十二种方法推导点到直线的距离公式

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

十二种点到直线距离公式证明方法
用高中数学知识推导点到直线的距离公式的方法.已知点P(X0,Y0)直线l:Ax+By+C=0 (A、B均不为0),求点P到直线I的距离。

(因为特殊直线很容易求距离,这里只讨论一般直线) 《1.用定义法推导》
点P到直线l的距离是点P到直线l 的垂线段的长,设点P到直线l的垂线为垂足为Q,由l垂直l’可知l’的斜率为B/A
《2,用设而不求法推导》
《3,用目标函数法推导》
《4,用柯西不等式推导》
“求证:(a2 +b2)(c2+d2)≥(ac+bd)2,当且仅当ad=bc,即a/c=b/d 时等号成立。

”实为柯西不等式的最简形式,用它可以非常方便地推出点到直线的距离公式。

《5.用解直角三角形法推导》
设直线l的倾斜角为,过点P作PM∥y轴交l于G(x1 ,y1),显然X l=x。

,所以
《6,用三角形面积公式推导》
《7.用向量法推导》
《8.用向量射影公式推导》
《9.利用两条平行直线间的距离处处相等推导》
《10.从最简单最特殊的引理出发推导》
{11.通过平移坐标系推导】
【12,由直线与圆的位置关系推导】
感谢以下挚友,俺其实只是负责编辑整理了一下,证明下,感受下数学滴博大精深。

相关文档
最新文档