∴=-=--=-+-=--+∴当83x =时,2y =最大.综上所述,当83x =时,重叠部分的面积最大,最大值为2.①A。